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A Statistical Solution of a Problem Arising in the

Sampling of Leather
John Mandel and Charles W. Mann

The evaluation of the relative merits of different tanning procedures requires that a
number of hides or sides ! of each tannage be subjected to a variety of physical and chemical
tests. The destructive nature of these tests makes it desirable to keep to a minimum the
number of hides or sides required for test purposes. Moreover, the total number of test
specimens for each property should be kept as small as practicable for reasons of economy
in leather and labor. Because of the nature of a leather hide, a considerable saving can be
realized through a judicious choice of the location on the side from which test specimens for
any given property are cut. In this paper a criterion is developed for the evaluation of the
suitability of any given side location as a source of test specimens for a given property. It
is shown that the coeflicient of correlation between the test result on a given location and the
average of the test results, on the same property, over the entire side, determines the suit-
ability of this location as sampling location, both from the viewpoint of economy in the num-
ber of hides or sides and in the number of specimens required. It is further shown that for
any particular property, the number of sides required to detect a given difference between
two tanning procedures is inversely proportional to the square of the coefficient of correlation
corresponding to the block chosen as sampling location and directly proportional to the square

of the coefficient of variation of side averages for the property considered.

I. The Problem

The evaluation of the relative merits of different
tanning procedures requires that a number of sides
of each tannage be subjected to a variety of physical
and chemical tests. It is known, however, that the
results of such tests vary appreciably from location
to location on the same side, and also, of course,
from side to side for the same relative location.

Studies of this variability have been made by
Beek [1] 2and by Beek and Hobbs [2].  Their studies,
however, did not include an attempt to define, on
the basis of the observed variability, an optimum
sampling location on the side. Moreover, their work
was limited to a single physical property, namely
tensile strength.

For any particular test, the problem naturally
arises of finding the “best’” location on the side for
the selection of a test specimen, or, more generally,
of evaluating every location on the side with regard
to its suitability for that purpose. As the various
physical and chemical tests reflect different properties
of the leather, it is reasonable to treat this problem
individually for each test.

Information of this type is needed as a basis for
sampling leather for research, for specification pur-
poses, and for general testing.

This paper is concerned with the theoretical
aspects of the problem of sampling leather. More
specifically, the following three parts will be dis-
cussed:

1. The planning of an experiment designed to
furnish the data, for each of the tests considered,
from which the desired information can be extracted.
Such an experiment was performed at the National
Bureau of Standards.

! A side is either one of the halves obtained by cutting a hide along the

backbone line.
2 Figures in brackets indicate the literature references at the end of this paper.
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2. The development of a statistical criterion for
the characterization of different positions on the
side from the viewpoint of their suitability as test
specimen locations.

3. The determination of the number of sides
required for the detection, with a preseribed degree
of confidence, of variations in the hide properties
arising from variations in the tanning procedure.

While the discussion is mainly concerned with the
leather problem described above, the statistical
development may well apply to a variety of sampling
problems in other fields. As this paper deals with
principles only, no data will be presented. These
will be found, together with the conclusions drawn
from them, in a publication that has been submitted
to the Journal of the American Leather Chemists
Association.

II. The Experimental Plan

Thirty sides were tanned by the same chrome
tanning procedure. Each side was then cut into
21 blocks in a rectangular pattern of three rows,
parallel to the backbone, and seven columns, per-
pendicular to the backbone (see fig. 1). Each of the
21 blocks was cut into a number of specimens, such
that one or two test specimens of appropriate size

Ficure 1.

Locations of sampling blocks on leather side



were available for each property. A total of 10
tests was included in the project. Each specimen
was subjected to the test for which it was intended.
Thus the data represented the results of 10 tests, on
each of 21 blocks of 30 sides.

III. Criteria for the Ranking of Locations

The data from each of the 10 tests were treated
separately, inasmuch as a location may be “good”
for one test and “poor” for another. Thus the fol-
lowing discussion applies to each test individually.
The first object consists in defining a good location.
One might think that the best location is the one
for which the result varies least from side to side.
However, a criterion based on such a consideration
disregards an essential desideratum, namely that
the characteristic, when measured on the selected
location, bear some relationship to the relevant
value of this characteristic for the entire side. If,
in practice, all 21 Jocations, that is, the entire side,
could be tested, it would be reasonable to character-
ize the side by the average of the 21 results thus
obtained.? Such an average will be denoted in this
paper by h and referred to as a ‘“side average’.
Then, the average of a set of h-values, corresponding
to a random sample of sides from the lot, is a reason-
able measure for the value, characterizing the lot,
for the test under consideration.

On the other hand, if it is impractical to carry out
the test on all 21 positions, so that a single position
must be selected, it seems logical to choose the
particular position that best represents the average
of the side from which it is taken. Let us denote
the result of the test on a particular position P as
p. Then, according to this principle, for a good
position P, p must represent £ in the best possible
way.

Consequently the first task is to determine, on
the basis of the experimental results, what type of
relationship exists between p and &, for each of the
21 positions. Such a study was made, using the
data obtained in the experiment described in the
preceding section, and it revealed the existence of
two types of cases. For some positions, a plot of p
versus h, for the 30 sides, shows a mere scattering of
points without any discernible pattern or trend.
For other positions, however, a definite linear trend
1s apparent.

Figure 2 shows a typical example taken from the
stitch-tear data for each of these two cases. The
lower plot represents location 22 and shows a mere
random scattering of points, while the upper plot,
representing location 14, clearly suggests the exist-
ence of an approximate straight-line relationship.

It is evident that locations belonging to the first
category are undesirable for sampling purposes, as
the position value does not represent in any way the
quality of the side for the test under consideration.
Attention will therefore be focused on the locations
belonging to the second category.

3 Which value is relevant (e. g. average, largest, smallest) depends primarily
on the use of the side in which one is interested. In view of the general nature

of our problem the relevant value was taken to be the average of the test results
of all 21 lecations.

It appears intuitively plausible to select for sampl-
ing purposes the position of this category for which
the scatter of the experimental points on the p versus
h graph is smallest. This, however, is not a sufficient
criterion for an adequate sampling position; indeed,
in order to detect relatively small differences between
side values, the corresponding differences between
the values for the selected sampling location should
be relatively large; that is, the p versus h straight
line should be steep.
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Frcure 2. Observed relationship between block average and
side average.

Upper graph, good sampling position: relationship is distinctly ]in(\ar; lower
graph, poor sampling position: no definite relationship exists.

Summarizing, it can be stated that a desirable
sampling location P should fulfill the conditions
(1) the slope of the p versus A line should be rela-
tively large, and (2) the scatter of the experimental
points (h, p) about this line should be small.

IV. Statistical Analysis

In comparing the merits of the various possible
sampling locations, the question arises as to how the
two criteria formulated in the preceding section
should be weighted. For example, the choice be-
tween two locations P and P’ will appear difficult
if P has the higher slope, while P’ has the smaller
scattering around the p versus A line. It will now
be shown that for each physical or chemical test, a
single index can be defined for ecach location that

100



entirely determines its suitability for sampling pur-
poses. To this end the following definition will be
adopted.

A sampling location is said to be better than
another if it requires a smaller number of sample
sides, for an equal certainty in the final results.

Besides this definition the derivation requires the
assumption that the relationship between p and &
is linear.

In figure 3, the (p, h) plot is shown for a par-
ticular position P. Let p be the value observed,
in position P, on a side for which the average value
of the characteristic under consideration is h,. Among
all the sides for which the value A happens to be the
same (hg), the values p, in position P, will neverthe-
less vary, because of biological differences, tanning
effects, and test errors. Geometrically, this will
result in the fact that p will, in general, not lie ex-
actly on the line, but rather at a variable distance
e from it. Likewise, the average h, of any particular
side will, in general, not be identical with the lot
average M. Let us denote by d, the difference be-
tween hy and M; that is, d=h,— M. The relation
between the observed position value p, and the lot
average M for which it is the experimental estimate,
can be found by noting that the straight line has
the equation

Po=b+mh,
where b ls the intercept, m the slope, and p, the
“theoretical” value of p corresponding to the value
ho, that is the value corresponding to the point on

the line.
Now, since p=p,t e, we have

p=b+tmhyte
and since hy=M-+d, we obtain the desired relation

p=b+tm (M+d)+e
p=b+ mM+ (md+ e) (1)
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Ficure 3. Theoretical relationship between block average,

side average, and lot average.

In this expression, the quantity (md+ ¢) represents
the total random fluctuation, analagous to the
“error” in the theory of errors. Indeed, if this
quantity were known, the value M could be derived
from p on the basis of the two parameters b and m.
The order of magnitude of this random part is char-
acterized by its standard deviation, which, in accord-
ance with the laws of propagation of errors [3] is
given by the relation

o= m*q)*+(0.)?,

where o, and o, are the standard deviations associated

with the random fluctuations d and e, respectively.
Suppose now that N sides are taken from a lot,

and that the test is carried out in position P of each

of these N sides. Then the average of these N test

results, which we will denote by 7y, has a standard

deviation equal to /4N, that is

rimy [ FOTEG.
L AN"

If, for the purpose of comparing tanning proce-
dures, a sample of N sides is also taken from a second
lot, of different tannage, and the test carried out in
the same position P on cach of these sides, an average
P2 will be obtained, with a standard deviation:

/ m*(00)*+(0,)°
n=V N

[t is seen that o=, provided that the slope m,
corresponding to position P, is the same for the two
lots and that the fluctuations ¢ and e in the second
lot have the same statistical distributions as the
corresponding fluctuations in the first lot.  Although
there is no conclusive evidence for the validity of
these assumptions, it seems reasonable to accept
them on a tentative basis. It 1s readily seen that
the general principle of the proposed statistical pro-
cedure is not dependent on these assumptions, and
that situations in which these simplifications do not
apply will require only slight modifications in the
formulae.

The difference p,— 7, constitutes the experimental
evidence for any effect of tannage on the test con-
sidered. According to the laws of propagation cf
errors [3], the standard deviation for this difference
is given by

A e
05, 25—V i+ ff::::’V/Ay [mz(ffﬂ)h‘*_(“e) Il (2>

This relation shows that for any observed differ-
ence between two lots, the precision of this difference
increases (the standard deviation decreases) as the
number of sides, N, taken from each lot, increases.
From our definition of a “better” sampling location it
then follows that the most suitable position is that
one for which the quantity p,—7. is known with the
greatest relative precision, that is the position for
which the ratio of the standard deviation of 7,—7,
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to its expected value, for any given N, is smallest.
The problem thus becomes that of finding the posi-
tion P for which the ratio

o5

Expected value of (p,—7p,)

is & minimum.

The numerator of this expression is given by eq 2.
In order to calculate the denominator, let us denote
the lot averages of the two lots by M, and M,, respec-
tively. Then, in accordance with eq 1, the expected
value of P,—Pp, is equal to (b+mM;)— (b-+mM,)=
m(M,—M,).* Accordingly, the ratio that must be
made a minimum is equal to

s \/]3\, (a2 + (o)
 mM,—M,)

2
:W\/:NV\/ wr+(55)
(3)

Now, for a given number of sides N, the only
quantity of this expression that depends on the
position P is (o,/m)? as M, and M, are lot values and,
g, represents the variability of side averages. The
minimum of the expression corresponds to a mini-
mum of the quantity o,/m.

It is clear now that the single index o./m 1s the
criterion according to which positions must be classi-
fied in terms of their suitability as sampling locations.
Remembering that ¢, is a measure of the scatter of
the (p, k) points about the straight line, and that m
represents the slope of that line, it is seen that the
statistical analysis confirms the adequacy of the two
criteria formulated in the preceding section, and at
the same time provides the manner in which they
are to be combined for the selection of the best
sampling location.

It can also be observed in the expression just
given that the larger the index o,/m, the larger will
have to be the number of sides N to obtain the same
relative precision. Thus, the mdex ¢,/m actually
determines the amount of testing required in order to
detect tanning effects with a given degree of con-
fidence.

Expected value of (7,—p»)

V. The Coefficient of Correlation as a
Criterion

It is interesting to note that the index, o,/m,
which must be chosen as small as possible, is closely
related to the coefficient of correlation p between
p and h.

For a chosen sampling location P, every pair of p
and & values can be considered as a random selection

4 Indeed, the term (md+-e) occurring in eq 1, being a random fluctuation, has
an expected value equal to zero.

from a population of such pairs, since 1t corresponds
to a side selected at random from a population of
sides.® If it is assumed that this two-variable
population is of the Gaussian type, then the co-
efficient of correlation p between p and h can be
expressed by the relation ([4])

Oh
= ==
Op

where m has the same meaning as above. The
standard deviation o, refers to the variability of side
averages in the lot, that is, oy=o0y, as defined above.
The standard deviation o,, on the other hand, refers
to the total variability of the p values, that is,

0,=vVm*os)’+(s,)? as shown earlier. Thus,

R = e <>
b \/<od>2+ =

This relation shows that to a small value of o,/m
corresponds a large value of p. The best sampling
location, according to our criterion, is therefore that
for which p 1s largest.

(4)

VI. Ranking of Sampling Locations

If, for every physical and chemical test, the coeffi-
cient p were known for every location on the side,
there would be a simple solution to the problem of
the selection of the most suitable sampling location
for each such test. An experiment such as the ore
described in this paper, based on the testing of 30
sides, permits the calculation of a correlation coeffi-
cient for each test and each position. However, the
coefficient thus computed, which we will denote by
r, is only an estimate for the “true’ coefficient p, and
this estimate will vary from experiment to experi-
ment, because of the chance fluctuations of the p,h
points and therefore of the exact location of the
p,h line and of the average scatter about this line.
Consequently, in comparing positions on the basis
of these observed coefficients of correlation, account
must be taken of the sampling fluctuations of these
estimates, when based on such a limited number of
points as 30. This can be done most effectively by
grouping the correlation coefficients, for any given
property, into a number of groups, such that within
each group the differences would not be considered
statistically significant, while the differences between
successive group averages are significant. One of
the difficulties arising in this problem lies in the
fact that the precision of an estimated coefficient of
correlation depends not only on the sample size
(number of points) but also on the value of the corre-
sponding true coefficient. For large values of p, the

5 The randomness in the selection of sides from the lot is essential for the appli-
cability of the method presented in this paper. As has been pointed out by
Berkson [5], a coefficient of correlation calculated on a systematically selected
sample will depend on the range of values encompassed by the sample, and

increase with this range. A coefficient of correlation thus obtained is devoid of
any sensible interpretation as a measure of the real degree of interdependence.
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precision of 7 is considerably larger than for small
values of p.  This difficulty can be overcome to a large
extent by transforming each r-value into a z-value
by means of the transformation ([4])

1+r
*lge :

It is known that for any value p the sample
estimates », when transformed into z-values, have
an approximately Gaussian frequency distribution,
the mean of which corresponds to the transformed
p-value and the standard deviation of which is equal

to 1/4/N—3, where N is the size of the sample from
which » was computed. Since a positive r-value ©
can lie anywhere between 0 and 1, the corresponding
z-value can lie anywhere between 0 ande. Thus,
for any value of p, it is theoretically possible to
obtain a sample estimate » such that the corre-
sponding z-value will be exceedingly large. However,
even for relatively large values of p, the sample
estimate 7 will rarely exceed 0.99, and therefore the
corresponding z-value will Idl(‘lv exceed 1/2 log,
(11+0.99)/(1—0.99)=2.65. Consequently, from a
practical viewpoint, this value can be considered
as an upper limit for z.

On the other hand, the standard deviation of
z, regardless of the value of p, is always equal to
1/4/N—3, which for the case of 30 sides, becomes
6=1/+/30—3=0.19.

Consider now, in the range extending from 0 to
2.65, a sequence of z-intervals, S,, S;, Sy, . . . the
midpoints of which are spaced 2X<0.675 standard

deviations, that is, 2X0.675>%0.19 units apart.
Then, in accordance with the properties of the

Gaussian distribution assumed to hold for the z’s,
the probability is 50 percent that a z-value corre-
sponding to a population centered in the midpoint
of S, will actually fall in the interval S;. The
probability that such a value will fall in S,_; or
in Sy, is, in each case, approximately 23 percent.
Thus the probability for such a value to fall in its
correct group, or, at worst, in one of the two adjacent
groups, 1s 96 percent. As these probabilities also
apply to the corresponding r-values, the z-intervals
thus defined can be made the basis of a grouping
procedure of correlation coefficients computed on
30 points. To this end it is merely necessary to
apply the inverse transformation = (¢* —1)/(¢*+ 1)
to the end-points of the S-intervals. The values
thus obtained will be the endpoints of the groups
for the r-values. For the unique determination of
the Si-intervals, the upper limit of S, was chosen
to be 2=2.65—0.6050 or 2.65—0.13=2.52. In this
wayv, an extra interval S, is formed extending from

=2.52 to 2.65. The probability for a point belong-
ing to the population Sj, to fall in S, is 23 percent,
and this includes values of the correlation coeflicient
up to 0.99.

61t is unlikely that for any position on the side, the correlation p between
position value and side average, for any given property, be negative. However,
for small positive values of p, the sample estimate r will occasionally be negative,

due to chance fluctuation. When this occurs, the value of p is best taken equal
10 zero.

The grouping procedure just described is not an
ideal solution for the problem outlined at the begin-
ning of this section. In fact, the statistical literature
does not seem to contain a satisfactory practical
method for a grouping problem of this nature, and
it should be noted that any grouping procedure will
result in a certain amount of misclassification. The
proposed method must be considered as a practical
working rule that has some theoretical plausibility.

Table 1 shows the groups into which the r-values
were classified, on the basis of the corresponding
S-intervals for z. It is noted that the intervals S,
S, Se, and S; were combined to give a single r-group,
denoted group zero. This was done because no
experimental 7-value exceeding 0.94 was found.
Furthermore, the lower limit in group 6 has been
raised from 0.42 to 0.46, the latter being the 1-percent
significance level. It is considered that a value of
r that fails to be significantly different from p=0 at
the I1-percent level corresponds to a very poor
sampling location.

TasLe 1. If’an/\znq of srlmplmq I()ra!wn accor (l'mq tor
(B s T DA ==
‘ [ Range of r
z-interval r-group e T S
Lower limit | Upper limit
" C RSk ol ,,‘,7_ COR—
0. 988 0. 990
0 . 979 . 987
L 965 . 978
. 941 . 964
1 .91 | . 940
2 \ 85 .90
3 75 .84
4 .61 .74
5 .46 .60
| 6 Negative a .45 |
|
‘

= See footnote 6.
VII. Determination of Sample Size

When twaq lots are compared, with respect to a
physical or chemical characteristic, on the basis of a
limited number of measurements on each, the con-
clusions can be affected by two types of error. The
effect of chance fluctuations could produce an ap-
parently large difference between the two observed
averages, while the real difference between the lots
is actually inconsequential. On the other hand, a
real difference of practical significance could escape
notice if, by the interplay of chance effects, the
observed values were sufficiently alike so that one
lot would not be considered different from the other.
The statistical method of selecting a sample size—
in this casc, the number of Sides N to be tested from
each lo 1sts 1 1 stermined risks with
respect to both types of error. (It is obviously
impossible to eliminate either type entirely.)”

It was shown (eq3) that the ratio of the standard
deviation of 7,—7P, to its expected value is equal to

el

T The two types of error in statistical inference are discussed in (6). Anexample
of their use as a basis for the determination of sample sizes is given by Curtiss [7].
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In view of the formula derived for the coefficient
of correlation p (eq 4), this expression can be written
[(V2/N) /(M — M) - 04/p
Thus

[2
%5 NN e
Expected value of (p,—p,) M,—M, »
In order to simplify the notation, let us write

51—@:5 and denote the expected value of any
quantity Y by the symbol £(Y).

Th(_‘ll
\/__ (]
g5 N

E@®) o(M,—M,)

Taking reciprocals, we have

N
@ZP(AII_AIQ)\/E.

(U] 04

(5)
Now, the observed difference 6 consists of two por-
tions: a fixed portion, equal to K (5); and a variable
part, due to chance fluctuations, which we will, for

brevity, call “error of ¢, and denote by the symbol
€(8). Thus

6=F(5)+€(d).
Expression 5 thus becomes

N
a—e(a)zp(M‘_M”\/j

[

(6)
[

The values for the risks corresponding to the two
types of error mentioned earlier can now be assigned
in the following manner:

1. The risk of inferring the existence of a dif-
ference between the two lots where there is actually
none.

Make M,=M, in eq 6 in order to express the fact
that no actual difference exists. Then the equation
becomes

8 _ ()

) ]

that is, the ratio of a chance fluctuation to its stand-
ard deviation. It is known that for Gaussian vari-
ables the absolute value of this ratio will exceed the
value 1.96 only five times in a hundred. (Cf. any
table giving the “areas”, i. e. the cumulative frequen-
cies of the “normal” curve, e. g. [4]). Thus if the
risk in question is to be kept at the 5-percent level,
the existence of a difference should only be inferred
whenever

18l 1 9.

0

2. The risk of not detecting a real difference be-
tween the two lots.

Suppose that this real difference equals D.
M,—M,=D, and eq 6 becomes

Then

N

() Tq 05

Now, in order to keep the risk of the first type at 5
percent, a difference between the two lots was con-
sidered to exist only when

that is, whenever
ﬁg\/g+e(6)l>l.96,
(o] 2 [0

that is, whenever the first member is either smaller
than —1.96 or greater than 4+1.96. The first possi-
bility is remote, as it would require that the stand-
ardized error term be considerably smaller than
—1.96.

Therefore, in practice, the rule will result in de-
tecting the existence of I whenever

@>1.96—Q\/N;
() Tq %

and consequently in committing the error of failing
to recognize its existence whenever

€(0) pD\/N
<1.96—— e

(F Oa

As in the case of the error of the first type, the
probability that this inequality will hold can be
given any preassigned value, by using the table of
areas of the normal curve. For example, if the
second member is made equal to —1.64, (the value
that has 5 percent of the area under the curve to its
left), this i nequality will hold five times in a hundred,
so that the risk for the error of considering D as
negligible is limited to 5 percent. Then

i T, AR
g 2
hence
(1.644-1.96)°
p2D)?

N=2 (00)*. (@)

This procedure illustrates the general method of
determining sample size on the basis of predetermined
risks. By changing the numerical values inside the
parentheses, the risks can be changed to any desired
values.

It should be noted that N is inversely proportional

| to the square of the coefficient of correlation, a
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relation that permits the comparison of different
sampling locations from the viewpoint of economy
in sampling. Furthermore, the formula shows the
rapid increase in the required number of sides as the
difference D to be detected becomes smaller.

By dividing in eq 7 both (g,)* and I? by the
square of the average of the lot means M, and M,
it is seen that the number of sides NV is proportional,
for a given percentage difference D to be detected,
to the square of the coefficient of variation of side
averages, aq/s(M,+ M,).

VIII. Conclusion

A rational solution to the problem of selecting
the best sampling location, for any particular
property, on a leather side has been obtained by
theoretical considerations combined with facts de-
rived from data obtained in a statistically designed
experiment. This statistical method, which may
result in considerable savings both in labor and in

material, can readily be applied to other situations
in which the properties to be measured vary with
location on the sampling unit in a systematic way.
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