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Analysis of Symmetrical Waveguide Junctions l 

David M. Kerns 

Previous theory of consequences of sy mmetry in waveguide junctions has made limi ted 
use of mat hemat ical t ool s a vailable in t he t heory of group representa tions and has been 
limi ted t o t he considerat ion of nondi ssipat ive junction s. In t his paper group-t heoretical 
technique is u t ilized more full y (in mu ch t he same way as in t he analysis of t he ,vibrat ion of 
symmetrical molecules) in t he formula tion of an improved and general techl1lque for t he 
ana lysis of symmetrical waveguide junctions subject merely t o t he requirement of linearity. 

A waveg uide junction, for t he purpose of t his pa per, is a linear electromagnetic syste m 
possessing ideal waveguide leads, and is considered t o be subject to excitation solely through 
t he effects of nonattenuated modes in t he waveguide leads. Under t he condi tions of the 
problem, an arbi t ra ry elect ri c (or magnetic) . fi eld in a waveg uide junction is expressible 
linearly in terms of a fini te number of linearly Indepcndent electn c (or magnetic) baSIS fi e lds. 
F rom a ny given ordered pair of e lectric (or magnetic) basis fi e ld s one can in principle calculate 
a com plex llumber-an element of t he admittance (o r impeda nce) matr.ix characteri zing t he 
junction (relative to t he choice of basis fields) . The geometri c co ncep t of rotation and 
refl ection of fi elds (and stru ctures) is d isc ussed in te rms of a rotation- reflection operato r, a nd 
the sy mmetry of a junction is characterized by a g roup of r?tation-refl ect ion operat io ns un de r 
whi ch the stru cture is invaria nt. A general procedure is given for the constru ctIOn o f a b aSIS 
in whi ch t he basis fi elds t ransform accordin g to irredu cible representations of t he symmet ry 
group involved. Such basis fi elds a re said to be of par ticula r symmetry species and from t he 
special propert ies of s lI ch fi eld s foll ow th e physical res ults , of whi ch p.crl.laps t he most 
conspi cuous is t he va nishing of t he matri x element between t wo fi eld s of distin ct sy mmetry 
species. 

1. Introduction 

This paper is concerned with symmetry propert ies 
in "waveguide junctions." A waveguide junction , 
for the purpose of this paper , is a lineal' electro­
magnetic system possessing ideal waveguide leads 
and is considered to be subj ec t to excitation solely 
through thc effects of nonattenu ated waveguide 
modes in the waveguide leads. The electromagnetic 
boundary-valu e problem presented by a waveguide 
junction is, in general , imprac ticably difficult to 
solve. Never theless, important information con­
cerning the characteristics of a waveguide junction 
in its primary fun ction as a device for transferring 
power from one waveguide-mode to another is 
derivable with relatively little labor from general 
proper ties, such as reciprocity, losslessness, and, in 
par ticular, symmetry. M any waveguide junctions 
used in microwave practice do in fact possess useful 
and interesting properties in virtue of symmetry. A 
few simple examples of such junction s are shown in 
figure 1. 

The literature on the present subj ect is not exten­
sive. The book, Principles oj microwave circuits / 
con tains a valuable and fairly comprehensive treat­
ment applying to nondissipa tive waveguide junctions . 
A report by Slater 3 is mainly concern ed with th e 
analysis of non dissipative T -junctions h aving essen­
t ially a single symmetry element . A paper by 
Chodorow, Ginzton, and K ane 4 deals with one 
particularly interesting junction, which is a wave­
guide analogue of a Wheastone-bridge network. 

I A d issertation sub mitted to the faeul ty of the Graduate Scbool of Arts and 
Sciences of t he Catholie University of America in part ial fulfill men t of the 
requiremen ts fo r t he degree of Doctor of Philosophy. 

'C. G. Montgomery, R. H . D icke, and E. M. P urcell , P rinciples ofmierowave 
circui ts, chapter 12 (MeG raw·IIiII Co. , New York, N. Y., 1948). 

3 J . C. Slater, 'l'echnical Report No. 37, Electronics Research Lab., Mass. Inst. 
T eeh. (Cambrid ge, Mass., 1947). 

• M . Chodorow, E. L. Gin zton, a nd J . F. Kane, P roe. IRE 31, 634 (1949). 

FIGU R E 1. Simple junctions possessing symmeI1·j/. 

Ther e is to be found also the occasional and limited 
use of symmetry arguments in discussions primarily 
concerned with other matters. 

The analytical technique. employed in the bo~k 
referred to in footno te 2 IS partly formulated m 
general terms and partly indicated by the consid­
eration of a series of examples. The t echnique used 
involves the restriction to nondissipative junctions 
as an explicit condition. The discussions contained 
in the papers referred to in foo tno~es 3 and 4 al'(~ of a 
more or less specific nature and, ill the form gIven, 
are likewise su bj ec t to the restriction o! no dissipation. 

The object of the presen t p aper IS to develop. a 
gen eral theory of the consequences of. sym~etrY .m 
waveguide junctions of a general class: m the mtenor 
of a waveguide junction media that m~y be ~o~­
homoO'eneolls and anisotropic are perml tted; dlSS1-
patio;;', by reason of ~nite cO!lductivity or radiation 
to infinity (or both ), IS permIt ted; .fulfillm~nt of the 
reciprocity condition is nO.t r eqUIred . Lmear be­
havior and freedom from mternal sources are as-
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sumed (the former being essential , the latter non­
essential) . A broad outline of the discussion follows . 

The needed physical and mathematical formula­
tion of the electromagnetic problem is given in sec­
tion II. Under the conditions of the problem, an 
arbitrary electric (or magnetic) field in a waveguide 
junction is expressible linearly in terms of a finite 
number of linearly independent electric (or mag­
netic) basis fields . From any given ordered pair of 
basis fields of the same kind (electric or magnetic) 
one can in principle calculate a complex number­
an element of the admittance (or impedance) 
matrix of the junction- which is a measure of the 
fi eld of opposite kind associated with the second (or 
first) of the given pair of fields. The characteriza­
tion of a junction by means of matrices is relative to 
the choice of basis fields; the basis fields first chosen 
might be described as "simple with respect to excita­
tion." Formulas for change of basis are given. 

The geometric concept of rotation and reflection 
of fields (and structures), taken up in section III, is 
discussed in terms of a rotation-reflection operator 
applicable to tensor point-functions .5 The sym­
metry of a waveguide junction is characterized by a 
group of rotation-reflection operations under which 
the structure is invarian t. 

A .method of symmetry analysis and the results 
obtamed for the class of problems considered are 
presented in general terms in section IV (with some 
further results in appendix 2). The basis fields set 
up in section II do not necessarily exhibit particu­
larly simple transformation properties under opera­
tions of the symmetry group; however, as is shown, 
it is possible to select linear combinations of the 
original basis fi elds to form new basis fields that do 
exhibit special transformation properties. Such 
fields are said to be of particular symmetry species. 
(If, for example, the symmetry group consists of 
only two operations, the identity and reflection in a 
plane, say, the two possible species are the familiar 
"even" and" odd." The general defini tion of sym­
metry species is provided by the theory of group 
representations, which theory indeed provides the 
natural mathematical tools for the analysis .) An 
important property of fields of the new basis is the 
vanishing of the matrix element b etween two fields 
of distinct symmetry species. 

As might b e expected, the method used here is in 
some respects very similar to methods used in the 
analysis of the vibration of symmetrical molecules. 
However, b ecause dissipation (as well as failure of 
reciprocity) is permitted in the waveguide problem, 
the main part of the analysis here is formulated 
without reference to the question of eigenvalu es of 
the matrices of a junction. The eigenvalue problem 
is discussed briefly in the latter part of section IV. 

Three illustrative examples are considered in 
section V. In one of these examples the theoretical 
results previously obtained (footnote 4) for the 
waveguide Wheatstone bridge are presented in a 
more general context. 

• Tensor is used in the general sense, a scalar being a tensor 01 rank 0, etc. 

II. Electromagnetic Formulation 

A waveguide junction may be described briefly 
as an electromagnetic system comprising an arbitrary 
~lU~~er, n, of ideal waveguide " leads" , which 
mdlvIdually may be of arbitrary cross section and a 
"coupling region" from which the waveguid~ leads 
emerge. Various aspects of th e theory of waveO'uide 
junctions have been considered in recent years °by a 
number of authors, and a considerable body of 
systematic theory 6 7 8 centering on the use of 
impedance, admittance and scattering matrices 
has been built up. Nevertheless, for the purpose~ 
of this paper a formulation, which can be brief but 
which is in some respects new and more complete 
is needed. Part of the formulation will depend of 
course, on certain rather well-known general res~lts 
of the theory of waveguides (see footnotes 2 and 7). 

'l'he domain of the electromagnetic field in a 
waveguide junction will be denoted by V, the com­
plete boundary o~ V will be denoted by 8, and the 
mward normal umt vector on 8 will be denoted by k. 
'l~h.e surface 8 ~md also, in part, the boundary con­
dltl?nS to be unposed may be described (in two 
typIcal cases) as follows. If the domain is of infinite 

FIGURE 2. Slotted waveguide. 

Illustrating Sm,S,~ (n~2); Soo is not shown. 

extent (fig. 2), V is bounded internally by n closed 
surfaces 8m+8~ (m = l , 2, .. " n), where 8m is a 
transverse surface (the terminal surface) in the m th 

waveguide and 8m, 8m' together enclose the termina­
tion of the mth waveguide. Although V in this case 
is externally .unbounde0, it is convenient to employ 
a large spherIcal boundmg surface 8 00 (of radius r), 
appropriate limiting processes being implied. The 
complete boundary of V is then 8=800+81+8~+ ··· 
+8m+8~. On all parts of 8 except the terminal 
surfaces, the field is to satisfy homogeneous boundary­
conditions: on 8 00, lim (rE ) is bounded, and E satis­
fies the outward-radiation condition; on 8' the 
tangential component E t of E vanishes (E de';{oting 
the electric field). If the field is confined to a finite 
domain by a perfectly conducting metal surface (fig. 
3), then 8 = 80 + 8 1+ .. . + 8n, where 80 coincides 
with the metal surface. In this case the homogene­
ous boundary condition is simply EI= O on 8 0, (If 
metal walls are considered finitely conducting but 
are sufficiently thick, 8 0 may be taken on the ~uter 
surface where E, hence E l , is substantially zero.) 

The whole of the space and structure within V 
can be regarded as a linear, source-free medium, 

, See lootnote 2. 
7 J. O. Slater, Rev. Mod . Phys . 18,441 (1946). 
8 D . M . Kerns, J. Research N BS 42, 515 (1949). (The rererences cited are 

believed to be the onos most uselul in connection with the present papor.) 
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which is in gcneral nonhomogeneous and aniso­
tropic. The conductivity and the electric and mag­
netic inductive capacities of the medium are to be 
given by the real point-functions cr = cr(r ), ~= ~ (r ), 
J.L = J.L (r ), respectively. Anisotropy is taken into 
account by considering u, ~ , J.L to be, in general, 
tensors of rank two. 

The interior of the mth waveguide lead is a cylin­
drical, source-free domain T m (of finite length) in 
which cr = 0, J.L , ~ = scalar constants. T m is bounded 
by a cylindrical surface (also of finite length) on 
which the conductivity becomes infinite. The ter­
minal surface 8m is a transverse section of T m; 8m 

SYMMETRY 
PLANE 

FIG U HE 3. Ilybrid T -junclion. 

Illustrating Sm and So (n ~ 4 ) . 

is to be a closed, connected (but not necessarily 
simply connected) plane surface bounded by a eurve 
Om (which may consist of one or more distinct 
parts). As the figures ind icate, 8 m is to be located 
within its waveguide lead at some distance from any 
discontinui ty. (A portion of a waveguide lead may 
be ineluded bodily within V, as in fig. 2; in any case 
the interior of a waveguide lead from the inner 
portion of the junction out to th e terminal surface 
is an integral par t of the domain v.) 

Harmonic time-dep endence, at angular frequ ency 
w, is assumed; we shall deal wi th the complex electric 
and magnetic fi eld (amplitudes) E = E (r ), H = H (r ), 
omitting the time-dependent factor exp (j wt ). With­
in V, then, E ,H satisfy Maxwell's equations in the 
form 

v X E=- jWj.L" H , } 

v XH= (jw~ + u)·E. 
(1) 

The rationalized meter-kilogram-second system of 
uni ts is assumed. 

Under the specified conditions holding on 8 and 
in V the electromagnetic field within V will be 
determined by the boundary conditions on th e term­
inal surfaces . The ul timate sources of the fi eld, 
which are to be found within the waveguide ter­
minations (pictured in fig. 2, implied in other figures), 
are of interest only insofar as cer tain fields, of a 

single frequency w, are caused to appear on the 
terminal surfaces. If, as is ass umed, the tcrminal 
surface 8m is sufficiently far from any discontinuity 
(or any other dep arture from the conditions defining 
a waveguide lead ), the contributions of attenuated 
waveguide modes to the fi eld on 8 m will be negligible. 
Thus only nonattenuated modes need be considered 
in describing the field on a terminal surface.9 It is 
understood that the fi eld of a single nonattenuated 
mode may and in general will involve bo th incident 
and emergent progressive components. Waveguide 
and frequency being given, the number Pm of non­
attenuated modes supported in the mth waveguide 
is necessarily finite or zero; it is naturally assumed 
that Pm ;:; 1. In general, TEM, TM, and TE modes 
will occur among the Pm nonattenuated modes in 
waveguide m, but it will no t be necessary to distin­
guish the several types of modes in the notation. 

Of essent ial interest will be suitable expressions for 
the tangential (= transverse) components E t, H t of the 
most general E ,H on 8m consistent with the above 
conditions . Let t he index J.L (J.L = 1,2, " Pm) 

identify the nonattenuated modes supported at fre­
quency w in wavcguide m. From waveguide theory 
we know that E t on 8 m can be expressed in the form 

(2) 

wher e r m denotes r on 8 m, the Vm~ are scalar coeffi­
cients, and the e?n~ are derivable from eigcnfunc­
tions of certain two-dimensional boundary-value 
problems formulated for 8m and its perimeter Om. 
The vector e,~~ , like E t , lies in th e plane of 8 m ; 

e~.~ is considered to be defined only for r on Sm. 
No coordinate-dcpendence is indicated for the V'n~ 
sincc 8 m is considered to be in a fixed position in its 
waveguide lead. Similarly, H t on 8m can be ex­
panded in the form 

(3) 

here the im~ are scalar coeffi cients and the h~~ are 
defined by 

(4) 

where k m denotes k on 8 m , 17 m~ is th e wave-admit­
tance of mode J.L in waveguide m, and ~o= 1 ohm 
(see the following paragraph) . The e~1' and the h~1' 
may be assumed to be r eal and to satisfy the ortho·­
gonality and normalization relat ion 

1 J' (0 hO) ' d8 { 1, A = J.L} "2 ' e",~ X m~' " m = o~x = ° A -" . 
~ , ~J.L 

(5) 

Equations 4 anel 5 each represent combinations of 
what is necessary with what is convenient. In par­
t icular , eq 5 is automatically satisfied if modes J.L ,A 
are not mutually degenerate or if one is a TE and 
the other a TM mode. 

' Attentuated modes are excl uded mainl y because these higher·mode inter­
actions are nsuall y avoided in practice. The fin itcness of the num ber of modes 
involved is thc cssential point so fat' as the subscquent analysis is concerned. 
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Clearly, Vm~ and im~ are respectively linear meas­
ures, relative to the standard terminal fields e~~ and 
h~~, of the contributions of mode p. to E t and H t on 
the terminal surface Sm. The variables am~, bm~ 
defined by 

(6) 

will be employed to a very limited extent in this 
paper. am~ and bm~ are respectively linear measures 
(relative to e~~) of the electric fields of the incident 
and emergent progressive components of mode p. 
at Sm. The second of eq 6 shows that if bm~= O, 
then the corresponding value of vm~/im~ (called the 
characteristic impedance of mode p. in waveguide m) 
is equal to roo So far as the present paper is con­
cerned, ro may be considered to be primarily a 
dimensional constant inserted to bring about an 
attractive dimensional scheme. Indeed, from eq 4 
and 5 one finds (considering 8~~ and k m to be dimen­
sionless) [e~~] = [h~~] =meters-l, and then from eq 
2 and 3, [vm~]=volts, [im~] =amperes . 

It is appropriate to review the electromagnetic 
situation in the junction as a whole. For convenience 
let v and i denote the column matrices whose ele­
ments are respectively the N vm/s and the N im/s, 
N=Vl+V2+ ... +vn• v uniquely determines and 
is uniquely determined by E t on all the terminal 
surfaces; similarly, i determines and is determined by 
H t on all the terminal surfaces. N OVv the speci­
fication of either E t or H t on all terminal surfaces 
(together with the homogeneous boundary condition 
holding elsewhere on S) is just sufficient to determine 
E and H throughout the domain V. Thus, if v is 
given, E,H, and i are determined; if i is given, 
H ,E and v are determined. lo The existence of a 
homogeneous linear relation connecting v and i is 
implied. Moreover, there are (under the conditions 
of the problem) exactly N linearly independent 
electric fields possible in V; similarly, there are 
exactly N linearly independent magnetic fields 
possible in V. This fundamental property is 
expressed analytically in the following paragraph. 

We define the electric basis-field em~ as the electric 
field 11 in V corresponding to the special boundary 
condition implied by vm~=I, vo,=O (l 'A,e.mp.). The 
connection, as well as the difference, between em~ 
and e::'~ is to be noted: em~ is defined throughout V, 
its tangential component (em~) t reduces to e::,~ on Sm, 
to zero on other terminal surfaces. From the bound­
a'l'Y conditions it follows that the N em/s are linearly 
independent. The E in V corresponding to arbitrary 
v may be written 

E(r) = :L.: em~(r)Vm~= ev, (7) 
m~ 

where e is the row matrix e= (ell . . . em~ . 
envn). Similarly, the magnetic basis-field hl~ is de­
fined as the magnetic field in V corresponding to the 

!O It may be assumed, witb nO appreciable loss of generality, that the electro· 
magnetiC field in V corresponding to arhitrarily prescribed v or i exists and is 
unique, and that E=O=.H=O (throughout V) corresponds to .=0 or i=O. See paper 
in footnote 2, p. 134; also paper in footnote 8, p. 535. 

~oundary condition io,=I, ikK=O (kK,e.l'A). The H 
III V corresponding to arbitrary i is then 

H (r) = :L.: h ll\(r)in= h i, (8) 
II.. 

where h is the row Illatrix h = (h ll • • . h lA . 
h nvn). The possible E 's and the possible H 's are 
elements of linear vector spaces,12 of dimension N. 
E has the coordinates v relative to the basis e; H has 
the coordinates i relative to the basis h . The par­
ticular basis fields introduced in eq 7 and 8 are the 
simplest ones to start out with; e, h ,or both together 
will accordingly be called a primitive basis. 

The usefulness of the following definition will be­
come apparent. The bracket [El, H2] of any electric 
field El in V and any magnetic field H2 in V is 
defined by 

where, as always in this paper, the superposed bar 
denotes the complex conjugate. It is to be empha­
sized that El and H 2 are by no means necessarily 
associated electric and magnetic components of the 
same electromagnetic field. The most important 
algebraic property of the bracl{et is exemplified by 

[(aEl+bE~, H 3]=a [EI , H3] +b [E2 , H3], 

[El, (CH2+dH 3)]= [E\ H2]C+[El , H3j'd, 

where a, b, c, d are any constants. (There will be 
no need to define or use brackets of the type [H, E] .) 

The orthonormalization of the standard terminal 
fields (as expressed in eq 5) has as an immediate con­
sequence a corresponding property of the basis fields: 

(10) 

where 8m~.I}..=1 for m p. = l'A, 8m~.I}"=0 for mp.,el'A. 
The coordinates (relative to the given basis) of arbi­
trary E and H in V Illay be defined by 

[E, hi}"] = v!)" (11) 

for if E= ev and H = h i, then, with the aid of eq 10, 
one finds that eq 11 do in fact yield VI}.. and {'mw 
Let !l (el}") denote the magnetic field associated with 
el}.., and let ~ (hm~) denote the electric field asso­
ciated with hm~ (so that "V X el}..= -jwp. ·1il(el~) and 
"V X hm~=(jw ~+a) ·~(hm~». Replacing E and H in 
eq 11 by ~ (hm~) and ill (el}..) , respectively, we write 

(12) 

thereby defining the N-dimensional square matrices 
Z and Y. (The first index-pair attached to the 

II Possibly one might prefer to say that e mp is a field of electric type inasmuch 
as the units of emp are those of e O .. p and not those of E. 

12 For the mathematical postulates defining such spaces, see, e. g., F. D. 
MUrnaghan, Theory of group representations, p.ll (Johns Hopkins Press, Balti­
more, Md., 1938). 
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matrix element labels the row in both cases.) Now 
if E and H arc associated (E= "£ (H) , H = 'lR(E)), it is 
clear that 

smce "£ and ii'l are linear functions of their argu­
ments. By inserting these forms for E and H into 
eq 11 one finds 

.,. "-IT -
t :m lJ. = L..J In Il , k" VkK,+ (13) 

kK 

'rhus the coordinates of associated E and Hare 
related by v=Zi or, equivalently, by i = Yv. Z and 
Yare, respectively, the impedance and the ad­
mittance matrices (relative to the primitive basis) 
characteristic of the waveguide junction. 

The bracket [E, H] of (associated) E and H is 
(directly from eq 9) the in tegral of the inward 
normal component of the complex Poyn ting's vector 
extended over the aggregate of the terminal surfaces. 
Thus the to tal (complex) power influx W across the 
terminal surface is 

H ere and subsequen tly the star is used to denote 
the Hermi tian conjugate (= transposed complex­
conjugate) of a matrix. The additional expressions 
W =i*Zi= v*Y *v follow immediately from eq 13. 

Consider the introduction of a new electric-field 
basis e' = (e~ ... e~) related to the primitive basis 
e= (ell . . . envn ) by means of the linear trans­
forma tion e'= ea, where a is a unitary matrix 
(a* = a-1).13 The postulate that eq 7, 14,8 shall have 
invariant meaning determines the transformations of 
v, i, and h relative to tha t of e. Namely, from 

E= ev = e' v', (7) 

W = i*v=(i' )*v' , (14) 

H= hi = h'i ' , (8) 

and the given e' = ea one find s easily 

e' = ea, 
(15) 

h' = ha, 

And from eq 12 

Y' = a-1 Y a. (16) 

(It should be no ted that the formulas for h' , i' , 
2' , and Y' are wri tten for uni tary a and do no t hold 
unless a is unitary.) 

13 rr rans formations with an arbitrary uonsin gular a could be considered but 
will not be needed in t his paper. 

Wi th the above provision for change oj basi the 
electromagnetic formulation, as fa r as needed here, 
is essentially complete. It may be remarked that 
2 and Y can be regarded as metri c tensor of the 
vector spaces of eq 7 and 8, respectively (the metric 
is not in general H ermi tian, to be sure)Y The 
scheme acquires additional meaning when i t is 
recognized that for each bracket there is an expres­
sion involving volume integrals extended throughout 
the domain V (appendix, 1). 

Although the discussion will rela te primarily to 
Z, Y, and the corresponding basis fields, the resul ts 
to be obtained for Z and Y will hold also for the 
scattering matrix S, which is defined as follows. L et 

2a=v+ t oi, 2b =v-toi , (17) 

be the matrix form of eq 6. Then the scattering 
matrix furnishes the relation 

b=Sa, (18a) 

and a simple calcula tion shows tha t 

(18b) 

where to is to be interpreted as a multiple of the 
N -dimensional unit matrix. Equations 17 and 18 
will have invariant meanlllg under a change of 
basis provided 

S ' = a-1Sa. (1 9) 

The matrix to, which must transform like 2 (from 
eq 17 ), is invariant under a unitary change of basis. 

So far as the subsequen t symmetry analysi is 
concerned, Z, Y, or S is an arbitrary nonsingulal' 
matrL,{ subj ect only to the consequences of structural 
symmetry of the waveguide junction. (It may be 
understood that Z , Y, and S are such that the r eal 
par t of W, R e(W), can no t be negative, but t his 
condition is not used in the analysis.) The following 
special conditions (of electrical origin) are of interest. 

I. The nondissipati ve condition (R e(W ) == 
0): Z, Yare skew-Hermi tian; S is uni­
tary : 2 *=-2, Y *=-Y,S*=S-l 

n. The nonreactive condition (Im( W) == 0) : 
Z , Y , S are Hermitian: e.g., Z*= Z. 

III. The reciprocity condition: Z , Y, S are 
symm etric: e.g ., Z ml'.p,= 2 zx,ml" or, in 
the matrix no tation to be used, Z = Z. 

(20) 

These conditions may be incorporated, at will , after 
the main results h ave been obtained ; of course, the 
more usual cases are III (alone) and the combination 
of III and 1. The matrL,{ conditions in I and II are 

"For tbe mathematical postulates leading to a posit ive·defi n ite Hermitian 
metric-tensor, see, c. g., M urn aghan, p. 17. fr o make connection wi th M ur­
naghan 's notation, one may denn e 

(E'I E2)~ [E ', ei (E')](or (JJ II JJ')~[I£ (I1 I), II' ]). 
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invariant under transformations of the type needed, 
but the property 2 = Z is not (unless a is real) Y 
In general 2' is not simply equal to Z' but rather, 
from eq 16, 

.2' = aZa-1= a(aZ' a - 1)a-1=(a a)Z'(a a) -I. (2 1) 

Obviously Y' and S' are . subj ect to the same condi­
tion when Y and S are symmetric. 

III. The Rotation Operator; Symmetry Groups 

The geometric concept of spatial rotation and 
reflection of a waveguide junction or of an electro­
magnetic field is represented and in fact analytically 
defined by certain transformations of the tensor 
point-functions involved (e. g., (J (r ), em~(r), H (r ), 
etc.). These transformations are basic for what 
follows and will be set down presently. In the 
present context tensor components will b e distin­
guished by the use of the letters x, y , z as indices, 
and a fixed , orthogonal three-dimensional basis is 
to be understood. The three unit vectors of such a 
basis plus an arbitrary origin 0 define a rectangular 
Cartesian coordinate-system Oxyz (rx=x). 

For the present purpose the intrinsic geometric 
properties of a particular rotation are conveniently 
characterized by a tensor R (independent of r ) 
whose components Rxy are such that R = (Rxy) is a 
real orthogonal matrix. The determinant of R may 
b e + 1 or - 1; a rotation (as the term is used h er e for 
convenience) may be termed proper or improper 
according as the determinant of R is + 1 or - 1. 

As a preliminary to the complete expression of the 
desired transformation, we consider the transforma­
tion F (r)-'7F'(r) of a tensor F (of rank 0,1, or 2) 
furnished by 

F'(l')= F(r), (22a) 

F~(r) = "L,RX1JFy(r), (22b) 
1/ 

or 

F~v(r) = "'~;1Rx~RvyF~y(r). (22c) 
X, v 

This may be called "local" rotation, inasmuch as the 
components of F' at the point r are related directly 
to those of F at the same point. It will be conven­
ient to use the notation r' = Rr for eq 22b when 
F(r)= r . 

It may be noted that in electromagnetic theory it 
is customary (perhaps invariably so) to consider 
electric charge a scalar, thereby determining E as a 
vector and H as a pseudovector. Since a pseudo­
vector is a (antisymmetric) tensor of rank two, eq 22c 
applies; but in terms of the usual pseudovectorial 
components, say Hx of H , eq 22c becomes 

H~(r) = deteR) "L,RX1JH y(r), (23) 
11 

"Tbe fact t hat reciprocity is manifested in Z= Z (in the primitive basis) 
depends upon the fact that the standard terminal fi elds are (by hypothesis) real. 

where d et (R) is the determinant of R. It is well to 
note also that in the present framework E' X H is a 
vector and E X H ·k is a scalar . . 

By combining a local rotation and a suitably 
related functional transformation, which may be 
called "parallel transport", we 0 btain the transforma­
tion to be termed rotation oj a tensor fi eld (or, briefly, 
rotation). In the sense of this term, the rotation 
corresponding to R applied to the tensor point­
function F produces a n ew tensor point-function , to 
be deno ted by PRF, whose components at the point 
r' = Rr are equal respectively to those of the locally 
rotated F at the point r . Thus, for all r in the 
domain Vof definition of F, 

PRF(r')=F(r), 

[PRF(r')] x = "E,Rxy FuCr), 
v 

[PRF(r')] xy= ~Rx;RvzF;u(r). 
x, v 

(24a) 16 

(24b) 

(24c) 

PRF is defined in the rotated domain conveniently 
denoted by PRY' PRY being such that r' is in PRY 
if r is in V. It should be observed that the m eaning 
of a rotation depends upon the location of the origin 
o of Oxyz (at which point F undergoes only local 
rotation). By what amounts to a change in the 
designation of the independent variable, one may 
write, say for eq 24b, 

[PRF(r)]x= "L,RxyFy(R - 1r), (25) 
11 

which holds for r in PR V. In the later applications 
of eq 24 it will in fact generally be convenient to 
have r as the argument of PRF. 

The analytical construction of eq 24 belies the 
simplicity of the underlying geometric picture: for 
proper rotations, at least, the transformation defines 
what might be described as a rigid motion (in which 
one point is fixed) of a tensor field; and for scalars 
and vectors, at least, the transformation is easily 
visualized . (Simple illustrations are given in fig. 4 
and in connection with example A, section V.) 

We impart operational meaning to the symbol P R 

by saying that it stands for the operation (local 
rotation plus parallel transport) by which the func­
tion P RF is produced from the function F. It is 
convenient to describe the properties of the trans­
formations 24 by describing the properties of P R , 

The proper ties of PR to be listed now are all 
rather evident from the geometric picture corre­
sponding to eq 24 and to some extent from eq 24 
themselves. No proofs will be needed here. (a) PR 

is linear: 

16 Equation 24a essentially reproduces Wigner's definition; eq 24h,c give the 
generalization needed here. E. Wigner, Gruppen theor ie und ihre Anwendung 
auf die Quantenmechanik der Atomspektren, p . 113 (Vieweg and Sohn, Braun­
schweig, 1931). 
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where c, dare scaJar constants and F, G are tensors. 
(b) Pn is dis tribu tive with respect to tensor p roducts 
in that 

(26) 

where on bo th sides the same type of tensor product 
is implied (e . g ., w H , E X ii) . (c) If the product 

t 
y 

o 

t" 
: PRECr' )= E'Cr) 
, " 
I " 
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F I GU RE 4. PropeT rotation of a veetoT. 

F G is a scalar (e . g., F = E-(]" , G= E, FG= E·(]" · if) then 

r FGdV = f (PnF ) (PnG)dV, (27) Jv P R Y 

and in this sense Pn is un itary. The same property 
obviously holds also for surface integrals. (d) The 
identi ties 

Vr[Pn!(r)) = Pn[Vrj (r)], I 
Vr· [PnE(r))= Pn[Vr·E(r)], ~ (28) 

VrX [PnE(r))= Pn[VrX E(r)], J 
in which the subscript r denotes differentiations 
with respect to r, lead to the statement that Pn 
commutes with the V-operations. 

The product PsPn (of Pn jollowed by Ps) is de­
fined by (PsPn)F = Ps(PnF) for arbitrary F, where 
Ps(PnF) denotes the function produced from F by 
first applying Pn to F and then Ps to PnF. The 
product of two P-operations is itself a P-operation 
and in fact PsPn= Psn, where the matrix represent­
ing 8R is the matrix product SR. It is worth while 
to verify this multiplication law, say in the vector 
case . Letting r" = 8r' = 8 Rr and thrice using eq 
24b, one may write 

{Ps[PnF(r" )) }x= ~ Sxy [PnF(r')) v 
v 

v, z 

= "L, (SR) •• Fz(r)= [PsnF(r")) x~ 
z 

The equality of the fint and last member , holding 
identically in r" for an arbitrary vector funcLion F , 
shows in the vector case that PsPn a defined is 
equal to Psn. Since the collection {R } of all three­
dimensional real orthogonal matrices, upon matrix 
multiplication, const itutes a group , it i clear that 
the collection {Pn } of all ro tations of a given tensor 
function, upon multiplication as defined, also con­
stitutes a group; {R } and {Pn } are abstractly iden­
tical and may be identified as the three-dimens'ional 
rotation-reflection group. The groups of interest in 
the present discu ssion are subgroups 17 of this group , 
as will become clear from the content of the next 
few paragraphs. 

A tensor function F will be said to be invariant 
with respect to the rotation P n (in which 0 is a fixed 
point) if 

PnF(r) = F(r), (29) 

for all r in the domain V of definition of F. (For 
this equation to hold it is necessary that P n V = V .) 
When eq 29 holds, Pn will be aid to be a cove1'ing 
operation oj F. 

For any choice of 0 , the corresponding set of 
covering operations PQ ,Pn,Ps, ' " of a given 
function constitutes a group . For, as ociat ive mul­
tiplication is defined within the set : (PnPs)F= 
Pn(PsF)=PnF = F ; m.oreover, the set contains the 
identity operation PI (obv iously) and the inverse of 
each of its operations: Ps- IF= PS- 1PsF= F . Itmay 
happen, of course, that a group of covering operations 
actually consists only of the single element PI; this 
trivial case is obviously of no interest in what follows. 

It may be recalled that the structure of a wave­
guide junction is described by three functions, O" (r), 
/-L (r ) , e(r ), which are in general tensors of rank two, 
defined in a region V. If O" ,/-L ,e arc invariant with 
respect to P n, we say that the structure i invariant 
with respect to P n and that P n is a covering operation 
of the structure. For any choice of 0 , the set of 
covering operations of a given structure will evidently 
be a group. If 0 is chosen so as to make the group 
of covering operations as large as possible, then this 
group may be said to characterize the symmetry of 
the s tructure and be called the symm etry group of 
the structure. IS The symbol {P n}, used above for 
the three-dimensional l'otation-refiection group , will 
be used also for symmetry groups. 

IV. Symmetry Analysis 

Consider a waveguide junction having the sym­
metry group {Pn }, and let E, H satisfy 

V X E= -jW/-L" H } 
in V, 

VX H = (j we + O" ).E 

17 For a discuss ion of thcse groups, see, e. g. , J. Rosenthal and G. M. Murph y, 
Rov. Mod. Phys. 8. 317 (1936). 

" If ~ , ' are scalar constan ts andq= O in V, then the nccessary condi tion Pn V= V 
contained ill eq 29 becom es also suffi cient and the symmetry gronp w ill be de­
termined by V. In tbis way the present formulation inclndes cases in whicb 
symmetry is determin ed by geometrical fi gure a lone. 
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where the vector function F , defined on the complete 
bound.ary S of V, denote~ in a unified notation any 
prescnbed set of electnc fields on the terminal 
surfaces and the homogeneous boundarv condition 
holding on all other parts of S. Let' the whole 
system- structure and field- be subj ected, in imag­
ination, at least, to the (proper or improper) rotation 
in space corresponding to PR. One obtains an ana­
lytical description of the resulting situation byapply­
ing P R to V, to S, and to both sides of each of the 
three equations above. 

V'X(PRE)=-jW(PR}.L)·PRH } 
in PRV, 

V'X (PRH) = (jWPRE + PRrr)·PRE 

PR(Et) = PRF on PRS, (31) 

These equations hold formally whether or not the 
structure is invariant with respect to PRO indeed if 
P R is a proper ro ta tion, the configuration' of the sys­
tem relative to itself is in no way altered. However, 
the structure is by hypothesis invariant so that eq 
31 is equivalent to ' 

(32) 

'rhe differential equations here are the same as those 
in eq 30; that is to say, the m:1croscopic Maxwell's 
equations of the problem are invariant with respect 
to PR' The field PRE, PRH appearing in eq 32, 
although closely related to the original E H is 
nevertheless a new field relative to the fix~d ~xes 
Oxyz; and since the rotated structure is indistinguish­
able from the nonrotated one, PRE, PRH may be 
counted as a new field relative to the structure. One 
may, of course, consider that only the field, and not 
the structure, is rotated. 19 The essential observations 
to be made here are: (a) If E, H is a possible field 
in V, so also is PRE, PRH (so that the vector spaces 
of eq 7, 8 are closed wit~ respect to symmetry opera­
tlOns), (b) PRE, PRH IS essentially determined by 
t~e transformed terminal fields prescribed in eq 32, 
smce the stated boundary conditions holdino- on all 
parts of S other than the terminal surfaces bare not 
affected by PR. 

It follows from (a) above that the set of electric 
fields coinciding initially with the primitive basis e 
spans a re:presentat~on of th~ symmetry group {P R}' 
~ amely, SlllC~ em~ IS a possIble electric field, P Reml' 
IS also a possIble electriC field, and so PRem is ex­
pressible as a linear combination of primitive ~lectric 
fields: 

PRem~(r)= ~ e l1,(r) D(R) 11" ml'" (33) 

(This equation is not to be regarded as defining a 
change of basis; the coefficient D(R}r;.., ml' is to be 

" 'This point of view is b~lpful in fixing the significance of tho waveguide index 
m(m=I,2, ... n), which IS to be understood to identify a waveguide lead in a 
fixed spatial location . 

regarded as a tensor component defined relative to 
the basis e of the N-dimensional vector space in tro­
duced in section II.) We take D(R)o, m~ as the 
element in the (l "A )tb. row and the (m }.L )th 'column of 
an NXN matrix D(R). These matrices constitute 
a representation of {P R }. For, calculation of 

PQ(PRem~) = ~ (PQ ell\)D(R)11, m~ 
11\ ' 

and comparison of this result with 

shows that the matrix associated with the product 
PQPR is in fact the product, in the proper order, of 
the matrices individually associated with P Q and P R. 

To determine furt.her essential properties of 
D(R) we utilize observation (b) above and consider 
the t!'~nsformation of the terminal-surface boundary 
conditlOns that define em~' Upon transformation 
by P'R' the standard terminal-field e~~ , defined on 
termmal surface Sm in waveguide m, goes over into 
the field PRe?nl' defined on (and tangential to) the 
terminal surface in an equivalent waveguide whose 
index maybe denoted by R(m). PRe~~ must accord­
ingly be expressible linearly in terms of the standard 
terminal fields in waveguide R(m). Thus letting 
R(m) = k to simplify the typography, ' 

P Re~irk) = :t eZ. (rk) D(R)kK. m~, 
<=1 

(34) 

Since the tangential components of PReml' are zero 
on terminal surfaces other than Sk, eq 34 determines 
PRem~' Hence D(R) II\,m~= O, l-,t-R(m); also, since 
the standard terminal-fields are real, D(R) must be 
real. The nonvanishing elements of D(R) can be 
presented in a set of n submatrices D (Rh '" 
(D(Rh, m is square and of dimension 11m) . '1'he arrange­
ment of these submatrices within D (R) is in accord­
ance wi~h the scheme of permutation, m---7R(m), 
of termmal fields among equivalent waveguides. 
(In example A, section V, the permutation 1---72, 
2---7 1, 3---73, 4---74 for n=4 occurs.) Thinking pri­
marily of the general case vm>l, but not excluding 
1Im= 1, we determine the nature of the submatrices 
in the following manner. For the moment let two 
modes (in the same or in equivalent waveguides) 
be termed equivalent if they have equal wave­
admittances, so that equivalent modes are not only 
"degenerate" but also of the same kind (TE TM 
or TEM). It is clear that the right-hand ~ide of 
eq 34 can involve only modes equivalent to the }.Ltb. 
mode in the mtb. waveguide. Hence (assuming 
suitable ordering of mode indices) the nonVfinishing 
elements of D(R)k, m will appear in smaller square 
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submatrice ("steps") lying on the main diagonal 
of D (R )k,,,.. Each step relates equivalent modes 
and is itself a real uni tary (=real orthogonal) 
matrix. For, considering any two equivalen t modes 
JI ,I.£' (distinct or not), one finds with the aid of 
eq 4, 5, 27, and 34, 

o""'=(\Ol1 ",") J e~". e~", dS 
8 m 

= ~ OKK'D(R)kK, m"D(Rh." m", = ~D(R)kK, m"D(R)kK, mw , 
~~ . 

where k = R (m) , and 11 m" is the common value of the 
wave-admittances of the modes involved. Thus 
each step, hence each D(Rh ,m, hence D(R ) itself, is 
a real unitary matrix. 

Parenthetically it may be noted that even if 
jim is large the dimension of an individual step 
ordinarily ",,rill not exceed two or three. (It can be 
shown that the highest symmetry degeneracy of wave­
guide modes is two-fold. ) Of course, JIm = 1 fre­
quently occurs in actual problems; the submatrix 
D (R)k,m then cons ists of a single one-dimensional 
step and is necessar ily equd.l to ± 1. 

The magnetic fields of the basis h transform under 
rotation according to the same gro up-representation 
as do the electric fi elds of the basis e. P erhaps the 
most easily visualized proof of this is the following. 
From eq 34 and 4 one may obtain 

Pn [h~," (rk) X k m] = [~h~, (rk) D (R )kK, m"] X k k, 

(rk on Sk; lc= R (m» 

wh ere, again, the wave-admittances drop out . The 
left-hand side may be replaeed by [PRh?n" (r k) ] X kk 
(cf eq 26); and since the fi elds are transver e, k k may 
be canceled from the resulting equation. Thus one 
()btains for the tangential component of PRh"," on Sk 

p Rh~," (r k) = ~h~K (rk ) D (R)kK, m", 
K 

Since the t.angential components of PRh m" vanish on 
termillal surfaces other than Sk, eq 35 impli es 

(r in V), (36) 

where D(R)o .. ","= O, l~R(m), as above. In view of 
eq 34 and 35 it is clear that to determine D (R) in a 
conerete case one may consider the transformation 
()f either the electric or the magnetic standard termi­
nal-fields. If the magnetic terminal-fields are con­
sidered, it should not be forgot ten that they are 
pseudovectorial. 

'1' he transformation of an arbitrary electromag­
netic state upon rotation by P R is obviously deter­
mined by eq 33, 36 and is conveniently presen ted in 

matrix form . In matrix notation eq 33 and 36 
become 

PRe= eD(R), PRh = hD(R), (37) 

where PRe is ill terpreted simply as 
P Rem" . . . P Re"v ); P nh , similarly. 
and H = hi, then, n 

(PRell 
For E= ev 

PRE= eD(R)v= e vR, PRH= hD(R)i = h i R, 

where, by definition, D(R)v= VR, D(R )i= iR. That 
is to say, if E has the coordinates v relative to e as 
basis, then PRE h as the coordinates VR relative to the 
same basis; similarly for H . The interpretation of 
P R as a matrix operator, defined with respect to v 
and i (which represent electromagnetic states) as 
operands, is immediate : 

PnV == D(R)v = VR, PRi == D(R)i = i n. (38) 

The matrices D (R ) are, of coul' e, basis-dependent. 
A unitary change of basis induces the imilarity 
transforma tion 

D (R) --'7D' (R )= a- 1D(R )a, (39) 

as is readily verified with aid of eq 15 and (choosing 
one of several possibilities) eq 37. The essential 
practical problem in symmetry analysis, briefly 
stated, is to find a basis- Lhat is, to find a transform­
ing matrix a- snch that the representa t ion D (of the 
symmetry gronp involved) whose m aLrices are D (R ) 
will be reduced-out 20 by tbe Lran formation 39. 
Such a basis, in which the matriees D' (R) of the 
represen tation D' appeal' ill reduced-out form, will be 
termed a symmetry basis and the corresponding 
coordinates, symmetry coordinates. The principal 
items to be considered in the remainder of the 
analysis are the constru ction of D', the construcLion 
of a , and the phy ical conseq uences; it is expedient to 
consider th ese i tems in this order. 

A reduced-out representation D', in whi eh the 
irreducible components of D are to appear explicitly, 
can in principle be wri tten down as soon as the ir­
reducible components of D are determined. Let X 
denote the character of D, and let xP denote the 
char.1cter of the pth irreducible representation Dp of 
the symmetry group involved. 21 Then, by a basic 
theorem , the nonnegative integer Cp that tel] s holV 
many times Dp must appeal' in D' is given by 22 

(40) 

where 9 is the order of the symmetry group and the 

20 For the conccpts and theorems of t hc theory of grou p representations that 
will be needed herc it wi ll be convcnicnt to refer to Wl gner (Gru ppentbeone, 
cited in footnote 16), especiall y chaptcrs IX and XII. 

21 Character tables arc given e. g., b y Rosenthal and Murphy (footnote 17), 
and by G. Herzberg, In frared 'and Raman spectra of polyatom ie Illolecnles (D. 
Van Nostrand Co., Now York, 1945). Irreducible. representations h~vc al?par­
ently not been tabu lated, but mmy of them are ea.slly found (farone-dImensIOnal 
representations, D p=x'P). 

" ,Vigner, p. 95. 
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summation goes over the group.23 (The complex 
conjugate taken in the right-hand side of eq 40, 
which makes the formula correct in general, is of 
no significance here because Cp is real in general and 
X is real in the present problem. ) Let the (distinct) 
nonequivalent irreducible representations actually 
contained in D (i. e., those for which Cp ~ 0) be num­
bered from 1 to t. Further, let Dp (R),," denote the 
element in the 7rth row and the pth column of the 
matrix DP(R) of the irreducible representation DP, 
which must be unitary and is considered known; and 
let lp denote the dimension of Dp . For the element 
in the (p7ra)th row and the (qpb)th column of the 
matrix D' (R) we write 

D' (R)pTa. qpb= Op QoabDp(R)7r p, 

where the indices are to have the ranges 

(41) 

a= 1, 2, ·· ·,C p ; 7r = 1,2,·· ·,lp; p = 1,2,·· ·,t; 

p = 1, 2" .. , lq; q= I , 2, · . ·, t. 

(Whenever lp~lq, undefined symbols D P(R ),," multi­
plied by zero occur in the right-hand side of eq 41; 
such "products" are defined to be zero.) The ele­
ments of D' (R) furnished by eq 41 may, if desired, 
be arranged in such a way that D' (R ) takes the form 

o o 

D'(R) = 
o .. . DI(R) 0 0 

o 0 D2(R)· ·· 0 
(42) 

o o 
in which the matrix DI(R) appears CI times, D2 (R) 
appears C2 times, etc. (Any consistent scheme of 
ordering elements into matrices may be assumed, 
and it may be noted that an order other than one 
that leads to eq 42 will be convenient later. ) 

In the formation of D' by means of eq 41, the 
choice of the particular irreducible representation 
Dp among the unitary representations equivalent 
to Dp is merely a matter of convenience. (This 
question does not arise when lp = 1, of course .) How­
ever, an irreducible representation appearing more 
than once in D' is to be presented in identical form 
each time it appears, as indeed is insured by eq 41. 
The arbitrariness in D' implies an arbitrariness in 
the choice of a symmetry basis; of more interest in 
this paper, however, is further arbitrariness in a 
symmetry basis that remains after D' is assumed. 
This arbitrariness will appear in the course of the 
construction of the transforming matrix a and will 
be utilized in a brief discussion at the end of this 
section. 

Let the row-matrices e' , h ' present the basis 
fi elds of a symmetry basis in which the matrices of 
D' are in fact given by eq 41. In this basis eq 37 
become PRe' = e'D'(R) , PRh ' = h 'D' (R); where, 

23 Only finite symmetry groups will be cousidered explicitly. 

in accordance with the index notation established 
in eq 41, e' = (e' p7ra), h ' = (h ' p"a). The characteristic 
transformation equations of basis fields in a sym­
metry basis follow directly from the form of D' (R): 

(43a, b) 

The lp members of a set of basis fields (electric or 
magnetic) identified by fixed p and a transform 
among themselves according to the irreducible rep­
resentation Dp of {P R ), and they are said to be 
partners and to be of symmetry species p (relative 
to {PR } ). There are Cp sets of basis fields (electric 
or magnetic) of the species p, in accordance with 
the range 1,2, ... ,Cp of the index a. More specifi­
cally, e~ "a or h~ "a is said to belong to the 7rth row 
of the irreducible representation Dp; there are, again, 
Cp such electric or magnetic basis fields. The same 
terminology may be applied, of course, to other 
fields or other entities that transform under rotation 
according to an irreducible representation as in eq 
43. 

Let e~"a and h~Ta, which are to obey eq 43, be 
given by 

e~1ra== 22em p.cxm Jl• p7ra= eap7ra , 
1/1,.. 

where ap7fa denotes the (p7ra)th column of the unitary 
transforming matrix a (cf eq 15 and the parentheti­
cal remark following eq 16). (Note that the column 
matrix ap"a presents the coordinates, relative to the 
primitive basis, of e~,,-a and h~7fa.) From either eq 
43a or 43b we may derive an equation similar to eq 
43 but applying to the ap"a. Namely, if in eq .43a 
we replace e;.-a by eap7ra (and e;pa by eappa) and then 
invoke the matrix interpretation of PR (eq 37, 38) 
and abstract e, we obtain 

(44) 

Thus a p7fa , as well as e~7fa and h~"a, may be said to 
belong to the 7rth row of the irreducible representa­
tion D p. Conversely, it may be seen that if the 
columns of a unitary matrix obey eq 44, then the 
corresponding basis fields will 0 be y eq 43. (Eq ua­
tion 44 is , moreover, equivalent to eq 39 and may 
be derived from that equation by equating the 
(p7ra)th columns of the matrix products on the two 
sides of D (R)a= aD'(R)-D'(R) being given by 
eq 41.) 

A systematic procedure for the construction of a 
may b e based upon eq 44, assuming that the 
matrices of the irreducible representations involved 
are known. (In a concrete problem various expedi­
ents, including judicious guessing, may often be 
employed to advantage.) We shall give the con-

276 



struction 24 almost in the form of a recipe, deferring 
the justification to the next paragraph. Define the 

N X 1 matrix v (~) as a function of an arbitrary 
(NX 1 matrix) v by means of the equation 

(45a) 

which may be written 

thereby defining the N XN "generating" matrix 
GU',,). Corresponding to any set of N linearly in­
dependent v's, eq 45 yields a set of exactly Cp line-
arly independent v(~)'s ; each v(~), hence any linear 

combination of v(~)'s, belongs to the 71'th row of Dp. 
Select a set of Cp such combinations that are mutu­
ally orthogonal and normalized to uni ty (in the 
Hermitian sense): these may be taken as lXp"l, lXp-,r2, 

• • " O: P7rC p ' Define the matrix GV'''') and construct 
thl' lp- l partners of lX1'"a by m eans of 

(46a) 

for p= l , .. ',71'-1,71'+1, .. " l p and a = l , 2, .. " 
C po The lXppa'S so obtained will automatically satisfy 
lX:pa lX pub= Opu Oab ' The procedure is to b e carried out 
for each symmetry species (p = 1, 2, ... , t ); the 
orthogonality lX;"a lXqpb = 0, p r! q , will automatically 
hold. Thus one obtains altogthe r a complete set of 
column matrices that satisfy eq 44 and are properly 
orthonormalized to serve as columns of lX. 

For the most part, the above construction repre­
sents an immediate application of theorems gi ven by 
Wigner. 25 B eyond this it is only necessary to show 

that (a) G(~" ) is in fact of rank C 1' and (b) lXppa and 
lX pPb, as given by eq 46, are orthogonal when lX p"a and 
lX p"b are. As for (a) : since the representations D 
and D' are unitary and equivalent, there is no 
ques tion of the existence of a unitary transformation 
connecting them. Hence the equation defining 

G(~") may be transformed formally into 

Considering D' (R) in the form 42 (say) and apply­
ing the orthogonality theorem given below (eq 50) 

one finds that lX - JG(~7r) lX is a diagonal matrix having 

" Tbe method to be gi ven is essen tiall y equh'a!ent to one gi ven (ror the con­
struct ion or molecular symmetry coord inates) by J. R. Nielson and L . H. 
Derr y man , J. C hem. Phys .17. 659 (1949). 

"Chap XII, CQ 1,3, 3a, 6, and 8. Com rare eq 44, 45a, 46a witb eq 1, 6, 3a , 
respect,ively. 'l' he reinter pretati on or Wigner 's eQ uatious witb his runct ional 
PH and f replaced by our matrix P R and v is immediate. 

~---- -------------------~ 

exactly Cp nonvanishing diagomd element (each 

equn.l to 1), so that lX - JaC~") lX , hence G(~"'), is of rank 
Cpo As for (b): from the relation 

(G(~1(»*=(lv(g)'L, Dp (R)p7r D (R) * = 
R 

(lp/ g) 'L,DP(R-J) ,pD(R- J)= G(~p) , 
R 

and the observation that, for a set of partners, eq 46 
holds for all 71', P (in their proper range) ,26 one obtain 

which establish es (b) . 
Structural symmetry of a waveguide junction 

places certain restrictions on the form of the matrices 
Z, Y, and S (defined in eq 12, 18): some matrix: 
elements may be forced to vanish, and the number 
of independent elements may be r edu ced materially,27 
as is well known in a variety of cases. One form of 
the governing equation may b e found in the follow­
ing way. The relation v = Zi holds, of course, for any 
given electromagn etic s tate in the junction. If the 
fields are subjected to a symmetry operation, the!l 
V-?Vn, i-?in (eq 38) and vn=Zin must hold , for Vn,~n 
are coordinates of a possible sta te in the given 
invariant s tructure (cf footnote 19) . Now vn=Zin 
is the sam e as D(R)v=ZD (R )i, v may be replaced by 
Zi, and i is arbitrary. H ence 

D (R )Z=ZD(B), every R of {Pn }, 

and we say that Z commutes with the r epresentation 
D of the symmetry group. It immediately follows 
that Z-l(= Y ) commutes with D and that (Z-fo) 
and (Z+fO)-l, hence (Z-fo)(Z+fo)-l (=S), com­
mute wi.th D. (In fact any rational matrL,{ function 
of Z commutes with D. ) Thu , if M denotes Z, Y, 
or S, 

D (R )M = MD (R ), every R of {Pn }. (47) 

This equation contains the conditions imposed by 
symmetry upon the several matrices characterizing 
the junction. To find the consequences of eq 47 we 
consider it presented in a symmetry basis . 

Upon transformation to a symmetry basis, 1111 and 
D undergo one and the same similarity transforma­
tion (eq 15, 19,39), and eq 47 b ecome . D'(R )M' = 
M'D'(R ). This may be wl'it ten M '= D'(R )* M' D' (R ), 
and for the element M~"a,QPb of M' one obtains, 
using eq 41, 

U ,T 

· ~gn~C~XR~ ~ . . 
27 Results more detai led t hall those to be obtained ill tbe text arc obtailled III 

appondix, 2. 
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The 9 equations of this type (oneforeachRof {PR }) 

may be added to obtain 

N ow according to the orthogonality theorem for uni­
tary irreducible representations, 28 

so that eq 49 becomes 

M ;"a,qpb= O, unless q= p and P= 7r'} (51) 

M~ "a, p"b= (1Ilp) ~M~ua, pub"'" m:b, 

where m~b is a constant independent of 'Ir. 1'11[' is 
determined by the values of the c~+ c~ + . , . + c; 
constants m:b , which are arbitrary so far as sym­
metry of the iunction is concerned, A convenient 
step-matrix f~rm for j\1' is obtained by arranging 
elements in dictionary-like order according to the 
values of the indices p , 7r, a in the sequence p'lra. 
(The sequence pa7r yielrl s D' (R) in the form 42,) If 
t = 2, for example, and ll= 2, cI = 2, l2= 2, C2= 1, then 
M' will have the particular step form 

spa 0 

s pb 0 

tpa 0 

o 

o 

o 

o 

s pa 

o 
o 

o 

o 

s p b 

o 

o 

o 

o 

o 

o 

o 

o 

o 

tpa 

o 

o 
o 

o 

o 

The general M' will have, for each p , lp identical 
steps of dimension Cp ' (If cp = 1, every p , the steps 
are elements and 1o",[' is diagonal.) 

Additional restrictions on M' corresponding to the 
conditions discussed in section II, eq 20, 21, are 
readily imposed. To fulfill I or II, M must satisfy 
one of the conditions M*=-M , M* = M, 
M* = M - I; and M' must satisfy the same condition. 
The reciprocity condition (III) requires M = M, and 
M' must satisfy 

M-, (- )M'(- )-1 = aa aa, (52) 

--or simply M' = M' when a is real. 
. The form of M may obviously be found from that 

of M' by calculating M = aM' a-I. 

" Wigner, p. 91. 

It is of interest to consider briefly the special case 
in which M is a normal 29 matrix. Either of the con­
ditions I and II is sufficient to insure that M be 
normal.3° When Jl;[ is normal, M can be reduced to 
diagonal form by transformation to a suitably chosen 
symmetry basis . This statement is easily estab­
lished by considering the transformation needed to 
diagonalize M', If M is normal , so also is M' ; from 
the form of M' (eq 51) it is evident that M' can be 
diagonalized by transformation with a unitary 
matrix {3 of the form 

{3 p"a,Qpb= O, unless p= q and 7r= P, 

where (3P is a suitable unitary matrix of dimension Cpo 
(The argument is trivial if Cp = 1, every p .) The 
change of basis corresponding to this transformation 
may be denoted e' ---'7 e" , where e" = e'{3 = e(a{3 ), and 
we 'have ' 

M' ---'7 M" = {3 - I M' {3 =(a{3)- lj11.(a {3 ), 

where the diagonal matrix Mil presents the eigen­
values of M, and the columns of the combined trans­
forming matrix a{3 are eigenvectors of M, Let us 
put a{3 = 'Y and examine the (p '/ra) th column of 'Y , 
From the form of {3 , 

Co 

'Y pm= 'L:;{3~b ap"b; 
b= 1 

(53) 

that is, the eigenvector 'Y p"a is a linear combination 
of the columns of a that belong to the '/r tll row of the 
irreducible representation Dv. Equation 53 is in 
fact an expression of the indeterminacy that appeared 
in the construction of a (following eq 45) . Hence 'Y 
is, as it were, a possible a , and the basis e" is a 
symmetry basis. 

The degeneracies (of the eigenvalues of M ) that 
arise in consequence of symmetry may be made 
wholly explicit by a consideration of the formulas at 
hand. The eigenvector 'Yv"a of M belongs to the 
eigenvalue Mil p"a, p7ra presented in Mil; according 
to eq 51 (applied to Mil ) M"p"a,p,,-a= A~, say, 
where A~ is independent of '/r , Hence the lp eigen­
vectors 'Y p"a for '/r = 1,2, ... , lp all belong to the 
eigenvalue A:. These eigenvectors are certainly 
linearly independent (being columns of a unitary 
matrix), and so the eigenvalue A~ is at least lp-fold 
degenerate. This degeneracy is necessitated by th e 
symmetry of the waveguide junction and may be 
termed symmetry degeneracy. Degeneracy higher 
than that necessitated by structural symmetry, 
when it occurs, may be termed accidental, as is 
customary in mathematically similar circumstances. 

"A matrix that satisfies MM*=M*M is said to be a normal matrix ; MM*= 
M* M is a necessary and sufficient condition that },{ be reducible to diagonal 
form by a similarity transformation with a unitary matrix. See e. g., Murna­
ghan, Theory of group representations, p. 26. 

30 Although }vf may be and indeed usually will be symmetric (reciprocity), 
this condition is neither necessary nor sufficient to insure that 1VI be normal. 
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V. Examples 

In order to illustrate some of th e text mater ial by 
means of examples, we shall consider the wavegui.de 
junctions shown in figures 3, 5, and 6. The para­
meters rr, }.L , ~ in the interior of the junctions may 
b e the most general consistent with the assumed 
symmetry in th e r espective cases. Although the 
figures indicate sp ecific external geometries, it will 
be r ecognized that the exact manner in which the 
waveguides join is of no importance h ere, provided 
that this also is consisten t with the assumed sym­
metries. Lowest-mode operation is assumed in all 
waveguides (JJ m= 1, m = I ,2, . .. , n); th e h eavy ar­
rows in the figures, considered as localized vectors, 
suffice to characterize the electric terminal-fields for 
the lowest mode in rectangular waveguide. In 
applying th e notation of the text, unneeded indices 
will b e dropp ed; for example, e~,~, em~ will b e written 
simply as e?n> em (since JJm= I ). 

Example A. The junction shown in figure 3 has 
the single symmetry plane and the external geometry 
of a junction widely known as a "magic T " . Let 
the indicated symmetry plan e be x= O of Oxyz. 
The symmetry group Pn consists of th e identity 
PI and the r efl ection P s in the plane; the correspond­
ing matrices R = (RxlI ) are 

r - 01 

S = 

"- 0 

o o 
1 1 

o o 

(Det (S) =- I ; P s is a parti cular improper rota­
tion .) An inspection of th e fi gure makes i t clear 
that 

(cf eq 34) ; h en ce 

(cf eq 33), and so the N X N (=4 X 4) representa­
tion Dis 

o 
1 

o 
o 

o 
o 
1 

o 

1 

o 
o 
o 

o 
o 

- 1 

o 
(D(I) is always the N -dimensional unit matrix, of 
course.) D is r eal and unitary, as it mus t be. The 
character X of D is xCI) = 4, xeS) = 0. 

{Pn } h as two irreducible representations; both 
are one-dimensional : 

D l'(I) =(1), 

DQ(I) =( l ), 

DV(S) = (I ). 

DQ(S)=(- l ). 

(The I X 1 matrices are unitary.) Since Dv and Da 
are one-dimensional, Xv """ D l' and Xu""" D u. From 
eq 40, 

Cv = (1/2)(1·4 + 1·0) = 2, Cq= (1/2)(1·4+( - 1)·0) = 2, 

and a reduced-out representation D' (of eq 41, 42) 
is given by 

1 0 0 0 1 0 0 0 

0 1 0 0 0 1 0 0 
D'(I) = , D'(S)= 

0 0 1 0 0 0 - 1 0 

0 0 0 1 0 0 o - 1 

For the symmetry basis e' , h ' we write 

th e basis fields must transforms according to eq 43 . 
Thus, for example, 

Ple~a= DV(I)e~.= (l )e;a, Pse~a=DV(S) e~.= (1)e~., 

Ple~a = Dq(J)e~.= (l )e;., P se;.= Dq(S)e~. = (-l)e~ •. 

The same equations hold with a replaced by b, and 
h ' transforms in th e sam e way as does e'. Fields 
of species p and q may, respectively, b e termed 
symmetric and antisymmetric (or even and odd) 
with respect to refl ection in th e plane x = O. Now 
e4 is already symmetric and e3 is already antisym­
metric; one may choose e~. = e4, e;. = e3' Suitable 
linear combinations to form one furth er electric 
b asis-field of each species may b e found immediately 
by inspection in this problem ; a simple choice is 
e~ b = (e l + e2)/.[2, e~b= (el - e2)/ -v2. The transforma­
tion e' = ea so det ermined is 

0 1/-/2 0 1/.[2 

0 1/.[2 0 - 1/.[2 
(e~a e~b e;. e~b) = (e l e2 e3 e4) 

0 0 1 0 

1 0 0 0 

and we see that a is unitary, as is r equired, and 
also that a is real, as is convenient (but not always 
possible) . (One may verify D' (S)=a-1 D (S) a for 
the above matrices.) From eq 51, M' must be of 
the form 

m!a m!b 0 0 

mba m~b 0 0 
M' = 

0 0 m~a mZb 

0 0 mZa mZb 
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Upon calculating M = aM' a-lone finds, in partic­
ular, M 34=M43=0, as may well be expected even 
unde.r the general conditions permitted here . 
Indeed, these zeros can be predicted as soon as it is 
reco~nized that e3 and ' e4 are of distinct symmetry 
speCIes. 

The fields e4 ( = e;a) and h 4 ( = h~ a) are both of 
species p (even); they satisfy e4(x,Y, Z)= PSe4(X,Y, Z), 
h 4(x,Y,z) =PSh 4(x,Y, z). The x,y, z components of 
these two equations are 

e4X(x, y, z) = - e4X( -x, y, z), h4X(x, y, z) = h4X( -x, y, z), 

h4y(x, y, z)= -h41l ( -x,y, z), 

h4Z (x, y, z) = -h4Z(-X, y,z), 

where for e4 eq 24b is used, and for h 4 eq 24c and 23 
are used (cf also eq 25). The even symmetry with 
respect to the plane x = 0 forces e4x == 0 and h4y == 
h4x == 0 on the plane. (For eo and h 3' which are odd, 
e3y== e3z == 0 and h4x== 0 on x= O.) Despite the differ­
ences in behavior among their components, the tensor 
entities e4, h 4 are unambiguously classified as of the 
same species by eq 43 . . 

Example B. For the junction shown in figure 5, 
the symmetry group {P R } is of order g= 3 and con­
sists of the identity PI, a counter-clockwise rotation 
PCa of 1200 around the indicated axis, and the inverse 
P c; of PCa' It is evident from the figure that 
PCael = e2, PCae2= e3, etc., and one finds x(I) = 3, 
X(GS) = X(Ci" l) = 0. The characters of the irreduc­
ible representations of the symmetry group (as well 
as the representations themselves) are furnished in 
the table 

XT: 

1 

1 

1 

w 

w 

p-l 
C3 

1 

w 

w, 

where W== exp(27rj/3). From eq 40, cp = cq= cT = 1: 
in this case there will be exactly one (electric or mag-

FIGURE 5. Three-arm junction possessing a threefold axis but 
no plane of symmet,·y 

netic) basis field of each of the three possible sym­
metry species. One may easily verify that the 
fields 

e~ =(el + e2+e3)/ .J3, 

e: = (e l +we2+wes)j .J3, 

e~ =(el + we2+we3)/ .J3, 

obey eq 43 and in fact constitute a symmetry basis. 
We list a, aa, and the neceasary form of M'. 

.~ :{ 1 

:J. a.~ [: 

0 

:1' 
w 0 

w 1 

[ m' 
0 

:j M' = : mq 

0 mT 

It happens that M' is necessarily diagonal, so that M 
is certainly a normal matrix. In this example the 
reciprocity condition (eq 52) forces the degeneracy 
mq= mT • This degeneracy is technically accidental; 
it might well be termed reciprocity degeneracy. 

Example C. The discussion of the waveguide 
Wheatstone bridge (fig. 6) is limited mainly to a 
sketch of results. The symmetry group of this junc­
tion is identical with that of a regular tetrahedron 
and is of order g=24. Of the five nonequivalent 
irreducible representations of this group, the two 
three-dimensional ones (DV and Dq, say) are con-

FIG URE 6. W aveg~,ide Wheatstone bridge. 
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tained in D'. There are accordingly three fields 
(partners) of species p and three of species q in the 
symmetry basis; it can be shown that a symmetry 
basis is furnished by 31 

e~'K 1 1 0 1 -1 0 e] 

e~p 1 0 1 -1 0 1 e2 

e~u 1 0 1 1 0 1 - 1 e3 

e:~ 2 1 - 1 0 1 1 0 e4 

e~p 1 0 - 1 -1 0 - 1 e5 

e~(T 0 1 -1 0 1 e6 

F I GUR E 7. Equivalent network. 

Sign con vention: 111' is the positive terminal for Vm at the terminal·palr 111111'; 
positive im is into the network at m'. 

(N ote that this matrix equation is the transpose 
e'/ = ae of the equation e/ = ea.) H ere, instead of 
considering impedance, admittance, and scattering 
matrices in common, we shall consider the admittance 
matrices particularly. From eq 5] , Y/ must be of 
the form 

yV 0 0 0 0 0 

0 y P 0 0 0 0 

Y/ = 0 0 yV 0 0 0 

0 0 0 yq 0 0 

0 0 0 0 yq 0 

0 0 0 0 0 y q 

The eigen-admittances yP , yq are in general complex; 
the condition Re(W):> 0 (mentioned on p. 271) 
r equires R e(yV):> 0, R e(y q) :> o. A calculation of 
Y=aY/ a- I yields 

31 This tranRform ation represents an adaption of information contained in t he 
tables on p. 638 of tbe reference in footnote 4. 

}.. J.I. J.I. 0 - J.I. J.I. 

J.I. }.. J.I. J.I. 0 - J.I. 

J.I. J.I. }.. 

Y = 
- J.I. J.I. 0 

0 J.I. - J.I. }.. - J.I. - J.I. 

- J.I. 0 J.I. - J.I. A -J.I. 

J.I. -J.I. 0 - J.I. - J.I. A 

where A=(yv+y Q)/2, J.I. =(yP- yQ)/4. The matrix 
Y is both normal and symmetric in virtue of the 
symmetry of the junction. 

The six-terminal-pair network shown in figure 7 
is a Wheatstone-bridge schem e of conn ections mod­
ified by the presence of the "parallel" and "series" 
elements Y v and Y.. If Y v = }" + 2J.1. = Yv and 
Y S=- 4J.1. = yQ-yV, then (wi th the scheme of sign 
noted under the figure) the admittance matrLx of 
the network is the same as that of the junction, and 
the network is an "equivalent" network for the 
junction. 

The particular values of yV and yq for a given 
structure depend upon the (common) distance of 
the terminal surfaces from the center of the junction. 
If the structure is nondissipative, it is always possi­
ble, and sometimes convenien t, to assume terminal 
surfaces so located that yP = O or, alternatively, 
y L--'7 co . In the first alternative the equivalent net­
work is simplified by the absence of Y v ; in the 
second, by the virtual absence of Y.(Ys being re­
placeable by a perfect conductor). (This second 
case is the one presented in the reference in foo t­
note 4.) 

The author is greatly indebted to K. F. H erzfeld 
for valuable discussions and guidance in the course 
of this work. The writer is also very grateful to 
C. C. J. Roo thaan for helpful discu sions, and to 
H. Lyons for his wholehear ted support of this work. 

VI. Appendix 

1. Transformation of Equation 9 

The integral of (1 /2) (El X ]]2)· k taken over the complete 
boundary of V (assuming an infinite domain) is equal to 

[El , 112]+(1 /2) r (Elx IP) .k dS=-(1/2) r 'i!.( El x Jj'2 )dV, Js", Jv 

where in t he left-hand side the definition of the bracket Ceq 9) 
and the boundary condition on the surfaces S~ (p. 268) a re 
used, and t he right-ha nd s id e is given by t he divergence 
theorem of vector analysis. F rom t he above equation the 
desired express Oll, 

may be obtained with the aid of furth er vector identity, 
Maxwell 's equat ions (eq 1), and the following relations hold-
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ing (for both electromagnetic fields) on Soo:H2=TJE2 X k and 
k·E2= O. where T/ 'EEa and vacuum values of <, J1. may be 
assumed. Equation 54 applies also in t he ca~e of a finite 
domain provided merely that the S oo-integral is omitted. 

2. Additional Symmetry Properties 

The complex conjugate of the element Y' p~a, apb of the 
admittance matrix Y' is, from e q 12, equal to [e ~~a, "!!l ee apb) ], 
so t hat, making appropriate substitutions in eq 54 and taking 
the complex conjuga te, one obtains 

We wish to show Jotere that an equat ion of the form 51, which 
holds for t he elements of Y', holds also for each of the four 
in tegra ls making up the right-hand side of eq 55. It will 
suffice to consider t he t hird and t he fourth of t hese integrals. 
Since t he structure is invariant with respect to P R , and since 
P R is unitary in the sense of eq 27, one may write 

(56) 

I v "!!l (e 'apb) .J1. .-ft (e ~ra)dV = IV[PR"!!l (e'aPb) ]' J1. ' [PR llHe~~a) ]dV. 

(57) 

The right-hand side of eq 56 may immediately be expanded 
wit h the aid of eq 43a: 

The right-hand side of eq 57 may be expanded similarly as 
soon as it is observed that PR"!!l (e ~".a) = "!!l (PRe~ra) (as is 
directly implied by eq 32) and that "!!l is a linear function of 
its argument. Equation 58 is of t he form 48 and it is thus 
clear t hat an equat ion of this form holds f~r each of t he 
integrals involved . The derivation in the text leading to 
eq 51 obviously applies . An equation of the type 55 may 
of course be written for 7,~ra , apb, and a similar argument 
leads to the same resul ts for t he integrals making up 7, ~ra, qpb. 

WASHINGTO N, June 7, 1950. 
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