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A Sampling Method for Determining the Lowest 
'Eigenvalue and the Principal Eigenfunction of 
Schrodinger's Equation 1 

By M. D. Donsker and M. Kac 

This is a preliminary report on a sampling method for finding the lowest eigenvalue 

and the corresponding eigenfunction of Schrodinger's equation. The t heory underlying 

the procedure is explained and two cases treated numerically. Although the initial results 

are encouraging, more experimentation will be needed to fully test the practicality of t he 

method. 

1. Introduction 

Certain problems leading to complicated partial 
or integro-differential equations have recently been 
approached and some actually solved by u tilizing 
various probability techniques and sampling 
methods. Collectively these methods have be
come known as the " Monte Carlo" method. 

The problems to which Monte Carlo techniques 
have been applied seem to be divided into two 
types. Typical of the first type is the problem of 
neutron diffusing in material media in which the 
particles are subj ected not only to certain deter
ministic influences but to random influences as 
well. In such a problem, the Monte Carlo ap
proach consists in permitting a " particle" to play 
a game of chance, the rules of the game being such 
that the actual deterministic and random features 
of the phy ical process are step by step exactly 
imitated by the game. By considering very large 
numbers of particles, one can answer such ques
t ions as the distribution of the particles at the end 
of a certain period of time, the number of particles 
to escape through a shield of specified thickness, 
etc. One important characteristic of the preced
ing approach is that the functional equation de
scribing the diffusion process is bypassed com
pletely, the probability model used being derived 
from the process it elf. 

A more sophisticated application of Monte 

I The preparation of this paper was sponsored (in part) by the Office of 
Naval Research , 
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Carlo methods is to the problem of finding a 
probability model Or game whose solution is re
lated to the solution of a partial differential 
equation, or, as in the pre ent paper, to determine 
the lea t eigenvalue of a differential operator by 
means of a sampling proce s. As an example of 
how the latter problem might be attacked, we 
quote from a paper of M etropolis and Ulam : 2 

"For example, as suggested by F ermi, the time 
independent chriidinger equation 

D..c/J (X,Y,Z) = (A- V ) c/J(x,Y, z) , 

could be tudicd as follows. R eintroduce time 
dependence by considering 

U(X,y, z,t) = c/J(x ,y ,z)e-Xt ; 

then, U will obey the equation 

au 
7i['= D..U- Vu. 

Thi la t equation can be interpreted, however, as 
describing the b ehavior of a system of particles 
each of which perform a random walk, i. e., 
diffuses isotropically and at the same time is 
subj ect to multiplication, which is determin ed by 
the value of the point function V. If the solution 
of the latter equation corresponds to a spatial 

2 N. Metropolis and S. Ulam, The Monte Carlo method, J. Am. Stat. 
Assn. U , 247, pp. 335 to 341 (Sept. 1949). 
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mod e multiplying exponentially in time, the ex
amination of the spatial part ·will give the desired 
cp(x,y,z) - corresponding to the lowest' eigenvalue' 
X. " 3 

The main purpose of the present paper is to 
present an alternative method for finding the low
est eigenvalue and corresponding eigenfunction of 
Schrodinger's e9.uation. The chief difference be
tween the two approaches is that ours involves 
only a random walk eliminating entirely th e 
multiplicative process. This alteration in the 
model seems to simplify the numerical aspects of 
the problem, especially if punch ed card equipmen t 
is to b e used. Apart from the possible numerical 
simplification, the m ethod is based on a mathemat
ical theory that in itself is of some interest. 

II. Mathematical Theory 

L et XI, X z, X 3, . .• be indcpendent identically 
distributed random variables each h aving mean 0 
and standard deviation 1 and let S k= X l + Xz + 
... +Xk • Under certain general assumptions 
on V(x) , the most severe of which is that Vex ) be 
nonnegative, it can be shown 4 tha t the limiting 
distribution function CT (a,t) of the random variable 

(1) 

is such that 

r'" r'" e-a-stda(J" (a, t)dt = f '" 1/; (x) dx, (2) 
,} o ) 0 - '" 

where 1/; (x) is the fundamental solution of th e 
differential equation 

(3) 

subj ect to th e conditions 

11/;' (x) I< M x~ O 

1/;' (+ 0) - 1/;' (- 0) = - 2. 

The fundamental solution 1/; (x) of (3) is expres
ible in terms of the normalized eigenfunction 

3 We have since learned that Dr. G. W . King has made similar calcula
lations nsing a closely related method. 

• M. Rac, On distr ibntions of certain Wiener funetionals, Trans. Am. 
Math . Soc. 65, 1 to 13 (1949). 
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{ (f j(x)} and eigenvalues Xj of the one-dimensional 
Schrodinger eigenvalue problem 5 

(4) 

as 

(5) 

Thus from (5 and 2) 

(6) 

Inver ting (6) with respect to s we get, 

and therefore we obtain th e expression for Xl, 

(8) 

If in (7) we neglect all terms in th e expansion 
but the first, we obtain 

or 

10g{ 1/;1 (0) I-"'", fl (x) dx} 1 .r"'-a 
AI""' t -""[ logj a e daCT(a,t). 

(9) 

Thus, if, by choosing a finite t , we attempt to cal
culate Xl from (8), we have two sources of error. 
The first, usually a small source of error, is from 
the exponen tials neglected in th e expansion (7). 
The second, and more importan t, is from neglect-

ing th e term (l / l)log {fl (O~f-"'", fl (x)dx}. This 

latter source of error is especially significant, since, 
as will b e apparent shortly, it is impractical from 
other points of view to take t very large. All of 
this difficulty may be obviated by considering (7) 
for two distinct values of t, say i l and tz, then, if 

• From here on all the steps are formal. In all cases of physical interest 
they can be justified rigarously. 
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we neglect the exponentials after the first as before, 
we get on dividing 

1 fa '" e- adau (a ,t l ) 

Al '" t - t log 7 '" 
2 1 Jo e- ad a u (a ,t2) 

(10) 

The :Monte Carlo process consists in the calcula
tion of u (a ,t l ) and u(ah) by a sampling process . 

If instead of u(a ,t) we consider th e limiting dis
tribution ut(a,t ) of the random variable 

(ll) 

then ut(a,t ) also satis fi es (2 and 3) , but now the 
condition f' (+ 0)- f' (- 0)= - 2 is replaced by 
f' (~+ ) - f' ( ~- ) = - 2 . Therefore, repefLting steps 
(4 to 7), we ge t 

Thus 

so that we are also able to calculate th e principal 
eigenfunction. 

The extension of th e preceding m ethod to multi
dimensional Schrodinger equations is immediate. 
I t is in these cases th at the method will probably 
prove to b e most useful since, unlike th e standard 
variational procedures, th e ex tension to several 
dimensions seems to cause comparat ively li t tle 
difficulty. For illustrative purposes we will con
sider Sehrodinger's . equation in three dimensions. 
H ere we must consider three ind ependent 
sequences 

. , 

. , 

. , 

of independent identieally distribu ted random 
variables each having mean 0 and standard devia
tion 1. Let S XIc= X 1+ X 2+ ... + X Ic , and S Yk , 
SZk have the obvious m eanings. We eonsider 
the limiting distributions u(a, t ) and u(a, ~, TJ , r, t ) of 
the random variables 
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and 

respectively. 
In exactly the same way as in the one dimen

sional case, we arrive at 

and 

f l (~ , TJ, r) 
f l (0,0,0) 

So far , the theory was earried ou t und er the 
assumption tha t the potential fun cLion V was 
nonnegative. In most cases of physical interest 
this is no t so. For the hych'ogen atom, for 
instance 

H owever , th e modification is easy, although we 
have no t as yet clear ed up all the points of math
ematical rigor. 

The formula for the lowes t eigenvalue now 
becomes 

and a corresponding modification n eeds to be 
made in the formula for the principal eigenfunc
tion. 'We have not yet t es ted numerically any 
case with a negative potential function, bu t we 
hope to b e able to report on thi s in th e neal' fu ture . 

III. Numerical Examples a nd Discussion 

Th e Monte Carlo procedure used h ere consis ts 
in the calculation of the distribution function 
u(a ,t ) by a sampling process; the principal eigen
value is then calculated from (10). For the pur
poses of numerical illustration we consider two 
examples, V (x) = x2 and V (x) =lxI. In both of 
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these cases the eigenvalues are known, and hence 
we have a check on the accuracy of our procedure. 
In order to calculate u(a,t), say when V(x) = x2, 

we see from (1) that we must consider the limiting 
distribution as n~ co of 

(14) 

This means from our point of view that we 
must (a) choose a distribution for the X's, (b) 
choose a sufficiently large n, (c) select an appro
priate t, (4) calculate for nt X's the normalized 
sum (14), (5) repeat (4) many times, so that the 
empirical distribution may be obtained from these 
many samples. 

Although, under the conditions mentioned 
previously, the distribution function u(a,t ) is 
independent of the distribution of the X's , the 
actual numerical calculation of u(a,t) is expedited 
by choosing the distribution of the X's to be the 
Bernoulli distribution, i. e., 

1 
P (X= I) = P(X=- I) =-. 

2 

The sequence of random variables Xl, X 2, X 3, 

is then a sequence of + l's and - 1's, such 
as might be obtained in coin tossing. This is 
conveniently and rapidly achieved on a calculat
ing machine by considering sequences of random 
digits, counting even digits + 1 and odd digits -1. 

The value of n to be used must be large enough 
so that the empirical distribution function cal
culated is close to the theoretical limiting dis
tribution function u(a,t ). From (10) we see that 
the two values of t, t l , and t2, to be used in the 
calculation of }.. must be large enough so that the 
exponential terms neglected are sufficiently small. 
However, since the sample size is nt, the desire 
to make both nand t large must be tempered by 
practical considerations. The number of samples 
to be used must be large enough so that the 
empirical distribution adequately represents u(a,t). 
Before discussing these points in more detail we 
consider an actual numerical computation. The 
following data for V(x) = x2 and V(x) =lxl were 
calculated from a certain set of random digits 6 

on the IBM Electronic Calculating Punch, Type 
604. For both x2 and Ixl n was selected to be 400, 

• This 'set of random digits was prepared by the RAND Oorporation, 
Santa.Monica, Calif. 
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tl = 5, t2=3.75, and 100 samples were used. In 
table 1 is tabulated 

1 1500 1 2000 

Al '= 8000k~ ISk l , A2= 8000lt ISk l, 
1 1500 1 2000 

B 1= 160000 It Sk2, B 2 160000lt Sk2. 

Since each RAND random number card contains 
50 random digits, and 2,000 digits are n eeded to 
form one sample, a set of 4,000 RAND cards was 
sufficient for this experiment. It takes 20 min
utes on the IBM 604 to calculate Al and A2 for 
one sample (similarly for Bl and B2 ), so that it 
takes approximately 35 hours to secure the follow
ing data. 

TABLE 1. Experimental data for lowest eigenvalue 

, 
At A, Et E , 

---------------

I 1. 332 2.101 0. 738 1.200 
2 3.808 5. 707 5. 295 8.502 
3 2. 795 5.545 3.450 9. 610 
4 8.723 13. 917 30.722 52.616 
5 4. 169 4. 766 6. 123 6. 602 

6 1. 195 2.136 .598 1. 453 
7 6. 674 12. 112 15. 258 39.058 
8 4.103 5.242 5.826 7.004 
9 5.751 8.840 10. 440 18.143 

10 4. 250 4. 981 6.069 6.679 

11 2. 009 5.643 3.844 10. 044 
12 2.834 3. 416 3.602 4.097 
13 1. 888 2. 194 1. 595 1. 700 
14 2.022 2.337 1.510 1. 638 
15 1. 680 3.908 1. 184 5.289 

16 7. 700 12.712 24. 769 44. 936 
17 3.228 4. 973 3.563 6.145 
18 1. 844 2.654 1. 523 2.183 
19 2.376 5.275 2.017 8.854 
20 4.533 5.640 6.380 7. 616 

21 4. 209 7.543 7. 735 16.703 
22 3.847 5.590 6. 666 9. 204 
23 5. 206 6.314 9. 148 10. 600 
24 1. 962 2. 698 1. 859 2.923 
25 3.523 4. 807 5. 084 6. 482 

26 3. 605 5.397 5.014 7.680 
27 9.168 13.692 27. 973 44.461 
28 5. 625 7. 898 11. 528 16. OlD 
29 3.215 4. 152 3. 362 4. 170 
30 3.293 3.972 4.136 4.677 

31 2.710 3.683 3.006 4. 025 
32 3.638 7.386 6.114 17. 413 
33 7.928 11. 567 25.084 36.001 
34 3.475 3.846 4. 396 4. 550 
35 1. 958 2. 594 1. 457 1. 948 

36 5. 356 7.216 [8.888 11. 781 
37 3. 297 6.395 3.800 11. 555 
38 1. 883 2. 682 1. 387 1. 995 
39 4.849 10.020 8.396 30.233 
40 2. 282 3.067 2. 258 2. 882 
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T A BLE 1. Experimental data for lowest eigenvalue- Con . 

AI A, B, B. 
--- --------- --

41 4. 253 6.957 6. 744 13. 502 

42 7. 559 8. 834 17. 143 18. 702 
43 1. 122 2.587 .000 2.634 
44 1. 433 3. 602 .869 4. 855 
45 2. 984 3.477 2. 851 3. 161 

46 1.677 3. 158 1. 025 3. 341 
47 5. 145 9. 697 11. 941 28. 826 
48 4. 982 9. 140 9.201 23. 092 
49 1. 675 2. 152 1. 129 1. 472 

00 1. 580 3.375 1. 14 7 3. 807 

51 2.606 3. 621 2.254 3. 247 
52 4. 303 5. 883 7. 987 10. 104 
53 7. 553 12. 092 19. 632 36. 427 
M 3. 138 5. 703 3. 968 9.325 
55 3. H3 4. 327 4.264 5. 380 

56 1. 423 2. 315 0. 770 1. 533 
57 7. 996 11. 458 21. 405 31. 585 
58 1. 916 2. 744 1. 253 1. 959 
59 1. 490 2. 161 0. 789 1.404 
60 3.536 5.3 2 4. 125 7. 461 

61 6. 278 11.060 16. 187 34. 779 
62 1. 174 1. 709 0. 573 0. 919 
63 5. 272 9. 919 10. 463 27.825 
64 3.576 5. 277 6. 021 8. 707 
65 2. 686 5.081 3.577 8.307 

66 6.166 8. 785 14. 056 19. 627 
67 4. <lI2 5.548 6. 095 7. 182 
68 1. 732 4. 664 1. 170 8. 720 
69 2. 730 4. 970 2. 440 6. 639 
70 1.33 1 2. 772 0. 765 2. 642 

71 3. 668 5. 318 5. 730 8.001 
72 2.948 3. 801 3. 248 4. 104 
73 5. 279 8. 931 12. 455 23. 513 
74 11. 284 15.784 41. 684 58. 525 
75 2. 183 2. 787 2. 086 2. 455 

76 4. 298 7. 427 9.139 17. 157 
77 1. 412 2. 893 0. 894 3. 490 
j8 2. 002 2.567 1. 602 2.024 
79 2. 619 3. 780 2. 981 4. 205 
80 2. 695 4.616 2.974 6. 077 

81 4. 706 6. 672 8. 330 11.487 
82 5. 517 7.981 9. 846 14. 805 
83 1. 755 2. 099 1. 066 1. 207 
84 2. 084 2. 876 1. 735 2. 504 

85 1. 574 2. 743 0. 993 2. 256 

86 5.818 10. 444 13. 322 30. 522 
87 4. 387 7. 844 9. 037 18. 695 
88 3. 666 5. 244 4. 416 6. 541 
89 7. 111 13.311 19. 834 50.822 

90 6. 280 8. 548 13. 403 17. 587 

91 4. 872 5.836 9. 230 10. 023 
92 3. 035 3. 323 2. 865 2. 973 
93 3.608 4. 697 4. 256 5.357 
94 3. 977 4. 964 5. 21 5 6. 242 
95 3. 614 7. 867 5. 757 20. 434 

96 9. 193 11.183 27. 789 31. 075 
97 4. 108 5.282 5. 918 7. 374 
98 4.355 5. 744 7. 774 10.223 
99 1.898 2. 661 1. 007 2. 013 

100 9. 683 17. 154 35. 803 80.543 

In orderto calculate AJ from (10)weneed the values 

of roo e-adaff (a ,tJ ) and r ro e-«daff (a,t2). Both of these Jo ,}o 
integrals were calcula ted numerically from the 
data in table 1 by adding the exponentials of the 
entries in appropriate columns. For the case 
V ex) = lxi, the values of the integrals were obtained 

100 100 
from 1/100 ~ e- A ,; and 1/100 ~ e- A 2; and for V ex) 

' - I j- 1 
100 100 

= x2 from 1/ 100 ~ e- B ,; and 1/100 ~ e- B 2; . In the 
j - I j- l 

case V ex) = Ixl the true lowest eigenvalue to two 
places is 0.81 , and in the case V ex) = x2 it is ·/2/2= 
0.71. 

First 50 Second 50 A ll 100 
sa mpJes samples sam ples 

Ixl O. 83 O. 79 0. 81 
X 2 .80 . 69 . 75 

An intere ting feature of t he data is that column 
B2, for example, may b e thought of as arising from 
n = 2000 , t= l ; n = 1000, t= 2, etc., as well as from 
n = 400, t= 5. The larger we take n, the closer 
will be the empirical distribution to ff (a,t) . The 

value of!o OO e- «daff (a,t ) in the case t = l , and V ex) 

= x2 can be calculated exac tly and, to three place , 
is 0.678. Calculating this integral from column 
B2 with n = 2000 , t= I , we get 0.685. 

Instead of using Bernoulli distribu ted variables, 
one might use other distributions. One definite 
advantage of Bernoulli dis tributed variables is 
that the computation utilizes only the crudest 
properties of the random digits, i. e., whether they 
are even or odd. One possible advantage for cer
tain other distributions is that n might not have 
to be taken so large. In particular this should 
be true if we use Gaussian distributed variables. 
RAND Gaussian deviates were used in constructing 
table 2. Here we chose t1 = 3.75, t2= 5 as before , 
but now n = 100. Tllis means samples of size 500 
ins tead of 2000 and therefore a total machine 
computation time of 9 hours for 100 samples. 

Envisaging the possibility of calculating the 
econd eigenvalue, we considered the quantities 
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TABLE 2. Experimental data for second eigenvaille 

c, c, c, c, 
---- - -- ---- - ---

I 3.963 13. 997 61 49.929 84.307 
2 2.348' 2.721 62 3. 095 6.220 
3 1. 889' 2. 2~1 63 2.585' 3.867' 
4 3.817' 4. 372' 64 1. 318' 1. 906' 
5 2.395 2.802' 65 2.241 '" 9.102' 

6 12.467 27.683 66 9.737 12. 185 
7 1. 068' 1. 115' 67 9.738* 11. 347' 
8 0.578' 0.967' 68 4.604 5.589 
9 1. 504' 1. 760 69 20.364 29.707 

10 4. 249 9.787 70 1. 097' 1.895' 

11 1. 751 ' 3.316' 71 5.891 13.391 
12 9.922 13.975 72 9.019' 12. 815' 
13 5.680 6.649 73 1. 843 6.280 
14 3.348 4.684 74 7.961 11. 4jl 
15 13.431 24.769 75 1.109 1. 926 

16 1. 473' 2.615' 76 2.417' 3.037 
17 45.262 74.304 77 2.402' 2.797' 
18 1. 157' 3.109 78 2.043' 4.214' 
19 0.906' 3.644 ' 79 0.582' 0.752 
20 4.601 12.641 80 2.429 4.381 

21 8.356' 13.084' 81 8.584 13.054 
22 0.308' 1. 874' 82 2. 793' 4.659' 
23 2. Ill ' 4.428' 83 1. 557 5.023 
24 2.035' 2. 726 84 1. 006' 1.677' 
25 1. 625' 3.898 85 5.327' 15.53 1' 

26 1. 879' 5. 713 86 2.058 7.307 
27 1. j33 8.961 87 12. 481 12.803' 
28 1. 769 2.319' 88 0.925 ' 2.403 
29 1. 906' 2.417' 89 15.519 19.879 
30 7.522 7.979' 90 1. 456' 4.009' 

31 14.934 15.493' 91 5.244 10 047 
32 4.282' 13. 747' 92 2.497 2.931 
33 1. 356' 2.718 93 16. 700 17.382 
34 4.44S 8.329 94 4. 4il '" 8. 156' 
35 1. 306' 2.112'" 95 2. 139' 2.580' 

36 5.465' 12.396' 96 1. 196' 2.273' 
37 2.91S 9.006 97 23.014 28.420 
38 35.S21 56.626 98 6.959' 7.022' 
39 9. S14 ' 11. 707' 99 3.374' 8.651' 
40 1.S11 4.628 100 1.600' 2.250' -
41 3.374 6.460 101 4.626' 7.794 ' 
42 1. 633 6.578 102 5. 195' 10.215' 
43 6.976 8.705 103 6.837' IZ. l60' 
44 7.595 ]3.096 104 1. 913 4.412' 
45 2.336 2.862 105 2.276' 2. 770 

46 1. 931 ' 2. 579' 106 1. 935 ' 3.983' 
47 4.507' 8.294' 107 3.560 5.808 
48 8.581' 11. 301' 108 2.857' 7.384' 
49 4. 698' 8.220' 109 3.399' 4. 484' 
50 10.154 16.884 

110 6.9 17' 27. 107' 
51 8.828 15.387 111 38.661 56. 479 
52 0.997' I. 604' 112 1. 891 2.000' 
53 8.582 12.838 113 8.506 9.646' 
54 2.730' 3.249' 114 4.209 10.461 
55 10.471 13. 140 115 33. 194 44.247 

56 I. 456' 1. 845' 116 0.869' 1. 289 
57 8.230' 11. 924' 117 3. 946 15.204 
58 5.515' 8. 146' 118 I. 680' 2.995' 
59 2.202' 3. 182' 119 8. 178' 9.056 
1iO 2. 129' 9.650' 120 27.621 51. 650 
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TABLE 2. Experimental data f or second eigenvalue- Con . 

c, C, C, C, 
------ ------

121 8.444' 15.836' 161 3.546 4.040' 
122 13.254 16.467 162 1. 238' 2. 304' 
123 1. 755' 5.246' 163 0.975' 1. 283 
124 36. 902 70. 134 164 I. 980 3.659' 
125 7.567' IS. 553' 165 14. 620' 17.565' 

126 )4.725 3S.551 166 2.378' 2.865 
127 0.983' 2.572 167 2.279 6.279 
128 24.529 31. 660 168 10.846 13.754 
129 2.042' 2.385' 169 1. 341' 3.673' 
130 3.587' 9.858' 170 I. 861' 2. 729' 

131 I. 335' 1. 755 171 28.588' 53.358· 
132 2. 142' 3.801' 172 2.943 3. 0S7' 
133 16.361 27.759 173 1. 694 2.568 
134 8. 193 9.301 174 I. 729 2.516' 
135 2. 719' 5. 141* 175 0.844' 1. 449' 

136 4.767' 12. 737' 176 3. 441' 5.380' 
137 42. 230 108.038 177 0.712 0. 838' 
138 41. 236 7~. 423 178 1. 222' 3.469' 
139 8.243 9.911' 179 20.852' 42.263' 
140 31. 522 36.39:1 180 7.575" 16.552' 

141 2.600 2. 881' 181 2. 042' 3.058 
142 I. 932 2. 055' 182 6.797 7. 343' 
143 8.562 10.81:1 183 1. 536 4.499 
144 1. 421' 3.652' 184 1. 235 1. 472' 
145 2.669' 3.889' 185 3.54 1' 4. 272 

146 1. 125' 2.071 186 5. :194' 6.149' 
147 3. 439' 5.824' 187 18.589 2S.787 
148 I. 269' 5.6.)j 188 8.372 12.628 
149 7. \)49 14. 252 189 13.470' 23.775' 
150 2. 808' 4. 434' 190 I. 196' 2.851' 

151 6. 413 12. 573 191 3.507 7.712 
152 5.9a6' 10.432' 192 21.489 43.372 
153 9.788 18. 093 193 I. 038' 1. 109' 
154 I. 251 2.707 194 3.591' 3.S64 
155 34.799 63.494 195 2.295' 2.529' 

156 0.841' 1. 742' 196 1. 044' 2.320 
157 1. 461' 1. 615' 197 4.865' 6.759' 
158 7. 220 21. 125 198 1.184 11. 852 
159 1. 275' 2. 359' 199 1. 228' 1. 969' 
160 9.355 19.565 WOO 9.346' 22. 204' 

which correspond to taking ~= O .5 in (ll ). This 
should not make any difi'C'rence in th e calculation 
of th e lowest eigenvalue, and cons<'quently table 2 
can b e utilized in th e sam e way as table 1. It 
should however be borne in mind that columns 
0 1 and O2 of table 2 represen t experimen tal values 
of th e quantities (18) with the 8 k 's being sums of 
Gaussian deviates. Astcrisks on the entries of 
table 2 indicate that 8375 or 8 500 was n egative. 
Although this information is unnecessary for the 
purpose of calculations of the lowest eigenvalue, 
it is used in the calculation of the next eigenvalue. 
How this can b e done is explained briefly in 
section IV. 
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----- -----------------------------------------------------------------~-

Using the data in table 2 and again (10) we 
computed the following approximations to Al 
(actual value= 0.71) 

First 50 Second 50 T hird 50 Fonrth 50 All 200 
samples samples samples samples sam pIes 

AI O. 82 O. 72 O. 83 0.64 0.74 

For both VeX) = Ixt and VeX) = x2, all the 
eigenvalues are known so that in th e two illus
trative examples above it was easy to choose 
appropriate values for tl and t2. T h e proper 
value for n and the appropriate number of samples 
was determined experimentally. In general when 
all eigenvaJues are unknown the following " rule 
of thumb" proeed ure seems to be feasible. Hav
ing first made a guess at an appropriate nand t, 
and a certain number of samples, compute AI' 
Repeat the computation now for the sam e n, 
the same number of samples and successively 
larger t' s until the calculated values of At b ecom e 
stable to tbe desired numb er of places. If they 
do not become stable, the number of samples 
must b e increa ed. K eeping two values of t, for 
which th e calculated A's had the stable value, 
increase n and sec if Lhe calculaLed valu e of A 
changes. If not, n is suffLciently large. If iL 
does change, increase n until a new stability 
appears. This stable value is then Lhe appro
priate approximation to AI' The m ere fact th at 
stability is observed means the number of samples 
is sufficiently large. 

The Second Eigenvalue 

If the principal eigenfunction is even, then it is 
possible Lo extend the th eory of section II in 
such a way that the calculation of the second 
eigenvalue becomes feasible . Without going into 
any details we just state the pertinent result: 
Let 

Determination of Eigenvalues by Sampling 

o 

and 

the mathematical expectations on tIl e righ t hand 
sides being conditional expecLations under th e 
conditions 8nt> 0 and 8"t< 0, respectively. 
We th en have 

~ {E,+ m - E,- W } = t1 e-Xjl ,pJW .L "'oo p(X),pJ(x) dx, 

(18) 

where 

{
+ l ,X> O 

p(x) = 
- l ,x< O. 

If tl and t2 are ufficicntly large, we get 

From th e discu s ion of section III it should b e clear 
how one applies (19) when the data of table 2 are 
available. One must sec to iL Lhat ~ is so chosen 
that ,p2m ¥= 0, otherwise a higher eigenvalue may 
have been calculated. From Lhe data of table 2 
we obtain 

whereas the exact value is 3/2 ·l2= 2.12. Th e poor 
agreement co uld have been expected in view of low 
accuracy in the calculation of AI' 

In conclusion, we thank E. C. Yowell , of the 
National Bureau of Standards, for wiring the 
boards and for excellent supervision of all th e 
punched card work. 

Los AN GELES, September 12, 1949. 
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