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Random Walks and the Eigenvalues of Elliptic 
Difference Equations 

Wolfgang Wasow 1 

'~hi s paper is concern ed wit h t he application of Monte Carlo methods to differential 
equatIOns of t he form, \72u+ a (x, y)u~ O. It l S sh?wn t hat und er suitabl e conditions the 
Monte Carlo solu tIOn converges and gIves t he solu tlOn of the difference anaio" of t he above 
eq uatIOn. " 

I. Introduction 

Tilt' aim of this paper is to describe and investi
gate a random walk procedure that can be used to 
approximate the solutions of elliptic partial d ifl'eren
tial equa tions containing the unknown function 
itseH and not only i ts derivatives. The method also 
leads to a scheme for thc numerical d.etermination 
of the low est eigenvalu e of such clifrerenLial eq uations. 

As a compu tational technique, our method is 
som ewhat similar to the one used by Donsker and 
Kac [3] 2 for the calculation of th e lo\\-est eigenvalue 
of Schroedinger 's eq Llation, bu t th e unde1"lying 
theory is more elementary than the theorem on 
Wiener integrals of [4] used in [3]. 

Like all computational methods b ased on random 
sampling, those d.escribed in the present paper r e
q 1I ire the usc of a high-speed calculating machine. 
N umerical tests are in progress. 

The random walks considered lead to difference 
eq ua tions. B~' virtue of Imown resulLs [1], [6], the 
solu Lions thus obtained ar e, for sm all step length, 
approximat ions to the corresponding solu tions of the 
limiting difl"erential equations. 

LeL the symbol Ll denoLe thc finiLc difl"erence an a
logue of the Laplace operator, i. c., 

1 
LlY (X'Y) = hf- [u(x + h,y )+u(x-h,y ) 

+ u(x,y + h) + u(x,y- h ) - 4u(x,y )]. 

Then we shall be concerned with th e difference 
equaLion 

LlU + g(X,y)U = O, (1) 

where g(x, y ) is to be sufficiently regular to guarantee 
convergen ce of the solutions considered to those of 
Lhe conesponcling difl"erential equation. 

Everything that follows can be easily extended to 
morc than two dimensions. Extensions to other 
elliptic differential equations are also possible. 

In the sequel, the word "point", wi tllO u t further 
specification, is meant to r efer to the poinLs of a 
sq uare lattice with mesh length h. 

I The preparation of this papor was sponsored (in part) by tho Office of Naval 
Research. 

2 [<'igurcs in brackets indicate the li tcratu,'o reference at the end of this paper. 
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II . Random Walk Procedure 

L et B be the interior of a finite domain whose 
boundary ,p?in~s form the set C. Consider the 
problem of fin?-mg the solution of eq 1 in B which 
~ss~lmes prescn~ed values f(S) at the points S of C. 
rhl~ problem WIll be shown to be related to the fol

lowmg random walk procedure. 
L~t k(P) be a positive function defined in B . A 

par,tlcle of .mass 1 stal:ts from an inner point P. 
Bcfor~ movmg to one .of Lhe fO~Il' neighboring points 
P h (J=, l , ... , .4 ), ltS mass IS mul tiplied by the 
valu c <;If Ic (P) at P. Then. it moves to a neighbor
~~g'pOl~lt, an 4 pomts ,ltavmg th? same probability 
/ 4 of be l~lg cho~en . After a Col' tam number of steps 
the partlde I1rnves for th e first time at th e boundary 
say. at the . poi.nt S. Consider now the rando~ 
variable .whlch IS equal to the product of the mass 
upon acnval at the boun.dary by the value of f(P) 
at .that pomt. ,Ve claIm Lhat, for appropriate 
cho~ce of k (P ), the expccted value of this random 
van~ble-if it is finite-is the solution of eq 1 (l,S
s ummg the values f (S) on C. 

I.n th e description above, the infini te random walk 
wl:l.lC~ nev~r reach C h ave been i!Snored. This is per
mlssible, sm ce the total probabIlIty associated with 
such.walks is zero, (see [1], p . 44). 

V\~Ithou t loss of !:?encrality we may restrict th e dis
CLI SSIOn to the speCial boundary values 

{
I for S = R 

f(S) = o(H,S)= 
o for S r!-R 

(2) 

where R is some fixed arbitrary poin t of C. For, if 
we deno tc th e expected value upon arrival COlTe
sIJonding to these special boundary valu es by E(P, R ), 
then . th e expected valu e for any boundary function 
feR) IS ~ E(P,R)f(R). If E(P,R) is indeed the solu-

REe 
tion of eq 1 a sur.uing th e values oCR,S) on the 
bound ary, then It follows immediately that 
~E(P,R) feR) is th e solu tion with boundary values 
REe 
1(S). 

Theorem 1: Set 

(3) 
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and let h be so small that k (P » O in B , then thejunc
tion E(P ,R ) described above satis fies-ij it is finite
with respect to P the difference eq 1 and the boundary 
condition 2. 

Proof: Let {L ,,(P ,R )} be th e set of all possible 
paths s tarting a t P and r eaching 0 at R on the n th 
step . The probability of the particle moving along 
any such path is 4-" . Let m,,(P ,R) be the mass upon 
arrival corresponding to a given such pa th and wri te 

en(p,R)= ; " L mn(P ,R) (4) 
iL,,(P,R)i 

the summation extend ed over all paths of {L n(P ,R) }. 
This quan tity en (p ,R) is thc expected mass upon ar
rival on 0, if only anivals a t R and on the nth step 
exactly are counted wi th their actual mass, and all 
other random walks ending on 0 are considered to 
con tribute the mass zero. If we set 

" E n(P, R) = ~ e.(P , R) (5) 
v=o 

then 

E(P , R )= lim En(P , R) (6) 

provid ed the limi t is fini te . 
L et P j, (j = I , ... ,4), be the par ticular neighboring 

point of P reached by th e par ticle at the first step, 
wIl en following the par ticular path L n(P ,R) ; then 

(7) 

if m"_ I (P J,R) is th e mass upon arrival at R corre
sponding to that path of the set {L n _ 1(P j,R )} which 
is par t of L n(P ,R). From eq 4 and eq 7 we have 

and, therefore, 

(9) 

By means of defini tion 5 this yields 

(10) 

or, upon passage to th e limi t, 

(11) 

This is r eadily seen to be equivalen t wi th 

For a boundary poin t 8 it follows from th e defini tion 
of en (P ,R) that 

eo(8, R) = 0(8, R) (13) 

if o(8,R) deno tes the fun ction whieh l S 0 fot' 8"c. R 
and 1 for 8 = R . F or n > O we have en (8, R )= O. 
These facts and eq 12 lead immediately to the state
men t of the theorem . 

R emark 1. The function E(P , R ) can be considered 
the finite analog of the norm al deriva tive of Green's 
function, since the solution that assumes the bound
ary valu es j(R ) can be written in the form 
~E(P, R)j(R ) which recalls th e formul a 
R.C 

u = J~ oG~ R) f (R )ds 

from the theory of partial differen tial equations. 
R emark 2. It is well known that th e probability of 

a par ticle leaving the domain B at a preassigned point 
R of 0 satisfies the difference eq 12, if the par ticle is 
subj ect at each step to a probability of "dying" equal 
to l -k(P ). The corresponding function g(P ) is then 
everywhere nonpositive. In t he next section it will 
be shown that the procedure of the presen t paper is 
applicable under considerably milder r estrictions on 
g(P ). A fUl'ther advan tage of our method is th a t a t 
each step only one random decision has to be made 
and not two as in a random walk involving the possi
bili ty of dying. 

III. Validity of the Procedure 

The statement of theorem 1 includes the assump
tion that E(P ,R ) is fini te. In this section we shall 
prove that this is the case, if and only if the eigenval
ues oj t:,.u + g(P )u in B are all positive. H ere and in 
the sequel we mean by the eigenvalues of a lineal' dif
ference opera tor L[u] in the dom ain B those values of 
A for which the problem 

L [ul + Au = O in B , u = o on 0 

has a non tl'lvial solu tion. The eigenvalu es in this 
sense are the negative of the eIgenvalues of th e matrix 
formed by the left members of the system of lineal' 
equations l'epi'esen ted by L [u]= O l1l B, u = O on O. 
It will simplify our terminology if we call the negative 
of this m atrix the matrL,( " belonging to L [u]." 

The proof of the theorem men tioned requires some 
prepara tions. 

Lemma 1: The eigenvalues of -~u+(g - 1~2) u are 

the same as those of ~u+ guo 
Proof: The matrix A belonging to 

~u+ gu= O in B , 

IS of the form A = G+ H . H ere, G is a diagonal 

(12) matrix formed with th e values of - g(P ) + ;2' (P in B ). 
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The matrix II has in the row b~longing to any giv~n 

point P , tIle clement - '~2 in every column corre

sponding to an interior n eighboring point of P , and 
zeros evrl'ywllere else. The matrix A * of the sys-

tem - 6u + (9 - ~2) u = O is , similarly, given by A* = 

G- If. 'iVe may interpret these symmetric matrices 
as belonging to quadratic forms in the variables u(P), 
(P in B ). In the space of these variables consider 
the orthogonal transformation which consists in r e
placing the value of u (P ) by - u (P ) in every second 
point P and leaving u(P) unchanged in all the other 
points, in such a way that a point and its neighbors 
are always treated difi'erently. This can , e. g., be 
done b:v setting 

..!.. (x+u) 
u'(P)=C- l ) h u (P ) (14) 

where (x, y ) are the coordinates of P. This orLhogo
nal transformation changes th e quadratic form with 
matl'ix G+ J1 into the one with matrix G- II. These 
t.wo matrices have, th erefor e, the same eigenvalues . 

Now we define an anal ytic function ¢(P ,R ;7' ) of 7' 
by 

¢(P, Ii; T)= ~ 7' ''e,,(P, R). (15) 
n =O 

We ass ume throughout tbat g(P)< ; 2' and therefo l'e 

k(P » O. To show th at the power series in clefinition 
15 has positive l'a,lius of convergence consider the 
random walk problem in which g(P ) has been r eplaced 
everywhere by ma" g(P), and denote by e: (p,R) and 

PEB 
k *(P ) the quantities cOlTesponding to en(P ,R ) and 
Ic (P ) in this new problem. Then, by the definition 
of en(P ,R ), 

0 '::; e,,(P, R) ::::; Ic* n(p ) Pn(P , R)'::; k*n 

where Pn(P ,R ) is the probability of moving along a 
path tha t leads in exactly 'fI steps from P to R. 
H encr, the radius of convergence of th e , series in 
formula 15 is at least equal to l /k*. 

The formula 15 may, of course, be interpreted as 
the finite analogue of a Laplace transform, applied to 
the solution en (P,R) of the "parabolic" differ ence 
equation 9. Pursuing this analogy, we find , by com
bining formulas 9 and 15, for ¢ the elliptic difference 
eq uation 

k (6¢ + 9¢) + '~2 (1 -~)¢= 0 . (16) 

Our [unction c/> is that solution of the difference eq 16 
in B, which assumes the values o(P ,R) on the bound
ary O. 

1£ we denote by r t he diagonal matrix whose ele
ments are the values of k (P ) in B and by A the 
matrix belonging to 6 c/> + gc/>, and if we set, fo r abbre-
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viation, ;2 ( 1 -~)= A, th en rA - AI is the matrix 

belonging to the d ifference eq 16. 'rhe solu tions of 
eq 16 are rational functions of A a nd therefore of T . 

It follows from definition 15 that 1' = 0 is no t a pole of 
this rational function. 

For later use we mention that th e poles of ¢ are 
simple. For if D is a matrix such that D2= r, we 
have rA-AI= D (DAD - AI)D - l. The clements of 
the resolvent (DAD - A1) - 1 of th e sy mmetric matrix 
DAD have only simple poles (sec, e. g. , [7], p. 26 ), and 
this property is not destroyed by th e matrix trans
formation with th e nonsing-ular matrix D. H ence, 
the elements of (1' A - AI) - I h ave only simple pol es a 
functions of A, i. c., ¢ has only s imple poles as 
functions of 1'. 

L 'fl 'I 4 ( 1). . emma 2. , tCnum)er h2 l -r;- IS an eIgen-

valu e of lc (6cb + g¢), if and only if 1'=1'] is a pole of 
¢ (P,R ;T) for at least one pair of points P ,R. 

Proof. 1£ 7' = 1') is a pole of ¢ (P ,R ;T) for som e P 

and R then ;2 (1 -~) is a pole of some element of the 

r esolvent of the mat],L\: belonging to lc (6¢ + g¢). 
Hence, this numb<:'l" is an eigenvalue of that matrix. 

Conversely, let 1~2 (1 -~) 1e an eigenvalue of 

k (t1¢+ g¢) and assume tllat ¢(P ,R;T'I ) exists for all 
P and R . In ordel' to show that this implies a con
tradiction we make use of Green's formulas for th e 
clifl'erence operator t1u. These formulas ar e (of. [1]) 

and 

h ~ [ v6u-u~ vJ + ~[vr(u)-ur (v) J = o (18) 
B+C C 

where U x , U y , etc. , denote the first forward difrel'enee 
and where th e expression r (u ) is defined as follows: 
if u assumes the value Uo at a given boundary point 
R and th e valu es Ul , . , . , u,(v::::::: 3) at the 'Y neigh
boring points of R in B + 0, then 

Green's fOi'mulas 17 and 18 are valid for any functions 
that vanish outside of B + O. 1£ we subs titute in the 
identity 18 for v the function ¢(P ,R ;T) and fo r u an 
eigenvector U corresponding to the eigenvalue 

1~2 (1 -~} i t follows that r (U)=o, identically for 

all boundary points R. Substituting UfoI' u in the 
identity 17 we ee that the bilinear form 

vanishes identically for any choice of the function 1'. 

Taking for v the function that is 1 at an arbitrary 

---~------------------------~~ 



interior point I1nd 0 everywhere else, the identity 20 
is seen to imply for U the first order difference 
equation 

Ux+Uy+h[g+h;k(l -~)J U= O inB, U= O onC. 

(21 ) 
Together with 

this yields 

hAU -UX-Uy= O in B , U = 0 on C, 

J. e. 

U(x- h ,y) +U(x,y - h)- 2U(x, y)= 0 inB,U = 0 on C. 

This last difference equation has the unique solution 
U = 0 as can be seen, e. g., by calculating its values 
from point to point from the boundary inwards. 

Since U is, by assumption, not identically zero we 
have arrived at a contradiction, and the proof of the 
lemma is completed. W eare now ready to formulate 
and prove our theorem. 

Theorem 2: If g(P )<:2 in B , then E(P ,R)= 

lim En(P,R) is finit e f or all P in B and all R on C, if 
n~oo 

and only if all eigenvalues of Au+ gu are positive. 
Proof: The difference expression k(Au + gu ) is, in 

general, not self-adjoint, i. e. the matrix b elonging to 
it is , in general, not symmetric. But its eigenvalu es, 
i. e. the numbers A for which the problem 

AU+ gU+ Ak - 1(P)U= 0 in B , u = o on C (2 2) 

has a nontrivial solution are positive if and only if 
those of Au+ gu are. In fact, let A be the mrtrix 
belonging to Au+gu and denote by D th e diagonal 
matrix whose elements are the positive determina
tions of kt(P ). Then eq 22 can be wTitten in the 
form 

If we make the substitu tion 

u = Dv 

this is equivalen t with 

DADv= Av. 

(23) 

H ence A is an eigenvalue of the symm etric matrix 
DA D and therefore real. If we write DAD' instead 
of DAD we see that DAD' is the matrix of the 
quadratic form obtained from the one whose matrix 
is A by the transformation 23. Since this trans
formation does not destroy the positive definite 
character of a quadratic form, and the same is true 
of its inverse, A is positive definite, if and only if 
all the eigenvalues of eq 22 are positive. 
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By lemma 2, the eigenvalues of k (Au+ gu) are all 

positive if and only if :2 ( 1-~) is positive for all 

poles of ¢ (P ,R;r), i . e. if these poles are all greater 
than 1'= 1, or negative. On the other hand, by the 
definition of ¢ (P ,R;r) the expected mass E(P,R;r) 
is finite, if and only if all poles of ¢ are numerically 
greater than 1. Our proof will be completed, if we 
show that the occurrence of negative poles greater 
than or equal to - 1 implies the existence of non
positive eigenvalues of Au+ gu. To show this we 

substitute A = A * +1~2 into eq 22 and obtain, after a 

short calculation using the expression 3 for k (P) , 

k[Au + (~2- g) ul + A*u= O in B , u= o on C. 

In view of lemma 1 and the first part of this proof, 
the existence of nonnegative eigenvalues A * is 
equivalent wi th the existence of nonpositive eigen
values of Au+ gu. On the other hand, A *= 0 means 

A 2:: ~2 and by lemma 2 such a A is an eigenvalue of 

k (Au+ gu ), if and only if ¢ (P ,R;r) has a pole in 
- 1 ::::r<O. This compl etes t,he proof. 

Corollary: If 

g(P )= p- q P ) 

where p is a parameter , lim E n (P , R) exists, if and 
,, ~oo 

only if p is less than th e lowest eigenvalue of Au
Tl(P )u. 

Proof: The eigenvalues of Au- T ~(P)u are obtained 
from those of Au+ ( p - F(P )u by subtract ing p. 
Therefore the eigenvalues of the latter expression are 
positive, if and only if those of Au- Tlu exceed p. 

IV. Practical Bound for Validity of Random 
Walk Procedure 

If the method described in the preceding section is to 
be used, we have to be sure that the condition of 
theorem 2 is satisfied. Since the eigenvalu es ar e, in 
general, not known, the following sufficient criterion 
may be useful. 

Theorem 3: The expected value E(P , R) exists, if in B 

(24) 

where a and b are the sides of the smallest rectangle 
with sides pamllel to the axes that contains B. 

Proof: We substitute for the problem defin ed by 
formula s 1 and 2 th e similar problem obtained by 
replacing g(P) everywhere by its maximum 'Y in B, 
by replacing the domain B by the circumscribed 
rectangle .8[ with sides a and b, and finally by im
posing the boundary condition: U == 1 on the boundary 
C[ of RI . Consider the mass upon arrival anywhere 
on C1 for this new problem. Its expected value, 



EI (P )- if iL is finite- is at leas t eq ual to the expected 
value E(P, R) of the original problem, and it solves 
the modi fie L difi'el'ence equation problem. 

From theorem 2 we know that E 1 (P) is finite, if 
LlU+ 'YU - O has only positive eigenvalues correspond
ing to the domain B1 , i. e. if the smallest eigenvalue 
PI of LlU= O exceeds 'Y. 

The eigenvalu es Pi of LlU= O in a rectangle can be 
calculated in literal analogy to the familiar procedme 
for the Laplace equation. (See [2], p . 258). They 
turn out to be the values of 

4 {. 217rh . 2m7rh} 
h2 S lll 2a +Sll1 2 b ' 

1= 1, 2, ... ,*-1 
h 

m = 1, 2, . . . , X- I 

Setting l= m = 1 and increasing the expression by 
substituting the first two terms of the power series 
for the sines the proof of our theorem is at hand. 

V. Green's Function 

Using the procedure and the notation of the pre
vious sections let 9n(P , 0) be the expected amount of 
mass that passes tlu-ough an inner point Q on the 
n-th step of a walk that starts at P and ends on the 
boundary O. Clearly, 

go(P , Q)= o(P , Q), gn(R, Q)= O, (n > O), Ron C. (25) 

T he difference eq uation 

for 9,, (P , Q) is derived prec isely like its a nalog, cq 9. 
If we se t 

(27) 

and 

O(P , Q)= lim On(P , Q), (28) 
lI~oo 

th en O(P, Q), if it is finite, solves the problem 

LlU+ g(P)u= - h2t(P) o(P , Q) in B , u = o on C (29) 

which corresponds to eq 12. When there is no ind i
cation to the contrary the symbol Ll is always meant 
to operate on the point P. 

The solu tion of 

~U+ 9U+ f (P ) = 0 in B , u = O on C (3 0) 

can be written in the form 

h2 

u(P) = "4 f,;O (P ,Q)k (Q)f (Q). (3 J) 

In analogy wi th the terminology for differential 
equations we shall call the function 

K (P , Q)= ~2 k (Q)O(P ,Q) (32) 

Green's function for our difference equation and the 
domain B. 

The following experiment leads to a random varia
ble whose expected value is u(P) provided G(P,Q) is 
finite. 

On every step of the random walk multiply the 
amount of mass at the instant by the value of 
k(Q) f(Q) at that particular point and add the prod
ucts thus obtained . If the cumulative sum after N 

random walks starting a t P is multiplied by 4~' we 

have an es timate of u(P). 
As to the existence of G(P,Q) we have a theorem 

analogous to theorem 2. 

Theorem 4: If g(P) < h42 in B , then lim On(P , Q) is 
n->oo 

fin'ite for all P and Q in B , if and on~y ' if aU eigen
values of LlU + gu in Bare positire. 

Pronj: D efine 1/; (P,Q; r) by 

00 

1/;(P , Q; 1')= L.: 1' '' gn(P , Q). (33) 
n=O 

The convergence for sufficiently small 11'1 is shown 
exactly as in the case of the function ¢(P ,R;r). 
From formulas 25 and 26, 1/; is seen to solve the 
problem 

k (l\ 1/; + g1/;) + 1~2 ( 1-~) 1/; = - h~/' o(P,Q)in B,1/; = O on C. 

(34) 

] t is therefore a rational function of r. The poles of 

r and th e eigenvalues 1~2 ( 1 -~) of !c (Ll1/; + g1/;) are 

shown to correspond to each olher, j list as in the 
proof of lemma 2. The reasoning is somewhat sim
pler here, since instead of 1' (U) = 0 we obtain here 
immediately L.:U(P)o(P,Q)= O. If this is trne for 

PeE 

all Q in B, it follows that U(P) = 0 and the contra
diction is at hand. The subseq uen t reasoning is 
precisely the same as for theorem 2. 

VI. Random Walks in Unbounded Domains 

If B is an unbounded domain other than the full 
plane, then the qu antity E(P ,R) may still exist. The 
function G(P ,Q), on the other hand, and its proba
bilistic interpretation may exist even in the full plane. 
We limit ourselves, therefore, to a discussion of this 
latter quantity . 
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Some facts from the theory of infinite matrices will 
hav e to be used. For convenience we summarize all 
the defini tions and properties used , and add refer
ences to the corresponding pa.ges of [7] . 



(a) If A ={ aik }, (i, k = l , 2", .), is an infinite 
matrix, the finite matrices A j obtained from A by 
letting i and k run from 1 to j only are called the 
segment matrices of A. (p. 121) . The set consisting 
of all eigenvalu es of all segment matrices and th eir 
accumulation points is called the segment 8pectrum 
of A, (p. 124). 

(b) An infinite vector Xi, (i= l, 2, ... ) is called 
co 

quadratically convergent, if L: IXi [2 is finite, (p. 125) . 
i= l 

(c) An infinite mntrix is called bounded, jf 
there is a constan t M ind epend ent of n such that 

Ctl aikXiYkY ~ M· ~ [Xi [2. ~ [y;[ 2, (p. 124). The 

product of two bounded matrices exists and is 
bounded, (p . 131). For the . multiplication of 
bounded matrices the associative law is true, (p. 1.;3 1). 
If the segment matrices are normal , i. e ., if A j A; = 
A ; A j, then A is bounded, if and only if its segment 
spectrum is bounded, (p . 124). 

(d) An infini te H ermitian matrix is called positil'e 
definite, if there is a positive constant J.i , independ
en t of n, such that for all Xi 

n n 
L aikXiXkS J.i ~ [xi I2, (p . 124). 

i .k ~ 1 i~l 

It is called nonnegative definite, if 
" ~ aikxixk'20, for all n and all Xi, (p. 124). 

i.k ~ 1 
co 

(e) If there exists a constan t C such that ~ [aik l 
k ~ 1 

co 

< C, ~ [aki[<C, (i= l , 2", .) , then the infini te 
k~ 1 

matrix A = (aik) is bounded (p. 153). 
(f) If A is bounded and normal, then it possesses 

a bounded inverse if and only if A A' is positive 
definitc (p . 138) . 

(g) If A = (a 'k) is positive defini te, t hen it possesses 
a bounded inverse A - I= (aik) and, if A j- ' = (ai2 ) is 
the inverse of the segment matrix Ai> then 

a ik= lim aH) for all i and k, (p. 229). 
j_co 

(h ) If A 2 is positive definite and A is nonn egative 
definite, then A is positive definite. 

The definitions at the beginning of section 4 can 
be applied without significant change to an un
bounded domain. 

Let the points of the domain be numbered in such 
a way that the first j points form, for every j, a 
simply connected domain B j of lattice points. If 
the expected value G(P,Q) is finite for a given pair 
of points P and Q, then the expected value G U) (P ,Q) 
exists for the corresponding random walk problem 
in all those domains B j which contain P and Q, i. e., 
for all sufficiently large j. One has, furth ermore, 

limG (j)(p , Q)= G(P,Q). (35) 
j~CCI 
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We shall call the expression 6u+ gu positive 
definite, if thc real and symmetric infinite matrix A 
belonging to it is positive defini te . In this matrix 
the rows and colunms will always be assumed to be 
arranged in the order of the numbering of the points 
of B which wa,s described above. (But the positive 
definite characteL' of an infinite matrix is , of course, 
not destroyed if the rows and columns are subj ected 
to the same rearrangemen t. ) 

Theorem 5: If 6 1L + gU is positive definite in the 

unbounded domain B , and 'if g(P) S t2 in B , then the 

expected llalue G(P, Q) exists. 

Proof: Since C!.u + gu is positive defini te in R, it is 
a for tiori positive definite in all domains R j . The 
matrix belonging to C!.u + gu in B j is the segment 
matrix Aj of A. By theorem 4, the expected value 
G (j) (P , Q) is finite,- provided P , Q are points of 
R j-. and solves problem eq 29. D enote by A j (P , Q) 
the elem ents of the matrix Aj in the row and column 
corr esponding to P and Q, respectively, and by 
At ' ) (P , Q) the corresponding element of the inverse 
matrix. Then 

G(j) (P , Q)= t2 ~ A t I) (P , S)· k- I(S) 8(S, Q) 
S€Bi 

From this equality we conclude, by virtue of relation 
35, and of the property (g ) stated above, that 
n (P ,Q) exists and is given by 

G(P, Q)= 1~2 A (-1) (P , Q)k -1(Q) (3 6) 

where A (- 1) (P , Q) are the elements of the matrix 
A - I. 

Corollary: If, in addition to Lhe assumption of 
theorem 5, it is known that g(P) '2 const. > - ro in R, 
th en G (P , Q), as an infini te matrix, is bounded. 

Proof: For then, 0< k- I (Q) S const. < ro in H, 
and the right member of eq 36 defines a bounded 
matrix, since A - I is bounded by virtue of (g). 

Theorem 6: If G(P, Q) exists for all P and Q, then 
6u + gu is nonnegative definite. 

Proof: If G(P, Q) is fini te, so are all (!(j) (P , Q), 
and therefore all segment matrices Aj are positive 
definite by theorem 2, hence A is nonn egative 
definite, by definition (d). 

Theorem 6 cannot be strengthened to a full con
verse of theorem 5. This can easily be seen from 
the following example. Let g(P ) be zero, so that 
k(P) = l and eq 1 reduces to 6u= 0. Then G(P , Q) 
is simply the expected number of visits at Q for a 
moving point starting from P and being absorbed 
as soon as it meets the boundary C for the first 
time. This quantity is known to be finite for an 
infinite quadrant but infinite for the whole plane 
(see [5] ), although C!.u is semidefini te in both th ese 
domains, in consequence of the results of section 4. 
But the following weaker statement can be proved. 



Theorem 7: Assume that G(P , Q) exists and is a 
bounded infinite matrix. I} then g(P) satisfies in 
the unbounded domain.l the inequality 

(3 7) 

then 6.u + gu is positive definite in B. 
Proof: If (}(P, 0) exists then it satisfies the dif

ference equation 29 in B, i. e., if A(P, 0) arc the 
clemen ts of A, 

4 . P ~ A(P, S)G(S, Q)= T2 fi(P, Q)k - 1( ). 
SEB , ), 

In otller words, if r denotes the inunite diagonal 
matrix formed with the clements k(P) and (J de
notes the inunite matrix with clements (! (P, 0), th en 

h2 
fY. • 1 · f A 'fl . A· ""4 IT!' IS a n g 1t 1I1v(,l"se 0 . 1e m atr Ix IS 

bounded, thanks to as umption 37 and property (e) . 
Since r is bounded , because of assumptio n 37, Lhe 

. h2 (J · "b "I d . f matnx""4 71' IS ounc e 111 con eque nce 0 " proper-

ty (e). Thus, A is bounded and normal (even 
symmetric) and possesses a bounded inverse. There
fore, A2 is p ositive definite by proper ty (j), and 
property (h) assures the positive definileness of A 
itself. 

RemOTlcs: In view of th e facts mentioned after the 
proof of theorem 6, it follows from theorem 7 that 
the expected number of v isits at a point Q dming a 
random walk starting from a point P of an infinite 
quadrant forms an infinite matrix tlu\,t is unbounded. 

VII. Sampling Method for Calculation of 
Lowest Eigenvalue 

The fact that the r adius of convergence of the 
functions tj> of formula 15 and ..f; of formula 33 de
termine the lowest eigenvalu e of lc (6.u + gu ) can be 
used. for an approximate experimenlal determination 
of this eigenvalu e. This gives us an approximation 
to the lowest eigenvalu e of the difl'erential expression 
02U 0 2U + . I 1 . ID · 1 · ID' ox2 + oy2 gu 1Il t 1e e omam ~ or III any c omam ~ 

bounded by a piecewise smooth curve 0' and con
taining in its interior the sam e lattice points as B. 
For lc approaches 1 as fast as h2, as h -7 0, and the 
eigenvalues of 6.u+ gu approach those of the cor
responding differential equation, (d. [1]). 

The following lemma is needed for the sub seq uent 
discussion: 

L emma 3 : The poles of the function tj>(P, R;I') (and 
also those of 1f; (P ,Q;r» lie symmetrically with r e peet 
to 1' = 0 . This is equivalen t to the statement that 
the eigenvalues of k (6.u+ gu) lie symmetrically with 

4 
respect to A =-. " h2 

P1"ooj: The argument applied in the proof oflemma 
1 to the matrix A belonging 10 du+gu can be literally 
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extende(l to the ma tr ix DAD or the proof of theorem 
2, with the resul t that the eigenvalu es of k (6.u+ gu) 

are the sa me as those of - lc [6.u + (g - 1~2) U J But 

in the proof of theorem '2 it ,,"a al 0 shown that, 

if A is an eigenvalue of lc (tlu + gn ), then ~2- A is a n 

eigenvalu e of - k [6.U+ (g -~2)UJ Combining 

th ese two facts the proof of the econd s tatement of 
our lemma is at hanel. The first statement i 
equi.valent to the second by virtue of lemma 2. 

We first rliscuss the usc of the function tj> for our 
purpose. The numcrical compu tations will be 
simpl er if, instead of operating wi th tj> cllrectiy, the 
funct ion 

tj>*(P,T) = ~ tj>(P , R; 7') 
R.G 

is u eel. If we d.efine e:(P ) b.\' 

e:(P ) = ~ e,,(P , R), 
R.G 

then formula 15 implies .. 
tj>*(P) = ~7' ''e:(P). (38) 

n=O 

The function tj>*(P) satisfies the difference eq uation 
16 in B and assumes the boundar.)' valli e 

tj>*(R) = 1, for R on O. 

Let "1 be the lowest eigenvalu e of lc (6.u + gu ). By 
lemma 2 and lemma 3 the radius of convergence of 
tj>(P,R;r ) is then 

( } 2 )-1 
7'1 = 1 - ~ "1 . 

The ratlius of convergence of tj>* (P,T ) is, in general , 
also 1'1 . Exceptionally , it may be larger, owing to 
cancella tion of poles in th e sum ~ tj>(P ,R;1') . In 

R.G 
this case the method Lo be described would lead 
to some hi.gher, rather than lo the lowest eigenvalu e. 
If this is suspected, th e rcsult may be checked by 
repeating the computations with a di.fferen t P 01' 

with formula 15 directly. We shall exclude Lhi 
case from om co nsiderations. 

The quantity e!(P) is the exp ected mass upon 
arrival anywhe7'e on the boundary for random walk 
star ting at P and consisting of exactly n steps. By 
performing a sufficien t number of random walks 
starting at P those e!(P) for which n is not too large 
can be estimated experimentally. 

In order to find 7'1 from th ese da ta we recall that 
tj>*(P) is a rational function whose poles are real 
and symmetl"ic with respect to th e origin. Hence, it 
is of the form 



Here, N is the number of points in B. For even N 
the quantity d1 (P) is zero. CI(P) is , by assumption, 
not zero for the point P chosen. From formulas 38 
and 39 we find 

If n is not too small, we can write, with sufficient 
approximation, 

1. e. , 

By using several values of n, the estimate of r can 
be improved, and at the same time the admissibili ty 
of the approximation used is tested. The lowest 
eigenvalue is then given by 

The function f of section 5 can also be used to 
compute AI . One defines f *(P, r ) and g:(p, r) by 

f*(P , r) = 2:: f (P, Q; r), 
<l,E 

and 

g ~(P) = 2::gn (P, Q; r ). 
<l,E 

Then f*(P , r) = "'i2r"g:(P). g:(P) is the expected 
ll ~ O 

mass anywhere in B at the nth step of a random walk 
starting at P. This quantity can be found experimen
tally by performing a sufficient number of random 
walks starting from P, and recording the massat every 
step. The sum of all recorded masses for the nth 
step divided by the total number of walks performed 
is an approximate value for g:(P). From thereon 
the procedure is exactly like the one described for 
<f>*(P;r). 

If the domain B is unbounded, the concept of the 
lowest eigenvalue has to be replaced by that of the 
left endpoint of the spectrum, which may, of course, 
be at - ro • We limit the discussion to cases in which 
the spectrum is bounded from below. 

Since no experimental method can take into ac
count random walks beyond a certain length, all 
experiments take place in some finite subdomain 
B j of B, so that we must answer the question whether 
the results thus obtained approximate the correct 
values for the given unbounded domain. This 
question is answered affirmatively by the theorem 
that the left endpoint of the segment spectrum 
coincides with the left endpoint of the spectrum, 
provided the matrix is halfbounded and symmetric 
([7] p. 231). 

VIII. Comparison with Method of Donsker 
and Kac 

In this section we shall assume that we are dealing 
with a one dimensional problem. This will enable 
us to add a few heuristic remarks on the relationship 
between our method and that of Donsker and Kac, 
[3], without introducing notational complications. 

Let Xj be the position of a point at the jth st0P of 
a random walk in a linear net of mesh length h. The 
particle is supposed to start from x= o and to be 
equally likely to choose either of its two neighbors at 
each step. Then X j is the s um of j identically and 
independen tly distributed random variables with 
mean ° and standard deviation h. Donsker and Kac 
are primarily concerned with the limiting distribution, 
as h-'70, of a random variable which, in our notation, 
can be written (our g(x) is - 2V(x) in their notation) 
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Here t is an arbitrary positive parameter. 
The quantity g: (P) of section 7 is, in one dimen

sion and for P = O, the expected value of the random 
variable 

For small h, and with 

we have, approximately, 

(40) 

Our function f*(P ,r) of section 7 IS the expected 
value of the random variable 

'" 2:: r nl'(h , n). (41) 
n = O 

With the substitution 

(42) 

and using relation 40 it is seen that. approximately 
for small h, 

If a-(h, a,t) is the distribution function of a(h,t), we 
have, therefore, 

1 r'" r'" f*(P, r) '" h 2) 0 )0 e -u(h. t) -$I duIJ (h, t). (43) 

On the other hand,f*(P,T) satisfies a difference 
equation problem which differs from eq 34 only in 



~------------------------------------------------------------

that lhc facLor o(P,Q) in the right member is to be 
replaced by 1 and the factors 4 by 2. This last change 
is necessary because we are dealing now with the one
dimensional problem. Because of eq 42 we may 
write for small h, 

Furthermore, Ie '" 1, and the difference equation may 
be replaced by the corresponding differential equa
tion. With these changes, we obtain from the differ
ence equation 34 the differential problem 

d2u 2. 
dx 2+(g - 2s)u+ h2= 0 mB, u = O on C , (34*) 

whose solution will be approximately 1/;*. In the 
paper by Kae B is the whole line. In this case, the 
solution of eq 34* at x=O can be written in the form 

If '" U=-j 2 X (x) dx 
~ _ 00 

(44) 

where x(x) is Green's function on the whole line for 
tht' differential equation 

(45) 

For small h, the left members of cq 43 and 44 are 
approximately equal. If we denote by (J (iX , t) the 
limit of the distribution function (J (h, iX, t), as h--'> O, 
it seems therefore plausi.b le that the id entity 
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will hold exactly. This identity, proved by Kac in 
[4], is the theoretical basis of the method of Donsker 
and Kac in [3]. 

In [4] the passage to the limit, as h--'>O, is essential, 
smce that paper is con cerned wi th the distribution 
of certain Wiener integrals. The sam pling method 
of [3] operates, of course, with finite s Lims only. The 
methods of [3] and those of the present paper are 
therefore closely related. In order to be sure that 
the results obtained approximate those for the co rre
sponding differential equation we refer to [1]. The 
analogous part of Kac's theory in [4] also makes use 
of the methods of [1]. 

Dated: March 21, 1950. 
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