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Bounds for Characteristic Roots of Matrices II

Olga Taussky

This is a continuation of an earlier note (Duke Mathematical Journal,
It deals with bounds for the characteristic roots of matrices with

pages 1043—44 (1948)).

volume 15,

positive (nonnegative) elements, and with bounds for multiple roots.

This note is a continuation of an earlier one [1].!
There the position of the characteristic roots of an
nXn matrix A= (a;) inside or on the boundary of
the n circles C; with centers a,; and radii A,= Zlam]
was studied.

In particular, it was shown in [1] that for n=2 the
common part of the circles cannot contain a root
unless it is a common boundary point. This fact is
not, true for n >2 as is, for example, shown by the

matrix
(0 1 0
0 0 1

!

which has the roots 0, —3, —5. The root 0 is con-
tained in all three circles. It can however be shown
that an analogue of the situation for n=2 holds if
further conditions are imposed on the elements a;.

Theorem 1. 'The dominant root of a matrix of
positive elements cannot be a common point of all
n circles C; unless it is a common boundary point of
at least two of the circles.

Proof. 1t is known [2] that the dominant root \
of such a matrix is real and positive and that the
corresponding characteristic vector z,, - - -, x, can
be chosen in such a way that all its components are
positive. Consider then the equation

3

=& =

%t - o+ (@i —N) T+ - 0T, =0, (1)
or
()\—a'ii) .l'i:Z(Likxk- (2>
k#1

As the right-hand side of (2) is positive, it follows
that

N—a;; >0. (3)
Equation (2) implies that
N—a;) x;> A; minzy. (4)
ki

Let N be an inner point of all circles (), that is,

)\—aii<A1~, /L:l, SO, n. (5)
It follows from (4) that
xr; >miny, d=1l, do o, g
ki

1 Figures in brackets indicate the literature references at the end of this paper.

| This is not possible. Hence X\ cannot be an inner
point of all ;. Assume then that N was on the
boundary of at least one circle (;, say €, and an in-

ner or boundary point of all other circles. Then re-
lation (4) for i=1 implies that
) > min;. (6)
k=1
Let
minz,=u,, (say) (7)

k71

and consider relation (4) for =2. This implies that

either
)\—“QQQ:AQ and .I'meinIk (8)
k52
or
AN—aypn< Ay and z, > minz,. 9)
k%2

However, relations (6), (7), (9) lead to a contradic-
tion and so (8) holds which means that X\ is on the
boundary of C,.

It can be shown that the dominant root of a ma-
trix of positive elements can lie inside of n—1 circles
and outside of one circle without touching the bound-
aries. The following example of this was commu-
nicated to the author by A. Ostrowski:

Define a,; (i#k) as arbitrary positive numbers.
Take \ sufficiently large and positive and define a;;
by

~—>\~— Zam>0 i>1,

I\;éf

Q11:)\—2k_zqdlk>0.

It follows that \ 1s a characteristic root of the matrix

cut)
Hence X\ is the dominant root, as the other roots can-
not have vectors with positive coordinates only [2].

Two generalizations of theorem 1 are possible, one
to matrices with nonnegative elements instead of
positive ones. These matrices have as one of their
dominant roots a nonnegative real number, and the
corresponding vector can be chosen to have non-
negative components. Hence, all the above argu-
ments can be repeated, as long as equations (2) do
not involve any equation of the form 0=0. This

(@) and that the corr espondmg vector 1%(
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could only occur, if the matrix A can be transformed
to the form

P 0
U Q

by the same permutation of the rows and columns
[1] and where P and ¢ are square matrices, and 0

consists of zeros. Thus the following theorem holds:
Theorem 2. liet A be a matrix of nonnegative

which cannot be transformed to the form

1Z 0
U Q

by the same permutation of the rows and columns.
Then the real dominant root of A cannot be a
common point of all 7 cireles C; unless it is a common
boundary point of at least two of these circles.

Consider now matrices whose main diagonal
elements are arbitrary real, but whose off-diagonal,
elements are positive (I]OIIII(‘("‘I(IVO) It 1s known
[3, 4] that such a matrix has as root with largest
real part a real positive (nonnegative) number and
the components of the corresponding vectors can
be chosen to be all positive (nonnegative). It is
clear that theorems 1 and 2 can be generalized to
these matrices.

The remaining two theorems concern multiple
roots of general matrices. It is easy to find examples
of matrices with a multiple root that is contained
as inner or boundary point in only one circle C;.
It can, however, be proved that in this case the
rank of the matrix

elements

((lik—)\aik) 18 n—1.

Theorem 3. A characteristic root N which is an
inner or boundary point of only one circle (; cannot
have two independent characteristic vectors corre-
sponding to it.

Proof. Assume that |a;—XN|< Ay and |a;;— N> 4,
for is1. Consider any characteristic vector xy, . ..,
z, which corresponds to X\.  Then the relations

lau—nN| |2:|< A; max|ay (10)
ki

hold. For i>1 they imply that

|z:|< max |z (11)

ki
Hence
|z,|=max |x;| >|z;| for 1 >1.

K

This eliminates the possibility of a vector vy, . . ., ¥,

that corresponds to X\ and is independent of z,, . . . |
x,, because otherwise a linear combination of both
vectors could be found in which the first component
is 0 and which does not vanish identically.

Theorem 4. If A has a characteristic root N of
multiplicity n—1 and with n—1 independent char-
acteristic vectors then X\ is contained in at least n—1
circles (V.

Proof. 'The matrix (a,;—\é;) has the same vec-
tors as (a;;) and as roots the numbers u—X\ when u
runs through all roots of (a;). The circles that
correspond to the matrix (a;—Nd;) have the same
radii as the original ones, but their centers are moved
from a;; to a;—N\. Hence, we may restrict our-
selves to the case where A=0. In this case the
matrix can be transformed to the form

(o 3

X:

\ aJ

by means of a nonsingular matrix {/=(u;). Denote
by A the determinant |u;| and by U, the cofactor
of wy. It 1s then easy to see that the original matrix
(a;)=UXU"1s of the form

alyy L‘ln/A auln[Y:!n/A ce. QU ['rnn/A

sy ( 7171/A gy (’/V2n/A .- QlUgy [»‘v/n n,//A

(@)=

” T T / T /A
aunn( ln/A a'unn[ 271‘/3 O (XU,,,,( nnJ'A

Assume now that 0 lies outside one of the cireles,
say (', 'This implies

I[«Vln!>2“1kn‘- (12)
k#i
This, however, implies that

| Ui <201 Usal,
k#i

D=2 o o oy il

From this 1( follows that 0 lies inside all cireles (¢
=% , which proves the theorem.

Ly vowey
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