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Transmission of Reverberant Sound Through

Double Walls

By Albert London

The transmission of reverberant sound through a double wall, which consists of two
identical single walls coupled by an airspace, is investigated both theoretically and experi-
mentally. A theory is developed, which gives good agreement with experiment. In order
to compute the transmission loss of a double wall, it is necessary to know the impedance 7,
of the single wall. Z, was determined from experiments conducted on the single wall and
includes the effects of mass, dissipation, and flexural motion. The treatment shows that it
is impossible to get a large improvement in transmission loss for a double wall relative to a
single wall under reverberant-sound field conditions if the single wall is considered to have
only mass reactance. In addition, the customary normal incidence theory is totally inade-
quate in explaining the behavior of a double wall in a reverberant-sound field.

For double walls having air coupling only, very shallow airspaces can produce appre-
ciable increases in transmission loss over a single wall.  An absorbent material, when inserted
in the airspace, produces large improvements only when the mass of the walls is relatively
light and has but little effect for heavy walls. Honeycomb or other nonabsorbent cellular
structures having no cell walls in a direction normal to the wall faces do not result in an
increase in transmission loss. Air-coupled walls having no solid sound-conducting paths
between individual septa are extremely effective sound insulators as compared to conven-
tional double-wall constructions. The theory indicates that a large improvement in the trans-

mission loss of a double wall can be obtained by using as components single walls with high
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internal dissipation,
I. Introduction

In a previous paper ! the transmission of re-
verberant sound through homogeneous single
walls was investigated theoretically and experi-
mentally. The attenuation of an obliquely inci-
dent plane sound wave upon transmission through
a single wall was computed, and using the custom-
ary reverberant sound field statistics the attenu-
ation was integrated over all angles of incidence
to give the average transmission loss. A similar
technique is employed in this paper in studying
the transmission of sound through a double wall
consisting of two identical single walls. The
materials comprising the double walls are the
same as were used in the single walls, 1. e., alumi-
num, plywood, and plasterboard. From the ex-

1 A. London, Transmission of reverberant sound through single walls, J.
Research NBS 42, 605 (1949) RP1998.
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perimental results obtained in RP1998, an ex-
pression for the wall impedance, Z,, for each
material was determined, this expression contain-
ing terms that include the effects of the mass, dis-
sipation or resistance, and flexural motion of the
wall. This value of Z, is used in the double wall
theory to compute the transmission loss for a
double wall.

II. Transmission Through Double Walls
1. Attenuation of an Obliquely Incident Wave

In figure 1, an oblique plane wave is incident
at an angle 6 on the first partition. As a result
there exist in the three airspaces formed by the
infinite double partition: an incident and re-
flected wave in space (1); a standing wave in
space (2), consisting of a wave moving to the right
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Ficure 1. Geometrical relation between incident and
reflected wave in space (1); standing wave in airspace of
double wall, space (2); and transmitted wave in space (3).

and one moving to the left; and a transmitted
wave in space (3). It is desired to know the ratio
of the transmitted pressure wave amplitude P, to
the incident pressure wave amplitude P, where
the pressures in each airspace are given by eq 1.

P :Pieiwt—ik (x cos 64y sin 6) +

P,ei“’t_ik(_"” cos 6+ sin 6) I$0
p2:P+eiwt—ik(.r cos 6-+y sin 6) + (1 )

P_eimt—ik(—:c cos 64y sin 6) Osxsd
1)3:Pt€"wt—ik(r cos 6+y sin 6) Z‘B(l

where
w=2rX{requency

k=2r/\=w/c, \ being the wavelength, ¢ the veloc-
ity of sound in air.

The four ratios P,/P,, P./P;, P_/P,; and P,/P;
may be determined from the two boundary con-
ditions, the continuity of the z-component of
velocity at =0, and z=d, and the two equations
of motion, one for each partition. In deriving
the equations of motion it is only necessary to
consider a small area of the panel upon which the
projection of the wave front has practically
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constant phase. The justification for such an
assumption has been given previously in section
2 of RP1998, titled Basic Assumptions.

The ratio P,/P; will be computed for the same
value of g, so that this coordinate will not appear
in the calculation. Thus, since the particle
velocity is proportional to the pressure gradient,
there results from the continuity of the x-com-
ponent of particle velocity at =0

9£> _ %)
or /.o or ::0}

P,—P,=+P,—P_, )

a_p2> _ @3)
(@7 by ox z=d’

P+e—ikd cos B_P_e+ikd cos 0=P;6_ikd cos 0' (3)

and at z=d

If po and py are the pressures acting on the
left and right side, respectively, of the panel at
=0, Paa, and ps; the pressures acting on the left
and right side of the panel at x=d, the equations
of motion for each panel are

pxo—pmzzwﬁx:o, (4)
and
Pzd—Psd:Zwﬁx=d, (5)

where Z, is the mechanical impedance per unit
area of the two identical walls, and 7% is the
velocity of the wall in the z-direction. Further-
more, since the wall velocity must be the same as
the z-component of particle velocity of the air at
the wall, there results

_t (op
" pw \ Oz

e )IMOZCOSC 0 (P,'—Pr) giwt—iky sin 0, (6)

p

7 (Ops cos 6 "
n, = == s et P eiwt—-zk(d cos f+v sin 0).
Nz=a pw ox >x:d pC 1 (7)

Substituting eq 1 and 6 into 4 causes the latter
equation to reduce to

é,,, cos 6
pc

(PtP)— (PP )=

(P—Py, (8

and similarly eq 5 becomes

Z ., cos 0
c

P, e8P _¢8—P = P~ 6, 9)

where
B=kd cos 6. (10)
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Let
_ Zycos 6
T 2pc

Y (11)
then solution of the four simultaneous equations
(2, 3, 8, and 9) results in the following expressions:

A='11;"=1+2“/+72(1—6_2"ﬂ), (12)
1

and also
a=% =1-+t7. (13)

It is of interest to observe that eq 13 is precisely
the expression for the ratio of incident to trans-
mitted amplitude for a single wall given by eq 1.6
of RP 1998, inasmuch as the boundary conditions,
i. e., the existence of an incident, reflected, and
transmitted wave, are the same as that for a
single wall.

Equation 12, which is of primary interest to this
development, can be tested for agreement with
the solution, eq 13, for the attenuation of a single
septum. Thus, if d=0, the double wall becomes
a single wall having an impedance 2Z,. Of
course, this is strictly a mathematical experiment,
inasmuch as was shown in the previous paper (see
footnote 1), the resistive and reactive components
of Z, are not twice as great when a single wall’s
thickness is doubled. Setting d=0 in eq 12
results in
27, cos 0

Ajo=1+2y=1+ 2p¢

) (14)
in agreement with eq 13.

Also, it is possible to compare eq 12 with the
results obtained by previous investigators? for
the special case when the wave is incident normally,
1. e., 6=0°, and the wall impedance, Z,, is a pure
mass reactance only, given by eq 2.1 of RP1998 or

Zyp="10m,

where m is the mass of the wall per unit area.
Now, from eq 12, if the wall acts as a mass
reactance only, it is readily shown that

12
{A|?,,:’§—’ =1-44a’ cos? 6 (cos B—a cos fsin )%,
tl| Zv=1iom
(15)
where a=wm/2pc. (16)

2 A. Schoch, -Die physikalischen und technischen Grundlagen der Schall-
dammung im Bauwesen, p. 86 (Hirzel, Leipzig, 1937).
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Letting 6=0°, reduces eq 16 to

|AZ ,=1-+4a* (cos b—a sin b)?, 17)
where
:@:27@

b c A

: (18)

and eq 17 is identical with the expression given
by Schoch 2.

From eq 15 all of the incident energy will be
transmitted when

(cos B—a cos 6,sin B)=0, (19)
or when
tan B=1/(a cos 6). (20)

For cases where 8 is small (d<\) tan 8 may be
replaced by B. Using eq 16, there results an
expression for the frequency fj, for which a wave
incident at angle 6, will be perfectly transmitted
in the case where each wall acts as a pure mass.

1 2pc*\
- 27 cos O\ md

o (21)

The value of fy for normal incidence is f,, the
characteristic frequency for the air-mass sandwich,
1. e.

1 [2pc*\:
do=gz ()" 22)

fo 1s the frequency for normally incident waves
for which the mass reactance of the panel is
exactly equal to the stiffness reactance of the air-
space. It is also the lowest frequency for which
the attenuation of the panel is zero. At fre-
quencies above f; there will be some angle of
incidence for which zero attenuation will occur.
Since in a reverberant sound field, energy is
incident from all directions, the attenuation
measured in a reverberant field will never reach
zero. For frequencies above f, there will be some
waves that will be totally transmitted, con-
sequently resulting in a diminution of the trans-
mission loss of the panel as compared to that
predicted by the normal incidence theory.

Since 1/a decreases with increasing frequency,
at high enough frequencies eq 20 may be written
as

tan =0,
and
ﬁ:nﬂ-Y n:17 2} 37 G |
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which results in
d cos 6=n\2, n=1,2,3, . . . (23)

as the expression for the frequencies, or wave-
lengths, at which higher-order minima occur.
Here too, for a reverberant field, considerations
similar to those discussed in connection with f,
apply.

Equation 12, which gives the attenuation, A4,
for a double wall may readily be compared with
the attenuation, «, for a single wall given by eq
1.6 of RP1998 or its identity eq 13. Since v is
ordinarily much larger than unity, a=v, and

A=2a+a?(1—e2) (24)

The term containing «®, multiplied by a factor
(1—e~2%) which is never greater than 2 in absolute
value and which depends on the spacing between
the two walls, therefore, represents the chief differ-
ence in attenuation caused by a double wall rela-
tive to that of a single wall.
As shown in RP1998 the most general expression
for the wall impedance is given by
o). (25)

=R-+1acosf (1 —'Jffz sin* 0>' (26)

w

cos 0
or
ZpCos 0
- 2pc

where R=r/pc, the resistance of the wall in pc
units, and f,=the critical frequency above which
flexural waves will appear in the wall. The
parameters R and f, for different materials were
determined from the experimental observations
made in RP1998. Substituting eq 26 into 12
results in

A=1-+4+2R(1—pv sin 2bv)+(R*—p** (1 —cos 2bv)

+1{ (R*—p*?) sin 2bv+2pv [1+ R (1—cos 2bv) |},
(27)

where v=cos 6, b=Fkd, and

D=0 I:l _fj (1 —v‘-’){l- (28)

For |A[? there results
|A]P=144[R(R-+1) +p*?]
+4 sin?bo {[R(R+1) +p2?)*—p**}

—4pvsin 20 {R(R+-1) —l—]ru- b (29)
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When R=0, 29 reduces to an equation analagous
to 15 with @ replaced by p, i.e.,

| A% - o=1-+4p*?*(cos bo—pov sin bv)%.  (30)
Utilizing 30, eq 29 may be rewritten as

AP =|AR_o+4RB+1) {1+
[R(R+1)+2p%?] sin® bo—pov sin 2bv}, (31)

or an equivalent form is

[AP=|A[ .o +4R(R+1){(cos br—pv sin bv)*+
[p*+R(R+1) 1] sin? bv}. (32)

Inasmuch as the second member on the right-
hand side of eq 32 is always positive, it will be
seen that the attenuation of a double wall, each
component of which has dissipaticn or resistance,
is always greater than for the case in which each
component 1s dissipationless.

2. Average Attenuation of a Double Wall in a
Reverberant Sound Field

In accordance with the reverberant sound field
statistics discussed in section 3 of RP1998, if 7,
is the ratio of the total energy transmitted by the
double wall to the total energy incident on the
wall, we get from eq 3.1 of RP1998 and eq 29

1 » dv
=2 JO AT A{l?' (33)

where v»=cos .

The integral in eq 33, unfortunately, is highly
intractable. It was not possible to evaluate it
other than by numerical integration. This has
been done for a number of different constructions
on which experimental results were obtained and
will be discussed in section 11, 3. However, for
the special case where it is assumed that each
single wall has a mass reactance only, the integral
has been computed?® for a wide range of values
in a systematic manner. For the mass reactance
case we may set R=0 and f/f,=0, whence, 29
reduces to 15 and 33 assumes the followmg form

9 1 v dv C(34)
i o 14-4a**(cos bv—av sin bv)?
(R=0,f/f=0)

3 We are indebted to G. Blanch and I. Stegun of the National Bureau of
Standards’ Computation Laboratory for carrying out these integrations.
They used a combination of numerical integration and analytic representa-
tions for different regions of a certain parameter to evaluate the integrals.
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It is convenient to introduce two nondimen-
sional parameters into eq 34, namely,

b d
== %, (35)
and
X‘:‘ffoz \%; (36)

where f, is defined by eq 22. Thus, x is the ratio
of the mass of air in the airspace to the mass of
one wall, whereas X is the ratio of the frequency
of the sound wave to the frequency for which a
wave, normally incident on a double wall possess-
ing mass reactance only, will be perfectly trans-

mitted. In addition we let
u=2av (37)
and 34 becomes
ou (X2 udu
ng‘\vz Jo 9 u . g
(R=0, f/fe=0) 1+w*( cos pu—z sin pu
(38)

It is of interest to compare the transmission
loss, 10 log (1/7,), computed from eq 38 with
that which one obtains fov a single wall when it is
assumed that the wall has a mass reactance only.
An expression for the latter transmission loss is
given by eq 3.2 of RP 1998. If we replace a® by
its equivalent expression in terms of X" and g, 1. e.,

X2

a
2u

2

a (39)

eq 3.2 of RP 1998 may be written

TL=10 10g<}1—>:10 log ‘}“— 10 log [ln (1 +‘};)]

(40)

In figure 2, the computed transmission loss for a
single and double wall, having mass reactance
only, i. e., Z,=1wm, have been plotted for three
different values of the parameter u. It will be
seen that on this basis the predicted improvement
of a double wall over a single wall is small and
in fact may actually be negative. This astonish-
ing behavior results from the fact that for a double
wall there is some angle of incidence for which the
transmission is perfect and in the integrated
effect of all angles of incidence, this minimum
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Ficure 2. Comparison between theoretical transmission
loss of a single wall to that of the corresponding double wall
in a reverberant sound field when wall is considered to be a
pure mass reactance.

, Single wall; ____, double wall.

transmission loss swamps out the effect at other
angles of incidence. In the case where a resistive
term is included in the impedance, there is no
angle for which the transmitted wave is not
attenuated. Hence, it 1s not sufficient to treat
each component of the double wall as a pure mass.

With regard to figure 2, it is well to point out
that the small maxima and minima indicated in
the double wall curves are a result of the higher
order minima, which are approximately given by
eq 23. Values of the integral (eq. 38) were com-
puted for X=0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0,
50.0, and 100.0 for x=0.1, 0.08, 0.06, 0.04, 0.01,
0.006, 0.004, 0.002, and 0.001. This information
has not been reproduced here but is available
upon request.

3. Comparison Between Experimental and
Computed Results

Figure 3 is a schematic drawing showing the
arrangement of the double wall in the sound trans-
mitting opening. Each leaf of the double wall
was made separately, a practical procedure in-
asmuch as the concrete walls of the test chamber
are isolated from each other by a 3-in. airspace
except for the common foundation of the walls.
Thus, there are no solid sound-conducting bridges
between the two faces of the double wall, a cir-
cumstance that allows a close approximation to
the conditions set down in the theory. The ex-
perimental method utilized in making the trans-
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Ficure 3.

mission loss measurements is that described as the
usual method in NBS Research Paper RP1388.4

The next figure, figure 4, shows the results
obtained on a double wall consisting of single walls
of J¢4-in. aluminum separated by a 3-in. airspace.
Here m=0.12 g/cm?, and the mass and thickness
of the single wall are such that the critical flexural
frequency f,, is approximately 30,000 c¢/s. Thus,
f1fe=0, and no flexural effects will be observed.
For reference purposes, the results obtained in the
single wall case are shown in the lower part of the
figure.

The best fit for the single wall case was obtained
when R=2.16. The same value of R was used
for the double wall calculations, which were carried
out by a numerical integration of eq 33. It will
be noted that eq 33 as opposed to eq 38 predicts
a sizeable improvement in transmission loss of a
double wall over a single wall.

According to eq 22 there should be a minimum
in the transmission loss curve at f,=279 c¢/s, cor-
responding to the frequency for which the mass
reactance of the wall is exactly equal to the stiff-
ness reactance of the airspace. However, this

4+ A. London, J. Research NBS 36, 419 (1941) RP1388.
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minimum is based on the assumption that the wall
has zero resistance. As a matter of fact, in this
particular case, the value of R is such that no
noticeable minimum oceurs in the r, integral cal-
culations for critical values of » or 6 corresponding
to eq 19. In particular, from eq 15, 19, and 32
we see that [A[* for v or cos 6 satisfying eq 19
becomes

A, —144R (B+1) sinz<\/g>|:%+R(R+l)+1:I-
(41)

Since |A[;.,=1, p=a(i. e. f/f.=0), and the critical
value of », say v, is given by 2= (ab)~' from eq
20. From eq 3.5 a/b=1/(2u) and for this wall
u=.075, so that a/b=6.66. Since R=2.16, we
get from eq 41

Thus, the minimum value is much larger than 1,
which is the value that would result if R=0.
Furthermore, it will be noted that eq 41 predicts
this same minimum value of |A|* independent of
frequency provided 6 is such that eq 19 is satisfied.
This same minimum will occur at frequencies
above f;, thus tending to depress the natural in-
crease in transmission loss resulting from mass
law behavior.
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Ficure 4. Comparison of computed and experimental

transmission losses of Y64 in. single and double aluminum
walls.

A, Double wall; ___, computed; -._., experimental; d=3 in.; fo=279 c/s.
B, Single wall; ___, computed; --_., experimental; R=2.16; m=0.12 g-cmm-2,
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Ficure 5. Eaperimental transmission loss results for a

series of double walls of lo-in plywood with airspace
varying from % to 12 in.

Dotted broken line is experimental transmission loss for corresponding
single wall. Airspace' @,3¢in.;ll,1.5in.; 0,3in.; D, 6in.; A,9in; A, 12in.

With regard to the reliability of the computed
values relative to the experimental values, it is
probable that they agree within the accuracy of
experimental observations for frequencies below
500 ¢/s. Above that frequency, it is to be noted
that the computed curve deviates from the experi-
mental curve in the same direction for both the
double and single walls. In fact, these two curves
intersect at about the same frequency for both the
double and single walls. Thus, the discrepancy
between computed and experimental curves in the
double wall case is apparently due to the imperfect
fit obtained for single walls and, furthermore, the
effect of this imperfect fit seems to be magnified
for double walls.

Figure 5 shows the experimental results obtained
on a series of }4-in. plywood walls in which the air-
space was varied from % to 12 in., together with
the transmission loss obtained on the single wall.
Several pertinent observations may be made con-
cerning the general nature of these experimental
results. First, it will be seen that even for the
%-1n. airspace there is a considerable range of fre-
quencies for which there is a significant improve-
ment of the double wall over the single wall.
Second, all of the curves have a minimum in the
vieinity of 2,000 ¢/s. As was pointed out in
RP1998, the minimum in the single wall 7L,
which also occurs at this frequency, was due to a
flexure wave having an f.=1,885 ¢/s. Conse-
quently, the effect of flexure shows up in the
double wall case at the same frequency. Third,
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for large airspaces (6 to 12 in.) and for frequencies
in the range from 400 to 1,000 ¢/s the transmission
loss of a double wall approaches a value that is
twice that of the single wall, showing that the
second wall is almost entirely decoupled from the
single wall for this frequency range.

In attempting to compute the transmission loss
of the double plywood walls, we chose the %-, 3-,
and 12-in. airspace cases for detailed analysis. As
was pointed out earlier, any error in fit between
computed and experimental results for the single
walls would result in much larger errors in the
double wall case. In figure 6 we reproduce the
computed and experimental data for the single
wall. Using R=8.3, results in a computed curve
that agrees well up to 1,500 c¢/s but gives larger
than experimental values above this frequency.
However, if =5 is used, the computed result will
agree with the experimental at f=2,048 c¢/s, but
will still be too high at 4,096 c¢/s. R=1.8 at
4,096 c/s gives much better agreement, whereas
R=1.0 1s a perfect fit. These data indicate that
R decreases with increasing frequency.

The necessity for using an accurate value of R
1s illustrated best by figure 7. Here the trans-
mission loss of the single and double }4-in. plywood
wall has been computed as a function of R for
f=4,096 c¢/s. A variation of R from 1.0 to 8.0
causes a change in loss of 7 db for the single wall,
whereas in the double wall case a 20-db change
results. In fact, it would seem to be somewhat
easier to determine R from the double wall results
than from the single wall measurements. The
value of #=1.8 used for further computations at
f=4,096 c/s was selected because it gave exact
agreement with experiment for a 3-in. airspace
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Ficure 6. Effect of varying R on computed transmission
loss for a Ye-in. plywood single wall.

Dotted broken line corresponds to experimental transmission loss. O,
Experimental; s, computed, R=5; @, computed, R=1.8; at 4,096 ¢/s R=1.0,
computed, coincides with experimental point. Computed R=8.3;
fe=1,885 c/s.
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——, Double wall 3-in. airspace; ____, single wall; f=4,096 c/s; f.=1,885 c/s.

double wall.  According to this treatment it should
be possible to obtain significant improvement in a
double wall by building into each of the single
walls a layer of attenuating material.

Figure 8 is a comparison between the computed
and experimental transmission losses using R=8.3
for frequencies up to 1,024 c¢/s, R=5.0 at 2,048
¢/s, and R=1.8 at 4,096 c¢/s. The solid lines are
drawn through the computed points, the dotted
through the experimental points. It is believed
that there is reasonably good agreement consid-
ering the complexity of the problem and, in par-
ticular, the computations. For example, the
point at f=4,096 c/s for the 12-in. airspace case
represents the results of 40 pages of calculations.
In figure 9, the integrand of the 7, integral, eq 33
for this point, is plotted as a function of ». Very
sharp half wavelength maxima corresponding to
v=nm/b and covering a range of variation of sev-
eral orders of magnitude are evident. In addi-
tion, there is a less sharp peak due to flexure. If
one compares the area under the peaks, one finds
most of the area exists in the neighborhood of the
flexure angle thus showing the importance of this
effect.

Figure 10 is another representation of the data
shown in figure 9. Here, the 7, integral, eq 33
instead of being integrated from »=0 to »=1.0,
is integrated from a variable lower limit »; to
»=1.0. The quantity 10 log (1/7') so defined,
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therefore gives the transmission loss that would
result, if, for some reason or other, waves incident
at angles greater than 6, corresponding to », were
not transmitted. Thus, for 0<v,<v,==/b, graz-
ing incident waves are first excluded, but the
angle, or #;, corresponding to the first maximum
nearest grazing incidence, would be allowed. It
will be seen that not until the fifth maximum is
exceeded is there a change in loss. This is be-
cause the first five maxima do not contribute
anything to the integral, since they are so sharp.
When the flexure angle is excluded, however,
there is a large jump in loss because there is a
large transmission of sound energy resulting from
this cause. As we approach more closely to the
conditions where the angles of incidence are re-
stricted to the neighborhood of normal incidence,
the transmission loss increases greatly.

At the lower frequencies fewer angles at which
maximum transmission occurs are observed. At
the lowest frequencies none may occur at all.
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Ficure 8.  Comparison between computed and experimental

results for Y-in. plywood double walls.

Solid line, computed; broken dotted line, experimental. In the compu-
tations, R=8.3 for frequencies up to and including 1,024 ¢/s, R=5.0 for f=
2,048 c/s, and R=1.8 for f=4,096 c/s. A, 12-in. airspace; B, 3-in. airspace; C,
3%-in. air space.
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Ficure 9. Plot of v/|Ad? vs v for a Y-in. plywood wall for
f=4.096 cfs.

Here v=cos 8, where 6 is the angle of incidence of the sound wave. Very
sharp transmission maxima occur at v=n=/b or when d cos 8=n\/2, where d
is airspace thickness. Inaddition, a less sharp maximum occurs at the angle
of incidence corresponding to the occurrence of flexural waves in the wall.
Double wall, 12-in. airspace, 14-in. plywood; f=4,096 c/s; f.=1,885 ¢/s; R=1.8.

This is shown in figure 11, which is a graph similar
to figure 10, but indicates the value of the 7’
integral plotted in decibels for other frequencies
for the same 12-in. airspace double wall.

4. Additional Experimental Results

In this section we consider some additional
experimental results obtained on double walls, for
which, however, no analytical computations were

Sound Transmission Through Double Walls

carried out, principally because of the tedious
nature of such calculations.

Figures 12, 13, and 14 show the experimental
results obtained on double walls consisting of %-,
1-, and 2-in. plasterboard single walls. For
comparison purposes the experimental and com-
puted results obtained on the corresponding single
walls are also shown on the figures. In the }-in.
plasterboard case it will be seen that the double
wall experiments tend to confirm the selection of
fe=4,096 c/s as preferable to f,=2,048 ¢/s. The
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Fravre 10, Another representation of curve of figure 9.

The figure shows the variation of 10 log (1/7") with 6, where the integration
oceurs from a variable lower limit of integration, 6, to §=0°, As the wave
packets in the reverberant soundfield are confined to a cone for which 6; is
decreasing, a sudden increase in transmission loss occurs when the angle of
incidence corresponding to flexure is excluded, showing that most of the
transmission of sound oceurs as the result of flexural waves.
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Ficure 11.  Plot of 10 log (1/7"), as in figure 10, for a Y-in.
plywood double wall for various frequencies.

A, 96 ¢/s; B, 512 ¢/s; C, 1,024 ¢/s; D, 2,048 ¢/s.
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Ficure 12. Ezxperimental transmission loss results on a

single and double wall of Ya-in. plasterboard.

A, Double wall 3-in. airspace; B, single wall; ____, experimental, —,
theoretical R=10.5.

double wall 7L drops off at 4,096 ¢/s in a fashion
similar to that of the single wall. In the 1-in.
and 2-in. 7' measurements the single wall mini-
mum occurring in the neighborhood of the critical
flexural frequency did not appear in the double wall
case. It is of interest (table 1) to compare the
average T'L for the nine frequencies in the range
of 128 to 4,096 c/s with that of ordinary plaster
and stud walls.®

It will be seen from the data in table 1, that if
no mechanical ties or sound-conducting bridges
exist between the two components of a double

TAaBLE 1.
| [
‘ Description Averr.:xge Weight
\ (—
ay | e
14-in. plasterboard double wall 45.2 | 4.2
1-in. plasterboard double wall_ 85.5 8.3 |
2-in. plasterboard double wall____________________ 59.6 16.6 |
16-in. gypsum plaster on wood lath on 2 by 4 37.5 17.1 |
studs. |
7%-in. gypsum plaster on metal lath on 2 by 4 |
staggered wood studs, 4-in. airspace_____._____ 49.8 19.8 ‘
Double wall consisting of two 2-in. solid plaster ‘
single walls resting on 1-in. corkpad, 3-in. i
airspace_______________________________________ 54.1 ‘ 17.2 ‘
|

® For data of this kind see: Building Materials and Structures Report
BMS17 and two supplements, Sound insulation of wall and floor construc-
tions, available from the Superintendent of Documents, Government Print-
ing Office, Washington 25, D. C. at a total cost of 35¢; also Technical Report
on Building Materials, TRBM-44, Fire resistance and sound-insulation
ratings for walls, partitions, and floors, free upon request at National Bureau
of Standards, Washington 25, D. C.
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wall, very large transmission losses result even
with relatively light weight walls. Thus, a 45-db
loss may be obtained for a weight of only 4.2
Ib/ft2.  The situation rapidly worsens if solid
coupling between each component exists. Com-
paring the last four entries in the table it will be
seen that all have approximately the same weight.
The 2-in. air-coupled wall, however, is some 20
db better than the stud-coupled wall; some 10 db
better when the studs are staggered so that
coupling exists only due to a top and bottom
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Frcure 13. Ezperimental transmission loss results on a
single and double wall of 1-in. plasterboard.
A, Double wall 3-in. airspace; B, single wall; ____, experimental; ——

theoretical R=10.5, fc=768 c/s.
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Ficure 14. Experimental transmission loss results on a
single and double wall of 2-in. plasterboard.
A, Double wall 3-in. airspace; B, single wall; __ _, experimental; ——,

theoretical R=5.3, f.=512 c/s.
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plate to which the staggered studs are attached,
and some 5 db better when coupling is only due
to a cork base.

The question often arises as to the effect of
placing an absorbent in the airspace. Accord-
ingly, some measurements were taken with a
3-in. thick fiberglas blanket having a density of
about 1.0 Ib/ft*> inserted in the airspace. Table
2 gives the average improvement in transmission
loss for the frequency range of 128 to 4096 c/s
over the untreated airspace double wall.

TABLE 2.

Average im- |
provement |

Description of double wall

db

14-in. plaster board I e 9.6
1-in. plaster board . ________ . 3.0
2-in. plaster board .__________________ e mim e 305

1

In the previous paper (see footnote 1), the effect
of placing this same fiberglas blanket in front of
and in juxtaposition to a single wall was discussed.
The walls were %-, 1-, and 2-in. plasterboard single
walls. In this case the average 7' improvement
for the frequency range of 128 to 4,096 ¢/s was 8.2
db and was approximately the same for all three
walls.  Thus, for the double wall having the light-
est weight the improvement using the absorbent
was equal to or better than that obtained for the
single wall.  On the other hand, for the heavier
double walls, a relatively small effect is observed.
This fact has been observed many times in more
conventional construction using wood studs,
staggered, or otherwise. For light-weight con-
struction significant increases in the 7L are
measured, whereas for heavy-weight constructions
only minor increases result. In conventional
construction this is in part due to the existence of
sound-conducting paths. This explanation, how-
ever, does not hold in these experimental double
walls, since the components of the double walls
were isolated from each other and the blanket
was arranged in the airspace so as not to touch
the walls. Evidently, the effect depends on the
ratio of the impedance of the airspace material to
the impedance of the walls. For the heavy walls
the material in the airspace can add little to the
already large impedance of the walls.

Sound Transmission Through Double Walls

Meyer ° has considered the effect of the airspace
absorbent material on reducing transverse modes
of sound in the airspace, that is, those modes in
which the sound travels parallel to the wall sur-
faces. He pointed out that if these modes are
important, it should be possible to absorb them
by placing this material only on the boundaries of
the airspace. Accordingly, the boundaries of the
airspace shown in figure 3 were stuffed with
Fiberglas, early in the double wall experiments
starting with the double aluminum wall. No
significant difference due to the insertion of the
boundary absorbent occurred, so that it was con-
cluded that the effect of the transverse modes
was negligible.

Additional confirmation of this was obtained by
imserting the “strawcomb’ shown in figure 11 of
RP1998 in the airspace of several double walls.
The term strawcomb refers to a honeycomb
structure that was made by cutting soda straws
mto 2%in. lengths. These were placed with
their long axis perpendicular to the wall surfaces.
Some 150,000 straws were used in the strawcomb
used in these experiments. Because of the large
number of cell walls that would be intersected by
a transverse wave, it is hardly to be expected
that they would occur. The average 7L in-
crease, again for the -, 1-; and 2-in. double
plasterboard walls, was only 0.7 db, showing that
the strawcomb had a negligible effect.

5. Conclusions

A theory of air-coupled double walls has been
developed, which gives good agreement with
experimental results. In order to apply the theory
it 1s necessary to know the wall impedance, Z,,
of the identical single wall components. This
quantity may be determined from the transmis-
sion loss results obtained on the single walls.
Inasmuch as it is theoretically possible to evaluate
the resistance, R, and flexural frequency, f., from
mechanical impedance measurements on small
scale samples, we have here, in principle, a method
of computing double wall transmission losses from
small scale experiments. The experimental re-
sults indicate that both normal incidence theory
and the mass-reactance assumption are entirely
inadequate for explaining the behavior of single

5 E. Meyer, Elek. Nachr. Tech 12, 393 (1935)
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and double walls in a reverberant sound field.
The importance of including resistance and flexural
wave effects has been demonstrated.

For double walls having air-coupling only,
very shallow airspaces can produce appreciable
increases in transmission loss over a single wall.
An absorbent material, when inserted in the air-
space, produces large improvements only when the
mass of the walls is relatively light and has but
little effect for heavy walls. Honeycomb or other
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nonabsorbent cellular structures having no cell
walls in a direction normal to the wall faces do
not result in an increase in transmission loss.

The autbor is indebted to S. Edelman and Henry
J. Leinbach, Jr.. for making many of the experi-
mental observations; in addition, the latter car-
ried out most of the required numerical integrations.

WasHINGTON, July 26, 1949,
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