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Checking and Interpolation of Functions Tabulated

at Certain Irreqular Logarithmic Intervals
Herbert E. Salzer

Many functions f(x)behave as polynomials in log . When tabulated for arguments
in geometric progression, f(z) can be checked by ordinary differencing, and interpolation can
be performed to a fine extent with existing tables of Lagrangian coefficients. But in practice,
f(x) is often known or calculated at some or all of the points 1, 2, 5, 10, 20, 50, 100, 200, 500,
and 1000 (same theory for the points 0.001, 0.002, 0.005, 0.01, etc., or 0.01, 0.02, 0.05, 0.1,
ete., or any constant multiple of 1, 2, 5, . . ).

The present tables have a twofold use: I. Checking the correctness of f(z) when tabu-
lated at some of the more frequently occurring combinations of points 1,2 5, etc. This also
includes their use to estimate the least number of tabular entries for interpolation of given
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accuracy.
given by W. J. Taylor.

I. Introduction

Functions which behave like polynomials in log
are encountered in numerous fields, such as statistics,
actuarial studies, economics, biometrics, electronics,
nuclear physics, biophysics, physical chemistry, ete.
When a function obtained experimentally is suspected
to have this form, it is usual to examine this by plot-
ting the values on semilogarithmic graph paper and
observing whether they lie on a smooth curve. When
it has been decided that the function is approximately
a polynomial in log z (or when it is known to be ex-
actly a polynomial in log z), the question arises as to
how this information can be used to facilitate check-
ing the table and interpolating in it numerically.
This is the question to be discussed here.

II. Arguments in Geometric Progression

If the tabular arguments are in geometric progres-
sion, suchas 1,2,4,8, . . .; or 1, 10, 100, 1000, . . .,
the problems of checking and interpolation are quite
simple, because the function is effectively tabulated at
a constant interval in log . Thus an examination of
the ordinary differences of the tabular values will
reveal any errors, as well as the lowest degree which
an approximating polynomial in log z must have in
order to yield a certain desired accuracy. Either the
differences themselves can be used for interpolation,
or if we wish to avoid using differences, any one of
several well-known tables of Lagrangian interpola-
tion coefficients may be used for interpolation to a
very fine subdivision of the tabular interval. The
most extensive of these tables of interpolation co-
efficients are contained in [1].!

III. Divided Differences for Checking

In practice, however, it is often found that the
function has been determined at some or all of the
points 1, 2, 5, 10, 20, 50, 100, . . ., 1000 (or a con-
stant multiple of those values, e. g., 0.1, 0.2, 0.5,
1.0, . . .). Then it is no longer possible to use the

! Figures in brackets indicate the literature references at the end of this paper.

74

II. Facilitation of Lagrangian interpolation by a generalization of a scheme

ordinary differences for checking purposes. Instead
we use a certain generalization, known as “divided
differences,” a subject that is treated fully in most
textbooks on finite differences (see [2] or [3]). The
(n—1)th divided difference with respect to log z, of

a function f(z) tabulated at the n points 2y, z,, . . .,

n
Zn, can be written in the form >3 A, f(z;), where the
i=1

1

A; are certain numbers depending only on the x;,
not on the function. It is convenient to tabulate
these quantities, once and for all, for the usual sets
of values of z; and for the various values of =,
so that the divided difference can be obtained by
a_single accumulation on a calculating machine.
This has been done here for n=3(1)10 and z; ranging
from 1, 2,5, . . ., to 1000, in table 1, A; for n=3(1)7
and z; ranging from 1, 5, 10, . . . to 1000 in table
1, B; and for n=3(1)7 and , ranging from 1, 2, 10,

.. to 1000 in table 1, C. All entries are given to
eight significant figures, correct to about a unit in
the last place.

The explicit expression for A; is

(1)

[{11- = 1/7!'/ <10g10$1“’—10g10I]’),
J

where 7" indicates the product over all j5i. It can

J
be shown that if f(z) is a polynomial of degree n—2 in
log «, then the (n—1)th divided difference is identi-
cally zero. If the (n—1)th divided difference is
sufficiently small, then f(z) considered as a polyno-
mial of degree n—2 in log 2, is in all likelihood, free
from error. (However the user is cautioned that a

sufficiently small value of 327A4,f(z,) is only a strong
=1

indication, rather than conclusive evidence, of the
correctness of the n entries, considered as values of a
polynomial of degree n—2.) Now the tabular entries
may be entirely correct and the user might still want
to employ the most economical Lagrangian formula.
Again, this information is conveyed in the sufficiently
small (n—1)th divided difference, which establishes
the adequacy of an (n—1) point Lagrangian inter-
polation formula. In brief, if the function is checked



TasLe 1. Coeflicients A; for checking and interpolation, based upon the points x;

A
Ts A; Three-point Four-point. Five-point Six-point
n=1 A= 4. 75260 47 —4. 75260 47 3. 65295 55 —2.15010 00
T9=2 A= —8.34781 13 11. 94301 8 —11. 94301 8 8. 54329 79
r3=5 Az= 3. 59520 66 —11. 94301 8 19. 83692 3 —19. 83692 3
74=10 As= 4. 75260 47 —15.78781 1 22. 58725 1
25=20 e e R e 4. 24095 00 —10. 65726 0
75="50 2 L L e e e IR T R s 1. 51373 42
A— continued
5 A; Seven-point Eight-point Nine-point Ten-point
n=1 A= 1. 07505 00 —0. 46720 383 0.17310 449 —0. 05770 1497
29=2 Ag= —5. 02851 60 2. 51425 80 —1.04850 75 0. 38848 430
r3=5 “As= 15. 24709 1 —9. 51717 89 4. 75858 94 —2. 06802 58
xs=10 A= —22. 58725 1 17.36105 3 —10. 21857 5 5.10928 77
25=20 As= 15. 24709 1 —15. 24709 1 10. 90682 8 —6. 41967 08
25="50 Ag= —5. 02851 60 8.35218 43 —8.35218 43 6. 41967 08
27=100 A= 1. 07505 00 —3. 57123 89 5.10928 77 —5.10928 77
7s=200 Ag= | il 0. 57521 751 —1.44548 80 2. 06802 58
29=>500 P: £F N ERIRIG B I St S| L - I 0.11694 543 —(0. 38848 430
T10=1000 A= | qemrmacazaags T T | R o o 0. 05770 1497
B
s As Three-point Four-point Five-point Six-point Seven-point
=1 A= 1. 43067 66 —(. 84208 465 0.42104 232 —0.15600 111 0. 05200 0371
12=5 As= —4. 75260 47 4. 75260 47 —3. 656295 55 1. 82647 77 —0. 79376 529
13=10 Az= 3.32192 81 —4.75260 47 4.75260 47 —2.79734 47 1. 39867 23
24=50 A= | . 0. 84208 465 —2.79734 47 2.79734 47 —2.15010 06
25=100 As= 1. 27665 32 —1. 82647 77 1. 82647 77
2=500 As= 0.15600 111 —0. 51822 448
27=1000 % ki (R SURSE S (I R S ] e S CCT SR | SR S SO 0. 18493 938
C
Zi A; Three-point Four-point Five-point Six-point Seven-point
n=1 A= 3.32192 81 —2.55330 63 1. 27665 32 —0. 55481 ¥13 0. 18493 938
=2 Az= —4. 75260 47 4.75260 47 —2.79734 47 1. 39867 23 —0. 51822 448
x3=10 A= 1. 43067 66 —4.75260 47 4.75260 47 —3.65295 55 1.82647 77
24=20 V2 e RESIRE e ol 2. 55330 63 —3. 65295 55 3.65295 55 —2.15010 00
25=100 Ap= 0.42104 232 —1. 39867 23 1. 39867 23
25=200 Ag= £ S 0. 55481 813 —0.79376 529
27=1000 5 i S SN ST SO IR TR EN e s S A R CH LT W I ./ SN0 T L 0. 05200 0371




by the A/s for a certain n, we use a different set of
A/s corresponding to n—1, for interpolation.

IV. Interpolation

Once we have ascertained, by use of table 1, that
a function is adequately represented by a polynomial
of degree n—1 in log » (remembering that n—1 is
here the n—2 of 1I1.), we can interpolate by use of a
rearrangement of Lagrange’s formula, which was
suggested by a paper of W.J. Taylor [4]. The original
method and notation of Taylor are not described in
this article because he developed them only for the
special case of equally spaced arguments, and here

thev would be superfluous. The interpolation
formula is
fo~(Z o) S a @
where
a;= A;/(log x—log ) (3)

and A;1s given by (1).
V. Logarithms to Other Bases

The coefficients A; have been computed from
common (base 10) logarithms, according to (1). It
would have been possible, instead, to have the A,'s
calculated for any other logarithmic base. Further-
more, 1t is permissible when computing the a;s from
(3), to use logarithms to a base different from that
underlying the A;’s. To illustrate this point, natural
logarithms (to the base ¢=2.71828 183) have been
used in the two examples in section VIII. Extensive
tables of log.z are given in [5].

VI. Conversion to Arguments in Geometric
Progression

If a large number of interpolations are required
for a function given for any one set of values x;, it
may be convenient to prepare, by the method in
section IV, an auxiliary table giving the function at
a new set of values 7;, where the v, are now in geo-
metric progression. Then we can use ordinary in-
terpolation formulae and coefficients, as suggested
in section II. This point was called to the writer’s
attention by Churchill Eisenhart and Julius Lieblein,
of the Statistical Engineering Laboratory.

VII. Use of A; for Other Arguments

If the given set of values z; does not begin with 1,
the table of coefficients A, may sometimes still be
used by a suitable change of the independent varia-
ble . Notice that a polynomial in log (ax) or log
(b/z) 1s still a polynomial in log z. Thus, for instance,
if a function is given at the points z=10, 20, 50 and
100, we may consider it as a function of 2’ =100/x,
given at the points 2’=1,2, 5and 10, so that table 1,A,
may be used. Again, if a function is given at the
points =20, 100, 200 and 1000, it may, instead, be

considered as a function of z’=1000/z given at the
points #’=1, 5,10 and 50, so that table 1,B, may be
used. Schedules A, B, and C list such transforma-
tions of the independent variable, giving both the
sets of z; for which the change of variable to 1/z is
applicable, and the new arguments z;, which are
proportional to 1/z;.

Transformation schedules

|
R Rl bk T, s ;i i T xi
ity &3 COR T e ‘,i\ ‘_Ai % o FIN HER PR
2| 5 2 | 50 | 2 | 500 5| 20 5 | 200
Bl % 5|20 ‘ 5200 | 10 | 10 10 | 100
10| 1] 10|10 10 100 | 20| 5 20 | 50
ol s 008 [EEE0R[I 5052 50 | 20
| 50| 2| 50| 20| 100 | 1 100 | 10
(100 | 1| 100 | 10 200 5
| 200 5 500 2
‘ | 500 | 2 1000 1
‘ 1000 } 1
|
SCHEDULE B.
T z; | ; st T xz; v z;
N P S Y IR
2 50 2| 500 | 5 10 51 100
10 10 10 | 100 10 5 10 50
20 5 20 | 50 50 1 50 10
100 1 | 100 | 10 | 100 | 5
‘ 200 5 | 500 | 1
1 1000 i
| | |
ScHEpULE C.
T z;’ T x; T 74 T 2
5| 20| 5| 200 2| 10 2| 100
10 10 | 10 | 100 10 2 10 i 20
50 2 | 50 | 20 20 1 20 | 10
100 L 100 10 | 100 ‘ 2
500 2 200 1
‘ 1000 i

VIII. Illustrations of Use of Tables

The following two illustrative examples show how
to use the tables of 4,.

Erxample 1.  Given
o | f@) zo | o f@d
1 0. 52 50 6333. 56
2 Aol ‘ 100 15752. 58
5 | 50.30 || 200 34648. 66
10 343.74 || 500 85417. 78
20 { 1447. 15 ‘ 1000 155833. 72
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To calculate f(18). In the absence of knowledge of
an explicit formula for f(z), we find that its seventh
divided difference, employing the coefficients A; in
table 1, A, for the eight points from 1 to 200, is less
than 0.05 in absolute value. This indicates that the
function behaves, up to the last place, like a sixth

degree polynomial in log # (any base). Hence only
seven points are needed for the interpolation. The
work may be arranged in the following way: (Note
that an extra place is carried in some columns to
reduce the error that would arise in rounding before
the final answer is reached.)

x; log.18 —log.; a;= A;/(log.18 —log,r;) a;f(zx;)
1 2. 89037 176 0. 371942 0. 193
| 2 2. 19722 458 —2. 288576 —2. 540
5 1. 28093 385 11. 903106 598. 726 [
10 0. 58778 667 —38. 427634 —13209. 115 [
20 —0. 10536 051 —144. 713527 —209422. 181
50 —1. 02165 125 4. 921950 31173. 466 |
100 —1. 71479 843 —0. 626925 —0875. 686 ‘
> Ja:i=—168. 859664 Za f(z:) = —200737. 137
i=1 =1 |
|
| |
| ‘ Zu 1z )/Za.**llSS 78 ‘
‘ R B |
The answer found here, 1188.78, is correct to its | To calculate f(160). To use the present tables of

last significant figure. The function f(x) was chosen

K ™
to be (log.z)%+3 (logcx')"—{-(,)'-
Example 2. Given
SUNN . ‘
x; T ‘ f(xi) or f(x) \
PR [ ’ |
20 50 15. 45981
100 10 40. 07131 |
200 [ 5 ‘ 54. 18217
| 1000 ; 1 | 95. 09949
|

A;/(log, 6.25—1log, x:") ‘

coefficients A; it is necessary to change the variable
to ’=1000/x. (See 'I‘r:msformntiol}_ schedule B.)
If f(x) is called 7(z"), then f(160)=f(6.25). As in
the previous example, in the absence of knowledge of
an explicit formula for f(z), we find that the absolute
value of its third divided difference, employing the
coefficients A; in table 1, B, for four points, is less
than 1% units in the fifth decimal place. This indi-
cates that the function behaves, up to the last place,
like a second degree polynomial in log z. Hence
only three points are needed for the interpolation,
which is carried out as before:

(l.f(zl') [

|
;! log, 6.25— l()g, ;=
| G NE SRS & £ Soarle R SRS T L
| 1 1. 83258 146 0. 78068 92 74. 24314
) 0. 22314 355 —21. 29841 84 —1153. 99453
10 —0. 47000 363 —7. 06787 75 — 283. 21911

This answer, 49.40876, is also correct to the last
figure given, the function f(x) having been chosen
to be 2.20(log.r)*—1.43 log,r

The author expresses his appreciation to Churchill
Eisenhart and Julius Lieblein for their thorough
study and construetive criticism of this paper in its
original form, and to John Todd and Franz L. Alt
for their editorial review and for suggesting some
final improvements in the presentation.

. 58560 67 ‘

—1362. 97050

3
Z(l,_? (I[’} =

1=1

\ -
i >aif (@)D jai=49. 40876 |
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