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Analysis of Symmetrical Waveguide Junctions'

David M. Kerns

Previous theory of consequences of symmetry in waveguide junctions has made limited
use of mathematical tools available in the theory of group representations and has been
limited to the consideration of nondissipative junctions. In this paper group-theoretical
technique is utilized more fully (in much the same way as in the analysis of the vibration of
symmetrical molecules) in the formulation of an improved and general technique for the
analysis of symmetrical waveguide junctions subject merely to the requirement of linearity.

A waveguide junction, for the purpose of this paper, is a linear electromagnetic system
possessing ideal waveguide leads, and is considered to be subject to excitation solely through
the effects of nonattenuated modes in the waveguide leads. Under the conditions of the
problem, an arbitrary electric (or magnetic) field in a waveguide junction is expressible
linearly in terms of a finite number of linearly independent electric (or magnetic) basis fields.
From any given ordered pair of electric (or magnetic) basis fields one can in principle calculate
a complex number—an element, of the admittance (or impedance) matrix characterizing the
junction (relative to the choice of basis fields). The geometric concept of rotation and
reflection of fields (and structures) is discussed in terms of a rotation-reflection operator, and
the symmetry of a junction is characterized by a group of rotation-reflection operations under
which the structure is invariant. A general procedure is given for the construction of a basis
in which the basis fields transform according to irreducible representations of the symmetry
group involved. Such basis fields are said to be of particular symmetry species and from the
special properties of such fields follow the physical results, of which perhaps the most
conspicuous is the vanishing of the matrix element between two fields of distinet symmetry

species.

I. Introduction

This paper is concerned with symmetry properties
in “waveguide junctions.” A waveguide junction,
for the purpose of this paper, is a linear electro-
magnetic system possessing ideal waveguide leads
and is considered to be subject to excitation solely
through the effects of nonattenuated waveguide
modes in the waveguide leads. The electromagnetic
boundary-value problem presented by a waveguide
junction is, in general, impracticably difficult to
solve. Nevertheless, important information con-
cerning the characteristics of a waveguide junction
in its primary function as a device for transferring
power from one waveguide-mode to another is
derivable with relatively little labor from general
properties, such as reciprocity, losslessness, and, in
particular, symmetry. Many waveguide junctions
used in microwave practice do in fact possess useful
and interesting properties in virtue of symmetry. A
few simple examples of such junctions are shown in
figure 1.

The literature on the present subject is not exten-
sive. The book, Principles of microwave circuits,?
contains a valuable and fairly comprehensive treat-
ment applying to nondissipative waveguide junctions.
A report by Slater ? is mainly concerned with the
analysis of nondissipative T-junctions having essen-
tially a single symmetry element. A paper by
Chodorow, Ginzton, and Kane* deals with one
particularly interesting junction, which is a wave-
guide analogue of a Wheastone-bridge network.

LA dissertation submitted to the faculty of the Graduate School of Arts and
Sciences of the Catholic University of America in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

2 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of microwave
circuits, chapter 12 (McGraw-Hill Co., New York, N. Y., 1948).

3J. C. Slater, Technical Report No. 37, Electronics Research Lab., Mass. Inst.

Tech. (Cambridge, Mass., 1947).
4+ M. Chodorow, E, L. Ginzton, and J. F. Kane, Proc. IRE 37, 634 (1949).
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Ficure 1. Simple junctions possessing symmetry.

There is to be found also the occasional and limited
use of symmetry arguments in discussions primarily
concerned with other matters.

The analytical technique employed in the book
referred to in footnote 2 is partly formulated in
general terms and partly indicated by the consid-
eration of a series of examples. The technique used
involves the restriction to nondissipative junctions
as an explicit condition. The discussions contained
in the papers referred to in footnotes 3 and 4 are of a
more or less specific nature and, in the form given,
are likewise subject to the restriction of no dissipation.

The object of the present paper is to develop a
general theory of the consequences of symmetry in
waveguide junctions of a general class: in the interior
of a waveguide junction media that may be non-
homogeneous and anisotropic are permitted; dissi-
pation, by reason of finite conductivity or radiation
to infinity (or both), is permitted; fulfillment of the
reciprocity condition is not required. Linear be-
havior and freedom from internal sources are as-
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sumed (the former being essential, the latter non-
essential). A broad outline of the discussion follows.

The needed physical and mathematical formula-
tion of the electromagnetic problem is given in sec-
tion II. TUnder the conditions of the problem, an
arbitrary electric (or magnetic) field in a waveguide
junction is expressible linearly in terms of a finite
number of linearly independent electric (or mag-
netic) basis fields. From any given ordered pair of
basis fields of the same kind (electric or magnetic)
one can in principle calculate a complex number—
an element of the admittance (or impedance)
matrix of the junction—which is a measure of the
field of opposite kind associated with the second (or
first) of the given pair of fields. The characteriza-
tion of a junction by means of matrices is relative to
the choice of basis fields; the basis fields first chosen
might be described as ‘“simple with respect to excita-
tion.” Formulas for change of basis are given.

The geometric concept of rotation and reflection
of fields (and structures), taken up in section III, is
discussed in terms of a rotation-reflection operator
applicable to tensor point-functions.® The sym-
metry of a waveguide junction is characterized by a
group of rotation-reflection operations under which
the structure is invariant.

A method of symmetry analysis and the results
obtained for the class of problems considered are
presented in general terms in section IV (with some
further results in appendix 2). The basis fields set
up in section II do not necessarily exhibit particu-
larly simple transformation properties under opera-
tions of the symmetry group; however, as is shown,
it is possible to select linear combinations of the
original basis fields to form new basis fields that do
exhibit special transformation properties. Such
fields are said to be of particular symmetry species.
(If, for example, the symmetry group consists of
only two operations, the identity and reflection in a
plane, say, the two possible species are the familiar
“even” and “odd.” The general definition of sym-
metry species is provided by the theory of group
representations, which theory indeed provides the
natural mathematical tools for the analysis.) An
important property of fields of the new basis is the
vanishing of the matrix element between two fields
of distinet symmetry species.

As might be expected, the method used here is in
some respects very similar to methods used in the
analysis of the vibration of symmetrical molecules.
However, because dissipation (as well as failure of
reciprocity) is permitted in the waveguide problem,
the main part of the analysis here is formulated
without reference to the question of eigenvalues of
the matrices of a junction. The eigenvalue problem
is discussed briefly in the latter part of section IV.

Three illustrative examples are considered in
section V. In one of these examples the theoretical
results previously obtained (footnote 4) for the
waveguide Wheatstone bridge are presented in a
more general context.

5 Tensor is used in the general sense, a scalar being a tensor of rank 0, ete.

II. Electromagnetic Formulation

A waveguide junction may be described briefly
as an electromagnetic system comprising an arbitrary
number, n, of ideal waveguide ‘leads”, which
individually may be of arbitrary cross section, and a
“coupling region” from which the waveguide leads
emerge. Various aspects of the theory of waveguide
junctions have been considered in recent years by a
number of authors, and a considerable body of
systematic theory ®7® centering on the use of
impedance, admittance and scattering matrices,
has been built up. Nevertheless, for the purposes
of this paper a formulation, which can be brief, but
which is in some respects new and more complete,
is needed. Part of the formulation will depend, of
course, on certain rather well-known general results
of the theory of waveguides (see footnotes 2 and 7).

The domain of the electromagnetic field in a
waveguide junction will be denoted by V, the com-
plete boundary of V will be denoted by S, and the
inward normal unit vector on S will be denoted by k.
The surface S and also, in part, the boundary con-
ditions to be imposed may be described (in two
typical cases) as follows. If the domain is of infinite

Freure 2. Slotted waveguide.

Tllustrating Sm,Sm (1=2); Se is not shown.

extent (fig. 2), V is bounded internally by n closed
surfaces S,+8S, (m=1, 2, - - -, n), where S, is a
transverse surface (the terminal surface) in the m®*™
waveguide and S,,, S, together enclose the termina-
tion of the m™ waveguide. Although V in this case
is externally unbounded, it is convenient to employ
a large spherical bounding surface S. (of radius 7),
appropriate limiting processes being implied. The
complete boundary of V is then S=8S.-+S,+S,+- -
+8,+8S,. On all parts of S except the terminal
surfaces, the field is to satisfy homogeneous boundary-
conditions: on S«, lim (7E) is bounded, and E satis-
fies the outward-radiation condition; on S,, the
tangential component E, of E vanishes (E denoting
the electric field). If the field is confined to a finite
domain by a perfectly conducting metal surface (fig.
3), then S=8,+8;+ - - - +8,, where S, coincides
with the metal surface. In this case the homogene-
ous boundary condition is simply E,=0 on S,. (If
metal walls are considered finitely conducting, but
are sufficiently thick, S, may be taken on the outer
surface where E, hence E,, is substantially zero.)

The whole of the space and structure within V
can be regarded as a linear, source-free medium,
6 See footnote 2.

77J. C. Slater, Rev. Mod. Phys. 18, 441 (1946).

8 D. M. Kerns, J. Research NBS 42, 515 (1949). (The references cited are
believed to be the ones most useful in connection with the present paper.)
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which is in general nonhomogeneous and aniso-
tropic. 'The conductivity and the electric and mag-
netic inductive capacities of the medium are to be
given by the real point-functions oc=o(r), e=e(r),
u=pu(r), respectively. Anisotropy is taken into
account by considering o, ¢, u to be, in general,
tensors of rank two.

The interior of the m™ waveguide lead is a cylin-
drical, source-free domain 7, (of finite length) in
which ¢=0, u, e=scalar constants. 7, is bounded
by a cylindrical surface (also of finite length) on
which the conductivity becomes infinite. The ter-
minal surface S,, is a transverse section of 7,; S,

SYMMETRY
PLANE /

Ficure 3. Hybrid T-junction.

Ilustrating S» and Sy (n=4).

is to be a closed, connected (but not necessarily
simply connected) plane surface bounded by a curve
C,, (which may consist of one or more distinct
parts). As the figures indicate, S,, is to be located
within its waveguide lead at some distance from any
discontinuity. (A portion of a waveguide lead may
be included bodily within V| as in fig. 2; in any case
the interior of a waveguide lead from the inner
portion of the junction out to the terminal surface
1s an integral part of the domain V)

Harmonic time-dependence, at angular frequency
w, is assumed ; we shall deal with the complex electric
and magnetic field (amplitudes) E=E(r), H=H(r),
omitting the time-dependent factor exp(jot). With-
in V, then, E,H satisfy Maxwell’s equations in the
form

v X E= -~jwp.-H,

V X H=(jwe+}o0)-E.

(1)

The rationalized meter-kilogram-second system of
units is assumed.

Under the specified conditions holding on S and
in V the electromagnetic field within V will be
determined by the boundary conditions on the term-
inal surfaces. The ultimate sources of the field,
which are to be found within the waveguide ter-
minations (pictured in fig. 2, implied in other figures),
are of interest only insofar as certain fields, of a

single frequency o, are caused to appear on the
terminal surfaces. If, as is assumed, the terminal
surface S,, is sufficiently far from any discontinuity
(or any other departure from the conditions defining
a waveguide lead), the contributions of attenuated
waveguide modes to the field on S,, will be negligible.
Thus only nonattenuated modes need be considered
in describing the field on a terminal surface.” It is
understood that the field of a single nonattenuated
mode may and in general will involve both incident
and emergent progressive components. Waveguide
and frequency being given, the number », of non-
attenuated modes supported in the m™ waveguide
is necessarily finite or zero; it is naturally assumed
that »,=1. In general, TEM, TM, and TE modes
will occur among the v, nonattenuated modes in
waveguide m, but it will not be necessary to distin-
guish the several types of modes in the notation.

Of essential interest will be suitable expressions for
the tangential (=transverse) components E, H, of the
most general E.H on S,, consistent with the above
conditions. Let the index u (u=1,2, V)
identify the nonattenuated modes supported at fre-
quency o in waveguide m. From waveguide theory
we know that E, on S,, can be expressed in the form

E(rm)t == Zml‘ mue:)nu(rm>7 (rm on Sm); (2)
u=1

where r,, denotes r on S, the »,, are scalar coeffi-
cients, and the e, are derivable from eigenfunc-
tions of certain two-dimensional boundary-value
problems formulated for S, and its perimeter C,,.
The vector e?,, like E,, lies in the plane of §,;
e, is considered to be defined only for r on §,,.
No coordinate-dependence is indicated for the v,
since S, 1s considered to be in a fixed position in its
waveguide lead. Similarly, H, on S, can be ex-
panded in the form

M,
H(rm)l: ;imuh?n (rm): (rm on Sm); (3)

here the 7,, are scalar coefficients and the hJ, are
defined by

h?nu(rﬂl,) = (;0"7 mp)km X egm(rm); (4)

where k,, denotes k on S, nms 18 the wave-admit-
tance of mode p in waveguide m, and (=1 ohm
(see the following paragraph). The €S, and the RS,
may be assumed to be real and to satisfy the ortho-
gonality and normalization relation

1 ( 1, A=
—EJSm (egzﬂxhgz)\)'kmdsz Mx:{ ’ z

0, x#u}' )

Equations 4 and 5 each represent combinations of
what is necessary with what is convenient. In par-
ticular, eq 5 is automatically satisfied if modes u,\
are not mutually degenerate or if one is a 7/ and
the other a 7'M mode.

¢ Attentuated modes are excluded mainly because these higher-mode inter-
actions are usually avoided in practice. The finiteness of the'm_unbcr of modes
involved is the essential point so far as the subsequent analysis is concerned.
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Clearly, v,,, and %,, are respectively linear meas-
ures, relative to the standard terminal fields €2, and
h?,, of the contributions of mode u to E, and H, on
the terminal surface S,. The variables @, bmu
defined by

g‘(ﬂ.m#, (6)

will be employed to a very limited extent in this
paper. @, and b,, are respectively linear measures
(relative to e€%,) of the electric fields of the incident
and emergent progressive components of mode u
at S,. The second of eq 6 shows that if b,,=0,
then the corresponding value of v,,/i,, (called the
characteristic impedance of mode p in waveguide m)
is equal to & So far as the present paper is con-
cerned, {; may be considered to be primarily a
dimensional constant inserted to bring about an
attractive dimensional scheme. Indeed, from eq 4
and 5 one finds (considering 6“,‘ and k,, to be dimen-
sionless) [e,]=[h%,]=meters™!, and then from eq
2 and 3, [v,]= volts, [imu] =amperes.

It is approprlate to review the eleetromagnetlc
situation in the junction as a whole. For convenience
let » and 7 denote the column matrices whose ele-
ments are respectively the N v,,’s and the N i,,’s,
N=y+vs+ -+ - +v, o uniquely determines and
is uniquely determined by E, on all the terminal
surfaces; similarly, 7 determines and is determined by
H, on all the terminal surfaces. Now the speci-
fication of either E, or H, on all terminal surfaces
(together with the homogeneous boundary condition
holding elsewhere on S) is just sufficient to determine
E and H throughout the domain V. Thus, if v is
given, E,H, and 4 are determined; if 7 is given,
HE and v are determined.’® The existence of a
homogeneous linear relation connecting » and 4 is
implied. Moreover, there are (under the conditions
of the problem) exactly NN linearly independent
electric fields possible in V; similarly, there are
exactly N linearly independent magnetic fields
possible in V. This fundamental property is
expressed analytically in the following paragraph.

We define the electric basis-field e, as the electric
field ' in V corresponding to the special boundary
condition implied by v,,=1, vn=0 (N#mu). The
connection, as well as the difference, between e,,
and e, is to be noted: e, is defined throughout V,
its tangential component (e,,.), reduces to €2, on S,
to zero on other terminal surfaces. From the bound-
ary conditions it follows that the NV e,,’s are linearly
independent. The E in V corresponding to arbitrary
v may be written

By =y G 20 =V —

Er)=> e, vn.=ev, (7

muy

where e is the row matrix e_-(eu S
e.,). Similarly, the magnetic basis ﬁeld hn is de-

fined as the magnetic field in V' corresponding to the

10 It may be assumed, with no appreciable loss of generality, that the electro-
magnetic field in V corresponding to arbitrarily prescribed » or i exists and is
unique, and that E=H=0 (throughout V) corresponds to v=00r i=0. See paper
in footnote 2, p. 134; also paper in footnote 8, p. 535.

boundary condition in=1, =0 (kxk#IN). The H

in V' corresponding to arbitrary 7 is then
H(r)zghn\(r)i“:hi, (8)

where h is the row matrix h=(h,; - - - h;y - -
h,, ). The possible E’s and the possible H’s are

elements of linear vector spaces,” of dimension .
E has the coordinates v relative to the basis e; H has
the coordinates i relative to the basis h. The par-
ticular basis fields introduced in eq 7 and 8 are the
simplest ones to start out with; e, h,or both together
will accordingly be called a primitive basis.

The usefulness of the following definition will be-
come apparent. The bracket [E*, H? of any electric
field E' in V and any magnetic field H?* in V is
defined by

1L =
[EY, H =3 > (E'XH') k,dS, 9)
2 m=1 S

where, as always in this paper, the superposed bar
denotes the complex conjugate. It is to be empha-
sized that E' and H? are by no means necessarily
associated electric and magnetic components of the
same electromagnetic field. The most important
algebraic property of the bracket is exemplified by

[(aE'+bE?), H'|=alE', H’]+ b E*, H],

[E', (cH*+dH°)|=[E', H’]c+ [E', H'|d,

where a, b, ¢, d are any constants. (There will be

no need to define or use brackets of the type [H, E].)
The orthonormalization of the standard terminal

fields (as expressed in eq 5) has as an immediate con-

sequence a corresponding property of the basis fields:

(€, RN] =0 (10)

mu, I\y
where 8,, n=1 for mu=I\, 8,, n=0 for mu==I\.
The coordinates (relative to the given basis) of arbi-
trary E and H in V may be defined by

[E, hn]= v, (11)

for if E=ev and H=hi, then, with the aid of eq 10,
one finds that eq 11 do in fact yield v, and 7,
Let 91 (e;) denote the magnetic field associated with
en, and let £(h,,) denote the electric field asso-
ciated with h,, (so that VX en=—jwu - 1 (e,) and
VX HRp,,=(jweto) -E(h,)). Replacing E and H in
eq 11 by ¥(h,,) and A (en), respectively, we write

[f (hmy) hl)\] :Zlk muy (el)\)]

thereby defining the N-dimensional square matrices
Z and Y. (The first index-pair attached to the

11 Possibly one might prefer to say that em, is a field of electric type inasmuch
as the units of em, are those of €%m, and not those of E.

12 For the mathematical postulates defining such spaces, see, e. g., F. D.
Murnaghan, Theory of group representations, p. 11 (Johns Hopkms Press Balti-
more, Md., 1938).

[emuv H] o ;mm

[emu, mu 28] (1 2)
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matrix element labels the row in both cases.) Now
if E and H are associated (E=Z(H), H=R (F)), it is
clear that

E=% (A_E hyiv) = RZ) E (hy)
H:ﬁ ("\2 ek,(vk,()= kz ﬁ (ekx> Dk

since £ and A are linear functions of their argu-
ments. By inserting these forms for £ and H into
eq 11 one finds

Uz)\:kZ Zn\, kx":kx, (13)

,i:mu: Z Ymu., kxikn-
kx

Thus the coordinates of associated E and H are
related by »=7i or, equivalently, by :=Yv. Z and
Y are, respectively, the impedance and the ad-
mittance matrices (relative to the primitive basis)
characteristic of the waveguide junction.

The bracket [E, H] of (associated) E and H is
(directly from eq 9) the integral of the inward
normal component of the complex Poynting’s vector
extended over the aggregate of the terminal surfaces.
Thus the total (complex) power influx W across the
terminal surface is

W= [E7H] = Z Vmp [emu, hl)\] ;L'_;)\: 0.

M, I\

(14)

Here and subsequently the star is used to denote
the Hermitian conjugate (=transposed complex-
conjugate) of a matrix. The additional expressions
W=:i*Zi=v*Y *» follow immediately from eq 13.

Consider the introduction of a new electric-field
basis e’ = (e] ey) related to the primitive basis
e=(e; - en,,n) by means of the linear trans-
formation e’=ea, where o is a unitary matrix
(a*=a.* The postulate that eq 7, 14, 8 shall have
invariant meaning determines the transformations of
v, 1, and h relative to that of e. Namely, from

E=ev=e'v’, (7)
WE=rt == vs, (14)
H=—hi— R (8)

and the given €’=ea one finds easily

e'zea, v’:a“v,
(15)
h'=hq, W=
And from eq 12
2l =a " Ze, V=N (16)

(It should be noted that the formulas for h’, 7/,
7', and Y’ are written for unitary « and do not hold
unless « is unitary.)

13 Transformations with an arbitrary nonsingular « could be considered but
will not be needed in this paper.

With the above provision for change of basis the
electromagnetic formulation, as far as needed here,
is essentially complete. It may be remarked that
Z and Y can be regarded as metric tensors of the
vector spaces of eq 7 and 8, respectively (the metric
is not in general Hermitian, to be sure).!* The
scheme acquires additional meaning when it is
recognized that for each bracket there is an expres-
sion involving volume integrals extended throughout
the domain V (appendix, 1).

Although the discussion will relate primarily to
Z, Y, and the corresponding basis fields, the results
to be obtained for Z and Y will hold also for the
scattering matrix S, which is defined as follows. Let
(17)

20/:0‘|_§‘0?;, 2b:U_§'07:,

be the matrix form of eq 6. Then the scattering

matrix furnishes the relation

b==Sa, (18a)
and a simple calculation shows that
S=Z—t)Z+5)7, (18b)

where ¢, 1s to be interpreted as a multiple of the

/-dimensional unit matrix. Equations 17 and 18
will have invariant meaning under a change of
basis provided

a=o='a,

bi—aath S'=a'Sa. (19)

)
The matrix {, which must transform like 7 (from
eq 17), i1s invariant under a unitary change of basis.
So far as the subsequent symmetry analysis is
concerned, Z, Y, or S is an arbitrary nonsingular
matrix subject only to the consequences of structural
symmetry of the waveguide junction. (It may be
understood that Z, Y, and S are such that the real
part of W, Re(W), can not be negative, but this
condition is not used in the analysis.) The following
special conditions (of electrical origin) are of interest.
I. The nondissipative condition (Re(W)=)
0): Z, Y are skew-Hermitian; S is uni-
tary: Z*=—72,Y*=—Y,8*=8"!

IT. The nonreactive condition (Im( W)=0):
Z,Y,S are Hermitian: e.g., Z*=Z.

ITI. The reciprocity condition: Z, Y, S are
symmetric: e.g2., Zuu n=21x mu, OT, 1N
the matrix notation to be used, Z=2. |

- (20)

These conditions may be incorporated, at will, after
the main results have been obtained; of course, the
more usual cases are I11 (alone) and the combination
of IIT and I. The matrix conditions in I and II are

14 For the mathematical postulates leading to a positive-definite Hermitian

metric-tensor, see, e. g., Murnaghan, p. 17. To make connection with Mur-
naghan’s notation, one may define

(E'|E?) =[E', % (E%)](or (H'|H?)=[E(H"), H]).
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invariant under transformations of the type needed,
but the property Z=Z is not (unless « is real).?®

In general Z’ is not simply equal to Z’ but rather,
from eq 16,

Zi—g a'=alal o Na'=(aa)Z (aa)™t. (21)
Obviously Y’ and S’ are subject to the same condi-
tion when Y and S are symmetric.

III. The Rotation Operator; Symmetry Groups

The geometric concept of spatial rotation and
reflection of a waveguide junction or of an electro-
magnetic field is represented and in fact analytically
defined by certain transformations of the tensor
point-functions involved (e. g., o(r), e,.(r), H(r),
etc.). These transformations are basic for what
follows and will be set down presently. In the
present context tensor components will be distin-
guished by the use of the letters z, , z as indices,
and a fixed, orthogonal three- dimensional basis is
to be understood. The three unit vectors of such a
basis plus an arbitrary origin O define a rectangular
Cartesian coordinate-system Oxyz (r,=z).

For the present purpose the intrinsic geometric
properties of a particular rotation are conveniently
characterized by a tensor R (independent of r)
whose components 2, are such that R=([,,) is a
real orthogonal matrix. The determinant of R may
be +1 or —1; a rotation (as the term is used here for
convenience) may be termed proper or improper
according as the determinant of R is +1 or —1.

As a preliminary to the complete expression of the
desired transformation, we consider the transforma-

tion F(r)—F’(r) of a tensor F (of rank 0,1, or 2)
furnished by

Pa)=F, (22a)

F;(r):ZRzvaO')a (22b)
or ’

F;,,(r):ZR ah s (T (22¢)

This may be called “local” rotation, inasmuch as the
components of F’ at the point r are related directly
to those of F at the same point. It will be conven-
ient to use the notation r’=Rr for eq 22b when
=iz

It may be noted that in electromagnetic theory it
is customary (perhaps invariably so) to consider
electric charge a scalar, thereby determining E as a
vector and H as a pseudovector. Since a pseudo-
vector is a (antisymmetric) tensor of rank two, eq 22¢
applies; but in terms of the usual pseudovectorial
components, say H, of H, eq 22¢ becomes

H,(r)=det(R) > R, H,r), (23)

1 The fact that reciprocity is manifested in Z=2z (in the primitive basis)
depends upon the fact that the standard terminal fields are (by hypothesis) real.

where det (£) is the determinant of 2. Itis well to
note also that in the present framework EXH is
vector and EX H-k is a scalar.

By combining a local rotation and a suitably
related functional transformation, which may be
called “parallel transport”, we obtain the transforma-
tion to be termed rotation of a tensor field (or, briefly,
rotation). In the sense of this term, the rotation
corresponding to R applied to the tensor point-
function F produces a new tensor point-function, to
be denoted by PrF, whose components at the point
r'=Rr are equal respectlvely to those of the locally
rotated F at the point r. Thus, for all r in the
domain V of definition of F,

PrF(r')=F(r), (24a) 1
[PeF(r')].= ?‘PI,F ), (24b)
[PRF(rI) zY=— ZR Ru,,l 20 ) (240)

PgF is defined in the rotated domain conveniently
denoted by PrV, PrV being such that r’ is in PrV
if risin V. It should be observed that the meaning
of a rotation depends upon the location of the origin
0 of Oxyz (at which point F undergoes only local
rotation). By what amounts to a change in the
designation of the independent variable, one may
write, say for eq 24b,

[PrF ()],

ER:WF (R™'r), (25)

which holds for r in PzV. 1In the later applications
of eq 24 it will in fact generally be convenient to
have r as the argument of PpF.

The analytical construction of eq 24 belies the
simplicity of the underlying geometric picture: for
proper rotations, at least, the transformation defines
what might be described as a rigid motion (in which
one point is fixed) of a tensor field; and for scalars
and vectors, at least, the transformation is easily
visualized. (Simple illustrations are given in fig. 4
and in connection with example A, section V.)

We impart operational meaning to the symbol P
by saying that it stands for the operation (local
rotation plus parallel transport) by which the func-
tion PrF is produced from the function F. It is
convenient to describe the properties of the trans-
formations 24 by describing the properties of Prp.

The properties of Pr to be listed now are all
rather evident from the geometric picture corre-
sponding to eq 24 and to some extent from eq 24
themselves. No proofs will be needed here. (a) Pg
is linear:

PR<CF+dG):CPRF+dPRG,

16 Equation 24a essentially reproduces Wigner’s definition; eq 24b,c give the
generalization needed here. E. Wigner, Gruppentheorie und ihre Anwendung
auf die Quantenmechanik der Atomspektren, p. 113 (Vieweg and Sohn, Braun-
schweig, 1931).
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where ¢, d are scalar constants and F, G are tensors.
(b) Pp isdistributive with respect to tensor products
in that

Py(F G)=(PRF)(PrG), (26)

where on both sides the same type of tensor product
is implied (e. g., u-H,EXH). (c) If the product
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Ficure 4. Proper rotation of a vector.

FGisascalar (c.g., F=E.c, G=E,FG=E-¢-E) then
f FGdV— J (PoF) (Pa®dV,  (27)
v PrVvV

and in this sense Py is unitary. The same property

obviously holds also for surface integrals. (d) The
identities
Vr[PRf(r)] =3 I)R[Vhf(r)]! l
V, [PrE(1)]=Pg[V-E(r)], (28)

V. X [PrE(1)]=P[V, X E(r)],

in which the subseript » denotes differentiations
with respect to r, lead to the statement that Pg
commutes with the V-operations.

The product PsPyr (of Pr followed by Ps) is de-
fined by (PsPgr)F= Ps(PRF) for arbitrary F, where
Pg(PpF) denotes the function produced from F by
first applying Pr to F and then Pg to PpF. The
product of two P-operations is itself a P-operation
and in fact PgPr= Pgsr, where the matrix represent-
ing SR is the matrix product SR. It is worth while
to verify this multiplication law, say in the vector
case. Letting r”’=8r'=SRr and thrice using eq
24b, one may write

{Ps| )RF(r”)]}z:§ Sy [PeF ()],
- Z Srsz/ze(r)
Y, 2

= ;(SR)I,FZ(r) =[PsF (")),

The equality of the first and last members, holding
identically in r’” for an arbitrary vector function F,
shows in the vector case that PsP as defined is
equal to Pgz. Since the collection {R} of all three-
dimensional real orthogonal matrices, upon matrix
multiplication, constitutes a group, it is clear that
the collection { Pz} of all rotations of a given tensor
function, upon multiplication as defined, also con-
stitutes a group; {R} and {Pg} are abstractly iden-
tical and may be 1dentified as the three-dimensional
rotation-reflection group. The groups of interest in
the present discussion are subgroups '7 of this group,
as will become clear from the content of the next
few paragraphs.

A tensor function F will be said to be invariant
with respect to the rotation P (in which O is a fixed
point) if

PpF(r)=F(r), (29)
for all r in the domain V of definition of ¥. (For
this equation to hold it is necessary that PrV=V.)
When eq 29 holds, P will be said to be a covering
operation of F.

For any choice of O, the corresponding set of
covering operations Py, Pr P - - - of a given
function constitutes a group. For, associative mul-
tiplication is defined within the set: (PpPg)F=
Pr(PsF)=PrF=F; moreover, the set contains the
identity operation P; (obviously) and the inverse of
each of its operations: Py ' F=P; 'PJF=F. 1tmay
happen, of course, that a group of covering operations
actually consists only of the single element P;; this
trivial case is obviously of no interest in what follows.

It may be recalled that the structure of a wave-
guide junction is described by three functions, «(r),
u(r), e(r), which are in general tensors of rank two,
defined in a region V. If o,ue are invariant with
respect to Pz, we say that the structure is invariant
with respect to Py and that Py is a covering operation
of the structure. For any choice of O, the set of
covering operations of a given structure will evidently
be a group. If O is chosen so as to make the group
of covering operations as large as possible, then this
group may be said to characterize the symmetry of
the structure and be called the symmetry group of
the structure.'® The symbol {Pz}, used above for
the three-dimensional rotation-reflection group, will
be used also for symmetry groups.

IV. Symmetry Analysis

Consider a waveguide junction having the sym-
metry group {Pg}, and let E, H satisfy

VXE=—jou-H
}in % E,=Fon S, (30)
VX H=(jwe+o0)-E

17 For a discussion of these groups, see, e. g., J. Rosenthal and G. M. Murphy,
Rev. Mod. Phys. 8, 317 (1936).

18 If y,eare scalar constantsand ¢=0in V, then the necessary condition Pg V=V
contained in eq 29 becomes also sufficient and the symmetry group will be de-
termined by V. In this way the present formulation includes cases in which
symmetry is determined by geometrical figure alone.
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where the vector function F, defined on the complete
boundary S of V|, denotes in a unified notation any
prescribed set of electric fields on the terminal
surfaces and the homogeneous boundary condition
holding on all other parts of S. Let the whole
system—structure and field—be subjected, in imag-
ination, at least, to the (proper or improper) rotation
in space corresponding to Pr. One obtains an ana-
lytical description of the resulting situation by apply-
ing Py to V, to S, and to both sides of each of the
three equations above.

VX (PoE)=— je(Pry) PoH
VX(PRH)=(ijRe +PRO')‘PRE
PR(Et):PRF on PRS.

}in PV,

(31)

These equations hold formally whether or not the
structure is invariant with respect to Pg; indeed, if
Py is a proper rotation, the configuration of the sys-
tem relative to itself is in no way altered. However,
the structure is by hypothesis invariant, so that eq
31 is equivalent to

20 o }mv, (PrE),= PgF on S.
VX (PrH=(jwe+ c)-PrE

(32)

The differential equations here are the same as those
in eq 30; that is to say, the macroscopic Maxwell’s
equations of the problem are invariant with respect
to Pg. The field PrE, PrH appearing in eq 32,
although closely related to the original E, H, is
nevertheless a new field relative to the fixed axes
Oxyz; and since the rotated structure is indistinguish-
able from the nonrotated one, PrE, PrH may be
counted as a new field relative to the structure. One
may, of course, consider that only the field, and not
the structure, is rotated.'® The essential observations
to be made here are: (a) If E, H is a possible field
in V, so also is PzE, PLH (so that the vector spaces
of eq 7, 8 are closed with respect to symmetry opera-
tions), (b) PrE, PrH is essentially determined by
the transformed terminal fields prescribed in eq 32,
since the stated boundary conditions holding on all
parts of S other than the terminal surfaces are not
affected by Pry.

It follows from (a) above that the set of electric
fields coinciding initially with the primitive basis e
spans a representation of the symmetry group { Pr}.
Namely, since e, is a possible electric field, Pre,,,
is also a possible electric field, and so Pge,, is ex-
pressible as a linear combination of primitive electric

fields:
PRemn(r):Z”;,el)\(r)D(R)l)\,mu- (33)

(This equation is not to be regarded as defining a
change of basis; the coefficient D(R)p mu is to be

19 This point of view is helpful in fixing the significance of the waveguide index
m(m=1,2, - - - m), which is to be understood to identify a waveguide lead in a
fixed spatial location.

regarded as a tensor component defined relative to
the basis e of the N-dimensional vector space intro-
duced in section IT.) We take D(R); m. as the
element in the (IN)*™ row and the (mu)®™ column of
an NXN matrix D(R). These matrices constitute
a representation of {Pr}. For, calculation of

Py(Pren,)= Z}\ (Poen)D(R)o, mu
:l§ €« D(Q)kx, l)\D(R)l)\, mu
o Z‘TI eLK[D(Q)D(R)]kK mpy

and comparison of this result with

(PQ PR)em;u: Ak\—‘_l elch(QR)kx, muy

shows that the matrix associated with the product
P,Ppr is in fact the product, in the proper order, of
the matrices individually associated with P, and Pk.

To determine further essential properties of
D(R) we utilize observation (b) above and consider
the transformation of the terminal-surface boundary
conditions that define e,,. Upon transformation
by Pg, the standard terminal-field e9,, defined on
terminal surface S, in waveguide m, goes over into
the field Pre’, defined on (and tangential to) the
terminal surface in an equivalent waveguide whose
index may be denoted by R(m). P e, must accord-
ingly be expressible linearly in terms of the standard
terminal fields in waveguide R(m). Thus, letting
R(m)=Fk to simplify the typography,

Prel, (1) =z &) D) myy  (reon ).

(34)

Since the tangential components of Pre,, are zero
on terminal surfaces other than Sj, eq 34 determines
Pre,,.. Hence D(R)p =0, [#R(m); also, since
the standard terminal-fields are real, D(R) must be
real. The nonvanishing elements of D(R) can be
presented in a set of =n submatrices D(R); n
(D(R)y, m1s square and of dimension »,). The arrange-
ment of these submatrices within D(R) is in accord-
ance with the scheme of permutation, m—R(m),
of terminal fields among equivalent waveguides.
(In example A, section V, the permutation 1—2,
2—1, 3—3, 4—4 for n=4 occurs.) Thinking pri-
marily of the general case »,>1, but not excluding
vm=1, we determine the nature of the submatrices
in the following manner. For the moment let two
modes (in the same or in equivalent waveguides)
be termed equivalent if they have equal wave-
admittances, so that equivalent modes are not only
“degenerate’” but also of the same kind (TFE, TM,
or TEM). Tt is clear that the right-hand side of
eq 34 can involve only modes equivalent to the u™
mode in the m™ waveguide. Hence (assuming
suitable ordering of mode indices) the nonvanishing
elements of D(R);, will appear in smaller square
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submatrices (‘“‘steps’”) lying on the main diagonal
of D(R); . Each step relates equivalent modes
and is itself a real umitary (=real orthogonal)
matrix. For, considering any two equivalent modes
p,u’ (distinet or not), one finds with the aid of
eq 4, 5, 27, and 34,

5“#,:(g“onm,‘)fs e, e, dS
~Guna) [ (Paeh)- (Pact) S

o Z 6KK’D(13>7CK, muD<R)kxl L, mpr ZD(R)]:K, muD(R)kK, mury

Ky K

where k=R (m), and 7,,, is the common value of the
wave-admittances of the modes involved. Thus
each step, hence each D(R);, ,,, hence D(R) itself, is
a real unitary matrix.

Parenthetically it may be noted that even if
v, is large the dimension of an individual step
ordinarily will not exceed two or three. (It can be
shown that the highest symmetry degeneracy of wave-
guide modes is two-fold.) Of course, »,=1 fre-
quently occurs in actual problems; the submatrix
D(R);. ., then consists of a single one-dimensional
step and 1s necessarily equal to +1.

The magnetic fields of the basis h transform under
rotation according to the same group-representation
as do the electric fields of the basis e. Perhaps the
most easily visualized proof of this is the following.
From eq 34 and 4 one may obtain

PR [h(v)nl-l (rk) ><km] o, [Zh?x (rk) I) (]L))kx, mu] >< kky
(ry on Sx; k=R (m))

where, again, the wave-admittances drop out. The
left-hand side may be replaced by [PrhS, (ro)] X k;
(cf eq 26); and since the fields are transverse, k; may
be canceled from the resulting equation. Thus one
obtains for the tangential component of Prh,,,on S,

Pty (r) =2 R (1) D (R)e, muy

(rron Si; k=R (m)). (35)
Since the tangential components of Prh,,, vanish on
terminal surfaces other than Sj, eq 35 implies

*rRn, (r) = %hm(")D B my,  @in V), (36)

where D (R)p n,=0, [ R (m), as above. In view of
eq 34 and 35 it is clear that to determine D (R) in a
concrete case one may consider the transformation
of either the electric or the magnetic standard termi-
nal-fields. If the magnetic terminal-fields are con-
sidered, it should not be forgotten that they are
pseudovectorial.

The transformation of an arbitrary electromag-
netic state upon rotation by Py is obviously deter-
mined by eq 33, 36 and is conveniently presented in

mafrix form. In matrix notation eq 33 and 36

become

Pre=eD(R), Prh=hD(R), 37)
where Pre is interpreted simply as (Pgey
Pre,., Pre,,); Pgh, similarly. For E=ev

and H=hi, then,

PRE:eD(R)’U:eDR,

where, by definition, D(R)o=wvg, D(R)i=iz. That
is to say, if E has the coordinates » relative to e as
basis, then PrE has the coordinates v relative to the
same basis; similarly for H. The interpretation of
Pr as a matrix operator, defined with respect to »
and 7 (which represent electromagnetic states) as
operands, is immediate:

PeH—=hD(R)i = Hhipg,

Pro=D(R)v=vp, Pri=D(R)i=15 (38)
The matrices DD(R) are, of course, basis-dependent.
A unitary change of basis induces the similarity
transformation
D(R)—D' (R)=a 'D(R)a, (39)
as is readily verified with aid of eq 15 and (choosing
one of several possibilities) eq 37. The essential
practical problem in symmetry analysis, briefly
stated, is to find a basis—that is, to find a transform-
ing matrix a—such that the representation ) (of the
symmetry group involved) whose matrices are D (R)
will be reduced-out® by the transformation 39.
Such a basis, in which the matrices 7)'(R) of the
representation D’ appear in reduced-out form, will be
termed a symmetry basis and the corresponding
coordinates, symmetry coordinates. The principal
items to be considered in the remainder of the
analysis are the construction of )’ the construction
of «, and the physical consequences; it is expedient to
consider these items in this order.

A reduced-out representation 12, in which the
irreducible components of D) are to appear explicitly,
can in principle be written down as soon as the ir-
reducible components of D) are determined. Let x
denote the character of 1), and let x? denote the
character of the 7™ irreducible representation D? of
the symmetry group involved.” Then, by a basic
theorem, the nonnegative integer ¢, that tells how
many times D? must appear in )" is given by *

Cp:(l/!/)§x”(lf)x(lf), (40)

where ¢ is the order of the symmetry group and the

20 For the concepts and theorems of the theory of group representations that
will be needed here it will be convenient to refer to Wigner (Gruppentheorie,
cited in footnote 16), especially chapters IX and XII.

21 Character tables are given, e. g., by Rosenthal and Murphy (footnote 17),
and by G. Herzberg, Infrared and Raman spectra of polyatomic molecules (D.
Van Nostrand Co., New York, 1945). Irreducible representations h:},vc appar-
ently not been tabulated, but many of them are eagily found (for one-dimensional
representations, Dr=x7).

22 Wigner, p. 95.
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summation goes over the group.” (The complex
conjugate taken in the right-hand side of eq 40,
which makes the formula correct in general, is of
no significance here because ¢, is real in general and
x is real in the present problem.) Let the (distinct)
nonequivalent irreducible representations actually
contained in D (i. e., those for which ¢,0) be num-
bered from 1 to ¢. Further, let D?(R),, denote the
element in the #'® row and the p™ column of the
matrix D?(R) of the irreducible representation D?,
which must be unitary and is considered known; and
let 7, denote the dimension of D?. For the element
in the (pra)™ row and the (gpb)™ column of the

matrix D’ (R) we write

D' (R) pra, oor= 08¢0 D? (R),, (41)
where the indices are to have the ranges
G117 0 6 6,08 ¢ 1D LR p=1,2, 1
=il P00 0 Ep p=1,2,---1; g=1,2,- - -,t.

(Whenever 1,51, undefined symbols D?(R),, multi-
plied by zero occur in the right-hand side of eq 41;
such “products” are defined to be zero.) The ele-
ments of D’(R) furnished by eq 41 may, if desired,
be arranged in such a way that D’ (R) takes the form

(D'R).--- 0 M ocos O )

o O ---D'R) 0 --- 0

D)= .5 e 2 G CDARY T8 , (42
il 550 0 - DYR) .|

in which the matrix D'(R) appears ¢; times, D?*(R)
appears ¢, times, etc. (Any consistent scheme of
ordering elements into matrices may be assumed,
and it may be noted that an order other than one
that leads to eq 42 will be convenient later.)

In the formation of 1)’ by means of eq 41, the
choice of the particular irreducible representatlon
D? among the unitary representations equivalent
to D? is merely a matter of convenience. (This
question does not arise when /,=1, of course.) How-
ever, an irreducible representation appearing more
than once in D’ is to be presented in identical form
each time it appears, as indeed is insured by eq 41.
The arbitrariness in )’ implies an arbitrariness in
the choice of a symmetry basis; of more interest in
this paper, however, is further arbitrariness in a
symmetry basis that remains after )’ is assumed.
This arbitrariness will appear in the course of the
construction of the transforming matrix « and will
be utilized in a brief discussion at the end of this
section.

Let the row-matrices e, h’ present the basis
fields of a symmetry basis in which the matrices of
D’ are in fact given by eq 41. In this basis eq 37
become Pre’=e’D’'(R), Prh/=h'D’ (R); where,

23 Only finite symmetry groups will be considered explicitly.

in accordance with the index notation established
in eq 41,e’=(€',.4), h'=(h',.). The characteristic
transformation equations of basis fields in a sym-
metry basis follow directly from the form of D’(R):

PRep Ta——

ZeppaD (R)P"U Phaﬂra—‘ thpaDp(R

(43a, b)

The [, members of a set of basis fields (electric or
magnetic) identified by fixed p and ¢ transform
among themselves according to the irreducible rep-
resentation D? of {Pr}, and they are said to be
partners and to be of symmetry species p (relative

o {Pg}). There are ¢, sets of basis fields (electric
or magnetlc) of the species p, in accordance with
the range 1,2, ¢, of the mdex a. More specifi-
cally, e, ., or h,., is said to belong to the 7™ row
of the irreducible representation D)?; there are, again,
¢, such electric or magnetic basis fields. The same
terminology may be applied, of course, to other
fields or other entities that transform under rotation
according to an irreducible representation as in eq
43.

Let e,,, and h,.,, which are to obey eq 43, be
given by

’ .
€)ra= Zem#aww. pra= €xprq,
I

hzl)‘rra Ehmuamu pm—hawm

where a,., denotes the (pma)™ column of the unitary
transforming matrix « (cf eq 15 and the parentheti-
cal remark following eq 16). (Note that the column
matrix a,., presents the coordinates, relative to the
primitive basis, of e/ ., and h,,,.) From either eq
43a or 43b we may derive an equation similar to eq
43 but applymg to the ayxg- Namely if in eq 43a
we replace e, ., by ea,, (and e, by ea,,) and then
invoke the matrix interpretation of Py (eq 37, 38)
and abstract e, we obtain

lp
PRal)m:Eappqu(R)pr- (44)
p=1

Thus a,.., as well as e,., and h}.,, may be said to
belong to the 7 row of the irreducible representa-
tion D?. Conversely, it may be seen that if the
columns of a unitary matrix obey eq 44, then the
corresponding basis fields will obey eq 43. (Equa-
tion 44 is, moreover, equivalent to eq 39 and may
be derived from that equation by equating the
(pra)™ columns of the matrix products on the two
sides of D(R)a=aD'(R)—D’'(R) being given by
eq 41.)

A systematic procedure for the construction of «
may be based upon eq 44, assuming that the
matrices of the irreducible representations involved
are known. (In a concrete problem various expedi-
ents, including judicious guessing, may often be
employed to advantage.) We shall give the con-
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struction ** almost in the form of a recipe, deferring
the justification to the next paragraph. Define the

N1 matrix »*) as a function of an arbitrary
(N1 matrix) » by means of the equation

(n’)—({ /g)ZD” (B)<<Prv, (452)
which may be written
vO =10,/ S DB DR =G, (45b)

thereby defining the N XN

G, Corresponding to any set of N linearly in-
dependent »’s, eq 45 yields a set of exactly ¢, line-

“generating” matrix

arly independent v@)’s; each z>(1ﬂ)), hence any linear

combination of » (?,)’S’ belongs to the 7 row of D?.
Select a set of ¢, such combinations that are mutu-
ally orthogonal and normalized to unity (in the
Hermitian sense): these may be taken as «,.1, apro,

*, apre - Define the matrix G’(Pp") and construct
the [,—1 partners of a,., by means of

ap,m:(l,,/g);l)”([ﬂ)mplgapm’ (46a)

=[,/9) %Dﬂ (B)pr D(B)] etpra= G(pp”) apra, (46D)

for p=1, - —1, nt+1, ... I, and a=1, 2,
G The Clyse ’s 50 obtained Wlll autonmtlmllv satlsfy
& @pory="0,0m. The procedure is to be carried out
for each symmetry species (p=1, 2, - .. t); the
orthogonality «,,c,n=0, p=q, will automatically
hold. Thus one obtains altogther a complete set of
column matrices that satisfy eq 44 and are properly
orthonormalized to serve as columns of .

For the most part, the above construction repre-
sents an immediate application of theorems given by
Wigner.” Beyond this it is only necessary to show

P
that (a) G(’”’) is in fact of rank ¢, and (b) «,, and
a,m, as given by eq 46, are orthogonal when «,,, and
a,rp are. As for (a): since the representations D
and )’ are unitary and equivalent, there is no
question of the existence of a unitary transformation
connecting them. Hence the equation defining

Heh

may be transformed formally into
oG5 a0, ) ST D' (B).
R

Considering D’(R) in the form 42 (say) and apply-
ing the orthogonality theorem given below (eq 50)

P

one finds that « 1G(’”')oz is a diagonal matrix having

24 The method to be given is essentially equivalent to one given (for the con-
struction of molecular symmetry coordinates) by J. R. Nielson and L. H.
Berry man, J. Chem. Phys. 17, 659 (1949).

% Chap XII, eq 1, 3, 3a, 6, and 8. Compare eq 44, 45a, 46a with eq 1, 6, 3a,
respectively. The reinterpretation of Wignpr‘s eqpations with his functional
P and freplaced by our matrix P and v is immediate.

exactly ¢, nonvanishing diagonal elements (each

equal to 1), so that a“G'(”)a, hence G(’”’), is of rank

¢,.  As for (b): from the relation

(G(:‘Ir))*: (lp/g)% DP(R)[JWD([{)*:

(lp/!f)?l)”(l{"l) ”pD(le—l): G(:P),

and the observation that, for a set of partners, eq 46
holds for all 7,p (in their proper range),* one obtains

(
a:Waapwa p‘l(a(G pr))* b—a:waG(”)aﬂPb:aZﬂ'aaﬂﬂ'b!

which establishes (b).

Structural symmetry of a waveguide junction
places certain restrictions on the form of the matrices
Z, Y, and S (defined in eq 12, 18): some matrix
elements may be forced to vanish, and the number
of independent elements may be reduced materially,*
as is well known in a variety of cases. One form of
the governing equations may be found in the follow-
ing way. The relation »=7i holds, of course, for any
given electromagnetic state in the junction. If the
fields are subjected to a symmetry operation, then
v—>vg, 1—>1x (eq 38) and vp=Zip must hold, for Vrir
are coordinates of a possible state in the given
invariant structure (cf footnote 19). Now vR—/@R
is the same as D(R)v=ZD(R)i, » may be replaced by
Zi, and 7 1s arbitrary. Hence

D(R)Z=ZD(R), every I of {Pg},
and we say that Z commutes with the representation
D of the symmetry group. It immediately follows
that Z7'(=Y) commutes with D and that (Z—¢)
and (Z+4¢)7Y, hence (Z—&o)(Z+4¢o) (=S), com-
mute with ). (In fact any rational matrix function
of Z commutes with D.) T hus, if M denotes Z, Y,
or S,

DR)YM=MD(R), every R of {Pg}. 47)
This equation contains the conditions imposed by
symmetry upon the several matrices characterizing
the junction. To find the consequences of eq 47 we
consider it presented in a symmetry basis.

Upon transformation to a symmetry basis, M and
D undergo one and the same similarity transforma-
tion (eq 15, 19, 39), and eq 47 becomes D’(R)M’'=
M’'D'(R). I‘hlsmm bewritten M’'= D'(R)*M'D’(R),
and for the element M/, ,» of M’ one obtains,
using eq 41,

M,', Ta, gpb = ZDP(R)qu (R)mzwz;va, qrb+ (48)

2 'Wigner, Chap XII, eq 3a.
27 Results more detailed than those to be obtained in the text are obtained in
appendix, 2.
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The g equations of this type (one for each R of { Pg})
may be added to obtain

gZ\[; Ta, gpb— Z XR:Dp(R)uerq (R)TP]AI;M(J, qrbe (49)

Now according to the orthogonality theorem for uni-
tary irreducible representations, %

EDP(R)ND‘I (R)wzém 07 Omp (gl/lﬁ)y (50)
R

so that eq 49 becomes
M) 0 »=0, unless ¢=p and p=m,
4 ’ D (5 1)
Mp Ta, pTh— (l/lp)zz‘lpaa, padb = Mgy,

where m?, is a constant independent of =. M’ is
determined by the values of the ¢i+ci+ --- +¢
constants m?2,, which are arbitrary so far as sym-
metry of the junction is concerned. A convenient
step-matrix form for M’ is obtained by arranging
elements in dictionary-like order according to the
values of the indices p,w,a in the sequence pra.
(The sequence paw yields D’'(R) in the form 42.) If
t=2, for example, and /,=2, ¢,=2, l[,=2, ¢;=1, then
M’ will have the particular step form

sTa swb spa spb tmra tpa
sTa | mi, T 0 0 0 ”770
swb | mi, mee 0 0 0 0
Spa 0 0 ms, s 0 0
spb 0 0 m;, M 0 0
tra 0 0 0 0 mt, 0
tpa 0 0 0 0 0 e,

The general M’ will have, for each p, [, identical
steps of dimension ¢,. (If ¢,=1, every p, the steps
are elements and M’ is diagonal.)

Additional restrictions on M’ corresponding to the
conditions discussed in section II, eq 20, 21, are
readily imposed. To fulfill T or 11, M must satisfy
one of the conditions M*=—M, M*=M,
M*=M-*; and M’ must satisfy the same condition.
The reciprocity condition (I1T) requires M = M, and
M’ must satisfy

M'=(3o) M’ (3e)-?, (52)
—or simply M’=M’ when « is real.

. The form of M may obviously be found from that
of M’ by calculating M =aM'a™".

2 Wigner, p. 91.

It is of interest to consider briefly the special case
in which M is a normal *® matrix. Either of the con-
ditions I and II is sufficient to insure that M be
normal.*  When M is normal, M can be reduced to
diagonal form by transformation to a suitably chosen
symmetry basis. This statement is easily estab-
lished by considering the transformation needed to
diagonalize M’. If M is normal, so also is M’; from
the form of M’ (eq 51) it is evident that M’ can be
diagonalized by transformation with a unitary
matrix B8 of the form

6p1ra,qpb:0, unless P=q and T=p,

ﬁzzwa.pwb:BZb:

where 87 is a suitable unitary matrix of dimension ¢,,.
(The argument is trivial if ¢,=1, every p.) The
change of basis corresponding to this transformation
may be denoted e’—e’’, where e’’=e’f=e(af), and
we have '

M —>M"=8"'M'B=(af) " M(aB),

where the diagonal matrix M’’ presents the eigen-
values of M, and the columns of the combined trans-
forming matrix af are eigenvectors of M. ILet us
put af=+v and examine the (pza)” column of ~.
From the form of g,

Cp
Ypora= bz;ﬁgbapwb; (53)

that is, the eigenvector v,., is a linear combination
of the columns of « that belong to the #" row of the
irreducible representation D?. KEquation 53 is in
fact an expression of the indeterminacy that appeared
in the construction of « (following eq 45). Hence v
is, as it were, a possible «, and the basis e’/ is a
symmetry basis.

The degeneracies (of the eigenvalues of M) that
arise in consequence of symmetry may be made
wholly explicit by a consideration of the formulas at
hand. The eigenvector v,., of M belongs to the
eigenvalue M"’ ., »»a presented in M’’; according
to eq 51 (applied to M’") M’ .4, pra=02N2, say,
where N2 is independent of =. Hence the [, eigen-
veetors y,r-, for 7=1,2, . . ., [, all belong to the
eigenvalue N2. These eigenvectors are certainly
linearly independent (being columns of a unitary
matrix), and so the eigenvalue A? is at least [,-fold
degenerate. This degeneracy is necessitated by the
symmetry of the waveguide junction and may be
termed symmetry degeneracy. Degeneracy higher
than that necessitated by structural symmetry,
when 1t occurs, may be termed accidental, as is
customary in mathematically similar circumstances.

2 A matrix that satisfies M M*= M* M is said to be a normal matrix; MM*=
M*M is a necessary and sufficient condition that M be reducible to diagonal
form by a similarity transformation with a unitary matrix. See e. g., Murna-
ghan, Theory of group representations, p. 26.

30 Although M may be and indeed usually will be symmetric (reciprocity),
this condition is neither necessary nor sufficient to insure that M be normal.
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V. Examples

In order to illustrate some of the text material by
means of examples, we shall consider the waveguide
junctions shown in figures 3, 5, and 6. The para-
meters ¢, u, € in the interior of the junctions may
be the most general consistent with the assumed
symmetry in the respective cases. Although the
ficures indicate specific external geometries, it will
be recognized that the exact manner in which the
waveguldes join is of no importance here, provided
that this also is consistent with the assumed sym-
metries. Lowest-mode operation is assumed in all
waveguides (v,=1, m=1,2, . . ., n); the heavy ar-
rows in the figures, considered as localized vectors,
suffice to characterize the electric terminal-fields for
the lowest mode in rectangular waveguide. In
applying the notation of the text, unneeded indices
will be dropped; for example, €J,, e,,, will be written
simply as €%, e,, (since v,=1).

Frample A. 'The junction shown in figure 3 has
the single symmetry plane and the external geometry
of a junction widely known as a “magic T”. Let
the indicated symmetry plane be z=0 of Oxyz.
The symmetry group P consists of the identity
P; and the reflection Pg in the plane; the correspond-
ing matrices R=(R,,) are

1 0 0 =l 0 0
I— 0 1 QR D= 0 1l 0
0 0 1 0 0 1

(Det (S)=—1; Ps is a particular improper rota-

tion.) An inspection of the figure makes it clear
that

Psedl=e}, Psel=el, Pged=—éj, ’sei=ej,
(cf eq 34); hence

Pse,=e,  Pse;=e,, Pse;——e;, | Pse,=e,

(cf eq 33), and so the N X N (=4X4) representa-
tion D is

() =EE () S () (O 1! 0520

stz () e 0 16800 ()(),
D)= S P

(s E() 0O 0 —1 0

R0l 0 0 (il

(D(I) is always the N-dimensional unit matrix, of
course.) [ is real and unitary, as it must be. The
character x of D is x(1)=4, x(S)=0.

{Pr} has two irreducible representations; both
are one-dimensional:
Dr: Dr(y=(Q), - D*(8)=(1).

D DuI)=(1), DY(S)=(—1).

(The 1X1 matrices are unitary.) Since D? and D?
are one-dimensional, x?=D? and x?’=D‘’ From
eq 40,
¢,=(1/2)(1-4+1.0)=2, ¢,=(1/2)1-44+(—1)-0)=2,
and a reduced-out representation I’ (cf eq 41, 42)
is given by

REOTH (EE O

100 0= 15 (000
D)= , D'(S)=

0010 0 0—1 0

0505 0% 0 0 0-—1

For the symmetry basis €/, h’ we write

(h’:hl,la hzlib hz;a h,b);

a

’ ’

el = (epa e; b e':a eqb)7

the basis fields must transforms according to eq 43
Thus, for example,
pay

1e,.=D?(I)e;,=(1)e;,, Pse,,=D?(S)e;.=(1)e;

Pie,,=D'(I)eg,=(1)e,,,  Pse;,;=D¥(S)e,,=(—1)e,,.
The same equations hold with a replaced by b, and
h’ transforms in the same way as does €. Fields
of species p and ¢ may, respectively, be termed
symmetric and antisymmetric (or even and odd)
with respect to reflection in the plane 2=0. Now
e, is already symmetric and e; is already antisym-
metric; one may choose e,,=e,, e),—e;. Suitable
linear combinations to form one further electric
basis-field of each species may be found immediately
by inspection in this problem; a simple choice is
e, =(e +e)/+2, e,,=(e;—ey)/+y2. The transforma-
tion €’ =ea so determined is

' B 1 2V DT | By 7 )

0 - 1/4/2 "0 —=1/42
(e,.e,, e.e,)=(e eee,)

0 0 1 0

1 0 0 0

and we see that « is unitary, as is required, and
also that « is real, as is convenient (but not always
possible). (One may verify D'(S)=a *D(S)a for
the above matrices.) From eq 51, M’ must be of
the form

Mz, Mz 0 0
MU My, My, 0 0
0 0 Mg, Mgy
0 0 Mi,  Mp,
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Upon calculating M=aM’a? one finds, in partic-
ular, Ms,=M,;;=0, as may well be expected even
under the general conditions permitted here.
Indeed, these zeros can be predicted as soon as it is
recognized that e; and’ e, are of distinet symmetry
species.

The fields e,(=e,,) and hy=h,,) are both of
species p (even); they satisfy ey(x,y,2)=Pses(,y,2),
hy(z,y,z2)=Psh,(x,y,2). The z,,z components of
these two equations are

642(I7 Y, Z) = —'64,(——1‘, Y, 2)7 hfiz(zy Y, 2): h41(_x7 Y, Z)r

641/(337 Y, 2) 2641/(—%, Y, 2)7 h4y(x} Y, 2) === h-iz/(_'xy ?/;2),

642(‘7:: Y, 2): 642(—"I) Y, Z): hu(x: Y, Z): _h-iz(_x: Y, 2))
where for e; eq 24b is used, and for h, eq 24c and 23
are used (cf also eq 25). The even symmetry with
respect to the plane =0 forces ¢4, =0 and hy=

hy;=0 on the plane.

(For e; and h;, which are odd,

ey, =e3,=0 and hy,=0 on 2=0.)

Despite the differ-

ences in behavior among their components, the tensor
entities ey, hy are unambiguously classified as of the
same species by eq 43.

Ezxample B. For the junction shown in figure 5,
the symmetry group {Pg} is of order g=3 and con-
sists of the identity P;, a counter-clockwise rotation
P, of 120° around the indicated axis, and the inverse
Pg; of Pe,. It is evident from the figure that
Pce =e, Pce,=e; etc, and one finds x(1)=3,
x(O5)=x(0C;7')=0. The characters of the irreduc-
ible representations of the symmetry group (as well
as the representations themselves) are furnished in
the table

P, P, P

x| 1 e

x& | 1 w w

X't 1 w w,

where w=exp(2mj/3). From eq 40, ¢,=c¢,=c¢,=1:
in this case there will be exactly one (electric or mag-

Three-arm junction possessing a threefold axis but
no plane of symmetry

F1GUure 5.

netic) basis field of each of the three possible sym-
gﬁ&ry species. One may easily verify that the
elds

e;, = (e1+32+93)/\/§:
e,=(e;+we, 1 we;)/ V3,
€, = (e, +we,+we;)//3,

obey eq 43 and in fact constitute a symmetry basis.
We list @, &, and the necessary form of M.

1 1 1 1 0 0
1 ~
a:7§ 1 w w | aa=1( 0 1 P
1 w w 0 1 0
m? 0 0
M=o ma 0

It happens that M’ is necessarily diagonal, so that M
is certainly a normal matrix. In this example the
reciprocity condition (eq 52) forces the degeneracy
m?=m’. 'This degeneracy is technically accidental;
it might well be termed reciprocity degeneracy.
Example C. 'The discussion of the waveguide
Wheatstone bridge (fig. 6) is limited mainly to a
sketch of results. The symmetry group of this junc-
tion is identical with that of a regular tetrahedron
and is of order g=24. Of the five nonequivalent
irreducible representations of this group, the two
three-dimensional ones (D” and DY say) are con-

Waveguide Wheatstone bridge.

Ficure 6.
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tained in )’. There are accordingly three fields
(partners) of species p and three of species ¢ in the
symmetry basis; it can be shown that a symmetry
basis is furnished by?!

el (1 1 0 1 —1 0 (e
el 1 0 15 =1 0 1 e,
€0 110 1 1 0 1) e
oA DT ) e L e e i ] 1
el, M| U QR W D [ S BT

Liet o SN N PR Rl TR T (8 5

Freure 7. Equivalent network.

Sign convention: m’ is the positive terminal for v, at the terminal-pair mm’;
positive im is into the network at m’.

(Note that this matrix equation is the transpose
¢’'=a¢€ of the equation e¢’=ea.) Here, instead of
considering impedance, admittance, and scattering
matrices in common, we shall consider the admittance
matrices particularly. From eq 51, Y’ must be of

the form
CopP Al S o@ s 0 y
D3 s 07679, 550 e 0
v O 2 OSSR R ()
0 0 0 2 0 O
0 0 0 y* O
[ SORSRO RS O () R R 45

The eigen-admittances y?, y? are in general complex;
the condition Re(W)=0 (mentioned on p. 271)
requires Re(y?) =0, Re(y?) 0. A calculation of
Y=aY a! yields

31 This transformation represents an adaption of information contained in the
tables on p. 638 of the reference in footnote 4.

( N n u 0=y )
i A " 0 Py
Y I NS i 0 ’
B NS T
=y 0 [ =
L W) 2ol =t o = )\J
where A= (y?+y9/2, p=(y?—y?)/4. The matrix

Y is both normal and symmetric in virtue of the
symmetry of the junction.

The six-terminal-pair network shown in figure 7
is a Wheatstone-bridge scheme of connections mod-
ified by the presence of the ‘“parallel” and “series”
elements Y, and Y, If Y,=\4+2u=y” and
Y'=—4u=y’—y”, then (with the scheme of signs
noted under the figure) the admittance matrix of
the network is the same as that of the junction, and
the network is an “equivalent’” network for the
junction.

The particular values of y» and %? for a given
structure depend upon the (common) distance of
the terminal surfaces from the center of the junction.
If the structure is nondissipative, it is always possi-
ble, and sometimes convenient, to assume terminal
surfaces so located that =0 or, alternatively,
y—>o. In the first alternative the equivalent net-
work is simplified by the absence of Y,; in the
second, by the virtual absence of Y (Y, being re-
placeable by a perfect conductor). (This second
case is the one presented in the reference in foot-
note 4.)

The author is greatly indebted to K. F. Herzfeld
for valuable discussions and guidance in the course
of this work. The writer is also very grateful to
C. C. J. Roothaan for helpful discussions, and to
H. Lyons for his wholehearted support of this work.

VI. Appendix
1. Transformation of Equation 9

The integral of (1/2)(E'XH’)-k taken over the complete
boundary of V' (assuming an infinite domain) is equal to

(B, H2]+(1/2) ﬁ (B'X HP)-kdS=— (1/2) fvv-(mx mav,

where in the left-hand side the definition of the bracket (eq 9)
and the boundary condition on the surfaces S, (p.268) are
used, and the right-hand side is given by the divergence
theorem of vector analysis. From the above equation the
desired express on,

[E!, H2)= (n/2) ﬁ E'E dS+(1/2) fVEI.a-Z*?dV
4 (54)
+(jw/2)fv(7?-u-ﬂl—El.e-?)d v,

may be obtained with the aid of further vector identity,
Maxwell’s equations (eq 1), and the following relations hold-
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ing (for both electromagnetic fields) on Se: H2=9E2X k and
k-E?=0. where n=+/¢/u and vacuum values of ¢, p may be
assumed. Equation 54 applies also in the case of a finite
domain provided merely that the S-integral is omitted.

2. Additional Symmetry Properties

The complex conjugate of the element Y’ ,z4 ¢ Of the
admittance matrix Y is, from eq 12, equal to [€}ra, Y (€ 4pp)],
so that, making appropriate substitutions in eq 54 and taking
the complex conjugate, one obtains

Viraras=02) [ Thear€tndS+ /D) [ Bhuaro-elndV
E (55)
+Gol2) [ ZrreeimdV—Go/2 [ e w TV

We wish to show here that an equation of the form 51, which
holds for the elements of Y’, holds also for each of the four
integrals making up the right-hand side of eq 55. It will
suffice to consider the third and the fourth of these integrals.
Since the structure is invariant with respect to Pg, and since
Py is unitary in the sense of eq 27, one may write

[ weetiav= [ Pty e Preimar, (56)

[ A s BEIv= [ (P PRIV,
(57)

The right-hand side of eq 56 may immediately be expanded
with the aid of eq 43a:

fvélpﬂl'e'e’m’bd V:Z DH(R)erq(R)TprEz’ma'é'elq-rde. (58)

0,7

The right-hand side of eq 57 may be expanded similarly as
soon as it is observed that Pg¥(epr.) =N (Prejr.) (as is
directly implied by eq 32) and that 3 is a linear function of
its argument. Equation 58 is of the form 48 and it is thus
clear that an equation of this form holds for each of the
integrals involved. The derivation in the text leading to
eq 51 obviously applies. An equation of the type 55 may
of course be written for 7%, 5, and a similar argument
leads to the same results for the integrals making up 7%za, ¢pt-

WasHaINGTON, June 7, 1950.
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