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Transformations to Speed the Convergence of Series 1 

J. Barkley Rosser 2 

Numerical instances are given of the speeding of the convergence of series by the Euler 
transformation. This is even applied advantageously to certain divergent series, and a 
rigorous justification is given. An example is given of a series for which use of the Euler 
transformation is not useful. Instances are given of several less widely known methods. 
Finally, the method of summation by transformation into a continued fraction is illustrated 
successfully in the case of certain divergent series. The possibility of applying two different 
methods in succession to a given series is exploited throughout the paper, in spite of the fact 
that this often requires summing a divergent series. 

A remarkably useful such transformation is based 
on a formula due to Euler: 

(1) 

We shall refer to this as Euler's transformation. 
A purely formal derivation of this is as follows. 

Recalling that 

we write 

00 00 

~ anxn= ~ xn(1 +~)nao 
n~O ll~O 

1 

1 1 1 
= 1-x-x~ aO=I_x x ao 

1--- 11 
I - x 

1 00 ( x )n =-1 - ~ -1 - ~nao. 
-x n~O -x 

A rigorous derivation of eq 1 is given in [1],3 pp. 
62- 66. It is there stated that if the a's are all 
positive, then the right-hand side of cq 1 converges 
for every negative value of x for which the left-hand 
side converges. That this is not necessarily true 
for positive x is easily seen by taking X = 1 and 

1 
an = (n+ 1)2' 

Actually, it is clear that the right side of eq 1 is 
not likely to be an improvement over the left side 
unless x is negative and the a's are positive. In 
other words, the Euler Transformation might be 
expected to speed convergence only in the case of 
alternating series. However, for alternating series, 
the Euler Transformation is usually very helpful . 

The Euler Transformation is a special case of a 
more general transformation given by Markoff (see 
[9], pp. 178- 194). However, we confine our atten
tion to the simpler Euler Transformation. 

1 'rho preparation of tbis paper was sponsored (in part) by tho Office of Naval 
Research . 

2 Help in carrying out th e computations was furnished by Nancy M ann and 
Shirley Marks und er th e direction or Gertrude Blanch . 

3 Figures in brackets indicate the literature references at th e end or this paper. 

Applications of the Euler Transformation with 
x= 1 give 
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00 (_1)n - 1 
log 2 =~ -'--------'-------

7l~1 n 
00 I 
~-, 
7l~1 n2n 

7r '" (_1)n 1 '" n! 
4" = arc tan 1 = ~ -2n- +- l = 2 ~ -:-1-'. 3=--.-=5:--. -. -. ("'2-n-'+"---:-;-1) 

(2) 

One recognizes the right side of eq 2 as the expan
sion of -log (1-1/2) . 

An interesting variation of the Euler Transforma
tion is obtained as follows. 

00 N-l co 

~ anx n = ~ anx"+xN ~ am +Nx ffl 

7l~0 7l~O m=O 

Applying this gives 

00 (x)" N - l ( x)n 
log (1+x)=x~ -=--=x~ -=--

n=O n+l 7l ~ 0 n + l 

(3) 

(-X)N <X> ( X )m m! 
+ l + x ~o l+x (N+ 1)- ··(N+ m+ 1)' 

Taking N = 8 and x=1 gives 

We get 
1 1 

1-2 +", -8= 0.63452381. 

Also (see table 1), the terms inside the curly brackets 
add up to 0.11724674, and we get 

log 2 = 0.63452381 +~ (.011724674) = 0.69314718. 



TABLE 1. 

1 
-g 

1 1 
"2 g:w 
1 1· 2 

= 0.11111 III 

555556 

"4 9· 10 ·11 ~ 50 505 

ctc. 6313 

97 1 

173 

35 

8 
2 ' 

0.1l724674 

A more accurate value is log 2= 0.69314 71806. 
One of the great advantages of the Euler trans

formation is that it can easily be used for numerical 
computations even in ca es where one has only 
numerical values of the coefficients to work with; 
indeed, the computations arc very direct even in 
such cases, because only a simple differencing opera
tion is called for. 

A rather sensational use of the Euler transforma
tion is in connection wi th asympto tic series. We 
give an instance. 

We have for y> O 

j' '''~dt 
- yeYEi( - y)= t 

o 1+
y 

+f'" (_i)N+I ~ dt· 
o y l+i 

y 

(4) 

If the series within the square brackets were con
tinued indefinitely, it would diverge strongly. Thus 
it does not appear that the Euler transformation is 
applicable in the present case. However, let us pro
ceed formally to try to compute 

- 5e5Ei (-5) 

by use of the series alone. We get 

1 2 6 
1-5+25 -125+'" . 
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We have stopped just before the lea t term 24/625 
and if we add up the four terms shown the error is 
Ie s than the next term. That is , we get 0.83200 
with an error Ie s than 0.03840 . Oomparing with 
l1 more accurate value, 0.85211 , we see that our 
error is indeed less than 0.03840. 

Formally, we have neglected the term 

and properly so , since they begin to diverge rapidly. 
Nevertheless, let us now try to sum them by use of 
the Euler transformation, taking X= - 1, 

720 
a2= 15625 

etc. 

We readily form the differences of the a's numeri.
cally (see the appendix for some tricks for shortening 
the computation) and get 

ao = 0.03840 00000 

6oao= O.OOOOO 00000 

6o~a o =, 0.0076 00000 

603ao= 0.00307 20000 

60 4ao= 0.00645 12000 

605ao= 0.0076185600 

606ao= 0.0140697600 

607ao= 0.0260259840 

6osao = 0.05613 40416 

609ao= 0.131456041O 

i11oao= 0.3376621486 

i111ao= 0.9382363791 

i112ao =--= 2.806976761O 

i113ao= 8.98851 15364 

i114aO = 30.6682695734 

i115an = 11l.03898 71074 

, 



So the Euler transformation , if applied formally , 
gives the series 

10- 1°{1 920 00000 + 96 00000 - 1920000+ 2016000 

-11 90400 + 10 99200 - 10 16640+ 10 96368 

-1283750 + 1648741 - 2290616 + 3426485 

-5486152 + 93 59213-169 43205 + · .. } 

This is actually a divergent series, and the last 
terms listed are already increasing. Nevertheless we 
treat it like an asymptotic series, and add up all 
terms preceding the one that is numerically least. 
This gives 0.02016 04800. Adding this to the 
0.83200 that we had already, we get 0.85216 04800, 
which compares favorably with t,he more accurate 
value 0.8521l. 

We neglected the terms 

_lO- IO { 10 16640-1096368 + 12 83750-16 48741 

+ 22 90616 - 3426485 + 5486152 - 93 592] 3 

+ 169 43205 - · .. } 

liVe now apply the Euler transformation to these 
terms, taking x=-l, andao= 10 16640,a1 = 1096368, 

This gives 

-1O- IO {5 08320-19932 + 13457 -4372 + 916-1383 

+ 50-570 + 6 ... } 

This adds up to - 0.00004 96486 if we stop before 
the least term. Adding this to our previous value 
gives 0.85211 08314, which compares very favorably 
with the more accurate value, 0.85211 08814. 

The agreement with the more accurate value is 
experimental evidence that use of the Euler transfor
mation is justifiable even in the present case where 
the series diverges. Actull,lly, we can justify use of 
the Euler transformation rigorously for the present 
series. Looking at eq 4, we see that the remainder 
can be written 

(_ N)N+! 1:. ( '" (~)N+l e- t dt 
y 2 Jo N 1 +~ (~_ 1) , 

which can be expanded as 

- - - - e dt ( N)N+I{li "' (t)N+l -t 
y 2 0 N 

1 ("' (t)N+l(t )2 +'8 Jo N y-1 e-tdt-. 

(_ I )'1f ( "' ( t )N+l(t )M _t + 2M+1 Jo N y-1 e dt 
(_1 )~1f+ 1 ( "' (~)N+l(i_ l)M+l e- t dt} 

+ 2M +2 Jo N y 1 (t ) . 1+- - -1 
2 y 

If we put N =3 and y = 5, we easily verify that 

fa '" (~ )N+\~_l)M e-tdt = f,M ao . 

We then see that all differences of ao of even order 
are positive, and that if we stop with a term involving 
a difference of odd order, the error involved is less 
than the next term (which involves a positive differ
ence of even order). 

To justify a second application of the Euler trans
formation, we modify the remainder term given 
above as follows: 

- - -1 dt l "'( t )N+l(t )M+l e- ' 

o N y 1 +1:. (i._ 1) 
2 y 

= - - - -1 e dt 1i W( t )N+ l(t )JIf+l _t 

2 0 N y 

1 (W( t )N+ l(t )M+l(l (t ) ) -"4Jo N y-1 "2 y-1 -1 e- 'dt+ ··· · 

We can apply the Euler transformation to othel' 
asymtotic series with equal success. For instance 
we have 

1·3·5·7 1·3·5 . .. (2N- l) 
+ (2W~4 + .. . + (_ 2W2)N 

If we now write 

and expand 

1 
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w can ju Lify applying the Euler transformation to We fUld 
the asymptoLic series 

W' c i1pplied the E uler transformation to this seri es 
with w= 6 to compute a 20 decimal value of 

which was then cheeked by a different means of 
computation (see [3 ], p . 86). 

"rYe can usc the Euler transformation to derive 
AiTey' "Con verging Factor" (see [2]). In those 
ca es (as i1bove) in 'which we can justify using the 
Euler transformation on an asymptotic series, we 
are then afforded a means of justifying the use of 
Airey's "Converging Factor. " 

To sec how thi is don e, le t u write. 

(N - 1)! { . N N (N + 1) 
+(_y)N 1 L-y+ y 2 

_N(N+ 1)(N + 2)+ . .. }. 
y3 

Airey refers to the seri es in the cm-ly brackets i1S 
the "Converging FaoLor" and gives a pm-ely formal 
device for estimating a value of iL (Airey's es timate 
i justified in [12]) . W e will nolV show how to derive 
Airey's formulas by use of Lh e Euler Lran formation , 
whieh we have aheady shown 1,0 be justified fo), the 
present series . Vi( e write 

Th en the "Converging Factor " t!1kes the form 

( h) ( h) ( 1 - h) 2 1- 1--; {3+ 1-; 1+- v- (3 - .... 

W e now apply the Euler transformation with 
• x=- f3 , 

a l =( 1 -~) 

a2=( 1 - ~) (1+ 1 v h) 
etc. 
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~3 _ 2-3h h(1- h)(2 - h) 
0 0- - v-2 - v3 

etc. 

So usc of the Euler transformation gives us 

+ (_f3_)3 (2 - 3h h ( 1 - 1~P- h»)+ .. . }. 
1 + {3 /1 2 

1£ we rearrange this in powers of ] /v (such a rear
rangement n eeds jusLi-fication), we find tbaL it is 
identical with the formula on p. 526 of [2]. 

If we choose v= N, y = N, so thaI, 11, = 0, {3 = 1, Lha 
"Converging Factor" reduces to 

(5) 

with 0 1= 1, O2=-1, 03=-1, 0 4= ]3, eLc. Th e 
value of Lhe fir I, 22 0' arc given on p . 529 of [2]. 
Using the first 17 of these wiLh N = 5 we get Lhe 
followin g series for the "Convergin g Factor ": 

~ 1O -15 {1 00000 0000000000 + 50000000000000 

-2500000000000-125000000000 + 1250000000 

-146875 00000- 1140625000 + ]9]17 1 750 

-6566796 8- 30373047 + 168604590-9274 286 

+26 05 5+ 364 18569 - -295 53896 + 41 19945 

+ 154 50012-177 02724 + ... }. 

This series is probably divergent if carried far 
enough , but we sum it as if it wer e an asymptotic 
series and sLop just before the least term shown . 
This gives the valu ('O.52372086. Airey ge ts 0.52372 087 
(see [2] p. 529), but Lhe diffcr('nce of 1 uni t in the 
last place is likely due 1,0 diffeJ'('nces in rounding pro
cedure. This should be multiplied by 0.0384 and 
added to 0.832, which gives 0.85211 08810 as com
pared with the more accuraLe value 0.85211 08814. 

In [2], Airey applies the "Oonverging Factor" to 
various asymptotic cr ies without rigorous just ifi ca-



tion, but with great numerical success. By deriving 
the "Converging Factor" by means of the Euler trans
formation , one could justify its use in some of the 
cases given in [2], though there would still remain 
the problem of justifying various rearrangements 
made by Airey of the seriesin the "Converging Fac
tor." Some of these can be justified by the pro
cedure in [12]. 

Although we have seen that the Euler transforma
tion can be a,pplied in some rather remarkable situa
tions , nevertheless there are cases where it cannot 
be applied. In particular, for nonalternating series 
(for instance, when x and the a.'s are all positive in 
(1)), it is of almost no use. However even for alter
nating series it occasionally fails, and we will now 
give an alternating series for which it is of no value 
whatever. 

Le t us expand 

(1 dx 
Jo 1 +X2 

by the Euler-Maclaurin sum formula (see [4], p. 128) 
using an interval of length unity. We first need the 
values of the derivatives of 

1 
l +x2 

of odd order evaluated a.t 0 and 1. At 0, the deriva
tives of odd order are zero . To get the values at 1 
we write 

1 1 (1 1) 
1+x2= 2i x-i- rti 

(-l)"n!) 
(x+i)n+1 

(_l)nn! {( + ')"+1_( _ ')"+I} 
2i(1 +x2) n+ 1 X 'l. X 'l. . 

Putting x=l and recalling 

we get 

So 

Substituting in the formula 

lIF(x)dx =~ F(O)+~ F(1) 

+ ~ (-l)m~m {F (2m-I )(1)-F(2m-I )(0) }+Rn• 
7n ~ 1 (2m). 

(see [4], p. 128, with w= l, r=l) we get 

11 dx 3 n-l (- l)mBm . lI'm 
1 + 2=-4-~ 2m +1 sm - 2 +Rn o x m~O m 

3 8-1 B2r+ l ( -1)' 
= "4+ ~ (2r + 1) 4T+1 +R2s 

3 1 1 1 1 
= "4+ 24 - 2016 + 4224 -1536 

43867 77 683+657931 
+73 54368 565248 98304 

···+R. 

This is certainly an alternating series. However, 
the partial sums do not lie alternately above and 
below the true value. In table 2 we have given the 
terms of the series with the partial sums to the right. 
If we try to improve the value by use of the Euler 
transformation, we get 1O-5 (79117 + {12-10+ 61-
758+· .. }), which is certainly no better. 

TABLE 2. 

Series Pal'tial sum s 

+0. 7.5000 0.75000 
+ 4167 . 79167 

-50 . 79117 
+24 .79141 
-65 . 79076 

+596 .79672 
-0. ]3743 .65929 
+6.69282 7.35211 

'frac v.Jue . .. . . O. 7854 

As indicated, the Euler transformation is valueless 
for speeding convergence of a nonalternating series. 
Occasionally one can use a trick to transform a non
alternating series to an alternating series. Thus the 
formula 

• co 1 co (_l)n+ 1 

~ 2=2 ~ 2 
n~l n n~l n 

enables us to get a value for 

i:; -; 
n ~ 1 n 

by (indirect) use of the Euler transformation . How
ever, in general such tricks are not avaiJable. 

Fortunately the Euler-MaclalU'in sum formula is of 
great value for summing many nonalternating series . 
For instance, by use of the Euler-MacLaurin sum 
formula (see [4], p. 128) we prove that for m?: 1,8>1, 
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-----------------------------~ 

'" 1 '" 1 m '- s Tf~ -s 
~ S=~ S+---

71 = 1 n 71 = 1 n 8- 1 2 

_ " 8(8 + 1) . . . (8+21'-2) (-lYB,. 
f;;1 (21')! m2r +s - 1 

The series on the right is divergent, but it is an 
asymptotic series, and by taking m large compared to 
8, considerable accuracy can be obtained, which can 
be further increased by applying the Euler trans
formation to the asymptotic series. Thus, consider 
the ca e where 8=2. We have the well known result 

'" 1 7["2 
~ -'=-6 = 1.6449340668. 
71= 1 n-

Even with m as small as 2 we get 

111111 1 5 
1 +4"+2"-8+ 48 - 960 + 5376 - 15360 + 135]68 

691 7 3617 + 43867 
22364160 + 196608 - 66846720 4183 1824 

1 74611 854513 
- 6920 60160 + 11576 27904 

Thi is divergent, but if we sum all terms before 
the least, which is 

. 691 
223 64160' 

we get 1.64495 as compared to the more accurate 
value 1.64493. If we now apply th e Euler trans
formation to th e terms neglected, we get th e series 

- 10 - 1°{l5 4488 - 11765 + 17249-11523 

+ 1438 9-2049 3 + ... }. 

Doubtless this diverges, but if \\Te sum all terms 
before th e least, we get 1.64493 36 as compared with 
the more accmate value 1.64493 41. Another use of 
the Euler transformation on the terms n eglected 
above gives fmther improvement. 

In [5], Bickley and Miller give a m ethod for deal
ing wi th series Lan in which 

(6) 

In those cases in which an is a differenl/iabl e func
tion of n, one can treat such series by the Euler
Maclaurin sum formula , and usually one gets the 
sam e approximation as would be given by the 
Bickley-Miller method. 

In the Bickley-Miller method, on e writes 
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Then one tries to determine constanLs CL I , ao, aI , 

. . . so that 

S-Sm = am {a_Im+ao+ ~+ ;22+ ... }. (7) 

In general, this is impossible, since the se ri es 

will be divergent for each m. However, usually this 
series is an asymptotic series, so that for large m 
great accuracy is attainable. 

T o determine the a's, we proceed formally as 
follows. By eq 7, 

S-Sm_l = am _l{ a _l(m- l )+ao+ mall 

+--+ .. .. a2 } 
(m- 1)2 

Subtracting eq 7 from this give 

a", = Sm -Sm - l= am_1 {} -am {} . 

However , by eq 6, 

Substituting this and factoring out am-I and dividing 
by m gives 

+ ... - 1- - + -+··· a _ + - + . .. . ( A I A 2 ) { ao } 
m m2 I m 

If we now expand 

1 1 l' 1'(1'+1) 
m(m-lY= m,+1 + l!m, +2 + 2!m r+3 + ... 

and equate powers of~, we can determine the a's. 
m 

Indeed we have 

etc. 

a_I(AI- 1)= 1, 

(ao+1)AI= a_ IA 2, 

al(AI + l ) = (ao + 1)A2+ a_ I A 3, 

(Note error in sign in formula (12c) on p. 757 of [5]). 
If \ve apply the Bickley-Miller m ethod to the series 

'" 1 
~ s' 
71= 1 n 



we get the same expansion that is given by the Euler
Maclamin sum formula (see above). Bickley and 
Miller do no t apply their method to any series of 
interest that cannot be handled by the Euler-Mac
lamin stun formula , but they indicate how such series 
might arise. Bickley and Miller do not give a rigor
ous justification of their method, but Szasz (in [10]) 
has discussed the conditions under which one can use 
at least the term (X _ 1m in eq 7 for a first approxima
tion to S. It would be very helpful to have a general 
treatment of the conditions under which the Bickley
]Vliller method can be used. 

In [7] and [8], Stieltjes gives some interesting ways 
for estimating the error in certain well known 
asymptotic series. However, his methods are rather 
special, and can hardly be applied to series at random. 

We tmn now to what is perhaps the most widely 
applicable method that we know. This is the 
method of transforming the series into a continued 
fraction. 

Let us retmn to the example given above in which 
we got an approximation for 

00 1 
2: 2 
n=l n 

by the Euler-Maclaurin sum formula. We had a 
divergent series, of which we neglected all terms 
beginning with the least. Let us now try to find a 
sum for these neglected terms by transforming them 
into a continued fraction. To \vTite them as a 
continued fraction, we first consider the series 

{ 691 1 7 1 3617 1 
- 223 64160 ;- 1 96608 Z3 + 668 46720 Z5 

43R67 1 1 74611 1 
4183 81824 z7 +6920 60160 Z9 

8 54513 1 } 
-11576 27904;0+'" . 

Transforming this into a continued fraction by the 
procedme given on pp. 196 to 202 of [6] we get 

ao a] az a3 
z+z+z+z+ ... 

with the coefficients 

ao = O.OOOO 30897 65053 

al=1.1523 15485 

az=0.3674 32414 

a3 = 1.728891714 

a4 = 0.8615 52894 

a5= 2.427331997. 
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(Our a's after ao are taken to be the negatives of those 
defined in [6]. Due to a gradual loss of significant 
~gmes, the final digits of our a's are increasingly 
maccma te. ) 

We then put z=l, and use the resulting continued 
fraction to computc an estimate for om remainder 
(which, by subtraction from the known sum of the 
series should come out to be -0.0000154985). The 
successive convergents are: 

-0.00003 08977 

- 0.0000143555 

- 0.0000167677 

- 0.00001 5~294 

- 0.0000157006 

- 0.00001 54620. 

We note the characteristic con tinued fraction be
havior of the convergents in that they are successively 
above and below the true value, and monotonely 
approach the true value from above and below. 
Already the sixth convergent gives a value correct 
within less than 4 in the eighth decimal place, and it 
seems very plausible to conjectme that later converg
ents will continue to come ever closer, in spite of the 
fact that it is a divergent series that we are trans
forming into a continued fraction. This is a no t 
uncommon phenomenon with continued fractions ' in 
fact this is the basis of the Stieltjes method for sl{m
ming asymptotic series. In [6] on pp . 349 to 361, p . 
365, p. 367, and pp. 372 to 373 are given many 
examples of convergent continued fractions, which 
are the formal equivalents of divergent asymptotic 
series, including some that resemble very closely the 
series with which we are dealing. 

Note that we used only odd powers of z in our series 

{ 691 1 } 
- 223 64160 ; -'" . 

This has the effect of greatly reducing the labor of 
finding the corresponding con tinued fraction (in the 
notation of pp . 196 to 202 of [6], all the b's will be 
zero). 

For an additional instance of the use of continued 
fractions , let us recall the series for the "Converaing 
Factol," which we had earlier. We used all te~'ms 
preceding the least, leaving several terms unused. 
Let us now try to attach a value to these unused 
terms by transforming them to a continued fraction . 
To avoid difficulties with the continued fraction 
expansion, we start with the term after the least. 
We formally transform the series 

-21 1 0 -15 { 3 64 18 5 6 9 29 5 5389 6 + 41 1 994 5 
z Z3 Z5 

+ 154 50012 
Z i 

177 02724+ ... } 
Z9 



into a conLinu ed fraction 

getting 

ao= 0.00000 00182 09284 

a l = 0.811 50 624 

a2 = - 0.67210 178 

a3= 0.80673 455 

a4= 0.02419 198. 

Because one of the a 's is negative, we no longer get 
th e familiar performance of the convergents. Never
theless, they are apparently converging to the true 
value 0.00000 00078 69 ince they arc 

0.00000 00182 09 

0.00000 00100 52 

0 .00000 00052 40 

0.0000000079 44 

0.00000 00079 16 

r espectively. Using the last, we get a value of 
0.85211 0881425 for -5e6Ei( - 5) as compared with 
the more accurate value 0.85211 08814 237. 

One other remarlzable usc of continued fractions 
is given in (11), wh ere the asymp totic series 

is converted into the continued fraction 

1 2 4 6 8 
2w - 2w - 2w - 2w - 2w -

This continued fraction was used to compute por
t ions of a table (see Section 26 of [11]) in spite of the 
fact that the continued fraction is likely divergent 
due to th e fact that occasional convergen ts will have 
('xtrem ely small denomina tors. However, as shown 
by th e estimates in Section 8 of [11], when ever we 
have n, convergent with a large denominator , this 
convergent is a close approximation to th e valll e of 
the function. 

In closing, we migh t remark tha t some of the 
transforma tions studied in th eories of summab ility 
are occasionally u seful to speed convergence . Thus 
Lhe ll se of Riesz sums, 

wh ere the "A m arc increasing positive n umbers, i 
. orne Limes helpful in est imat ing Lhe urn of an al ter
nating series of which 8 m arc the partial ums. 

Appendix. Methods of shortening the 
computation of t,."'ao' 

In an eadier draft of this appenclix"ve se t forth a 
scheme for shortening th e compuLation of ll"' a o. 
Upon r eading thi s earlier draft , Prof. J. C. P. Miller 
proposed th e following very ingenious sch em e for 
computing llmao. 

In the text , we put 

720 
a2 = 15625' 

etc. 

and w ished to compute ll"'a o. To do this more 
qui ck ly, we write 

where N = 5 and 

ao= l, 

al=l, 

aa=( l+~)( 1 +~} 

a4= ( l+~)( l+~)( 1 +t} 
etc. 

Then 

(N - l )! A m 

(_N)N - l '-' a n· 

So we seck a formula for ll in a n. 

Actual sub traction g ive 
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Then we prove by induction on m that 

Am+ l _ n+mAm +m Am- 1 
u an-~u a n Nt..> an· 

Putting n = O gives 

/::,.m+ lao = ";J (/::,.ma o+/::" n,- lao). (A) 

Then 

R ecalling that it is actually 

that we seek, we write the simple recursion 

Using this, we r eadily compute numerical values of 

In our earlier scheme, wc had expressed /::,. m ao as 
a polynomial in (l iN), and listed the following re
sults (which can easily be vcrified by use of eq A): 

L).O'a = O 

,63 
L). O'a =N3+N2' 

120 130 15 
L).6a o= N5 + N' + N3' 

720 924 ...L 210 
L).7O'a= N0 + N0 I N4' 

5040 + 7308+ 2380 + 105 
L).8O'a = N7 N6 N5 N' ' 
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11 _ 36 28800 + 66 36960 + 36 78840 + 7 05320 + 34650 
L). 0'0- NIO N9 N8 ]1,17 N 6 ' 

39916800 + 76998240 + 473 24376 + 11098780 
N il NIO N9 N8 

+ 866250 + 10395 
N7 N0 ' 

13 _ 479001600 + 9675 24480 +6475 36032 
L). 0'0 - NI2 N il Nla 

+ 1773 31440 + 188 58840 + 540540 
N9 N8 N7' 

62270 20800 + 1 30967 36640 + 94189 45536 
N I3 N 12 N lI 

+ 29205 25608 + 3894 49060 + 182 88270 + 1 35135 
NIO W W ~' 

AI 5 _8 7178291200 + 190060335360 , 145410580224 
'"' 0'0- NI4 NI3 T NI2 

+ 49952862960+ 7934927000 ..l.. 5200 59540+~~ 59450 . 
Nil NIO I N9 N8 
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