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A Sampling Method for Determining the Lowest
Eigenvalue and the Principal Eigenfunction of

Schrédinger's Equation’

By M. D. Donsker and M. Kac

This is a preliminary report on a sampling method for finding the lowest eigenvalue

and the corresponding eigenfunction of Schrodinger’s equation.
the procedure is explained and two cases treated numerically.

The theory underlying
Although the initial results

are encouraging, more experimentation will be needed to fully test the practicality of the

method.

I. Introduction

Certain problems leading to complicated partial
or integro-differential equations have recently been
approached and some actually solved by utilizing
various probability techniques and sampling
methods. Collectively these methods have be-
come known as the “Monte Carlo” method.

The problems to which Monte Carlo techniques
have been applied seem to be divided into two
types. Typical of the first type is the problem of
neutrons diffusing in material media in which the
particles are subjected not only to certain deter-
ministic influences but to random influences as
well. In such a problem, the Monte Carlo ap-
proach consists in permitting a “particle” to play
a game of chance, the rules of the game being such
that the actual deterministic and random features
of the physical process are step by step exactly
imitated by the game. By considering very large
numbers of particles, one can answer such ques-
tions as the distribution of the particles at the end
of a certain period of time, the number of particles
to escape through a shield of specified thickness,
etc. Omne important characteristic of the preced-
ing approach is that the functional equation de-
scribing the diffusion process is bypassed com-
pletely, the probability model used being derived
from the process itself.

A more sophisticated application of Monte

1 The preparation of this paper was sponsored (in part) by the Office of
Naval Research.
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Carlo methods is to the problem of finding a
probability model or game whose solution is re-
lated to the solution of a partial differential
equation, or, as in the present paper, to determine
the least eigenvalue of a differential operator by
means of a sampling process. As an example of
how the latter problem might be attacked, we
quote from a paper of Metropolis and Ulam: ®

“For example, as suggested by Fermi, the time
independent Schridinger equation

A¢ (I,ZI,Z) = ()\— V) d)(.’l?,y,Z) 3
Reintroduce time

could be studied as follows.
dependence by considering

u(@,y,2,t) =¢@,y,2)e™;
then,  will obey the equation

%=Au——Vu.
This last equation can be interpreted, however, as
describing the behavior of a system of particles
each of which performs a random walk, i. e.,
diffuses isotropically and at the same time is
subject to multiplication, which is determined by
the value of the point function V. If the solution
of the latter equation corresponds to a spatial

2 N. Metropolis and S. Ulam, The Monte Carlo method, J, Am, Stat.
Assn. 44, 247, pp. 335 to 341 (Sept. 1949).
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mode multiplying exponentially in time, the ex-
amination of the spatial part will give the desired
¢(x,y,2)—corresponding to the lowest ‘eigenvalue’
)\'” 3

The main purpose of the present paper is to
present an alternative method for finding the low-
est eigenvalue and corresponding eigenfunction of
Schrodinger’s equation.  The chief difference be-
tween the two approaches is that ours involves
only a random walk eliminating entirely the
multiplicative process. This alteration in the
model seems to simplify the numerical aspects of
the problem, especially if punched card equipment
is to be used. Apart from the possible numerical
simplification, the method is based on a mathemat-
ical theory that in itself is of some interest.

II. Mathematical Theory

Let X, Xy, X, . . . be independent identically
distributed random variables each having mean 0
and standard deviation 1 and let S,=X,+ X,

. +X,. Under certain general assumptions
on V(x), the most severe of which is that V(z) be
nonnegative, it can be shown * that the limiting
distribution function o(e,t) of the random variable

1

a2V

n k<nt (1)
is such that

J; [ et wi= | v, @

where y(z) is the fundamental solution of the
differential equation

L&Y c+V@w=0, 3)
subject to the conditions
y@)—=0 ot

W @) | <M
Y (+0)—¢ (—0)=—

The fundamental solution ¥ (z) of (3) is expres-
sible in terms of the normalized eigenfunction

z7#0

3 We have since learned that Dr. G. W. King has made similar calcula-

lations using a closely related method.
41 M. Kae, On distributions of certain Wiener functionals, Trans. Am.

Math. Soc. 65, 1 to 13 (1949).
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{(50]-(.1')} and eigenvalues \; of the one-dimensional
Schrodinger eigenvalue problem °

1 d*y

5 g — V@¥@=— A>0 “)

as

Y@= 2%%_® 5)

Thus from (5 and 2)

f_m zl/(x)dx::ﬁ J; e d o (a,t)dt

O [ s
:; stN '

Inverting (6) with respect to s we get,
[["etart@t = w,0 [~ vs@ds, @
- J —

and therefore we obtain the expression for \j,

M=lim— log f e—odo (o). ®)
t—w 0
If in (7) we neglect all terms in the expansion
but the first, we obtain

log ﬁ " edyo () ~1og§ ¥1(0) f 7 <x>dx§ =

or

1@¢mj'w@@}

M~ —

% logf f e *dyo(a,t).
i 0
(9)

Thus, if, by choosing a finite £, we attempt to cal-
culate \; from (8), we have two sources of error.
The first, usually a small source of error, is from
the exponentials neglected in the expansion (7).
The second, and more important, is from neglect-

ing the term (1/5)log {%(0) f m¢1(x)dx}- This
latter source of error is especially significant, since,
as will be apparent shortly, it is impractical from
other points of view to take ¢ very large. All of
this difficulty may be obviated by considering (7)
for two distinet values of ¢, say t, and #,, then, if

s From here on all the steps are formal. In all cases of physical interest
they can be justified rigorously.
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we neglect the exponentials after the first as before,
we get on dividing

J‘m e a0 (a,t)
0 B

N e lop it :
[ e~ o (a,ty)
Jo

o (10)

The Monte Carlo process consists in the calcula-
tion of a(a,t;) and o(et;) by a sampling process.

If instead of o(a,t) we consider the limiting dis-
tribution o:(e,t) of the random variable

n k<m ( L SA > (1)

then o:(et) also satisfies (2 and 3), but now the
condition ¢/ (+40)—y¢/(—0)=—2 1is replaced by
Vv (¢+)—y¢/'(§—)=—2. Therefore, repeating steps
(4 to 7), we get

J el =32 () fw v,@de. (12)
0 J =0

Thus

) . J““’ (’,”"(/ao'g(a,f)
—lim -

12
2 ] (13)
Cil0) e [' e d o (at)

so that we are also able to calculate the principal
eigenfunction.

The extension of the preceding method to multi-
dimensional Schrodinger equations is immediate.
It is in these cases that the method will probably
prove to be most useful since, unlike the standard
variational procedures, the extension to several
dimensions seems to cause comparatively little
difficulty. For illustrative purposes we will con-
sider Schrodinger’s equation in three dimensions.
Here we must consider three independent
sequences

X X Xy

Zi iz ez,
)1,)2,}3,...,
v SRR D

of independent identically distributed random
variables each having mean 0 and standard devia-
tion 1. Let Su=X,+X,+ + X, and Sy,
S.. have the obvious meanings. We consider
the limiting distributions o(a,?) and o (e, & 1, , 1) of
the random variables
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1 ‘L;rl\ S;/I zA
e )

\IL \71 \II

and
1 Six Syk Sz
R R )
k<nt Vn v IL Y H
respectively.

In exactly the same way as in the one dimen-
sional case, we arrive at
f e o (a,ty)
0

1
)\1’\‘t Wf log 3 © b
S ﬁ e dqo(a,ly)
!

and

[ e “dao (a,&,n,(,1)

. 0
=lim = =

e o (a,t)
0

So far, the theory was carried out under the
assumption that the potential function V' was
nonnegative. In most cases of physical interest
this is mnot so. For the hydrogen atom, for
instance

const.

Vy,2)=————
V& Y+ 2
However, the modification is easy, although we
have not as yet cleared up all the points of math-
ematical rigor.

The formula for
becomes

the lowest eigenvalue now

0
1 [‘ e o (a,ty)
MN{ - log * ,m ,
21 _
I‘ e "(/,,o’(a,lg)

and a corresponding modification needs to be
made in the formula for the principal eigenfunc-
tion. We have not yet tested numerically any
case with a negative potential function, but we
hope to be able to report on this in the near future.

III. Numerical Examples and Discussion

The Monte Carlo procedure used here consists
in the calculation of the distribution function
o(a,t) by a sampling process; the principal eigen-
value is then calculated from (10). For the pur-
poses of numerical illustration we consider two
examples, V(z)=2* and V(2)=|z|. In both of
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these cases the eigenvalues are known, and hence
we have a check on the accuracy of our procedure.
In order to calculate o(a,t), say when V(z)=2?
we see from (1) that we must consider the limiting
distribution as n—> « of

Z (14

k<nt

This means from our point of view that we
must (a) choose a distribution for the X’s, (b)
choose a sufficiently large n, (¢) select an appro-
priate ¢, (4) calculate for nt X’s the normalized
sum (14), (5) repeat (4) many times, so that the
empirical distribution may be obtained from these
many samples.

Although, under the conditions mentioned
previously, the distribution function o(a,t)
independent of the distribution of the X’s, the
actual numerical calculation of o(a,t) is expedited
by choosing the distribution of the X’s to be the
Bernoulli distribution, i. e.,

PX=1)=P(X=—1)=5
The sequence of random variables X, X, Xj,
. is then a sequence of +1’s and —1’s, such
as might be obtained in coin tossing. This is
conveniently and rapidly achieved on a calculat-
ing machine by considering sequences of random
digits, counting even digits 41 and odd digits —1.
The value of 7 to be used must be large enough
so that the empirical distribution function cal-
culated is close to the theoretical limiting dis-
tribution function o(eyt). From (10) we see that
the two values of ¢, ¢, and #,, to be used in the
calculation of X must be large enough so that the
exponential terms neglected are sufficiently small.
However, since the sample size is nt, the desire
to make both 7 and t large must be tempered by
practical considerations. The number of samples
to be used must be large enough so that the
empirical distribution adequately represents o(a,t).
Before discussing these points in more detail we
consider an actual numerical computation. The
following data for V(z)=2* and V(z)=|xz| were
calculated from a certain set of random digits ®
on the IBM Electronic Calculating Punch, Type
604. For both 22 and |z| n was selected to be 400,

6 This 'set of random digits was prepared by the RAND Corporation,
Santa_Monica, Calif.
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ty=>5, 1,=3.75, and 100 samples were used. In
table 1 is tabulated

1 1500 1 2000

A=ga00 2 S, A= SOOOZIS"I’

1 1500

D
e 160000 E S¢, B= 160000 2 O

Since each raxDp random number card contains
50 random digits, and 2,000 digits are needed to
form one sample, a set of 4,000 RaND cards was
sufficient for this experiment. It takes 20 min-
utes on the IBM 604 to calculate A, and A; for
one sample (similarly for B, and B,), so that it
takes approximately 35 hours to secure the follow-
ing data.

TaBLE 1.  Experimental data for lowest eigenvalue
Ay Az B By

1 1.332 | 2101 | 0.738 | 1.200

2 3.808 | 5707 | 5.295 | 8.502

3 2.795 | 5.545 | 3.460 | 9.610

4 8.723 | 13.917 | 30.722 | 52.616

5 4169 | 4.766 | 6.123 | 6.602

6 1195 | 2136 598 | 1.453

7 6.674 | 12.112 | 15.258 | 30.058

8 4103 | 5242 | 5.82%6 | 7.004

9 5751 | 8.840 | 10.440 | 18.143
10 4.250 | 4.981 | 6.069 | 6.679
11 2,009 | 5.643 | 3.844 | 10.044
12 2.834 | 3.416 | 3.602 | 4.097
13 1.888 | 2194 | 1595 | 1.700
14 2,022 | 2337 | 150 | 1638
15 1680 | 3.908 | 1.184 | 5289
16 7.700 | 12.712 | 24.769 | 44.936
17 3.228 | 4.973 | 3.563 | 6.145
18 1.844 | 2.654 | 1.523 | 2183
19 2.376 | 5215 | 2.017 | 8.854
20 4.533 | 5640 | 6.38 | 7.616
21 4200 | 7.543 | 7.735 | 16.703
22 3.847 | 5590 | 6.666 | 9.204
23 5206 | 6.314 | 9.148 | 10.600
2 1.962 | 2608 | 1.859 | 2.923
25 3.523 | 4.807 | 5084 | 6.482
26 3.605 | 5.397 | 5014 | 7.680
27 9.168 | 13.692 | 27.973 | d44.461
2 5625 | 7.898 | 11.528 | 16.010
29 3.215 | 4152 | 3.362 | 4170
30 3.203 | 3.972 | 4136 | 4.677
31 2.710 | 3.683 | 3.006 | 4.025
32 3.638 | 7.3%6 | 6.114 | 17.413
33 7.928 | 11.567 | 25.084 | 36.001
34 3.475 | 3.846 | 4.306 | 4.550
35 1.958 | 2594 | 1.457 | 1.948
36 535 | 7.216 | [8.888 | 11.781
37 3.207 | 6.35 | 3.800 | 11.555
38 1.883 | 2682 | 1.387 | 1.995
39 4.849 | 10.020 | 8396 | 30.233
40 2.282 | 3.067 | 2258 | 2.882
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Tasre 1. Experimental data for lowest eigenvalue—Con. Inordertocalculate N from(10)weneed the values

= s
i % B - ofﬁ e dyo(at) andf; e ?dq0(aly). Both of these
integrals were calculated numerically from the
41 4.253 6.957 6. 744 13. 502 : . .
v B s gt 6 ot ey i data. in Fable 1 by qddmg the exponentials of the
43 1.122 | 2.587 . 500 2.634 entries in appropriate columns. For the case
44 1.433 3.602 . 869 4. 855 o . .
y & oy gl L B V(z) =|z|, the values of the integrals were obtained
100 100
46 1677 | 3.158 1.025 | 3.341 from 1/100 Ze*“‘i and 1/100 Z e~ and for V(z)
47 5.145 9. 697 11. 941 28. 826 = J=1
48 4.982 9.140 9.201 | 23.092 100 100
49 1675 | 2152 | 1129 | 1.472 =z*from 1/100 > e % and 1/100 2 e7#. In the
50 1. 580 3.375 1.147 3.807 ! =1
case V(z)=|z| the true lowest eigenvalue to two
51 2. 606 3.621 2.254 3. 247 . - > P =
52 4.303 5.883 7.987 10. 104 places 1S 081, and m the case 1/ (11') =221t IS\/2/2:
53 7.553 12.092 19. 632 36. 427 0.7 1 .
54 3.138 5.703 3.968 9.325
55 3.343 4.327 4. 264 5.380
56 1. 423 2.315 0.770 1. 533 | ¥ |
First 50 Second 50 All 100
57 7.996 | 11.458 | 21.405 | 31.585 samples } samples ' samples
58 1.916 2.744 1. 253 1. 959 | | e
59 1. 490 2.161 0.789 1. 404 [ |
60 3.536 5.382 4.125 7.461 [1.| 0. 83 | 0. 79 0. 81
2 5
61 6. 27 11. 060 16.187 34.779 & - 80 69 75
62 1174 | 1709 | 0.573 | 0.919 [zl
63 5. 272 9.919 10. 463 27.825
64 3.576 5.277 6.021 8.707
65 | 2.686 | 5081 | 3.577 | 8.307 An interesting feature of the data is that column
66 6. 166 8.785 14.056 19. 627 ]32, fOl' example, may b() thoughtr Of as &I'ising from
ST | L2 GO Ras R 0- 096 | ST L 52 n=2000, t=1; n=1000, =2, etc., as well as from
68 1.732 4. 664 1.170 8.720
69 om0 | 490 | 240 | 6630 n=400, t=>5. The larger we take n, the closer
70° - 1881 15 2.772 ) S0.765. [ 2,642 will be the empirical distribution to o(e,f). The
¢
71 3. 668 5.318 5.730 8.001 —a . 2o %
- bt (e oAy SR value ofﬁ) e *d.o(a,t) in the case t=1, and V(z)
73 5. 279 8.931 12. 455 23. 513 *
i | 11ieme | a5irse |- alidse | s 525 =ux? can be calculated exactly and, to three places,
75 2183 | 2,787 | 2,086 | 2.455 is 0.678. Calculating this integral from column
76 4208 | 7.427 | 0.139 | 17.157 B, with n=2000, t=1, we get 0.685.
_7; ; 3(1; : ’:i_’f ‘]’ Z‘:; ; ;‘2’2 Instead of using Bernoulli distributed variables,
7 h . 567 = 5 : " 6 z k
79 2.619 | 3.780 | 2,081 | 4.205 one might use other distributions. One definite
e 2:0950 | CION IR 207 R 01 advantage of Bernoulli distributed variables is
81 4.706 | 6.672 | 8.330 | 11487 that the computation utilizes only the crudest
o e a5 R B roperties of the random digits, i. e., whether the
83 1.755 2.099 1.066 1.207 2 i
84 2.08¢ | 2.876 | 1735 | 2.504 are even or odd. One possible advantage for cer-
s S | e S LS tain other distributions is that n» might not have
86 | 5.818 | 10.444 | 13.322 | 30.522 to be taken so large. In particular this should
87 4.387 7.844 9.037 18. 695 . . . . .
e S e SR be true if we use Gaussian distributed variables.
89 7111 | 13.311 | 19.834 | 50.822 rRAND Gaussian deviates were used in constructing
90 6.280 | 8.548 | 13.403 | 17.587 ; ;
table 2. Here we chose t,=3.75, t,=5 as before,
g; gsgg ggig g :?‘; lggfg but now n=100. This means samples of size 500
- s . 86 A Y, ¥
93 3.608 | 4.697 | 4.256 | 5.357 instead of 2000 and therefore a total machine
g; gzzz ‘;gg‘; ; 3;; 2 i;i computation time of 9 hours for 100 samples.
Envisaging the possibility of calculating the
- Rt s b e second eigenvalue, we considered the quantities
97 4108 | 5282 | 5918 | 7.374 g s q
98 4.355 5.744 7.774 10. 223
99 1.898 | 2.661 | 1507 | 2013 L L
100 | 9.683 | 17.15¢ | 3583 | 80.543 1074 >3 (Sk+5)2and 107% >3 (Sp+5)%, (15)
k=1 k=1
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TABLE 2.

O e W N

- o

© 00

11
12
13
14
15

21
22
23
24
25

26
27
28
29
30

31

33
34
35

36

38
39
40

41
42
43
44
45

46
47
48
49
50

51
52

54
55

Ezxperimental data for second eigenvalue
|
Cy C G C:
3.963 | 13.997 || 61 | 49.920 | 84.307
2.348* | 2.721 |[ 62| 3.095 6.220
1.889* | 2.251 || 63 | 2.585* | 3.867*
3.817* | 4.372* || 64 | 1.318* | 1.906*
2.395 2.802* || 65 | 2.241* | 9.102*
12.467 | 27.683 |[ 66 | 9.737 | 12.185
1.068* | 1.115% || 67 | 9.738* | 11.347*
0.578% | 0.967* | 68 | 4.604 5.589
1.504* | 1.760 || 69 | 20.364 | 29.707
4.249 9.787 || 7 1.097* | 1.895%
1.751* | 3.316* || 71 | 5.891 | 13.391
9.922 | 13.975 || 72| 9.019* | 12.815*
5. 680 6.640 || 73 | 1.843 6.280
3.348 4.684 || 74 | 7.961 | 11.451
13.431 | 24.769 || 75 | 1.109 1.926
1.473* | 2.615% || 76 | 2.417* | 3.037
45.262 | 74.304 || 77 | 2.402* | 2.797*
1.157* | 3.109 || 7 2.043* |  4.214*
0.906* | 3.644* || 79 | 0.582% | 0.752
4.601 | 12.641 |[80 | 2.429 4.381
8.356* | 13.084* || 81 | 8.584 | 13.054
0.308* | 1.874* || 82 | 2.793* | 4.659*
2.111* | 4.428* || 83 | 1.557 5.023
2.035* | 2.726 |/ 84| 1.006* | 1.677*
1.625% | 3.808 || 85 | 5.327* | 15.531*
1.879* | 5.713 |[ 86 | 2.058 7.307
1.533 8.961 || 87 | 12.481 | 12.803*
1.769 2.319% || 88 | 0.925* | 2.403
1.906% | 2.417* || 89 | 15.519 | 19.879
7.522 7.979* || 90 | 1.456* | 4.009*
14.934 | 15.493* || 91 | 5.244 | 10.047
4.282% | 13.747* || 92 | 2.497 2.931
1.356* | 2,718 || 93 [ 16.700 | 17.382
4. 448 8.320 || 94 | 4.471* | 8.156%
1.306* | 2.112* || 95 | 2.139* | 2.580*
5.465* | 12.396* || 96 | 1.196* | 2.273* |
2.918 9.006 || 97 | 23.014 | 28.420
35.821 | 56.626 || 98 | 6.959% | 7.022*
9.814* | 11.707* || 99 | 3.374* | 8.651*
1.811 4.628 ||100 | 1.600* |  2.250*
3.374 6.460 |/101 | 4.626* | 7.794*
1.633 6.578 [|102 | 5.195% | 10.215*
6.976 8.705 |[103 | 6.837* | 12.160* |
7.505 | 13.096 |[104 | 1.913 4.412%
2.336 2.862 |[105 | 2.276* | 2.770
1.931% | 2.579* |[106 | 1.935* | 3.983*
4.507* | 8.294* |[107 | 3.560 5.808
8.581* | 11.301* ||108 | 2.857* | 7.384*
4.698* | 8.220* |[109 | 3.399* | 4 484
10.154 | 16.884
110 | 6.917* | 27.107*
8.828 15.387 |[111 | 38.661 | 56.479
0.997* | 1.604* 112 | 1.891 2.000*
8.582 | 12.838 |[|113 | 8.506 9. 646*
2.730* | 3.249* [|114 | 4.209 | 10.461
10.471 | 13.140 |[115 | 33.194 | 44.247
1.456% | 1.845* [|116 | 0.869* | 1.289
8.230* | 11.924* [|117 | 3.946 | 15.204
5.515* | 8.146* ||118 | 1.680* | 2.995*
2.202* | 3.182* |[119 | 8.178* | 9.056
2.129* | 9.650* I120 | 27.621 | 51.650

TasLe 2.  Experimental data for second eigenvalue—Con.

|
(o)} C Ci C:

121 8.444* | 15.836* ||161 3. 546 4.040*
122 | 13.254 16.467 ||162 1. 238* 2.304*
123 1. 755* 5.246* |/163 0.975* 1.283

124 | 36.902 70.134 ||164 1. 980 3. 659*
125 7.567* | 18.553* ||165 | 14.620% | 17.565*

126 | 14.725 38.551 (166 2.378* 2.865

127 0. 983* 2.572 ||167 2.279 6.279
128 | 24.529 31.660 |/168 | 10.846 13.754
129 2. 042* 2.385* ||169 1.341* 3.673*
130 3. 587* 9. 858* ||170 1.861* 2. 729*

131 1.335* 1.755 |[171 | 28.588* | 53.358*
132 2. 142* 3.801* (172 2.943 3.087*
133 | 16.361 27.759 (173 1. 694 2.568

134 8.193 9.301 ||174 1.729 2.516*
135 2.719* 5.141* ||175 0.844* 1.449*

136 4.767* | 12.737* |(176 3.441* 5.380*
137 | 42.230 | 108.038 ||177 0.712 0.838*
138 | 41.236 78.423 ||178 1.222* 3.469*

139 8.243 9.911* (179 | 20.852* | . 42.263*
140 | 31.522 36.393 ||180 7.575% | 16.552*
141 2. 600 2. 881* (181 2.042* 3.058
142 1. 932 2. 055* (182 6.797 7.343*
143 8. 562 10. 813|183 1. 536 4.499
144 1.421* 3.652% |[184 1.235 1.472*
145 2. 669* 3. 880* ||185 3. 541* 4.272
146 1.125% 2.071 (186 5. 394% 6.149%
147 3. 439* 5.824* (187 | 18.589 28.787
148 1. 269* 5.651 |[[188 8.372 12.628
149 7. 949 14.252 |[|189 | 13.470* | 23.775*
150 2. 808* 4. 434* |[190 1. 196* 2.851*
151 6.413 12. 573 ||191 3. 507 7.712
152 5.936* | 10.432* |[192 | 21.489 43.372
153 9.788 18.093 [[193 1. 038* 1.109*
154 1.251 2.707 (194 3.591* 3.864
155 | 34.799 63.494 (195 2. 295* 2. 529*
156 0.841* 1. 742% /196 1. 044* 2,320
157 1.461* 1. 615* /197 4.865% 6.759*
158 7.220 21.125 |[198 1.184 11. 852
159 1. 275* 2.350% ((199 1.228* 1.969*
160 9. 355 19. 565 ||200 9.346* | 22.204*

which correspond to taking £é=0.5 in (11). This
should not make any difference in the calculation
of the lowest eigenvalue, and consequently table 2
can be utilized in the same way as table 1. It
should however be borne in mind that columns
O, and O, of table 2 represent experimental values
of the quantities (18) with the S;’s being sums of
Gaussian deviates. Asterisks on the entries of
table 2 indicate that Si; or Si, was negative.
Although this information is unnecessary for the
purpose of calculations of the lowest eigenvalue,
it is used in the calculation of the next eigenvalue.
How this can be done is explained briefly in
section IV,
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Using the data in table 2 and again (10) we
computed the following approximations to X\
(actual value=0.71)

First 50 Second 50 | Third 50 | Fourth 50 All 200
samples samples samples samples samples
|
i ‘ 0.82 | 0.72 | 0.8 | 0.64 | 0.74 [
For both V(z)=|z| and V(z)=3s? all the

eigenvalues are known so that in the two illus-
trative examples above it was easy to choose
appropriate values for ¢ and ¢,. The proper
value for » and the appropriate number of samples
was determined experimentally. In general when

all eigenvalues are unknown the following “rule
of thumb” procedure seems to be feasible. Hav-

ing first made a guess at an appropriate n and £,
and a certain number of samples, compute \,.
Repeat the computation now for the same n,
the same number of samples and successively
larger t's until the calculated values of X, become
stable to the desired number of places. If they
do not become stable, the number of samples
must be increased. Keeping two values of ¢, for
which the calculated N's had the stable value,
increase n and see if the calculated value of \

changes. If not, n is sufficiently large. If it
does change, increase n until a new stability
appears. This stable value i1s then the appro-

priate approximation to N\,. The mere fact that
stability is observed means the number of samples
is sufficiently large.

The Second Eigenvalue

If the principal eigenfunction is even, then it is
possible to extend the theory of section II in
such a way that the caleulation of the second
eigenvalue becomes feasible.  Without going into
any details we just state the pertinent result:
Let

Determination of Eigenvalues by Sampling

P V

/
¥
i+ (8) = lim Ei " kSt

n— o

e

(16)

and
1

e Y

1 n ,.<
E-())=Ilim Ee k<nt
n— o

Y
D

\S,,,<();' (a7)

the mathematical expectations on the right hand
sides being conditional expectations under the
conditions S, >0 and S,,< 0, respectively.

We then have

3 {EO—E @ =2 o, [ s,
(18)
where
+1,2>0
p@) =
15200,
If ¢, and t, are sufficiently large, we get
1 T (§)—Ey, (§)
Ao~ ———log= 19
R )

From the discussion of section I1T it should be clear
how one applies (19) when the data of table 2 are
available.  One must see to it that £ is so chosen
that ¢.(£)#0, otherwise a higher eigenvalue may
have been calculated. From the data of table 2
we obtain

)\3’\’ ] . ] y
whereas the exact valueis 3/2 v/2=2.12.  The poor
agreement could have been expected in view of low
accuracy in the calculation of ;.

In conclusion, we thank E. C. Yowell, of the
National Bureau of Standards, for wiring the

boards and for excellent supervision of all the
punched card work.

Los AxcrLEs, September 12, 1949,
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