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A Statistical Solution of a Problem Arising in the 
Sampling of Leather 

John Mandel and Charles W. Mann 

The evaluation of the relative merits of diffe rent tanning procedures requires that a 
number of hides or sides I of each tannage be subjected to a variety of physical and chemi cal 
tes ts . The destructive nature of these test s makes it des irable to keep to a miuimum t he 
number of hides 01' s ides requ ired for test purposes. Moreover, the total number of test 
s peciITlens for each proper ty should be kept as small a s practicable for reasons of economy 
in leather and labol'. Because of the nature of a lea the r hide, a considerable saving can be 
realized through a judicious choice of the location on the side from which test specimens for 
any given property are cu t. In t his paper a criterion is developed for the evaluation of t he 
suitability of allY g ive n s ide location as a source of test specimens for a given property. It 
is s hown that the coefficient of correlation between the test res ult on a given location and the 
average of the test resul ts, on t he same property, over the e nti re side, dete rmines the suit­
ability of t his location as sampling location , both from the viewpoint of economy in the num­
ber of hides or sides and in the number of specimens required . It is fur t he r shown that for 
any particu lar property, t he number of s ides requ ired to detect a given diffe re nce between 
t wo tanning procedures i inversely proportional to t he square of the coefficient of correlation 
corres ponding to the block chose n as sampling location and directly proportional to the square 
of the coeffici ent of variation of side averages for t he property con side red. 

1. The Problem 

The evaluat ion of the r elative merits of different 
tanning procedures requires that a number of sides 
of each tannage be subj ected to a var iety of physical 
and chemical tests. It is known , however , that the 
results of such tests vary appreciably f't'om location 
to location on the same side, and also, of course, 
from side to side for the same relative location. 

Studies of this vat'iabili ty have been made by 
Bee k [1] 2 and by Beek and Hobbs [2]. Their studies, 
however, did not include an attempt to define , on 
the basis of the observed variability, an optimum 
sampling lo cat ion on the side. Moreover, their work 
was limited to a single physical property, namely 
t ensile strength. 

Fot' any particular test, the problem naturally 
arises of finding the "best" location on the side for 
the selection of a test specimen, or, more generally, 
of evaluating every location on the side with regard 
to its suitability for that purpose. As the various 
physical and chemical tests reflect different properties 
of the leather , it is r easonable to treat this problem 
individually for eacb test. 

Information of this type is needed as a basis for 
sampling leather for research, for specification pur­
poses, and for general testing. 

This paper is concerned with the theoretical 
aspect of the problem of sampling leather. More 
specifically, the following three parts will be dis­
cussed: 

1. The planning of an experiment designed to 
furn ish the data , fo[, each of the tests considered, 
from whi ch the desired information can be extracted. 
Such an experiment was performed at the National 
Bureau of Standards. 

1 A s ide is either one of the halves obta in ed by cutting a hide a long the 
backbone line. 

2 Figures in brackets indicate the litrraturc referen ces at the end or this paper. 
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2. The developmen t of a stat istical criterion for 
the character ization of different positions on the 
side from the viewpo int of their suitability afl test 
specimen locations. 

3. The determination of the number of sides 
required for the detection , with a prescribed degree 
of confidence, of variations in the hide properties 
arising from variations in the tanning procedure. 

While the discussion is mainl y concerned with the 
leather problem described above, the statistical 
development may well apply to a variety of sampling 
problems in other fields. As this paper deals with 
pr inciples only, no data will be presented. These 
will be found, together with the conclusions drawn 
from them, in a publication that has been submitted 
to the Journal of the American Leather Chemists 
Association. 

II . The Experimental Plan 

Thirty side were tanned by the same chrome 
tanning procedure. Each side was then cut into 
21 blocks in a rectangular pattern of three rows, 
parallel to the backbone, and seven columns, per­
pendicular to the backbone (see fig. 1) . Each of the 
21 blocks was cut into a number of specimens , such 
that one or two test specimens of appropriate size 

2 3 4 5 6 

II 12 13 14 15 16 17 

23 24 25 26 27 

FIGURE] 1. Locations oj sampling blocks on leather side 
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were available for each property. A total of 10 
tests was included in the project. Each specimen 
was subjected to the test for which it was intended. 
Thus the data reprcsented the results of 10 tests , on 
each of 21 blocks of 30 sides. 

III. Criteria for the Ranking of Locations 

The data from each of the 10 tests were treated 
separately , inasmuch as a location may be "good" 
for one test and "poor" for another. Thus the fol- . 
lowing discussion applies to each t est individually. 
The first object consists in defining a good location. 
One might think that the best location is the one 
for which the result varies least from side to side. 
However, a criterion based on such a consideration 
disrrgards an essential desideratum, namely that 
the characteristic, when measured on the selected 
location, bear some relationship to the relevant 
value of this characteristic for the entire side. If, 
i.n practice, all 21 locations, that is, the entire side, 
could be tested, it would be reasonable to character­
ize the side by the average of the 21 results thus 
obtained.3 Such an average will bc denoted in t his 
paper by 11, and rcfern'd to as a "side average" . 
Then , the averagr of a set of h-values, corresponding 
to a random sample of sides from the lot, is a reason­
able measure for the value, characterizing the lot, 
for the test under consideration. 

On the other hand, if it is impractical to carry out 
the test on all 21 positions, so that a single position 
must be selected, it seems logical to choose the 
particular position that best represents the average 
of the side from which it is taken. Let us denote 
the result of the test on a particular position P as 
p. Then , according to this principle, for a good 
position P, p must represent 11, in the best possible 
way. 

Consequently the first task is to determine, on 
the basis of the experimental results, what tvpe of 
relationship exists between p and 11" for each ·of the 
21 positions . Such a study was madR, using the 
data obtained in the experiment described in the 
preceding section, and it revealed the C'xistence of 
two types of cases. For some positions, a plot of p 
versus 11" for the 30 sides, shows a mere scattering of 
points without any discemible pattem or trend. 
For other positions, however , a definite linear trend 
is apparent. 

Figure 2 shows a typical example taken from the 
stitch-tear data for each of these two cases. The 
lower plot represents location 22 and shows a mere 
random scattering of points, while the upper plot , 
r epresenting location 14, clearly suggests the exist­
ence of an approximate straight-line relationship. 

It is evident that locat i.ons belonging to the first 
categor? are undesirable for sampling purposes, as 
the position value does not represent in any way the 
quality of the side for th e test under considerat ion. 
Attention will therefore be fo cused on the locations 
belonging to the second category . 

3 'Vhich value is relevan t (e . g. average, largest, smallest) depends primar ily 
on the use of the side in w hich one is in terested. In v iew of t he general nature 
of our problem the relevan t value was taken to be t he ",'erage of t be test results 
of all 21 locations. 

It appears intuitively plausible to select for sampl­
ing purposes the position of this category for which 
the scatter of the experimental points on the p versus 
11, graph is smallest. This, however, is not a sufficient 
criterion for an adequate sampling position; indeed, 
in order to detect relatively small differences between 
side values , the corresponding differences between 
the values for the selected sampling location should 
be relatively large; that is, the p versus 11, straight 
line should be steep. 
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F IGURE 2. Observed relati onship be/ween block average and 
side average. 

U pper graph , good samplin g pos ition : rela tionship is dist in ct ly linear ; lower 
graph, poor samplin g pos it ion : no defini te rela tions hip ex ists. 

Summarizing, it can be stated that a desirable 
sampling location P should fulfill the conditions 
(1) the slope of the p versus h line should be r ela­
tively large, and (2) the scatter of the experimental 
points ( 11" p ) about this line should be small. 

IV. Statistical Analysis 

In comparing the m erits of the various possible 
sampling locations, the question arises as to how the 
two criteria formulated in the preceding section 
should be weighted. For example , the choice be­
tween two locations P and pi will appear difficult 
if P has the higher slope, while P' has the smaller 
scattering around the p versus 11, line. It will now 
be shown that for each physical or chemical t est, a 
single index can be defined for each location that 
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entirely determines its suitability for sampling pur­
poses. T o this end th e following definition will be 
adop ted . 

A sampling location is said to be bet ter than 
ano ther if it requires a smaller number of sample 
sides, for an equ al cer tainty in the final r esul ts. 

Besides this defini t ion the derivation requil'es the 
assump tion that the relationship between p and h 
is linear . 

In fi gure 3, the (p , h) plo t is shown for a par­
ticular po ition P . Let p be the value observed , 
in position P, on a side for which the average value 
of the characteristic under considerat ion is ho. Among 
all the sides for which the value h happens to be the 
same (71,0)' the values p , in position P , will never th e­
less vary, b ecause of biological differences, tanning 
effects, and t est errors . Geometrically , this will 
resul t in th e fact that p will, in general , no t lie ex­
actly on th e line, but rath er at a variable distance 
e from it . Likewise, the average ho of any par ticular 
side will, in general , not be ident ical wi th th e lot 
average }.lI. Let us denote by d, the difference b e­
tween ho and M ; that is, d= ho- }.II. Th e relation 
betwecn th c observed posit ion value p , and th e lot 
average ]y[ for which it is the experimental est imate, 
can be found by noting t hat th e stra igh t line has 
the equation 

po= b+ mho 

where b Is th e intercep t , m the slope, and Po the 
" theor etical" value of p corresponding to the value 
ho, tha t is the value corresponding to the poin t on 
the line. 

Now, since P= Po+ e, we have 

and since ho= Al + d, we obtain the desired relation 

"p AX IS 

--.-

p = b+ m (M+ d)+ e 

p = b+ mlI1+ (md+e) 

...--t- --. 
P I 
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FIG URE 3. Theoretical relationship between block average, 
side average, and lot average. 

In this expression, the quan tity (md+ e) r epresents 
the total random fluctuat ion, analagou to the 
" error " in the theory of errors. Ind eed, if this 
quant:ity were known , the value 1\;[ could be derived 
from p on the basis of the two parameters b and m. 
The order of magni t ude of this random part is char­
acterized by its standard deviat ion, which , in accor d­
ance with the laws of propaga tion of errors [3] is 
given by th e r elation 

<5 = ~m2( <5d) 2+(<5 e)2, 

where <5 d anel <5 e arc the stan dard devia t ions associated 
with the random fluctuations d and e, r espectively. 

Suppose now that N sides arc taken from a lot, 
and that the test is carried ou t in posi t ion P of each 
of t hese N sides . Then the average of these N test 
resul ts, which we will denote by PI , has a standard 
deviation equal to CT / IN, that is 

_ /m 2(u(1) 2+ (<5 e)2. 
CT l- Y N 

If, for the purpose o f comparin g tanning proce­
dures, a sample of N sides is al 0 taken from a second 
lot , of different tann age, and the tes t ca rried out ill 
the same posit ion P on eacll of these sides , an average 
152 will be obtained , with a tandard deviat ion: 

It is seen that CT1 = <52, provided that the slope m, 
corresponding to posi l ion P , is th e same for th e two 
lots and that th e Auctuations d and e in th e second 
lot have the same statis t ical distribu tions as th e 
corresponding fluct uations in the fU'st lot. Al though 
there is no conclusive evidence for the validi ty of 
these assumptions, i t seems reasonable to accep t 
them on a tentative basis. It is r eadily seen tha t 
the general principle of th e proposed statis t ical pro­
cedure is not dependen t on these assump tions, an d 
that situations in which thcse simplifi cations do not 
appJy will require only sligh t modificaLions in th e 
formulae. 

The difference 151- 152 constitutes th e experimental 
evidence for any effec t of tannage on th e tes t con­
sidereel. According to th e laws of propagation of 
er rors [3], the s tandard deviation [or this difference 
is given by 

<5 ;;] - ; 2= ,1 <5 i+ CT~=~~ [m 2(CT (/) 2+ (CT e)2j. (2) 

This relation shows that for any observed differ­
ence between. two lots, the p recision of this difference 
increases (the s tandard devia t ion deer'eases) as the 
number of sides, N, taken from each lot, incr eases. 
F rom our defini tion of a " better " sampling location it 
then {ol1o'ws that th e most sui table position is that 
one for w'hich the q uan tity Th - p2 is known with th e 
greatest relative precision, that is the posit ion for 
which the ratio of the standard devia t ion of 151- 152 
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to its expected value, for any given N, is smallest. 
The problem thus becomes that of finding the posi­
tion P for which the rat io 

is a mllllmum. 
The numerator of this expression is given by eq 2. 

In order to calculate the denominator, let us denote 
the lot averages of the two lots by Ml and lvf2 , respec­
t ively. Then, in accordance with eq 1, the expected 
value of PI - PZ is equal to (b+mM1)-(b+mM 2)= 
m(MI - M2).4 Accordingly, the ratio that mus t be 
made a minimum is equal to 

~~ [m 2(O"d)2+(O" e)2] 

m(M1-Mz) 

Now, for a given number of sides N, the only 
q uan ti ty of this expression that depends on the 
position Pis (0". /m )2, as MI and M2 are lot values and, 
O"d represents the variability of side averages. The 
minimum of the expression corresponds to a mini­
mum of the quantity O",/m. 

It is clear now that the single index O",/m is the 
criterion according to which positions must be classi­
fi ed in terms of their suitability as sampling locations. 
R emembering that (J , is a measure of the scatter of 
the (p, h) points about the straight line, and that m 
represents the slope of that lin e, it is seen that the 
statistical analysis confirms the adequacy of the two 
criteria formulated in the preceding section, and at 
the same time provides the mann er in which they 
are to b e combined for the selection of the b est 
sampling location. 

It can also be observed in the expression just 
given that the larger the index O"e/m, the larger will 
have to be the number of sides N to obtain the same 
r elative precision . Thus, the index (Je/m actually 
determines the amount of testing required in order to 
detect tanning effects wi th a given degree of con­
fid ence. 

V. The Coefficient of Correlation as a 
Criterion 

It is interesting to note that the index, O",/m, 
which must be chosen as small as possible, is closely 
related to the coefficient of correlation p between 
p and h. 

For a chosen sampling locat,ion P, every pair of p 
and h val ues can be considered as a random selection 

4 Indeed , t he term (md+e) occ urr ing i ll eq I, bei ng a random fiu ctuation , has 
an expected value equal to zero. 

from a pop ulation of such pairs, since it corresponds 
to a side selected at random from a pop ulation of 
sides. 5 If it is assumed that this two-variable 
population is of the Gaussian type, then the co­
efficient of correlation p between p and h can bp, 
expressed by the r elation ([4]) 

(Jh p= m - , 
(J p 

where m has the same meaning as above. The 
standard deviation (jh refers to the variability of side 
averages in the lo t, that is, O"h= O"d , as defined above. 
The standard deviation O"p, on the other hand, refers 
to the total variability of the p values, that is, 
(jp = ..Jm2((jd) 2 + ((j e)2 as shown earlier. Thus, 

(4) 

This relation shows that to a small value of (j ,/m 
corresponds a large value of p. The best sampling 
location, according to our criterion, is therefore that 
for which p is largest. 

VI. Ranking of Sampling Locations 

If, for every physical and chemical test, the coeffi­
cient p were known for every location on the side, 
there would be a simple solution to the problem of 
the selection of th e most su itable sampling location 
for each such test. An experimen t such as the ope 
described in this paper , based on the testing of 30 
sides, permits the calculat ion of a correlation coeffi­
cient for each test and each position . However , the 
coefficien t thus computed, which we will denote by 
r, is only an estimate for the "true" coefficient p , and 
this estima te will vary from experiment to experi­
ment , because of the chance fluctuat ions of the p ,h 
points and therefore of the exact location of the 
p ,h line and of the average scatter about this line. 
Consequently, in comparing positions on the basis 
of these observed coefficients of correlation, account 
must be taken of the sampling flu ctuations of these 
estimates, when based on such a limited number of 
points as 30. This can be done most effectively by 
grouping the correlation coefficients, for any given 
property, into a number of groups, such that within 
each group the differences would not be considered 
statistically significant, while the differences between 
successive group averages are significant. One of 
the difficulties arising in this problem lies in the 
fact that the precision of an estimated coefficien t of 
correlat ion depends not only on the sample size 
(number of points) but also on the value of the corre­
sponding true coefficient. For large values of p , the 

, The randomness in the selection o[ sides from the lot is e"ential [or the appli· 
cability of the method presented in this paper. As has been pointed out by 
Berkson [5], a coefficient o[ correlation calculated on a systematically selected 
sample will depend on tbe range o[ values encompassed by the sample, and 
increase with this range. A coefficient o[ correlation thus obtained is devoid of 
any sensible interpretation as a measure of the real degree of interdependence. 
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precIsion of r i considerably larger than for small 
values of p. This difficulty can be overcome to a large 
extent by transforming each r-value into a z-value 
by means of the transformation ([4]) 

z = .!. log 1 + r. 
2 e l - r 

It is known that for any value p th e sample 
estimates r when transformed into z-values, have 
an approxilnately Gaussian frequency distribution, 
the m ean of which corresponds to the transformed 
p-value and th e standard deviation of which is equal 
to I!.JN-3, where N is tIlE' size of the. ~ample fro~ 
which r was computed . Since a posltlVe r-value 
can lie anvwhere b etween 0 and 1, the corresponding 
z-value can lie anywhere b etween 0 and (x). Thus, 
for any value of p , it is theoretically possible to 
obtain' a sample estimate r su ch that the corre­
sponding z-value will be exceedingly large. However , 
even for r elatively large values of p, the sample 
estimate r will r arely exceed 0.99 , and therefore th e 
corresponding z-value will rarely exceed 1/2 loge 
(1 + 0.99) /( 1- 0.99) = 2.65. Consequently, fr.om a 
practical viewpoint , this valu e can b e consider ed 
as an upper limit for z. 

On th e oth er h and, the standard deviation of 
z, regardless of the value of p, is always equal to 
1/ .JN-3, which for the case of 30 sides, becomes 
u= l / 30-3 = 0.19. 

Consider now, in the range extending from 0 to 
2.65, a sequen ce of z-in tervals, So, SI, S2, .. . the 
midpoin ts of which are spaced 2 X O.675. standard 
deviation , that is, 2 X O.675 X O.19 umts apart. 
Then , in accordance witb th e proper ties of th e 
Gaussian distribution assumed to hold for th e z's, 
th e probability is 50 per cent that ~ z-value. cor~'e­
sponding to a population centered 111 the mIdpo111t 
of S; will actually fall in the interval S I. The 
probability that su ch a value will fall in SI- 1 or 
in SI+I, is, in each case, approximately 23 pm:cm?t . 
Thus th e probability for such a value to fall. m ItS 
correct group, or, at worst, if' one of the two.a.d]acen t 
groups, is 96 percent. As th ese probablhtlCs also 
apply to the corresponding r-value~, the z-interv:als 
thus defin ed can b e made the basIs of a groupmg 
pro cedure of correlation coefficients computed on 
30 points. To this end it is m erely n ecessary to 
apply the inverse transformation r = (e 2Z _ 1)/ (e 2z+ 1) 
to th e end-points of th e S-intervals. The values 
thus obtained will be the endpoints of th e groups 
for th e r-values. For the unique determination of 
th e SI-intervals, the upper limit of Sl was chose.n 
to be z= 2.65-0 .605u or 2.65 - 0.13=2.52. In th IS 
wav, an extra interval So is formed extending from 
z="2.52 to 2.65 . The probability for a point b elong­
ing to th e population S" to fall in So !s 23 perc~nt , 
and th is in cludes values of the correlatlOn coefficient 
up to 0.99. 

' It is unlikely that for a ny position on the side, the correlation p between 
positioo value and s ide average, for any giv~n propcr~y, be n~gatJvc . Howcycr, 
for small positive values of p, the sample estimate r WIll occasH.:mally be negatIve, 
due to chance flu ctuatio n. When th is occurs, the va lue of p IS best taken equa l 
to zero. 

The grouping procedure just d~scrjbed is llOt .an 
ideal solution for the problem outhned at th e b egm­
ning of this sect ion. In f:;tet, th e s~at isticalliterat.ure 
doe not seem to con tam a satlsfa ctory practlcal 
m ethod for a grouping problem o~ thi nature, a~d 
it should be noted that any groupmg pro cedure W Ill 

r esult in a certain amount of mi classification. The 
proposed m ethod must be consider e.d as a pl'.a~t! cal 
working rule that h as some theoretLCal plaus lbIhty. 

T able 1 shows the groups into which the r -values 
were classified on the basis of the corresponding 
S-intervals for ' z. It is noted that the intervals So , 
SI, S2, i),nd S~ were combined to give a sin gle r -group, 
denoted group zero. This ,:vas done b ecause ]10 

experimental r-value exceedmg 0. 94 was found. 
Furthermore t he lower limit in group 6 has been 
raised from 0:42 to 0.46 , the la tter b eing the I-percent 
s ignifican ce level. It is considered that a value of 
r that fails to b e significantly different from p= O at 
the I-percent level corresponds to a ver y poor 
sampling location . 

TAH r~}} l. Ranking of sampling location according to l' 

Range of r 
z-int.erva l r·group 

Lower limit Upper limit 
----------.1----1----1 

80. __ ... _._. __ . } 
8, . ____ ...... _. 
S, ..... __ ._. __ . 
S ,_._._._. __ ._. 
S~ __ _ __________ ] 
S" •••• _ •••• _ •• _ 2 
So ............. 3 
8 7............. 4 
S,............. 5 
S, .. . .... _..... 6 

• 8ee footnote 6. 

0, 988 
.979 
. 965 
. 941 
,91 
.85 
,75 
,61 
.46 

Negative ft 

0. 990 
.987 
. 978 
.964 
.940 
.90 
.84 
,74 
,GO 
,45 

VII. Determination of Sample Size 

When two. lots are compared , with respect to a 
phys ical or chemical characteristic, on the basis of a 
limited number of measurements on each , the con­
clusions can be affected by two types of error. The 
effect of chance fluctuations could produce an ap­
pal'ently large differ en ce ~e~ween the two observed 
averages, while the real dIfference b etween th e lots 
is actually inconseque~tial. . O? the other hand, a 
real differ en ce of practlCal slglllfican ce could escape 
notice if by the interplay of chance effects, the 
observed ' values were sufficien tly alike so that one 
lot would no t b e considered different from tb e other. 
The statistical method of selecting a sample s ize­
in this case the number of sides N to be tested from 
each lo t-c~nsists in takinO" predetermined risks with 
respect to both types o£ error. (It. is obviously 
impossible to eliminate eith er type. ent irely.)1 . 

I t was shown (eq 3) tbat the ratLO of the standard 
deviation of 151 - 152 to its expected value is equal to 

7 'rhe two types of error in statistical inference are d i s~uss~d ~n (6) . An ex.am pie 
of their use as a basis [or the determination of sample sIzes IS gl\'en by OurtlSs [71. 
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In view of the formula derived for the coefficient 
of correlation p (eq 4), this expression can be written 
[( -J2/N) /(M 1- M2) ]· (7d / p 

Thus 

_ 1n_ ord er to simplify the notation, let us write 
PI - P2= 0 and denote the expected value of any 
quantity Y by the symbol ECY). 
Then 

(7. 
E(o) 

Taking reciprocals, we have 

E(o) p (MI-Mz)~ 
(5) 

~ow, the observe~ difference 0 consis ts of two por­
twns: a fixed portwn, equal to E(o); and a variable 
part,. due to chance fluctuations, which we will for 
brevIty, call " error of 0", and denote by the sy~bol 
~ (0). Thus 

o= E(o)h(o). 

Expression 5 thus becomes 

o - ~ (o) p (MI -M2)~~ 
(6) 

• 
The values for the risks c~)l'responding to the two 

types of error mentIOned earher can now be assigned 
in the following manner: 

1. The risk of inferring the existence of a dif­
ference between the two lots where there is actually 
none. 

Make l\1l1 =M~ in eq 6 in .order to express the fact 
that no actual dIfference eXIsts. Then the equation 
becomes 

that is , the ratio of a chance fluctuation to its stand­
ard deviation. It is known that for Gaussian vari­
ables the absolute value of this ratio will exceed the 
value ~ .~6 only five times in a hundred. (Cf. any 
t~ble glvll1g,~he "areas" ) i. e. the cumulative frequen­
e~es ?f the !lormal" curve, e. g. [4]). Thus if the 
nsk lll. quest lOl~ is t? be kept at the 5-percent level, 
the eXIstence GI a dIfference should only be inferred 
whenever 

1B> l.96. (7, 

2. The risk of not detect ing a real difference be­
tween tllP two lots. 

Suppose that this real difference equals D. Then 
M [- l\1l2= D , and eq 6 becomes 

N ow, in order to keep the risk of the first type at 5 
percent, a difference between t he two lots was con­
sidered to exist only when 

that is, whenever 

that is , whenever the first member is either smaller 
than -1.96 or greater than + 1.96 . The first possi­
bility is remote, as it would require that the stanu­
ardized error term be considerably smaller than 
-l.96. 

Therefore, in practice, the rule will result in de­
tecting the existence of D whenever 

and consequently in commi.tt ing the error of failing 
to recognize its existence whenever 

As in the case of the error of the first type the 
probability that this inequality will hold ca~ be 
given any preassigned value, by using the table of 
areas of the normal curve. For example if the 
second member is made equal to - l.64, (the value 
that has 5 percent of the area under the curve to its 
left) , this inequality will hold five times in a hundred , 
so that the risk for the error of considering D as 
negligible is limited to 5 percent. Then 

pD IN 
l. 96 ---;;::- -V 2"= -l.64, 

hence 

(7) 

This procedure illustrates the general method of 
determining sample size on the basis of predetermined 
risks. By changing th e numerical values inside the 
parentheses, the risks can be changed to any desired 
values . 

It should be noted that N is inversely proportional 
to the square of the coefficien t of correla tion , a 
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relaLion lhal permits th e comparison of differcnL 
sampling locat ions from the viewpoint of economy 
in. sampling. FurLhermore, the formula shows t be 
rapid inc rease in the required number of sid es as the 
difference D to be detected becomes smaller. 

By dividing in eq 7 both (O",Y and D2 by the 
square of the average of the lot means lvll and }.!{2, 
it is seen thaL Lhe number of sides N is propor tional, 
for a gi ven percentage difference D Lo be detected, 
to the square of th e coefficient of variation of side 
averagcs, O"al-Hl1!{1 + M2). 

VIII. Conclusion 

A mLiotlal solu tion to the problem of selecting 
the best sampling location , for any particula r 
property, on a leath er side has been obtained by 
theoret ical consideration s combined with facts de­
rived from data obtained in a statist ically designed 
experim ent . This statistical method , which may 
I'esult in consid erable savings both in labor and in 

m aLeri al, can readily be appli ed to otber si t uat ions 
in wh ich the properLies Lo be measured vary with 
10caLion on t hr sampling uni.t in a sysLematic way. 

IX. References 
[I] J . Beek, Jr., The probable e rror in t he meas ureme nt of 

te nsi Ie s t rength of hea v ~' leather , J. Am . Leather 
Chem. Assoc. 32, 4 (1937) . 

[2] J. Beek, Jr . a nd R. B. H obbR, Some appli catio ns of s tat is­
t ical methods to sampling of leather, J . Am. Leather 
Chern. Assoc. 36, 190 (1941) . 

[3] A. G. Wor t hing a nd J. Geffn er, T reatme nt of expe rime ntal 
data (J ohn ·Wiley and So ns, Inc., New York , N . Y. , 
1943). 

[4] G. "V. Sncdecor, Statis t ical met hods (T he I owa Sta te 
Co llege Press, Ames, I owa, 1946) . . . 

[5] Joseph Berkson, Are t here two regrcssions?, J . Am . 
Statist ical Assoc. 45, 164 (1950) . 

[6] A. M. Mood, Introduction to the t heory of statis t ics 
(McGraw-H ili Book Co., Inc., Ne w York, N. Y., 1950). 

[7] J . H. Cur t iss, Acceptance samplin g by va ri ab les , J . 
R esearch , NBS 39, 271 (1947) RP ] 827. 

WASHINGTON, July 27, 1950 . 

105 


	jresv46n2p_99
	jresv46n2p_100
	jresv46n2p_101
	jresv46n2p_102
	jresv46n2p_103
	jresv46n2p_104
	jresv46n2p_105

