Part of the Journal of Research of the National Bureau of Standards

# Infrared Spectra of Bromochloromethane, Dibromomethane, Tribromochloromethane, and Tetrabromomethane

By Earle K. Plyler, W. Harold Smith, and N. Acquista

The infrared spectra of bromochloromethane, dibromomethane, tribromochloromethane, and tetrabromomethane have been measured from 2 to 36 microns. By the use of the results of other workers in Raman spectra it has been possible to classify all the strong bands that have been observed. Many of the weaker bands were classified as combinations and overtones. Only a few of the bands of tetrabromomethane were observed, on account of the breaking down of the compound in solutions of carbon disulfide and carbon tetrachloride. The intense bands of dibromomethane and tetrabromomethane were measured in the vapor state. The infrared absorption bands of these compounds had not previously been measured over an extended range of wavelengths, and these measurements were undertaken to determine the positions of weak bands so that a more complete classification of the spectra of these molecules could be made.

## I. Introduction

Other workers have measured the vibrational bands of a number of substituted methanes in the infrared region, and also the frequencies have been determined by Raman spectra. From theory it has been determined that molecules of the type of  $CX_4$  show two active and two inactive fundamentals. Where interaction occurs the inactive frequencies also appear in the infrared spectrum. When the substituted atoms are of more than one species, the degeneracy is removed and nine fundamentals are present in the spectrum. In a molecule of the type  $CXY_3$ , the degeneracy is only partly removed and six fundamentals are found in the spectrum.

The four substituted methanes, bromochloromethane, dibromomethane, tribromochloromethane, and carbon tetrabromide, represent the the three types of molecules that give nine, six, and two active fundamentals in the infrared spectrum. The infrared bands of these compounds had not previously been measured over an extended range of wavelengths, and these measurements were undertaken to determine the positions of the weak bands so that the combination bands could be classified.

# II. Experimental Observations

A Perkin-Elmer spectrometer was used for all measurements with lithium fluoride, potassium bromide, sodium chloride, and thallium bromideiodide prisms to cover the wavelength range of 2 to 36  $\mu$ . In the spectral region of 2 to 24  $\mu$ , cell thicknesses of 0.2, 0.1, and 0.05 mm were used to bring out most of the bands. For very strong bands the compounds were diluted either in carbon tetrachloride or in carbon disulfide, or liquid films with a thickness of 0.01 mm or less were formed between two potassium bromide windows. In the thallium bromide-iodide region between 24 and 36  $\mu$  it was necessary to use cell thicknesses of 1.5 mm to bring out the weaker absorption bands. The method of measurement and the reducing of data have been described in a previous paper [1].<sup>1</sup> Bromochloromethane, dibromomethane, and tribromochloromethane were obtained from the Dow

Infrared Spectra of Halogenated Methanes

 $<sup>^1\,{\</sup>rm Figures}$  in brackets indicate the literature references at the end of this paper.

Chemical Company and tetrabromomethane from the Eastman Kodak Company.

Purification consisted of treatments until an examination of the products indicated satisfactory agreement with accepted physical constants. To avoid any effect of oxygen, the infrared measurements were made as quickly as possible after purification.

Figure 1 shows the absorption spectra of the four halogenated methane derivatives in the region from 2 to 15  $\mu$ . The cell thicknesses and other conditions of the measurements are given on the figure and in the captions. The intense bands were observed by use of a cell that contained a thin layer of the material. The cell was made by placing a small quantity of the liquid on a plate of potassium bromide and then pressing another plate on the top without the use of a shim. The thicknesses of the cells made in this manner were

not measured, but it is estimated that they were of the order of 0.005 mm. This estimate of the thickness was made on the basis of the percentage absorption that was observed in a 0.1-mm cell when the compound had been diluted with a transparent solvent. The reason that the thin cell was employed was to locate the position of the band accurately for the pure liquid in regions of intense absorption. In figure 1 the portions of the absorption curves represented by broken lines indicate that small details could not be accurately determined on account of the absorption of the solvents or the absorption of atmospheric bands.

As tribromochloromethane and tetrabromomethane are solids at room temperature, their spectra were determined in solutions of carbon tetrachloride and carbon disulfide. There was a tendency for the solutions of tetrabromomethane to darken on standing, and the absorption spectrum was



FIGURE 1. Infrared absorption spectra of bromochloromethane, dibromomethane, tribromochloromethane, and tetrabromomethane.

Tribromochloromethane and tetrabromomethane were dissolved in carbon tetrachloride and carbon disulfide. The solution concentration of tribromochloromethane in carbon tetrachloride is 3.1 g/ml, and in carbon disulfide, 2.4 g/ml for the observations in 0.2-mm cell. For the insert bands the concentration is 0.14 g/ml. Saturated solutions of tetrabromomethane were prepared in each solvent.

Journal of Research

measured immediately after their preparation. The observations were repeated several times and the same bands were always found. Since it was possible to account for all the observed bands as combinations, overtones, or fundamentals, it does not seem probable that any of the observed bands were produced by products of decomposition or oxidation in the solution.

Figure 2 shows the long wavelength spectra of the four substituted methanes from 14 to 36  $\mu$ . Some general absorption was observed in the spectra of bromochloromethane and dibromomethane from 28 to 36  $\mu$ , but no definite bands could be found in this region. For the measurement of tribromochloromethane in the region of 24 to 36  $\mu$ , a saturated solution in methylcyclohexane was used. The methylcyclohexane has a high transmittance in this region, and its spectrum shows only one absorption band when a cell 1.5 mm thick is used.

In figures 3 and 4 are shown some of the absorption bands of dibromomethane and tetrabromomethane measured in the vapor state. The substances were placed in the bottom of a cell 40 cm long, which was not evacuated, and allowed to remain in the cell for several hours. On repeating the measurements 6 hours later, it was found that the bands did not increase in intensity. It is probable that the vapors were at a saturated condition in the air of the cell at 25° C.



FIGURE 2. Absorption spectra of bromochlo omethane, dibromomethane, tribromochloromethane, and tetrabromomethane in the region from 14 to 36  $\mu$ .

A solution concentration of 4.0 g/ml in carbon disulfide was used for tribromochloromethane with the 0.1-mm cell. A concentration of 0.14 g/ml was used in the 0.05-mm cell. A saturated solution in methylcyclohexane was used in the region of 24 to 36  $\mu$ .

#### Infrared Spectra of Halogenated Methanes



FIGURE 3. Absorption spectrum of dibromomethane vapor from 7 to  $18 \mu$ .

The more intense absorption is for the saturated vapor (45 mm of Hg at 25° C).



FIGURE 4. Absorption bands at 12.6 and 14.9  $\mu$  for saturated vapor of tetrabromomethane at room temperature.

### III. Discussion

In table 1 are given the wavelengths and frequencies of the observed bands. These bands have been interpreted as fundamentals, combinations, and harmonics. The numbering of the levels is in accordance with that adopted for correlation of a large number of molecules of different symmetries, as will be discussed in a forthcoming paper by Plyler and Benedict. Eight of the infrared active fundamentals of bromochloromethane have been observed, and the other, occurring at 226 cm<sup>-1</sup>, was outside the range of the thallium bromide-iodide prism. In the determination of the combination bands for this compound the Raman value was used from the work of W. Bacher and J. Wagner [2]. The other fundamental bands, as determined by Raman spectra, check within a few wavenumbers with infrared measurements given in table 1, except  $\nu_7$ , which was estimated by them at 724 cm<sup>-1</sup> from Raman

 
 TABLE 1. Observed frequencies of the infrared bands of bromochloromethane, dibromomethane, tribromochloromethane, tetrabromomethane, and their assignments

| Classification                  | ν         | λ      | Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ν                     | λ      |
|---------------------------------|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|
| BROMOCHLOROMETHANE              |           |        | DIBROMETHANE VAPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |        |
|                                 |           | Mi-    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Mi-    |
|                                 | $cm^{-1}$ | crons  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cm-1                  | crons  |
| ν4                              | a 226(R)  | 44.2   | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.233                 | 8.11   |
| v2                              | 606       | 16.51  | ν8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 195                 | 8 37   |
| 2                               | 728       | 13.73  | ν7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 810                   | 19 34  |
| 7                               | 852       | 11.76  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 745                   | 13 49  |
| UE                              | 1 130     | 8 85   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 648                   | 10. 42 |
| no                              | 1 225     | 8 16   | <i>v</i> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 501                   |        |
| uo                              | 1 402     | 7 13   | V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 001                   |        |
|                                 | 2 987     | 3 348  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 1      |
| v1                              | 2,001     | 3.968  | TRIBROMOCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRIBROMOCHLOROMETHANE |        |
| P0                              | 3,000     | 96 5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |
| v2-v4                           | 690       | 15 65  | 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |
| v7 — v4                         | 050       | 10.00  | v25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a 141(R)              | 70.9   |
| $\nu_4 + \nu_9$                 | 950       | 10. 52 | ν79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a 214(R)              | 46.7   |
| ·                               | 1, 261    | 7.93   | ν4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 215(cale.)            | 46.5   |
| $\nu_2 + \nu_7 - \dots - \dots$ | 1, 331    | 7.51   | ν3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 329                   | 30.4   |
| 229                             | 1,453     | 6.88   | Veg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 675                   | 14 81  |
| $\nu_5 + \nu_8$                 | 1,969     | 5.08   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 747                   | 13 30  |
| $\nu_2 + \nu_3$                 | 2,004     | 4.99   | vor+v70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 355                   | 28.2   |
| $\nu_7 + \nu_8$                 | 2,006     | 4.84   | 920   9/9<br>911 9150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 436                   | 20.2   |
| $\nu_3 + \nu_9$                 | 2,119     | 4.72   | 204, 20/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 467                   | 22. 5  |
| $\nu_3 + \nu_7$                 | 2,242     | 4.460  | V3+V25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 407                   | 10.01  |
| 2 <i>v</i> <sub>8</sub>         | 2,450     | 4.082  | <i>v</i> <sub>1</sub> — <i>v</i> <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 525                   | 19.01  |
| $\nu_3 + \nu_8$                 | 2,639     | 3.789  | \$23 \$\prov \$29 \$\prov \$29 \$\prov \$29 \$\prov \$20 \$\prov | 040                   | 10.00  |
| 2v3                             | 2,803     | 3.568  | $\nu_1 - \nu_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 008                   | 10.44  |
| $\nu_1 + \nu_9$                 | 3, 751    | 2.665  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 735                   | 13.61  |
| $\nu_6 + \nu_7$                 | 3, 939    | 2.539  | $2\nu_4 + \nu_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 769                   | 13.00  |
| $\nu_1 + \nu_8$                 | 4, 228    | 2.365  | \$\$\nu_{68}+\nu_{25}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 817                   | 12.24  |
| $\nu_3 + \nu_6$                 | 4, 502    | 2.221  | v79+v18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 872                   | 11.47  |
|                                 |           |        | $\nu_{68} + \nu_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 886                   | 11.28  |
|                                 |           |        | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 933                   | 10.69  |
| DIBROT                          | MOMETHANE |        | v68+v3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,006                 | 9.94   |
|                                 |           |        | <i>v</i> <sub>1</sub> + <i>v</i> <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,068                 | 9.33   |
|                                 | s 174(D)  | 57 5   | $\nu_1 + \nu_{25} + \nu_{79}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1, 114                | 8.98   |
| V4                              | * 1/+(N)  | 17 07  | $\nu_3 + \nu_{25} + \nu_{68}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1, 141                | 8.76   |
| <i>v</i> <sub>2</sub>           | 079       | 17.27  | 2v68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,350                 | 7.40   |
| ν <sub>9</sub>                  | 039       | 10.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 575 9763            |        |
| ν <sub>7</sub>                  | 813       | 12.29  | TETRADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NONETHINE             |        |
| v5                              | 1,090     | 9.12   | TETRABRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOMETHANE             |        |
| <i>v</i> 8                      | 1, 190    | 8.40   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 1      |
| <i>v</i> <sub>3</sub>           | 1, 385    | 7.22   | 1/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a 123(R)              | 81.3   |
| <i>v</i> <sub>1</sub>           | 2, 988    | 3.347  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a 183(R)              | 54 6   |
| <i>v</i> 6                      | 3,065     | 3.263  | P 1/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a 967(P)              | 27 4   |
| $\nu_9 - \nu_4$                 | 466       | 21.5   | V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 207 (1t)<br>660     | 14 05  |
| ?                               | 729       | 13.71  | P168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 749                   | 19.90  |
| $\nu_5 - \nu_4$                 | 922       | 10.85  | $\nu_{168} + \nu_{3} + \nu_{479}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 740                   | 10.00  |
| $\nu_4 + \nu_8$                 | 1, 366    | 7.32   | V25+V168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181                   | 12.70  |
| $\nu_5 + \nu_7$                 | 1, 912    | 5.23   | $\nu_3 + \nu_{168}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 934                   | 10.71  |
| $\nu_3 + \nu_2$                 | 1, 961    | 5.10   | 2v168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 133                   | 7.50   |
| $\nu_3 + \nu_9$                 | 2,020     | 4.95   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |
| 2v5                             | 2, 179    | 4.59   | TETRABROMOMETHANE VAPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |
| $\nu_3 + \nu_8$                 | 2, 587    | 3.866  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |
| $\nu_6 + \nu_7$                 | 3, 909    | 2.558  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |
| $\nu_1 + \nu_8$                 | 4, 195    | 2.384  | V25+V168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 796                   | 12.57  |
| $\nu_3 + \nu_6$                 | 4, 488    | 2.228  | V168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 678                   | 14.74  |
| - 0 1 - 0                       | 1, 100    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 510                   |        |

<sup>a</sup> (R) indicates Raman value obtained from literature.

Journal of Research

spectra, and has been observed by us in the infrared spectra as a strong band at  $852 \text{ cm}^{-1}$ .

All of the fundamental bands of dibromomethane have been observed in the infrared spectrum except  $\nu_4$  at 174 cm<sup>-1</sup>. This value has been determined by Dadieu and Kohlrausch and several other workers in Raman spectra [3]. The Raman spectra for the remaining eight fundamentals check well with these observations, except that  $\nu_7$  and  $\nu_8$  are found at 813 and 1,190 cm<sup>-1</sup>, respectively, in the infrared as compared to 723 and 1,133 cm<sup>-1</sup>, respectively, in the Raman spectrum as reported by Dadieu and Kohlrausch. The other observed bands, except for a few weak ones, have been classified on the basis of the nine fundamentals.

A close similarity between the spectrum of dibromomethane and of bromochloromethane is observed. The effect of replacing the chlorine in bromochloromethane by the heavier atom bromine is to shift corresponding vibrations to longer wavelengths. The shift is observed for all frequencies except those involving primarily C—H stretching vibrations. As can be seen from table 1, the values of  $\nu_1$  and of  $\nu_6$  for the two compounds fall within 5 cm<sup>-1</sup> of each other. This difference in wavenumber is almost within the limit of experimental error for this region of the spectrum.

The spectrum of dibromomethane was also determined in the vapor state for some of the intense bands, so that a comparison could be made with the liquid state. The type of bands at 1,195 and 648  $\rm cm^{-1}$  could not be determined with the prism instrument available. For the band at  $1,190 \text{ cm}^{-1}$  in the liquid state there is a small shift to  $1,195 \text{ cm}^{-1}$  in the vapor state. The other band shifted from 639 to 648 cm<sup>-1</sup>. Two of the remaining bands located at 810 and 591 cm<sup>-1</sup> show definite zero branches when measured in the vapor state. These bands have shifted from 813 and 579  $\rm cm^{-1}$ , respectively, as measured in the liquid state. The vapor band at  $745 \text{ cm}^{-1}$  is shifted 16 cm<sup>-1</sup> from the liquid band at 729 cm<sup>-1</sup> and may have a zero branch. The comparison of the positions of the bands in the liquid and in the vapor states shows that there is a small change in the frequencies when measured in the two different states.

Of the six active infrared fundamentals of tribromochloromethane, only three bands,  $\nu_1$ ,  $\nu_{68}$ , and  $\nu_3$ , were observed in the infrared region that

Infrared Spectra of Halogenated Methanes

was covered in these measurements. The other three fundamentals fall beyond the range of the thallium bromide-iodide prism. Calculations show that two of these bands,  $\nu_{79}$  and  $\nu_4$ , should have frequencies at 214 and 215 cm<sup>-1</sup>, respectively. The calculated values are in good agreement with the wavenumber of a single Raman line determined by Lecomte and coworkers [4].

For the classification of the combination and harmonic bands, the Raman values 141 and 214  $cm^{-1}$  have been used. The three fundamentals observed in the infrared checked within 5 cm<sup>-1</sup> with the Raman values of Lecomte. The differences between the infrared and Raman values may be attributed to the effect of the solvent carbon disulfide on the tribromochloromethane in producing a small shift in the bands, and also to the presence at 667 cm<sup>-1</sup> of the absorption band of atmospheric CO<sub>2</sub>, which made it difficult to locate accurately the position of the band at 675 cm<sup>-1</sup>. The two absorption bands at 735 and 933 cm<sup>-1</sup> could not be accounted for on the basis of the fundamentals.

In comparing the fundamentals of tribromochloromethane and tetrabromomethane, it is seen that the substitution of the bromine atom for the chlorine atom reduces the number of fundamentals from six to four. Only the two threefold degenerate vibrations,  $\nu_{168}$  and  $\nu_{479}$ , are infrared active. The remaining two appear in combination. One of these bands,  $\nu_{168}$ , with frequency  $669 \text{ cm}^{-1}$ , was observed in the rocksalt region. This is  $4 \text{ cm}^{-1}$  greater than the Raman value as determined by Dadieu and Kohlrausch [5]. This difference can probably be attributed to error of observation caused by the presence at  $667 \text{ cm}^{-1}$  of the absorption band of atmospheric  $CO_2$ . The other bands in the observed spectrum, which are of low intensity, can be interpreted on the basis of the four fundamentals. Three of the fundamentals listed in table 1 are the Raman values determined by Dadieu and Kohlrausch.

The classification of the bands as given in table 1 accounts for most of the observed bands. The band observed at 729 cm<sup>-1</sup> in dibromomethane was not classified and may have arisen from a small amount of bromochloromethane that was present as an impurity. There was observed an intense band in this region for bromochloromethane. When the vapor of dibromomethane was measured, the ratio of intensities of the bands at 735

 $cm^{-1}$  and 813  $cm^{-1}$  were much different than in the liquid, and also a band at  $1.233 \text{ cm}^{-1}$  appeared. This is near the location of another intense band of bromochloromethane at  $1.225 \text{ cm}^{-1}$  as measured in the liquid state. Another sample of dibromomethane was measured that also contained these bands. According to mass spectrograph determinations it contained about 1 percent of chlorine. It is probable that a small amount of bromochloromethane is present in the dibromomethane and produces the bands that do not fall in the classification scheme. On further purification of dibromomethane it was found that the band in the region of 13.6  $\mu$  (729 cm<sup>-1</sup>) disappeared when the compound was measured in cells 0.1 mm thick.

Without a study of the rotational structure of these bands the molecular constants cannot be obtained. Unpublished observations made with a different instrument show resolution of some of the near infrared bands of dibromomethane and bromochloromethane into a series of lines approximately  $1.5 \text{ cm}^{-1}$  apart. The spacing interval is less for dibromomethane than for bromochloromethane.

1

The authors thank W. S. Benedict of this Bureau for his discussions on the classification of the bands of these compounds.

# **IV.** References

- E. K. Plyler, R. Stair, and C. J. Humphreys, J. Research NBS 38, 211 (1947).
- [2] W. Bacher and J. Wagner, Z. physik Chem. (B) 43, 191 (1939).
- [3] A. Dadieu and K. W. F. Kohlrausch, Mh. Chem. 55, 58 (1930); 57, 488 (1931).
- [4] J. Lecomte, H. Volkringer, and A. Tchakirian, J. phys. radium **9**, 105 (1938).
- [5] A. Dadieu and K. W. F. Kohlrausch, Mh. Chem. 57, 488 (1930).

WASHINGTON, November 18, 1949.