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Solution of the Telegrapher's Equation With Boundary 
Conditions on Only One Characteristic 1 

By George E. Forsythe 

Forecasting a certain ideali zed hori zontal , autobarotropic, nonviscous, nondi\'erging 
atmospheric fl ow considered by R ossby leads to an unusual boundary-\,a lue problem for 
the telegrapher ' s equation , invol ving boundary values on only one characteristic. It is 
shown how to find unique soluti ons periodic in the longitude ; these a re represe nted in te r'ms 
of a Green 's fun ction, A procedure for computing the Green 's funct ion is set down and i ~ 

shown to be optim a l in a restricted sen"e. The Gree~'s fun ction is tabul ated for 72 lon gi­
t ud es a nd 14 time-valucs. An a lt ernative oluti on by a differencc eq uat ion is mcnti oned. 

1. Introduction 

In one treatment of planetary atmospheric :flow 
as horizontal, a ntobarotropic, nonviscons, and 
non diverging in a plane, Rossby [9]2 considered 
the idealized case of a constant west-wind com­
ponent, U, and a south-wind component, v, depend­
ent on the west-to-east distance coordinate, t/; , and 
time, T, but independent of the south- to-north 
distance coordinate, ,u. I t was shown in [5) that this 
v satisfies the telegrapher's equation (eq 3) below, 
where x= t/; - UT, t= 4 {3r. The parameter (3 = 
212 cos \0 (drp jd,u ) is here considered constant; 12 is the 
angular speed of the ear th 's rotation, and \0 is 
latitude. For this simple atmospheric model, the 
meteorological forecast problem is one of deter­
mining v(x, t) for future times t, given only v(x, 0). 
But on a plane the specification of v(x, 0) is not 
sufficient to determine v(x, t ) for many t> O, be­
cause the line t= O is a characteristic of eq 3 (see 
p . 254 of [11]). Having its initial conditions on 
only one characteristic is an unusual feature of 
the present problem that does not seem to have 
arisen in other physical problems known to the 
author to lead to the telegrapher's equation. 

The author shows that the forecast problem has 
a unique solution when it is assumed that the world 
is round, that is, when the solution is assumed to 

I T his paper was wriUen at the Institute for Num erical Analysis of the 
National Bureau of Standards with the financial support of the Office of 
~aval Research of t he U. S. Na\'y Departme nt. 

, }' igu rcs in brackets indicate thc li terature references at the end of this 
paper . • 
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be periodi c in x. The problem is stated in section 
II and solved in section III. In section IV the 
solution is represented in terms of a Green's func­
tion . In section V a proceciW'e is outlined for 
computing the Green's function by improving the 
convergence of its Fourier series . In section VI 
cer tain auxiliary polynomials, O'k(X) , used in 
section V are discussed and related to the Bernoulli 
polynomial s. In section VII arc reported without 
proof a few results on the approximate solution of 
the problem by a difference equation, taken from 
[6] . In section VIn is given a table of values of 
the Green's function, as computed in the Compu­
tation Unit of the Institu te for Numerical Analysis. 

The presen t au thor first reported this work in 
[7]. Independently of the research reported here, 
Charney, Eliassen , and Hunt of the Institute for 
Advanced Study considered the telegrapher 's 
equation while investigating numerical weather 
prediction in general. Their r esearch was reported 
in [1] and is written up in [2]. The work of these 
men includes much of what is reported here, and 
much more. 

II. Statement of the Problem 

Let C be the circumference of a unit circle; let 
us adopt an angle coordinate x for C: - 7r<x~7r. 
Let I be the set of time-instants t: 0 ~ t< 0:>. Let 
R be the closed two-dimensional region consisting 
of all points (x, t) with X in C and t in I, Let j(x) 
be a r eal-valued function that sa tisfies the follow-
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ing hypotheses, but which is otherwise arbitrary: 
HI: j(x) is sectionally smooth 3 on C. Moreover, 

j(x) = Hf(x+ o) + j(x- O)], (all x). (1) 

H z: j(x) has the average value zero: 

J:7r j(x)dx= o. (2) 

The problem is to find a real-valued function, 
vex, t), defined everywhere on R, with the following 
four properties: 

P I: Vt exists 4 and is continuous throughout R. 
P2 : VX and Vtx= ov,/ox exist and are continuous 

everywhere in R except, at most, jor a fini te number 
oj values oj 5 x. 

P 3 : Whenever Vxt is dejined, the jollowing hyper­
bolic partial dijJerential equation (the telegrapher's 
equation) is satisfied: 

(3) 

P4 : For t= O, vex, t) reduces to j (x): 

vex, 0) =j(x). 

III. Solution of the Problem, Uniqueness 

One gets a formal solution by separation of 
variables :and use of Fourier series. Assume a 
solution of eq 3 of form vex, t) = X(x) T (t). Then 
1!x:=X' (x) T' (t), and eq 3 takes the form 

X' (x) T' (t)_ 1 

X (x) . T (t) - -4' (4) 

The two factors in eq 4 must themselves be 
constant: 

X' (x) "\ 
X(x) = ", 

T' (t) 1 
T (t) = - 4X' 

(5) 

(6) 

A solution of eq 5 for - co <x< co is X(x) =e'Z. 
For x on the circle 0, however, one must have 
X(-1l') =X(1l') , or e-"'=e"' . Taking logarithms, 
one sees that - 1l'X= 1l'X+ 2n1Ti(n=O, ± I , ± 2, ... ). 
H ence X=ni(n=0,±l ,±2, .. . ). Since the value 

3 That is, bothf(x) andf'(x) are continuous in C except for a finite number 
of jump discontinuities. 

• The subscripts denote partial derivatives. 
• It is shown on pp. 55 to 57 of [3] that our conditions PI and p, imply the 

following: 1',. exists and equals v •• for all (x, t) such that x is not one of the 
excepted values in P,. 
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X= O is incompatible with eq 4, there remain the 
following fundamental solutions of eq 5: 

(n= ±l, ±2, ±3, ... ). 

Corresponding to X n(x) , the solution T n(t) of eq 6 
forX =ni is T n(t)=exp (it /4n). H enceforn=± l , 
± 2, . . . the fun ctions X n(X) T n(t) = exp [i(nx+ 
t/4n)] have properties PI, P 2 , and P 3 • By taking 
linear combinations of the functions X nT n and 
X_nT_n, one obtains the equivalent pair of func­
tions cos (nx+ t/4n) and sin (nx+t/4n) . Both of 
the latter functions have proper ties PI, P2 , and P3 • 

In order to obtain a solution with enough de­
grees of freedom to satisfy P4 ) consider the series , 

V(x, t) "" ~[an cos ( nx+ 4tn)+bn sin( nx+ 4tn)]. 

(7) 

where an, bn are undetermined constants. 'N e 
postpone a discussion of the convergence of the 
series (eq 7) for t r" 0 and consider it for t= 0, where 
V(.L, 0) is supposed to equa.lj(x): 

co 

vex, 0) "" L: (a" cos nx+ bn sin nx). (8) 
n=1 

If the series in eq 8 actually does converge to j (x) 
for all x, it is shown on p. 274 of [12] that the co­
efficients, an, bn , must be the Fourier coefficients of 
j. Conversely, by p. 25 of [12], the hypothesis 
H I is sufficient to insure that t]l e Fourier series of 
f actually converges to f(x); it. even converges uni­
formly for x in any interval bounded away from 
a discontinuity of j. Moreover , the hypothesis 
H2 implies that in the Fourier series ao= O. We 
hencefor th stipulate that the series (eq 8) is the 
Fourier series of j. It is important to note 6 tha t 
H I implies that an and b" are O(l /n); that is, there 
exists a constant M < co such that 

(all n) . (9) 

1. Proof of Convergence 

There remains only a proof that the series in 
eq 7 actually does converge to a function vex, t ) 
with the r equired properties, PI , P2, P3, P4 • It will 
b e useful to have the following representations of 
cos (t /4n ) and sin (t /4n). They are proved by 
Taylor's formula and hold for all values of t/4n: 

, See p. 18 of [12]. 
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(10) 

where lanl=la(4tn)ls 1; 

. t (3 nt 
SIll 4n= 4n' (11 ) 

(12) 

where I 'Ynl =11' (4tn)1 Sl. 

Using eq 10 and 11 , one sees that for any fixed t, 

~ [ an cos( nx+. 4~)+bn sin( nx+ 4~1) J= 
00 [ t 2:. (an cos nx+ 6n sin nx) cos -4 + 

n = l n 

(bn cos nx-an sin nx) sin 4~J= 
(13) 00 

2: (an cos nx+b n sin nx)-
n = l 

t2 ~ (an +bn .)+ 
32 £....J an 2 cos nx 2 SlJl nx 

n=1 n n 

t~ (b n an .) -- £....J (3n - cos nx- - SIn nx = 
4n - 1 n n 

~0+~1+~2. 

R epresentation as the sum of three series is per­
mitted because each of the series ~o, ~I' ~2 
converges. ~o converges for all x because it is 
the Fourier series of f ; its convergence is uniform 
in any interval bounded away from a discontinuity 
of f (x) . Fix any positive number t I , and restrict 
the consideration to t's such that Ostst l • Since 
an and bn are O(I /n), ~l and ~2 are convergent 
uniformly in x and t . For example, ~2 is domi­
nated by (td4) 2:( I 6n I /n + I an I /n), a series con­
vergent like 2: (1 ;'n2). The series of eq 7 is thus 
convergent for all x, t and defines by its limit a 
function v(x, t): 

v(x, t) = ~ [ an cos (nx+ 4~)+bn sin ( nx+ 4~) J 
(14) 

Moreover, the series Ceq 14) converges uniformly 
for x, t such that x is bounded away from a jump 
off(x). 

Solution of the Telegrapher's Equation 

----_ . - _ . - -- ---

Since 1:1 and 1:2 converge uniformly, they con­
verge to continuous functions of x and t. Thus 
the only discontinuities of v(x, t ) are those from 
1:0, that is , those of f(x). This is the property of 
hyperbolic differential equations that discon­
tinuities in their solutions are propagated along 
characteristics. Let th e set of discon tinuities 
of j(x) b e denoted by E. 

For all x, t one may obtain V t by termwise dif­
ferentiation of eq 14, because by eq 9 the resulting 
series is absolutely and un iformly convergent in 
both x and t: 

Vt(x, t) =±,~ [~ cos ( nx+ 4~)-~' sin (l1X+ 4:n) J 
(15) 

:Moreover , Vt is continuous for all x, t , so that PI 
holds. Now one may not obtain Vx by termwise 
differentiation of eq 14, because the resulting 
ser ies will generally not converge. However, 
Vx does cxist and is a continuous function of x 
and t for all t and for all x not in E . To see this, 
one uses eq 10 and 12 to carry the Taylor formula 
(eq 13) to one higher power of t . It is found that 

V(x , t) - j(x) + -4t ~ (b n cos nx-an sin nx) -
n = ! n n 

t 2 ~ (an + bn . ) 
32 £....J an 2 cos nx - 2 SIll nx -

n = ! n n 

t3 ~ (bn an.) 
384 £....J 'Yn 3 cos nX-3 SIll nx . 

n - I n n 
(16) 

By termwise differen tiation of eq 16, i t is found 
that 

vx(x, t) j' (x) -~ ~ (an cos nx+ bn sin nx) -

t2 ~ (b n an .)+ - £....J an - cos nx- - sm nx 
32 n - l n n 

ia ~ (an + bn . ) _ 384 ~ 'Yn n2 cos nx n2 sm nx -

f' (x) -tif(x) +1:3+1:4• 

R estricting aLLention to t with 0 ::::: t::::: tl < co, one 
sees that th e expressions 1:3 and 1:4 are uniformly 
convergent with respect to x and t. The series 
leading to f(x) is uniformly convergent for x 
in any interval bounded away from a discontinuity 
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of f( x) . Hence, for x not in E, termwise differ­
entiation leads to the correct value of Vx ' 110re­
over , Vx is continuous in x and t whenever x is a 
point of continuity of f (x) . To get V tx one may 
differentiate eq 15 termwise with respect to x: 

Vtx(x, t) = 

-t ~ [ a n cos ( nx+ 4~)+bn sin ( nx+ 4~) J (17) 

As remarked after eq 14, the series in eq 17 is 
uniformly convergent for x, t such that x is bounded 
away from the discontinuities of f(x). H ence 
Vtx is continuous in x and t for all x, t except for 
x in E . Since Vt, vx, Vtx are all cont inuous v , xt 
exists and equals V tx except on the lines corre­
sponding to the discontinui ties of f(x). This 
shows that vex, t) has proper ty P 2 • The eq 17 
and 14 show that v satisfies the telegrapher 's 
equation (eq 3). Finally, proper ty P 4 was taken 
care of by the selection of {an, bn}. Thus the 
problem is solved completely. 

2 . Proof of Uniqueness 

It will be shown that vex, t) is the only function 
that solves the above problem. Suppose that 
VI(X, t) were a second solu tion. Then the differ­
ence, w(x, t ) =V-VI, satisfies the same problem with 
j(x) = 0. For each XI, by property P I, W(Xb t) and 
Wt(Xl, t) are continuous functions of t for O::::::: t< ro 

while w(x, 0) = 0 and Wx (x, 0) = 0 are, of course: 
continuous functions of x . . For each t, let the 
value of w(x, t) be extended as a periodic function 
of x to all x in the interval [-211', 211'] . Now the 
valuesw( - 11' , t ) and w(x, 0) are given on two charac­
teristics of eq 3. By pp. 21 to 22 of [10] they are 
therefore sufficient to determine w(x, t) uniquely 
for all X, t. On the other hand, the valuesw(1I', t) 
and w(x, 0) are also sufficient to determine w(x, t) 
for all X, t. Since w( - 11', t ) =W (11', t) and w(x, 0) = 
w( -X, 0)= 0, it is seen by symmetry that w(x, t)= 
w( - x, t) . N ow since the values of x lie on a circle 
there is nothing exceptional about th e line X= 11' : 
The above argument will also show that, for each 
value of XI , W(XI +x, t) . W(XI-X, t ). It follows that 
for eaeh fixed t, w(x, t.) = constant, whence w(x, t) = 
h (t). By eq 3, -iw=wtx= (d/dx) h' (t ) = 0. Hence, 
the constan t value of w(x, t ) must be everyw.-here 
zero. Then V=VI, and the solution vex, t ) given by 
eq 14 is unique. 
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The results of section III may be summarized 
in the following theorem, phrased in the notation 
of section II. 

THEOREM 1. If the real-valued function f(x) 
dejined on C satisfies hypotheses HI and H 2 then 
there exists a unique function, vex, t), defin~d on 
R and possessing properties PI, P 2, P a, and P 4• 

If eq 8 is the Fourier series of f(x) , then vex t ) is 
defined explicitly by eq 14. ' 

It is of mathematical interest 7 to note that 
Theorem 1 can be extended to general functions 
j(x) of bounded variation. That is, one may re­
place H I by the weaker hypothesis 

H ;:f(x) is of bounded variation on C. k [oreover,8 

f (x) =t[f(x+ O) + f(x-O )], (all x). 

T~le. solution vex, t ) is required to have property 
P 2, mstead of P 2: 

P;: VX exists in R except for x in a set E (E c C) 
of L ebesgue measure zero; for all t and for all x not 
in E, Vtx exists and is a continuous function of x and 9 t. 

The extension of Theorem 1 is stated as follows: 
THEOREM 2. If the real-valued function f(x) 

defined 071 C satisfies hypotheses H I a7ld H~ then 
there exists a unique func tion vex, t ) defined' on R 
and p,0ssessing p.roperties P I, P~, P a, and P 4 • If 
eq 8 ~s the Founer 8eries of f(x), then vex, t) is 
defined explicitly by eq 14. 

The convergence proof of section III, 2 requires 
only slight modification to serve as a proof of 
Theorem 2. For an arbitrary function f(x) of 
bounded variation, there need be no interval of 
continuity; one may therefore not expect the 
~eries (eq 14) to converge uniformly in any 
mterval. The termwise differentiations of section 
III, 2 can, however, be justified for almost all x by 
the fact that the r esulting series are Fourier series . 

IV. Representation by a Green's Function 

The formula (eq 14) for the solution of the 
problem of section II is directly adapted to 
numerical computation only when the Fourier 
coefficients an, bn converge rapidly to zero. But 
some of the most important cases in meteoroloO'y 

. b 

are wheref (x) has dIscontinuities (see footnote 7). 

7 '!"'his .extension se.ems to have no meteorological interest. However, it 13 
of much Importance III meteorology to deal with functionsJ(x) with some dis­
contlllUltlCs; sucb discontilluities occur at frouts between air masses 

8 Same as eq 1. . 

, It follows from PI and P', that v,. exists and equals v •• for all t and for all 
x not III E; see pp. 55 to 57 of [3] . 
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With such an j the Fourier coefficients arc, 
roughly speaking, of the order O(1 /n), and for 
those j the convergence of eq 14 is hopelessly 
slow. 

It is possible, however, to improve the con­
vergence of eq 14 to such a degree that computa­
tion of vex, t) is reasonably possible. The pro­
cedure will be illustrated in section V for one 
particular choice off (x) : 

(O< X:S;7r) 

(:r= 0) 

(-7r:S;x< O). 

(18) 

It may be shown by direct compu tation that the 
Fourier series of (To(x) is the series of eq 18. It 
then follows that the series converges to (To(x) for 
all x. The reason for cboosing (To (x) is two-fold : 
(a) it is of meteorological inLcrest to see how a 
simple discontinuity in vex, 0) is propagated, as t 
increases; (b) for any j(x) that is sectionally 
smooth, it is possible to represent the correspond­
ing vex, t ) in terms of the solu tion for Lhe pecial 
initial condition vex, O)= (To(x ). 

The present section is devoted to proving the 
property (b). Suppose , therefore, that G(x , t) is 
the solution of the problem of section II with the 
ini tial condition (To (x) ; then G(x, 0) = (To (x) . Let 
a sectionally smooth function j(x) be given that 
satisfies eq 1 ancl 2. Letj(x) have the jump J k = 
f(Xk+ O) - j(Xk- O) attbepointxk(k= l, 2, ... , K). 
Let <To(x) be continued periodically for x in [- 27r, 
27r] . Then (J d 7r) (TO (X-Xk) also has the jump J k 

at the poin t Xk . Now 

1 K 
Hx) - f(x) - - ~ J k<TO(X -Xk) 

7r k~1 

is a continuous function, since all the jumps have 
been removed. Moreover, Hx) and the functions 
(J k/7r)<TO(X - Xk) all satisfy eq 1 and 2. There is, 
therefore, a unique solution to the problem of 
section II for each of these functions. For the 
function (J d 7r) <To (X-Xk) the solution is (J k!7r) 
G(X-Xk, t). It will be shown below that the solu­
tion y(x, t) corresponding to the initial values Hx) 

is given by 

I j~"-
y(x, t) = ; -1r G(x- u, t)( (u)du. (19) 

Since the problem of section II is linear in the 
initial condition j(X) , and since 

it follows that 

1 J( 1 r"-vex, t) =; (;t J kG(X -Xk, t) +;, _,,- G(x - u, t)( (u)du. 

(2 1) 

The formula (eq 21) is the desired representation 
of v (x, t ) in terms of the solu tion G(x, t) to the single 
problem wherc j (x) = (To (x) . The nature of eq 21 
indica tes that G(x , t ) may be call ed the Green's 
junction of the problem of section II . The repre­
sentation (eq 21 ) is not only of theoretical impor­
tance, bu t it can also he used for approximating 
the solutions for general boundary values, j (x) , 
once the Green's function is tabu lated. The prac­
tical problem then becomes one of approximating 
the integral in eq 21 by some numerical process. 
This latter problem is not treat.ed here. 

It remains to prove eq 19 . First, it may be 
observed that, for each x, sin ce <TG and ~ are 
periodic, 

IJr IJ'r - _ <To(x- uH' (u )du=·- (To (x- u)dHu) = 
7r 7r 7r - 7r 

IJ'r IJ'x-O -:;;: _ Hu)du<To (x-u) =- HU) (T~ (x- u)du 
II 7r 7r - 7r 

Ij 'r + Hx)+ - + HU)(T~ (x-u) du= 7r x 0 

1 J' 7r HX)-27r _7rHu) du = Hx) , (22) 

In eq 22 we have used two Riemann-Stieltjes in­
tegrals. The last step is true because Hx) 
satisfies eq 2. By eq 13, 

t co f3 t2 00 ex 
G(x, t) = <To (x) + -4-~ -!J cos nx- - ~ ~ Sill nx. 

n=ln 32n~ln 

Hence 

! f7r _ ' _ 1 f 7r , t fr [ 00 f3n . . ] 
7r - r G(x u,tH (u)d1.1 - --;. _ <To (x-uH (u)du+ 4- ~ '2 (cosnxcosnu+smnxsmnu) e(u)du-7r 7r - r n~ l n 

t2 fr [ 00 ] 32 ~ ~ (sin nx cos nu-cos nx sin nu) e (u)du. 
7r - r 71. = 1 n 

(23) 
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Since Hu) is sectionally smooth, W(u) 1 is bounded. 
Hence the series in eq 23 remain uniformly con­
vergent when multiplied by feu) and may be inte­
grated termwise. We note that 

1 f7r n f7r } - cos nu( (u)du =- sin nuHu)du= nb n , 
7r -7r 7r -7r 
1 f7r nf7r - sinnuf(u)du= -- cosnuHu)du=-lla", 
7r -7r 7r -7r 

(24) 

where an and b" are the Fourier coefficients of ~ . 
In view of eq 22 and 24, the termwise integra­

tion in eq 23 yields 

If7r 
:; -1r G(x-u, t)e(u)du= Hx) + 

t '" f3 -4 ~ ~ (b n cos nx-an sin nx)­
n=1 n 

t2 '" an . 
32 ~2 (a" cos nx+b" SIll nx). 

n=ln 
(25) 

But, by eq 13 and 14, the right-hand side of eq 25 
is y(x, t), the solution corresponding to the initial 
values Hx). This completes the proof of eq 19 . 

The representations (eq 20 and 21) assume a. 
more symmetric and unified form when the Lc­
besgue-Stieltjes integral is used. It can be shown 
that 

1J' j(x) =- (fo(x-u)dj(u) , 
7r C 

(26) 

and that 

vex, t) =1. r G(x-u, t)dj(u) , (27) 
7rJ C 

where eq 26 and 27 include Lebesgue-Stieltjes in­
tegrals over the circle C. Whenever j(x) has a 
discontinuity (say at Xl), the integral in eq 26 fails 
to converge as a Riemann-Stieltjes integral for 
X= Xl, because the. functions (fO(XI-U) and j(u) 
both have a discontinuity for u=o. The same 
holds for eq 27. The integrals (eq 26 and 27) are 
convergent for all x as Lebesgue-Stieltjes integrals. 
Moreover, the formula (eq 27) yields the solution of 
the problem when j(x) is an arbitrary function of 
bounded variation; the above proof of eq 19 can 
be modified to serve as a proof of eq 27. 
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V, Computation of the Green's Function 

For the purpose of using the representation (eq 
21) and for its own meteorological interest, it was 
desired to compute the Green's function G(x, t). 
A tabulation to three decimal places, accurate to 
approximately 0.001, appeared sufficiently accu­
rate. An x interval of 5 degrees of longitude 
(7r/36 radian) is convenient in meteorology. It 
was decided to compu te G(x, t) for various times 
T up to 96 hours at latitudes cp from 32 0 19' to 10 

55 o. Since the length unit is here the radian of 
longitude, the expression dcp /dJl. in section I takes 
the value cos cp. Then 4(3 = 8n cos2 cp, where 
n = 7.292 X I0- 5 radian/second. Now 24 hours 
corresponds to 7= 86,400 seconds, or to t= 50.40 
cos2 cp. At latitude 32 0 19', cos2 cp = 0.714, whence 
t= 36 at 24 hours. The largest value of t for 
which G(x, t) was computed corresponds to 96 
hours at latitude 32 0 19'; it is t= 144. 

Let z= t/4, for convenience. By eq 14 

G(x, z) =~ - sin nx+- . '" 1 ( Z) 
71=1 n n 

(28) 

In summary, a method is required to compute 
G(x, z) to an accuracy of approximately ± 0.001 
fOI·1l X= - 7r(7r/36) 7r and for various positive values 
of z up to 36. The present section will present 
one such procedure, an application of a 
method for improving the convergence of certain 
Fourier series, given on pp. 84 to 88 of [10]. The 
procedure presented below is not an exact description 
oj the methods actually used in making the table oj 
sectioll VIII. It is assumed in section V that 
computing machinery is available capable of 
dealing with numbers of 10 decimal digits, but 
no more than 10. 

Of the tolerable error 0.001 , the amount 0.0005 
must be reserved for round-off in the final tabula­
tion to three decimal places. Suppose that 0.0004 
is allowed for truncation er1'o1's/2 and 0.0001 for 
computing errors resul ting from round-offs during 
the calculation with 10-digit numbers. To have a 
truncation error as low as 0.0004 from use of a 
partial sum of eq 28 would require about 23,000 

10 The limit 4>=32°19' arose unintentionally. 
11 The notation x= a(o)b means .r= a, (/ +0, a+ 20, a+30, .. _ ,b-o, b. 
12 Truncation errors are errors that resu1 t from use of approximate mathe­

matical formulas, e. g., use of partial sums of infinite series. 
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terms for x= 7r/36 and x=357r/36. The con­
vergence must obviously be improved. 

1. Representation by Truncated Double Sum 

We write 

'" 1 z 
G(x, z) = ~ - sin nx cos - + 

n=l n n 

(29) 

for simplicity we consider only the first sum ~I in 
eq 29. It can be shown that the term ~2 behaves 
similarly throughout the analysis. Expanding 
cos (z/n) in its ::VIaclaurin series, one has 

'" 1 . '" ( - 1 )' z2r '" '" (-1 Y z2r sin nx 
~l=~ - Slll nX~ -(-2) ' 2r =~ ~ (2') ' 2r-t-'1 - -

n=l n r=O r .n n= l r=O l.n 

(30) 

One type of truncation of eq 30 consists in 
omitting all terms for n~N+ 1, I'~R. Let the 
error caused by this truncation be called EI. We 
shall estimate E[ for O ':::; z ':::;~ : 

_I co co (_ I )'z2r sin nx 1 
I E1 1- n~+l ~ (21') !n2r+1 

'" Z 2r '" 1 '" Z 2r 1'" d X 
.:::; ~ -(2)' ~ 2rH < ~ (2 ') ' 2r+1 r=R l' _ n=N+I n r=R 1 . N X 

'" (Z/N)2r 1 '" 1 ( eZ ) 2r 
= ~ (21') (21') ! < 4 ~; ~? 1'3 /2 21'N . 

The last step above uses the Stirling expression 
for t he factorial hmction, which , according to p. 
74 of [8], is a one-sided estimate: s! > sSe-s ..J27rs. 
Continuing, one finds for eZ /2RN< 1 that 

. 1 ( eZ )2R 1 co ( eZ ) 2r 
I El l < 4 # 2RN R 3/2 ~ 2RN 

(31) 
1 ( ez )2R[ ( eZ )2J-l 

= 4#R3/2 2RN 1- 2RN = F (N, R). 

The first estimate in eq 31 seems crude, but it 
does no t affect the values of N or R very mu ch . 
Thus F(N, R) is an upper bound for the trunca­
t ion error I E II introduced by omitting terms of 
type n~N+ l , r~ R in '&1' 

One can reasonably tolerate a truncation error 
lEd of 5 X I 0 - 5 • The corresponding admissible 

Solution of the Telegrapher's Equation 
862453- 50- 7 

values of Nand R come from setting F(N,R) = 
5 X I0- 5 for Z = 36. The following pairs of values 
of N, R were obtained from eq 31 by a numerical 
calculation followed by a round-off of N to an 
integral value: 

N = 26 

18 

13 

11 

R = 4 

5 

6 

7 

N = 9 

7 

4 

3 

10 

15 

20 

(3 2) 

The selection of the most sui table pair of values 
N, R from eq 32 will be postponed until we have 
discussed the summation of the remaining terms 
of eq 30. 

2 . Computation of the Double Sum 

The terms of ~I for n= 1,2, . .. ,N and all l' 

may be left. in the form 

'~(1 Z) . .& 1 = L.J - eos - sin nx, 
n=l n n (33) 

and may be computcd from thi s formula. The 
terms for n~N+ 1 and 1' = 0 , 1, ... , R - l may be 
written in the form 

(34) 

w110re 
'" Slll nx 

O'~~)(x)=(- I )r ~ ~. 
n=N+l n 

(35) 

Once O'~~) (x) has been tabulated for the one value 
of N to be selected below, ~~ may be computed 
directly from eq 34. Two methods are needed to 
get O'~~) (x), as the calculating machinery IS as­
sumed to be limited to ten decimal digits. 

The first method is to use the identity 

N . 
IN) ( ) () ( ) r " SIn nx 

0' 2r X = 0'2r X - - 1 L.J~' 
n=l n 

(36) 

where 

() (O)()_( l ) r ~sin nx 0'2r X = 0' 2r X - - L.J~' 
n=l n 

(37) 

In section VI it will be shown that for O':::;x':::; 7r , 
0'2r(X) is essentially a Bernoulli polynomial in the 
variable x/27r . Hence 0'2r(X) can readily be com-
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puted or even interpolated fro~ existing ta~les 
like [4] . One can then get ()~~)(x) by carrymg 
out the subtraction indicated in eq 36. The terms 
0'2T(X) and (sin x) / l of eq 36 are approximately 
unity; with ten-digit calculating machiner y these 
terms may be carried to ten decimal places. H en ce 
O'~~) (x), calculated from eq 36, will be good t,o 
ten decimal places. In order to get the Green s 
function to an accuracy of 0.001 , it is necessary 
that all terms in the sums of eq 33 and 34 be su b­
stantially correct to five decimal places ; hence the 
terms z2T()~~)(x)/(21')! in eq 34 must b e given to five 
decimal places. It follows that z2r / (21')! must be 
less than 105 • for z=36 this m eans that 21'':::;4. 
Thus the fir~t m ethod of computing O'~~)(x) is 
adequate when 21'= 0, 2, 4 . 

For 21' > 4, another way of getting O'i~) (x) is 
n eeded. For these larger 1', the convergence of 
the infinite series (eq 35) is good, and we may 
write 

The truncation error E2 in eq 38 may be shown 
to be at its maximum when x= 7r/36 and when 
sin (N2TX) = 0. In this case the errol' is not grea.ter 
than the sum of the first 36 omitted terms, WlllCh 
is estimated by 

In order to keep E2Z2T / (21') ! numerically less than 
5X10- 5 for z=36, it is sufficient that 

~ (~)2T+l_1_, = 5 X lO- 5• (39) 
7r N2T (21'). 

Solution of eq 39 gives the following points of 
truncation of eq 38: 

N 4= 126, N 5= 78 , N 6= 54, N 7= 40 , 

N g=32, N 9= 26, NlO=22, .. . . 
} (40) 

(The values of Nk for odd subscripts k are appro­
priate to a parallel analysis of the sum L2 of eq 29, 
but not to the present analysis of L l') If ()~N) (x), 
()~N) (x), ... , ()~1L2 (x) are estimated by eq 38, with 
t.he values N2T taken from eq 40, the individual 
summands of eq 34 will each have a truncation 
error not exceeding 5 X 10- 5• 
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3 . Operational Analysis, Selection of Nand R 

We now estimate the labor involved in comput­
ing the Ll of eq 29, in oro er to select that pair of 
values of Nand R from eq 32 tha t makes the 
computational work a minimum. The resulting 
computing procedure will b e optimal in a limited 
sense- i. e., optimal among the one-pammeter 
family of truncations considered in section V, 1. 
Although the r esulting procedure will be perfectly 
feasible for computation- indeed, i t differs only 
moderately from the procedure actually used to 
get the tables of section VIII- it cannot be said 
to be optimal among all procedures for computing 
the Ll of eq 29. For it has been based on a certain 
type of truncation of a certain double series (eq 
30), and on a predetermined assignment of 
truncation errors to several sub calculations (eq 
38). Given only the nature of the computational 
machinery, to describe an absolutely optimal 
procedure of getting LI would seem quite beyond 
the present powers of analysis. 

It is cus tomary and quite r ealistic to es timate 
the cost of a computation by the number of 
mu ltiplications required .13 'We shall consider 
the multiplications r equired to get LI for one 
value of z and for one value of x. In eq 33 one 
may ignore the desk computation required to get 
(l /n)cos(z/n) and sin nx; there are then essentially 
N multiplications involved in eq 33. In using 
eq 36, one may ignore th e work of getting O'ZT(X), 

which is chargeable to basic table development, 
and count 3N multiplications n eeded in all to 
get 0' ('6 ) (x), O' (~) (x), O' (~) (x). To get O'(~) (x) f:'o~ 

eq 38, in view of eq 40, r equires 54 - N multIplI­
cations. To get O' (~), O' (~~) , ••• , (J 2lt~2 from eq 40 
requires in all approximately (R - 4) (3 0-N) multi­
plications, where 30 is a rough average of the 
higher values of N2T in eq 40. To put L; together 
by use of eq 34 involvcs R multiplications. 

Summarizing, we find that getting L I by the 
outlined procedure requires for each value of z 
and each value of x the number of multiplications 

W1(N, R )=-66+7N+31R - RN= 
151 - (7- R )(31- N). (41 ) 

Minimizing WI (N, R ) over the pairs given in eq 32 
selects the pair N= 18, R = 5, for which W1(18, 5) = 
125. Assuming that the computation of Lz in 

13 'l'hi ~ method is expecially useful witb respect to computations on Inter· 
national·Business·Macbines equipment. 
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eq 29 involves the same considerations, we may 
therefore propose N = 18, R = 5 as being the 
optimal values to use in getting G(x, z) by eq 33 
and 34 for one value of x and one value of z. 
The number of multiplications ,dl be 2 WI (N, R). 

Getting G(x, z) for 72 values of x and one value 
of z involves no change of N, R. Since sin nx 
[cos nx] is an odd [even] function of x, the number 
of multiplications in getting G(x, z) for all x will 
b e 72liVI (N, R ). However , getting G(x, z) for 
several values of z changes the allaiysis, b ecause 
the functions (J <f,.> (x), once computed, serve for each 
new z without change. To get ~I for 13 values 
of z and one value of x, for example, will r equire, 
in addition to the multiplications in eq 41, only 
12N multiplications from eq 33 and 12R from 
eq 34. The total number of mul tipl ications will 
then be 

W I3 (N, R )=-66 + 19N+ 43R-NR = 
751- (19 - R ) (43-N). 

The minimum of liV13 (N, R ) is 36 1, and occurs 
for N = 13, R = 6. The optimal choice of N, R 
has changed, though not greatly. Since we 
expect to use 13 values of z, we adopt th e 'values 
N = 13, R =o= 6. 

4 . Summary of the Computation Method 

vVith the above choice of Nand R, th e compu­
tation of ~I may pl"Oceed as follows: 

(a) Compute 

~, 13 (1 z). 
LI = ~ - cos -- SIll nx. 

71. = 1 n n 

(b) For 1' = 0, 1, 2, compu te 

13 • 
(]3) ( ) _ () ( ) r """ s I n nx (J2r X - (J2r X - - 1 ~ --zr:t:l ' 

71. = 1 n 

where <T2 r(X) is computed from section VI. 

(c) Compute 

(13)()_ ~ sin nx l (J6 X - - ~ - -7 - ' 
n=14 n 

32 . 
(13) ( ) _ """ S In nx 

(Js X -n~4 -r' J 
22 . 

(13 ) ( ) = _ """ sm nx. (J1O X ~ II 
71.=14 n 

Solution of the Telegr(:rph~l"S Equation 

(42) 

(43 ) 

(d) Compute 

(e) Compute ~l= ~;+ L~. 
The number of multipl ications invol ved in get­

ting ~I for one x-value and for one z-value is : 
(a) 13; (b) 39; (c) 69; (d) 6 ; (e) O. When getting 
~1 for one x-value and 13 z-value , one ad ds 156 
multiplications to (a) and 72 to (d) . Th e total 
for 13 z-values is 355 mul tipl ications per x-value. 
(The slight discr epancy with the number 361 in 
subsection 3 is due to the rough estimate previously 
made for step (c) .) For all x-values (essentiaJly 
36), one gets a total of 12,780 multiplications to 
get ~I' 

To get ~2 in cq 29, one follows analogous steps 
involving (J2r+l (x), (J~;~ l (x), etc. Ther e will be 
approximately 12,750 more mul tiplications, mak­
ino- a total of about 25,500 mul tiplications to get 
G(x, z) for th e 72 x-values and 11 z-valu es. 

The to tal truncation error in getting ~I is bounded 
by 2 X lO- 4 • Thi is divid ed into four t runca­
t ion errors of 5 X 10- 5, one for each of the three 
steps in (c), and one for th e terms left out of (e). 
The truncation error for ~2 is also bounded by 
2 X 10- '1, making a total truncation error of 4 X 10- 4 • 

The final round-off of th e final answer to three 
decimal places m ay in trodu ce an elTor of 5 X 10- 4 • 

The third source of error is the accumulation of 
round-offs from adding five-decimal-place te rms. 
Each term is aceura te to 5 X IO- 6; with an assumed 
rectangular distribu tion these terms have a dis­
pel' ion near 3 X IO- 6. Each value of G(x, z) isob­
tained from the addition of about 270 su ch te rms. 
The dispersion (J of the sum is therefore abou t 
,1270 X 5X IO-6, or about 8 X lO- 5 • One m ay ex­
pect the accumulated error to exceed 2.5 (J = 2 X 
10- 4 in only l. 3 percen t of th e cases. The sum 
of the three enol'S is effectively bound ed by 
11 X 10- \ or slightly more than 0.00l. 

VI. The Polynomials {O'k(X) } 

In section V we made use of certain functions 
(Jk (x) defined as follo w : 

r '" sin nx 
(J2r(x)=(- I ) ~-2T+T 

71.=1 n (r= O, 1, 2, "');1-
(r= O, 1, 2, ... ). J 

(44) 
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The function CTO (X) was used in section IV; see eq. 
18. For k > O the series CT k(X) in eq. 44 are abso­
lutely convergent; hence they represent contin­
uou s functions. Since CT2r(X) is odd and CT2r+1 (x) is 
even, it is n ecessary to sum the ser ies (eq. 44) 
only for OS XS7r. 

As stated in eq . 18, 

(45) 

Now 

CTI (x) = - ~ - 2- = CTomd~-~ :1" '" cos nx l X '" 1 
n = l n 0 n=ln 

Hence 

7r2 7r 1 
CTI(X) = -6+2"x-Lj: X2, 

Similarly, for ° S x S 7r, one finds 

( ) 7r2 + 7r ? 1 3 . CT2X = - - x - x-- - x , 
6 4 12 

(46) 

Use has been made of the formulas ~:~ 1 n- 2= 
7r2/ 6; ~:- 1 n - 4 = 7r4/90. 

The functions CTkeX) are therefore all poly­
nomials. Their use in improving the convergence 
of Fourier series is pointed out on pp. 84 to 88 
of [10]. Although they may be easily tabulated 
from eq 46, they may also be adapted from exist­
ing tables b ecause they are essentially B ernoulli 
polynomials. Let {B n(x)} b e the Bernoulli poly­
nomials given on p. 181 of [4]. 

.... , 

Proof: Define the Bernoulli number B n by the 
relation B n= B n(O). These are the Bernoulli num­
bers used on p. 21 of [8]; they are Bo= l, B 1= -i, 
B2 = 1/6, B3 = 0, B4= - 1/30, B s= O, B 6= 1/42, .. . , 
Davis uses other notations in [4] . Now fix x in 
the interval OSxS7r. For each k = l, 2, 3, ... , 

"After this paper was completed, Professor D . H. Lehmer called the 
author's attention to tbe statemen t of th is lemma on p. 65 of N . E . Niirlund 's 
Vorlesuugen liber DiffercDzemechnung (Julius Springer, Bcrlin, 1924). 
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The last step is by eq 9 on p. 21 of [8], which is 
correct except for sign. Hence, letting x= 27rt, 

2(27r) - k-I CTk (2 7rt) = 

Sat 2(27r)- kCTk_l(2 7r17 )d7J /:'+;I) ! (k = 1,2,3, .. ). 

(47) 

Now define 2 (27r)0 CT - I (27rt) = - Bo/O! (= - 1). Use 
eq 47 formally to get 2(27r) - ICTO(27rt): 

2 (2 7r) -ICTO(27rt) = - ~! ~ - ~i (= -t+ i)· (48) 

Note that eq 48 agrees with eq 45 for CToeX) . I-I en ce 
eq 48 is a correct formula, although it was only 
derived formally. 

We now apply formula (eq 47) repeatedly , 
getting always correct expressions: 

e )- 2 _ Bo t2 B, t B z. 
227r CT,(27rt) - - 0!2i-l! [1-2!' 

2') )-3 ( ) _ _ Bo!!._ Bl f_ B 2!..._ B3. 
(~ 7r CT2 27rt - O! 3! I! 2! 2! I! 3!' 

But it follows from the top of p. 188 of [4] that 

(50) 

Comparing eq 49 and 50, we see that 

Let 27rl = x, and the lemma is proved . 

VII. Solution by a Difference Equation 

Our first approximate solution of the problem 
stated in section II consisted of the approximate 
evaluation of the integral (eq 21) by means of 
numerical integration formulas, using the approxi-
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ma te values of G(x, z) tabulated in section VIn 
belO\IT. A second approximate solution of the 
problem consists in solving with appropriate 
boundary conditions a difference equation that is 
closely related to the differential equation (eq 3). 
The latter method is considered in detail in [6], 
where proofs may b e.found ; only a summary is 
given in the present section. 

For any positive integer 2N, let h= 7r/2N; let 
k > O be arbitrary. A net is formed of all points 
(x, t) of form (}J.h , vk ), where }J. and v are integers 
satisfying the condi t ions 

}J. + v= O (mod 2), 1 }J. 1 ~ 2N, v~O. (51 ) 

Whr]"e necessary we extend the net and the func­
tional valu es periodically in x with period 27r. 
The differen tial equation (eq 3) is approximated 
by the difference equation, 

v(x+ h, t+ k) -v(x- h , t+ k) = 
v(x+ h, t - le)-v(x-h, t - le )-hle v(x, t). (5 2) 

The boundary conditions of the difl'erence-equa­
tion problem arc prescribed valu es of v(x, t ) on the 
two rows t= O, t= lc. Assume th at for t= le , 

~v(x,t) = 0, (53) 
x 

where the sum is extend ed over all points of the 
second row of the net. The boundary conditions 
and eq 52 then determine the value of v(x, t) on the 
row t= 21e up to an additive constant. The 
additive constant and hence v(x, 21e) are determined 
uniquely by requiring tha t eq 53 hold also for 
t= 21e. Continuing row after row, one thus de­
termines v(x, t) over the whole net. Let the 
function so determined be denoted by V(N)(X, t) ; it 
depends on N, on le, and on the initial values pre­
scribed for the first two rows. The problem of [6] 
is to see whether V(N) (x, t) -'>v(x, t) as N -'> 00 . 

L et the initial values 1!(X, 0) on the first row be 
defined by the r elation v(x, 0) - f (x) , where f (x) is 
the function of eq 1. Let Ie be fixed. Then it is 
possible to choose the initial values v(x, Ie ) on the 
second row of the ll et in such a manner that, as 
N ----7oo , V(N)(X, t)-'>v(x, t) for each t of the net and 
for each x that is an abscissa of continuity of f (x). 
If Ie is allowed to vary with N iu such a manner 
that lc-'>O as N -'> 00, t hen V(N) (x, t) -'>v(x, t) for each 
t ~ 0 and for each x that is an abscissa of conti­
nuity off(x). In neither case may one, in general, 
expect the convergence to be uniform in x or t. 

Solution of the Tele<;Jrapher's Equation 

The method referred to for choosing the values 
v(x, k ) on the second row is not an economical 
one, and in a practical computation one would 
prefer a cheaper though approximate method. 
Two things are shown in [6] about the effects of an 
approximation of the valu es of v(x, Ie ): First, th ey 
may introduce ultimate instability in to the solu­
tion. Even though the solution v(x, t ) of eq 3 
be identically zero, it is possible t hat for fixed 
N and x, 

lim V(N) (x, t) = + 00 • 

t~'" 

Second, the approximation docs not preven t con­
vergence of V(N)(X, t ) to v(x, t), provided that th e 
error of the approximation of v(x, Ie ) vanishe as 
N -'> 00 • One r easonable way of causing the elTor 
to vanish is to let lc-,>O. 

These results show that the differ ence-equation 
method is a feasible method of solving t he 
problem of this paper . 

VIII. Table of the Green's Function 

In this ection is tabula ted the Green's function 
G(x, z), as compu ted in the Complitation Uni t of 
the Institute for Numerical Analysis. The value of 
the time parameter z corresponding to h hours at 
latitude q, is 

z= 0.52502 h cos2 q, . (51) 

(Except for the la t digit of the constant, formula 
(eq 51) can be verified from the introduction to 
section' V.) M eteorological considerations sug­
ges ted that h should be chosen ill convenient mul­
tiple of 12 hours, and tha t q, should be 35°,45°, or 
55°. The la ti tude 32°19' r es ulted from a numer­
ical error by the author. A limited number of 
pairs of values of h and q, were selected for the 
computation ; these pairs are hown in table 1, 
together with the corresponding values of z 
determined from eq 5l. 

For each of the 13 values of z given III table 1 
(and for z= O) and for X= - 7r (7r/36) 7r, the Green's 
function G(x, z) is presented in table 2 to 5 deci­
mal places. Since G(x, z) has a discont inuity of 
the first kind at X= 0, the values G( - 0, z), G(O, z) , 
and G(+ O, z) are all given. In every case, 
G(O, z)=t [G(- O, z)+ G(O, z) ] and G(+ O, z)­
G(- O, z)= 7r . The computational procedure fol­
lowed that of section V in general outlin.e, with 
certain deviations. It was decided to use N = 18, 
R = 6. The auxiliary functions a<fr) (x) and 
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0"2;~\ (:r) were computed from formulas like eq 36; 
formulas like eq 38 were not used . This necessi­
tated carrying considerably more than 10 digits, 
and so the polynomials O"k(X) were first computed 
to 17 decimal places. Choice of formula (eq 36) 
was based on the value of getting these tables of 
Bernoulli polynomials as a byproduct of gen eral 
interest. 

To Le defini te/ 5 let us write G(x, z) = Gl (x, z) + 
G2 (x , z), where 

Gl (x,z) =~ - sin nx+ - , 18 1 ( Z) 
n=1 n n 

and 
'" 1 ( Z) G2 (x, z) = ~ -- sin nx+- . 

n= 19 n n 

Let 

(Ok/OZk) G2 (x, z) = G(k) (x, z), for k = O, 1, 2, 

Then 

(52) 

G(k) (x, 0) = 2S ;+1 sin (nx+k ~2)=gk(X) - hk(x) , 
n=19 n 

where 

gk(X) = ~ ;+1 sin (nx+ k ~2)' 
n=1 n 

18 1 . ( 7r) hk(x) = ~ H I sm nx+ k -2 . 
n = 1 n 

By section VI, the functions gk(X) are polynomials. 
They were generated on an International-Busi­
ness-Machines tabulator to 17 decimal places. 
The values of hk(x) were computed and subtracted 
from gk(X) to yield G(k) (x, 0). For any z, 

where there exists a ZI (O < Zl <Z) such that 

K+1 
IRk(x,z) I::; (~+ 1)! G (K+ll(X, ZI) ' 

If 0 ::; z::; 36, Z11 /ll!::; .33 X 1 010. And I G(ll ) (x, ZI) I::; 
:f; n- 12< 1.5 X IO- 15• Hence, for O::; z::; 36, 

n =19 

IR11 (x, z) I < 0.5 X 10- 5• 

" This description of the computational procedure was furni shed by 
Gertrude Blanch of the Compu tation Unit, Insti tu te [or Numerical Analysis 

100 

Once the values of G(k) (x, 0) were obtained it was 
possible to generate, very easily, the function 
G(x,z) for any values of Z in the range 0<z::; 36. 

To summarize, 

(a) Gl(x, z) was computed from eq (52). 
(b) The functions G(k) (x, 0) were computed 

for k == O,1,2 , . .. , 10. 
(c) G2 (x, z) was ob tained from eq (53 ). 
(d) Gl(x, z) and G2(x , z) wel'e added, to yield 

G(x, z). 

The subsidiary computations in (a) and (b) were 
carried to nine decimal places, those in (c) to at 
least seven decimal places in the partial products . 

Table 2 is believed to be accurate to ± 0.00002 
for all x and all z. The cosine component of 
G(x, z) was given a final ch eck by use of the fol­
lowing formula: 

35 '" 1 z 
2.::: G(hr/3 6, z) = ~ - sin -72 = p (z) · 

k= -36 p= 1 jI V 

T h e check shmved a deviation between the sum 
and p(z) , which was n ever greater than 0.00005. 
The sine component of G (x, z) was given a partial 
check by the formula 

35 k z 
~ sin 27r G(k7r/36 ,z) = 2 cos 18+ 

k =-36 

2 ± [ _ 1_ cos ( Z/18 ) _ _ 1_ cos ( Z/18 )J. 
p= ) 4v+ 1 4j1 + 1 4v - 1 4v - 1 

Comparable agreement was found . Finally, the 
table differences with respect to x are very 
satisfactory. 

T ABLE 1. Values of the time parameter, z, corresponding 
to hours, h, at latitude, <I> 

h 

---------
Hours 

12 3. 150 
24 9.000 8.455 6.300 4. 145 
48 18.000 16.909 12.600 8.291 
72 27. 000 18.900 
96 36.000 25.200 
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TABLE 2. 'Table oj Gl'een's Function G(x, z). 

x 
0.00000 3.15012 4.J4543 6.30024 8.29086 8.4"505 9.00000 

Degrees 
- 180 -0.00000 
-;- 175 -.04363 
- 170 -. 08727 
-165 -.13090 
-160 -.17453 

-155 -.2J817 
-150 -.26180 
-145 -.30543 
-140 -.34907 
- 135 -.39270 

- 130 -. 43633 
- ] 25 -.47997 
- 120 - .52360 
-115 -.56723 
-110 -.61087 

- 105 -.65450 
-100 -.69813 
-95 -. 74176 
-90 -.78540 
-85 -.82903 

-80 -.87266 
-75 -. 91630 
-70 -0.95993 
-65 - 1. 00356 
-60 -1. 04720 

-55 -1. 09083 
-50 - 1. 13446 
-45 - 1. 17810 
- 40 -1. 22173 
-35 - 1. 26536 

0.32695 
.39530 
.45756 
.51370 
.56372 

.60768 

.64565 

.67775 

. 704J3 

. 72496 

. 740'J2 

.75072 

.75611 

.75679 

.75304 

.74510 

.73324 

. 71771 

.69880 

.67677 

1. 08321 -0.16762 -1. 34038 - 1. 26672 -0.85722 
1.08444 -.30315 -1.29132 -1.19935 -.74063 
1.07647 -.43082 -1. 22533 -1. 1160J -.61286 
1.05993 -.54955 - 1.14399 - 1.0J848 -. 47630 
1.03552 -.65844 - 1.04899 -0.90869 -.33337 

1. 00392 -.75679 -0.94 217 -.78862 -.18646 
0.96581 -.84405 -.82542 -.66032 -.03791 
.92189 -.91985 -.70067 -.52583 . 11005 
· 87284 -. 98398 -. 56985 -. 38717 . 25533 
.81933 - 1.03636 -.43487 -.24e30 .39595 

.76202 - 1.07704 -.29757 -.10512 

.70154 - 1.10620 - . 15975 . 03460 

.63851 - 1.12412 -.02308 .17118 

.57351 - 1.13116 .11085 .30309 

.50712 - 1.12779 .24058 .42893 

.43985 - 1. 11454 

.37221 -1. 09J99 
· 30468 - 1. 06078 
· 23769 -1. 02160 
.17165 - 0.97516 

.36479 

. 48229 

.59203 

. 69310 

.78475 

.54746 

.65759 

.75838 

.84906 

.92902 

.53015 

.65632 

. 77306 

. 879J6 

.97363 

1. 05568 
1.12472 
1. 18034 
1. 22233 
1. 25066 

.65189 . 10695 -.92219 .86637 .99779 1.26545 
.93749 1. 05505 1. 26700 
.99777 1.10063 1. 25573 

1. 04701 1.134 50 1. 23218 
I. 08513 1.15674 1.19701 

. 62442 . 04392 -. 86344 

.59462 -.01712 -.79967 

.56277 -. 07590 -.73162 

.52910 -. J3215 -.66004 

.49386 -.18566 -.58566 1.11218 1.16755 1.15098 

.45730 -.23624 -.50920 1.12832 1.16724 1. 0949'1 

.41965 -.28373 -. 43136 1.13378 1.15623 1. 02978 

.38113 -.32798 -.35278 1.12892 1.13502 0.95646 

.34197 -.36889 -.27411 1. 11416 1.10417 .87600 

-30 - 1. 30900 .30236 -. 40538 -. 19596 1. 09002 1. 0643J . 78941 
. 69774 
. 60203 
. 50333 

-25 -1.35253 .26250 -.44037 -. 11887 1.05705 1.01616 
-20 - 1.39626 .22259 -.47084 -.04338 1.01588 0.96044 
- 15 -1.43990 . 18280 -.49776 .03002 0.96717 .89794 
-10 -1.48353 . 14330 -. 52 11 4 . 10089 . 91164 .82944 .40264 

-5 - 1. 52716 .10426 -.54 100 . 16881 .85000 . 75578 .30096 
. 19926 

1. 77006 
3.34085 
1. 21684 

- 0 - 1.57080 .06582 -.55736 . 23344 . 78302 . 67778 
o 0.00000 1. 53662 1. 01344 

+0 1.57080 3.20741 2.58423 
1. 52716 2. 36366 1. 53355 

1. 80424 2. 35382 2. 24858 
3.37503 3.92461 3.81938 
1. 93219 1. 95959 1. 81396 

10 1.48353 1. 6290'1 0.66827 0.87990 0.63440 0. 47195 - 0. 16296 
15 1. 43990 0. 99385 -.03330 . 14729 -.20075 -.36465 -.98574 
20 1.39626 .44908 -.59093 -.32689 -.66889 -.82505 -1. 40257 
25 1.35263 -.01369 - 1. 02264 -.59533 -.87018 -1.01399 -1.53397 
30 1.30900 -.40226 -1.34473 -.70310 -.88521 -1.01530 -1.47484 

35 1.26536 -.72390 -1.57202 -.68848 -.77804 -0.89523 -1.29869 
40 1.22173 -.98534-1.71788 -.58382 -.59873 -.70520-1.06130 
45 1.17810-1.19282-1.79437 -. 416J5 -.38563 -.48429-0.80387 
50 1.13446 -1.35212 -1.81235 -.20791 -.16734 -.26137 -.55574 
55 1.09083 -1.46858 -1. 78153 .02253 .03555 -.05690 -.33671 

60 1.04720 - 1.54714 -1. 71053 .26034 . 20903 
65 1.00356 - 1. 59233 -1.60740 . 49376 .34437 
70 0.95993-1.60833-1.47871 .71367 .43706 
75 .91630 -1. 59898 - J. 33066 .91321 .48585 
80 .87266 -1. 56780 -1.16858 I. 08748 . 49200 

Solution of the Telegrapher's Equation 

.11545 -. 15898 

.24746 -.02884 

. 33521 .05197 

.37809 . 08507 

. 37799 .07448 

TABLE 2. 'Table oj Green' s Function G(x, z). 

x 
O. 00000 3. 15012 4. 14543 6. 30024 8. 29086 8. 45505 9. 00000 

Deqrees 
85 
90 
95 

100 
105 

.82903 - 1.51800 -0.99717 1.23323 

.78540 - 1. 45251 -.82049 J. 34855 

.74176 - I. 37403 -.6'1207 I. 43272 

.69813 - 1. 28496 -.46492 1. 48592 

.65450 - 1.18751 - .29158 1. 50910 

.45862 

.39011 

.29171 

.16915 

.02832 

.33860 . 02585 

.26486 -. 05417 

.16247 -. 15846 

.03753 -.27984 
-. 10376 -.41132 

no 
lI5 
120 
125 
130 

135 
140 
145 
150 
155 

160 
165 
170 
175 
180 

.61087 - I. 08367 -.12<120 1. 50380 -.12493 -.25537 -.54537 

.56723 -0.97523 .03545 1. 47204 -.28498 -.41155 -.67907 

.52360 -.86377 . 18594 1. 41614 -. 44662 -.56703 - .80424 

.47997 -.75074 .32616 1. 33870 -.60507 -.71708 -.91745 

.43633 -.63740 .45522 1. 2'1244 -. 75611 -.85757 -1. 01507 

· 39270 -. 52487 
.34907 -. 41413 
.30543 -.30603 

.57252 1.13016 -.89609 -.98499 - 1. 09431 

.67764 1. 00467 - 1. 02197 -1. 09649 - 1.15312 

.77037 0.86874 -1.13129 -1. 18985 -1.19019 
· 26180 -. 20J 33 
.21817 -.10064 

. 85064 .72505 - 1. 22217 -1. 26346 - 1. 20491 

. 91855 . 57617 - 1. 29329 - 1. 31627 -I. 19725 

. 17453 -.00450 .97429 
· 13090 . 08665 I. OJ 819 
.08727 . 17245 I. 05065 
.04363 .25262 I. 07214 
.00000 .32695 1. 08321 

.42452 -1. 34386 -1. 34779 -1. 16777 

.27234 - 1. 37355 -1.35800 -1.11746 

.12170 -1. 38248 -1.34730 -1. 04773 
-.02551 - 1. 37114 -1. 31650 -0.96032 
-.16762 -1.34038 -1.26672 -.85722 

J2.60048 16.91010 18.00000 18.90072 25.20096 27.00000 36.00000 

- 180 0.21759 1. 38333 0.88710 - 0.22251 - 0.23708 -0.52214 0.75323 
- 175 .20848 1.2R719 .680'16 -. 44845 -. 13949 -.34513 .66966 
-170 .18520 1.17912 . 47714 -.65407 - .04531 -. 19161 .59996 
- 165 .14768 1.05395 .28213 -.83538 .03742 -.067lJ .55216 
- 160 .09639 0.94615 .09946 -.98956 . 10193 .02510 . 53133 

- 155 .03224 .82961 -.0674 5 -1. U498 .14294 
.15684 
. 14173 
.09736 
.02503 

.08392 

.11027 

.10689 

.07795 

.02877 

.53944 

.57545 

.53557 

.71381 

.80257 

- 150 -.04345 .71765 -.21599 -1.21108 
- 145 -.12901 .61292 -.344 73 -1. 27829 
-140 -.2"2253 .51745 -.45323 - 1. 31787 
- 135 -.32192 .43256 -.W52 - 1.33178 

-130 -. 42494 
- 12.5 -.52932 
- 120 -. 63276 
- 1] 5 - .73306 
-110 -.82808 

-105 -. 91587 
- 100 -. 99453 
-95 -1. 06278 
-90 -1.11899 
-85 -1.16216 

-80 -1.19145 
-75 -1.20628 
- 70 -1. 20533 
-65 - 1. 19154 
- 60 -1.16210 

.35899 -.61014 - 1. 32256 -.07262 -. 03461 .89326 

.29691 -.66035-1. 293 14 -. 19180 -.10578 .97703 

. 24596 -. 69412 - 1.2466~ -.32784 -. 17834 1.04492 

.20536 -.71352 - 1.18651 -.47538 -.24602 1.09064 

.17397 -.72062 -1. 11 592 -.62883 -.30340 1.10661 

. 15038 -. 71767 -1. 03810 -. 78241 -.34564 1. 08871 

. 13297 -.70728 - 0.95602 -.93051 -.36894 1. 03429 

.12001 -.69185 -.87240 - 1. 06785 -.37053 0.94265 

. 10975 -.67337 -.78959 -1. 18968 -.34876 .81504 

.10043 -.65362 -.70959 -1. 29191 -.30309 .65453 

. 09041 -.53445 -.&1398 - 1. 37124 -.23406 .46575 

. 07817 -.61745 -.55396 - 1.42518 -.14319 .25459 

. 06238 -.60358 -.50029 - 1. 45213 -.03286 .02788 

. 04192 -.59343 -.44339 -1.45134 .09382 -.20697 

.01592 - . 58753 -.39331 -1. 42289 .23321 -.44192 

-55 - 1.11 840 -.01623 -.58625 -.34978 - 1.36773 .38109 -.67081 
. 53326 -. 885.14 
. 68527 -1. 07970 
.83281 -1. 24859 
. 97176 -1. 38784 

-50 - 1.06108 -. 05488 -.58940 -.31226 - 1.28738 
-45 -0.99094 -. 100]] -.59536 -.28000 - 1. 18407 
-40 -.90897 - 15176 -.6065] -.25205 -1.06049 
-35 -.81532 -.20939 -.61926 - . 22736 -0.91976 
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x 

---
Degrees 

-30 
- 25 
- 20 
- 15 
-10 

-5 
- 0 

0 
+ 0 

5 

10 
15 
20 
25 
30 

35 
40 
45 
50 
55 

60 
65 
70 
75 
80 

85 
90 
95 

100 
105 

110 
115 
120 
125 
130 

135 
140 
145 
150 
155 

160 
165 
170 
17.) 
180 

102 

TABLE 2. Table oj Green's Function G(x, z) . I 

z 

12.60048 16. 9101~ 18. 00000 18.90072 25.20096 27.00000 36.00000 
--- - - - --- ------------ --

-. 71420 - .27239 - .">3367 - 20477 -. 76527 l. 09836 - 1. 494 53 
-.60408 -.33990 -. 64843 - .18315 - . 60056 l. 20927 - 1. 56697 
-. 48731 -. 41091 - .66232 -. 16133 - .42926 1. 30167 -I. f10479 
-.36540 - . 48428 -. 67437 - . 13823 -. 25493 1. 37335 - 1. 60877 
-. 23989 -.55874 - 68350 - . 11286 -. 08102 1. 42266 -1. 58080 

- . 11230 -.63295 -. 68839 -. 08436 . 08924 1. 44862 - I. 52370 
. 01 585 -. 705.14 -.68784 -. 05201 .25293 1. 45084 - I. 44108 

I. 58665 . 86526 .88296 1. 51879 I. 82373 3.02161 0. 12972 
3. 15744 2. 43605 2.45375 3.08958 3.39452 4. 59243 I. 70052 
0. 67142 - 0. 81525 - 0. 84342 - 0. 27249 - 0. 37260 0.54092 - 2.54939 

- . 51209 - 2.00417 - 1. 87971 -1. 21 362 -.63490 . 27468 - 1. 76069 
- . 85078 - 2. 07925 - 1. 75697 - 0.97035 . 26636 l. 10072 - 0.49519 
- . 68020 - I. 65134 -1. 16076 -. 29000 I. 20809 l. 82328 - .00356 
-. 24015 - I. 09098 -0. 48829 . 41213 1. 767P3 2. 06387 -. 20922 

. 30379 - 0. 60220 . 05701 . 93791 1. 89206 I. 84177 - .68549 

.84267 - .27771 .39671 1. 22420 l. 69102 I. 32871 - 1. 06815 
1. 31002 -. 1394f . 52770 I. 28534 I. 32178 0.71692 - 1.17421 
I. 67048 -. 16770 .48736 1. 17420 0. 92635 . 15777 -0.9g652 
1. 91086 - . 32.146 .33030 0. 95687 . 60563 -. 25779 -.59209 
2. 03312 - .55228 . lJ 399 . 697J 6 .41414 - . 49626 -. 11820 

2. 04891 -.81299 -. 11013 .44820 .36577 - .56829 .31487 
1. 97550 - I. 06293 -.30155 . 24868 . 44447 - .51226 . 62341 
1. 83275 - I. 27046 -. 40250 . 12229 . 61561 - . 37956 .76541 
1. 64092 - 1. 41383 -. 48723 . 07901 . 83661 -. 22221 . 74192 
1. 41914 - 1. 48076 -. 46049 . 11749 I. 06504 - .08486 . 58453 

1. 18449 - 1. 46731 -.35588 . 22780 1. 26435 . 00000 . 34287 
0. 95137 - 1. 37647 -. 18386 . 39425 1. 40727 . 01 370 .07206 
. 73134 - I. 21 644 . 04076 .59799 1. 47711 -. 0491 5 -. 17737 
. m30! - 0.99910 .30108 . 81915 1. 46763 -. 18262 - .36632 
. 36223 -. 73849 .57953 1. 03865 1. 38174 -.37234 -. 47053 

. 22235 -. 44954 . 85891 I. 23947 I. 22959 -.59864 -. 4811 6 

. 11450 -. 14704 1. 12358 1. 40751 I. 02640 -.83951 - .40310 

. 03798 . 15526 I 36058 1. 532]4 0. 7901 8 - 1. 07324 - .25141 
- .00939 . 44516 1. 55988 I. 60630 .53965 - 1. 28065 -. 04972 
- .03091 . 71247 1. 71412 1. 62645 . 29276 - I. 44613 .17798 

- .03066 .9491 8 I. 81868 1. 59230 . 06507 - 1. 55895 . 40643 
- .01 322 1. 14954 1. 87196 1. 50636 -. 13095 - 1. 61332 . 61405 

. 01 665 1. 31003 1. 87498 1. 37347 - .28656 - 1. 60827 .78435 

. OMJ 9 I. 42912 1. 83068 1.20024 - . 39683 - I. 54718 . 90692 

. 09488 I. 50714 1. 74337 0. 99449 - . 46051 - I. 43694 . 97765 

.13453 1. 54593 1. 61879 .76479 - .47971 - I. 28710 . 99822 

. 16945 1. 54859 I 46378 . 51991 -. 4593 0 - 1.10889 .97514 

. 19650 1. 519J8 1. 28553 . 26848 -.4062 S - 0. 91426 .91844 

. 21 318 1. 46239 l. 09103 . 01 857 - . 3291 3 -.71502 .84021 

. 21 759 l. 3!G33 0.8S71O -. 22251 -.23708 -.52211 . 75323 
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