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A Note on the Numerical Integration of Differential

Equations'
By W. E. Milne*

An integration method for ordinary differential equations is developed, in which the

approximation formulae contain derivatives of higher order than those contained in the

differential equation itself.
tions.

I. Introduction

The object of this note is to present a method for
the numerical integration of ordinary differential
equations that appears to possess rather outstand-
ing advantages when applied to certain types of
equations. The equations to which the method
most readily applies are those for which it is pos-
sible to obtain, in comparatively simple form,
expressions for two additional derivatives. That
is, for an equation of n-th order

y M =fleyy,... 4" "),

we obtain by differentiation expressions for y™™

and ™™ If these expressions are not so
involved as to make the labor of substitution
prohibitive, then the method here proposed is
applicable.

The advantages claimed for the process are:

(1) The start of the integration is accomplished
by the same formulas that are used in the regular
routine of the process, so that no special formulas
or procedures are required in order to get the
computation underway.

(2) Each step of the integration makes use of
only two lines of the computation, whereas a
method employing differences and having a com-
parable degree of accuracy would require five lines
in the computation.

(3) A change in the length of step for step-by-
step integration is often necessary as the integra-
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The method is particularly useful for linear differential equa-

Numerical examples are given for Bessel’s differential equation.

tion proceeds. Such a change can be more readily
made in this process than where five-line formulas
of integration are employed.

(4) The coeflicients occurring in the formulas are
simpler than those in comparable five-line quad-
rature formulas, so that the machine calculation is
not at all complicated.

The most obvious disadvantage of the process
is that it requires the calculation of two additional
derivatives at each step, and the labor of substi-
tution in certain instances may be excessive. In
such cases this method is not recommended. On
the other hand, for equations of simple analytical
form, and particularly for linear differential equa-
tions, it should prove valuable.

II. Derivation of Formulas

Let z, and x;, where ,—z,=h, be two values
of the independent variable z, and let o, 5, ete.. y,y;
ete., be the corresponding values of v, ¥/, ... As-
suming that ¥ has a continuous derivative of order
7 we may express ¥, ¥y, '/, and ¥’’’ by Taylor’s
series with remainder term, as follows:
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6,,(6)
ey =l + by + UL R @
ahtyy 8y | 160ty
yz—?/0+2h?/o+ ?'/0‘1' 32'/0 T ;'y
5, (-)) 6,

From the four equations (1, 2,3, and 4), the three
quantities ¥, ¥, and ¥ may be eliminated, and
the resulting equation can be xeanan@ed s0 as to
give

h h? h? " "
5 Wity — 5 Wi—vo) + 150 @7 F+v0)+

R;. (6)

Yi—Yo=75

It may be shown by a separate investigation?
that
—hy O (s)

B="100 ,800

)

in which z,<s<ux,.

In a similar manner from eq 1 to 5 we may de-
rive

Yo— 201 +Yo=Th (Y1 —yo) —3R* (y1+y0o) +
}L rrr f. 1 210h ?/(7) (S)
12 (¥ =5%0 ) +=66 850 7 (@)

with s in the interval z,<s<wx,. These are the

required formulas.

III. Application to Equations of First Order

Let the given differential equation be

Y =f(=,y). ®)

Differentiation gives
e Y =fa(2y) +1o (@)Y, 9)
" =Foe () + 2 @)Y @)y S, (r,y)y’( ’1 "

Let the given initial values be u, .. Then
from eq 8, 9, and 10 in succession we obtain
Yos Yo » Yo, giving the first line of the computation

22

’ n
Lo Yo Yo Yo Yo -

3W. E. Milne, The remainder in linear methods of approximation, J.
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To proceed we assume a trial value for y,. A
fairly good trial value is provided by

P2
Yi="yo+hyo+ y°+~—f~

Next with z;, and the trial value 7;, we obtain
trial values for y;, v:', ' from eq 8, 9, and 10
and have the trial line for z;:

T A T
Now using eq € we secure an improved value of
y1, compute yy, ¥, ¥, from eq 8, 9, and 10,
recalculate y; by 2, (eq 6), and repeat this sequence
of steps until no change occurs in the value ob-
tained for y,. This is taken as correct, and we
have two lines of the computation:

2

Zo Yo Yo Yo' Yo
R T
We are now in a position to use formula 7 in
order to calculate a trial value for y,. Then trial
values of 5, ', y»'" are obtained from eq 8, 9,
and 10, and we leave the trial line:
O
Formula 6 (with subseripts advanced by 1) gives
an improved value for ,. If the ‘“improved”
value of 7, is different from the “trial” value of
12, it will be necessary to recompute s, 5, 5"
and apply eq 6 again, repeating these steps until
no further change occurs. At this stage we have
completed three lines of the computation:

22

’ rr
To Yo Yo Yo Yo

r’ 1224

U T

L2 Y2 Y Yo ..
Subsequent lines of the calculation are obtained
by exactly the same steps as were used to get .

IV. Discussion of the Process

This completes the description of the process
for the case of equations of the first order. Some
comments of a practical nature are, however,
pertinent.

(1) Obviously, the error in y at any step due to
the use of the approximate formula 6 is bounded
by the quantity -

M
~100,800° o
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in which M=max|y®™| in the interval covered by
the step. Supposing for the moment that M is
a known constant, we see that the above equation
connects the magnitude of the error I with the
length of the step-interval A.

If, for example, the problem in question requires
that y be obtained accurately to a specified num-
ber of decimal places, eq 11 enables us to select an
appropriate value of h that will secure this ac-
curacy. On the other hand, if we have already
decided on the value of A, eq 11 will tell us how
many decimals in the result may be regarded as
correct.

(2) Actually, M is rarely constant from step
to step, and moreover the value of A is unknown
since it is ordinarily utterly impractical to calcu-
late the value of the seventh derivative of v at
cach step. However, a crude estimate (which
actually proves to be sufficiently satisfactory)
may be made as follows: Assume that the calcula-
tion has been performed correctly to the nth step
so that we have the correct values of the line

) ’ " e
Ly Yn Y Y Yn
a trial value 7,4, is obtained by eq 7. A final
value of %,y 1s obtained by eq 6, repeated if
necessary. Now the error of 7,41 18

210A7y @ (s)
100,800

)

whereas that of 9, 1s

My
100,800 ’

e being the error produced in 7,4, by the errors in
’ r’ 7! .

Yni1, Yni1, Yny1, these latter being due to the
error of y,;. In actual practice, if the process is

rapidly enough convergent for practical use, the
error ¢ must be much smaller than the error in

Ynr1. Hence, we may neglect e. Then
_ 210K () | Wy ()
Y1 =™Yn1™ 7100 800 ' 100,800

If we ignore the fact that y™(s) and yP(s’) are
not exactly the same, we may add the terms on
the right, divide by 211, and obtain

Ry D () Yar1—Vn
Error of y”“:—wyo 8(()())2 T
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Although the foregoing reasoning seems very
crude, the final formula

Error of yn+1:yi+‘2%1g{”'ﬂ

proves to be not only simple in application but
actually quite reliable in determining how many
significant figures of the result can be trusted.

(3). At each step of the computation the quan-
tity ¢,=v,—1, should be recorded in a separate
column. This column of ¢’s is used for several
purposes.

(a) As long as the ¢’s vary regularly and have
significant figures only in the last two places
retained, we proceed with the computation in
reasonable confidence that all is well.

(b) A sudden fluctuation in the ¢’s suggests
that a computational mistake has been made, and
the lines involved should be rechecked.

(c) If the ¢’s increase to the point of affecting
the last three places retained, then either the
interval, A, should be shortened, or one less place
should be retained.

(d) The necessity for recomputing y,.1, Yui,
Ynir can frequently be obviated by estimating
1 from the known values ¢, ,, ¢, , ¢, and add-
ing it to the trial value ¥,,, before computing
Yuity Unity, Ynir. If the estimate is sufficiently
accurate, no recomputation is required.

(4). The foregoing discussion applies only after
the computation is under way and does not give
any clue to the accuracy of 7. We would, of
course, like to decide on the value of A and
on the number of decimal places before starting
the computation. This requires that we calculate
y§” from the differential equation and the initial
values.

V. Equations of Higher Order

The modifications required to apply the process
to equations of second or higher order are slight.
In the case of an equation of second order, for
example, the routine (after the start has been
made) is as follows:

Predict v, by eq 7 modified as follows:
Yo— 21+ yo=Th (Y —y") =3k +us") +

hS
13 (L —5u).
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Predict 4, by eq 7. Calculate v, v, y$¥ from
the differential equations and the equations
obtained by differentiation.

Correct 5 by

’ ! h r 42 h2 rrr rer h3 4) (4)
Yot =g U +9) =15 W2 —¥1 ) +150 @7 +Y0).

Correct 9, by

__E( 7+ ’ —hz ( //_ TH +7}]/377 ///+ rrr
.7/2—?/1—2 Yot y1) 10 Y2 —Y1) 130 (¥ ).

VI. Ilustrative Examples

The foregoing method is applied to the second
order differential equation

zy"’ -y’ +ay=0,

with conditions y=1, y'=0 at z=0.
Example 1, below, gives the solution by another
method using h=0.1. Example 2 uses the present
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method with A=0.5.
putation time is given.
sent method with A=0.1.

It appears that in example 2 the error of y is
about 2 in sixth place, whereas in example 3 the
error is occasionally 1 in the tenth place.

A comparison of example 1 and example 2
shows that the new method obtained the value of
Jo(3) in only six steps (and more accurately)
than the simple method based on Simpson’s
Rule could secure in 30 steps. Although the
labor of substitution per step is much greater for
the new method, the reduction in number of re-
quired steps more than offsets this extra work, as
is shown by a comparison of required times.

Example 3 provides further evidence of the
power of the new method. Anyone with experi-
ence in numerical solution of differential equations
will recognize that to solve Bessel’s equation to
10 decimal places in the neighborhood of the orign
with step-intervals of length 0.1 requires a pretty
accurate method of solution.

A comparison of the com-
Example 3 uses the pre-

Journal of Research



dy

Differential equation: z e

Computation formulas

dy
o Tav=0

Predictor: ¥, =V, _y+h[4y,_+8/3 6% _.].

Corrector: ¥4, =¥, +h[2y,+1/3 62y,

1
Derivatives: 3= —Z Vv

Time: 24 hr; h=0.1

ExAMPLE 1.

True values
z v v v’ Y5 82y 5o ¢ ¢
Y v

0.2 |=0.990025 a—(. 099501 —0:492520 |8 SUTRIE R IR e SO | I .
.3 | 2977626 a—. 148319 —.483229 | 0.000370 0.001203 | ___ U | I
.4 | 2960398 a—, 196027 —. 470330 . 000489 001166 | ___ coe || e | e
.5 | = 938470 a—, 242268 —. 453934 . 000603 001122 | ___ S | I
.6 | 912005 —. 286702 (0) —. 434168 . 000714 001065 0 2 0.912005 | —0. 286701
7| 881201 —. 328995 —. 411208 . 000815 . 001004 0 0 881201 —. 328996
.8 | 846288 —. 368843 (2) —. 385234 000914 . 000930 0 1 846287 —. 368842
.9 | .807524 —. 405949 (8) —. 356470 001001 . 000853 0 1 807524 —. 405950
1.0 | .765198 —. 440052 —. 325146 001085 . 000764 0 0 765198 —. 440051
ikl . 719622 —. 470902 (1) —. 291529 001154 . 000674 0 1 . 719622 —. 470902
1.2 | b.671133 (5) | —.498290 —. 255891 001219 . 000574 2 0 . 671133 —. 498289
1.3 | . 620086 —. 522023 (1) —. 218530 001269 . 000473 0 2 . 620086 —. 522023
1.4 | .566855 (7) | —.541949 —. 179749 001313 . 000366 2 0 . 566855 —. 541948
1.5 | .511828 —. 557936 —. 139871 001342 . 000259 0 0 . 511828 —. 557937
1.6 | .455402 (4) | —. 569897 —. 099216 001364 . 000146 2 0 . 455402 —. 569896
1.7 | .397985 —. 577765 (4) —. 058123 001372 | . 000037 0 1 . 397985 —. 577765
1.8 | .339986 (7) | —.581518 (9) —. 016920 001371 —. 000077 1 -1 . 339986 —. 581517
1.9 | .281819 (20)| —.581157 (6) +. 024053 001357 | —. 000184 1 1 . 281819 —. 581157
2.0 | .223800 (2) | —.576726 (7) . 064473 001334 | —. 000295 2 | -1 . 223801 —. 576725
2.1 | .166607 (8) | —.568292 (1) . 104008 001298 | —. 000398 1 +1 . 166607 —. 568202
2.2 | .110361 (3) | —.555964 (5) . 142350 001255 | —. 000502 2 | -1 . 110362 —. 555063
2.3 | .055540 (1) | —.539872 . 179187 001198 | —. 000595 1 0 . 055540 —. 539873
2.4 | .002506 (8) | —.520186 (8) . 214238 001136 | —. 000689 2 | =2 || +.002508 —. 520185
2.5 |—.048384 (3) | —.497093 . 247221 001060 | —.000771 +1 0 || —. 048384 —. 497094
2.6 |—. 006807 (5) | —.470819 (20) . 277891 000982 | —.000852 | +2 —1 || —. 096805 —. 470818
2.7 |—.142450 (49)| —.441600 . 306006 000890 | —.000919 | +1 0, || —. 142449 —. 441601
2.8 |—.185038 (6) | —.409710 (1) . 331363 000798 | —.000984 | +2 -1 || —.185036 —. 409709
2.9 |—. 224312 —. 375426 . 353769 000694 | —.001034 0 0 || —. 224312 —. 375427
3.0 |—.260054 (3) | —.339060 (1) < 3730740 | NSRRI R +1 =1 || —.260052 —. 339059

a Starting values given.

b In the column for y and y" appear the corrected values. The digits of the predicted values when different from the corrected are shown in parentheses,

Integration of Differential Equations
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iff ial i @y dy =0
Differential equation: z E2—|—d—z—}-zy—

Computation formulas

EXAMPLE 2.

Predictor:  Up1=205—Vn—1F7h(uy —u5_1) —3R2(y) +uyy) +ﬁ (yL¥ —5yLY
Ynt1=20n—Yn—1 TR (U —¥n—1) =302 (1)) +u7 ) + (111/;"‘51;'_'1‘,
Corrector: ‘IJI =y, +‘h‘ (.l/“ ’*‘1/”) "ﬁ ( i ’”’ (y Iv
. n+1-In 2 n+1 n 10 Yn+1" Un )} 120 n-H
’ ’ hz r’ nrr //I
Unt1=VnF5 Wnatvn) =3 Gnbha=v) +120 (s
. . r ] 14
Derivatives: ¥ =7 [/}
2
===y ——y
x
Z/Iv __Ay/ll y I y’
Time: 1}4 hr; h=0.5
True values
z v yr yu y"’ ylv ¢ o
v v’
0 a]. a() —0:5 0 0.375 s N | | RS S
0.5 0. 938470 a—(). 242268 —. 453934 0. 181064 . 336622 - SRR ||| BT (RS Sy
1.0 b . 765195 (9) —. 440047 (63) —. 325148 . 325148 . 229798 4 —16 0. 765198 —(). 440051
1.5 . 511826 (31) —. 557934 (5) —. 139870 . 403210 . 077382 5 =il . 511828 —. 557937
2.0 . 223889 (2) —. 576721 (18) —+. 064472 . 400304 —. 088207 =Y 43 . 223891 —. 576725
2.5 | —.048382 (6) —. 497090 (1) . 247218 . 318668 —. 231948 —4 —6 —. 048384 —. 497094
3.0 | —.260053 (47) —. 339057 (48) . 373066 . 177021 —. 324043 6 +3 —. 260052 —. 339059

a Starting values given.

b In the column for ¥ and ¥’ appear the corrected values.

The digits of the predicted values when different from the corrected are shown in parentheses.

EXAMPLE 3.

Differential equation: z d12+ +

Computation formulas: (Same as Example 2.).

Computation, h=0.1. ’

True values
y yl y'l ylll y‘v ¢ l"
v v

S L 10 (RG] (e 0375 N—— e e I e ] e || e
.1 {20.99750 15621 a—(. 04993 75260 —. 49812 63017 | 0.03744 79394 | .37343 86390 | ___ | ___ || - | —ooiol | oo
.2 . 99002 49723 —. 09950 08326 (7) —. 49252 08093 | .07458 40641 | .36876 81738 | —0 | —1 || 0.2 | 0.99002 49722 | —0.09950 08326
.3 . 97762 62466 —. 14831 88162 (6) —. 48323 01926 .11109 92782 | .36102 95182 0| —4 .3 . 97762 62465 —. 14831 88163
.4 . 96039 82267 —. 19602 65779 (81) —. 47033 17820 .14668 99212 | . 35029 02625 0| -2 -4 . 96039 82267 —. 19602 65780
o) b, 93846 98073 (2) | —. 24226 84576 (9) —. 45393 28921 .18106 04114 . 33664 42541 | —1 | =3 i) . 93846 98072 —. 24226 84577
.6 . 91200 48636 (5) —. 28670 09880 (1) —. 43416 98836 . 21392 58273 .32021 07071 | —1 | —1 .6 . 91200 48635 —. 28670 09881
G/ . 88120 08887 —. 32899 57415 (6) —. 41120 69723 . 24501 43928 . 30113 31217 0N oif . 88120 08886 —. 32899 57415
.8 . 84628 73528 (7) —. 36884 20461 (2) —. 38523 47952 . 27406 98431 . 27957 79988 | —1 | —1 .8 . 84628 73528 —. 36884 20461
.9 . 80752 37982 (0) —. 40594 95461 (2) —. 35646 87470 . 30085 36525 . 25573 33411 | —2 | —1 .9 . 80752 37981 —. 40594 95461
.0 . 76519 76866 (0) —. 44005 05858 (9) —. 32514 71008 . 32514 71008 . 22980 69700 | —6 | —1 1L,(1) . 76519 76866 —. 44005 05857

a Starting values given.

b In the column for ¥ and y’ appear the corrected values.

Los AnGrLEs, June 17, 1949.
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The digits of the predicted values when different from the corrected are shown in parentheses.
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