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Interfacial Instability and Mixing In Stratified Flows 
By Garbis H . Keulegan 

When a liquid flows over a body of heavier liquid, \yith which it is miscible, an int erface 

may be formed at which there is a sharp disco ntinuity of de nsities but not necessaril y of 

velocities. As the rela t ive ve locity is increased, waves are form ed a t the interface, and a( 

a critical velocity, mixing beg ins by the formation of edd ies period icall .v ejected f rom the 

crests of the waves. The nume ri cal valu es of a: cri terion for mixing, whose form was derived 

from theo retical cons ideratio ll s, were de te rmi ned experim e ntall y. Experim ental data were 

also obtained on t he re lation of the amount of mixing to the relative velocit~1 of t he liqllid ~ 

at vc loc iLies high er Lhan Lhe critical. 

1. Introduction 

The intrusion of sal t water in rivers that com
municate with the seas and the si.lting of reservoirs 
receiving muddy waters arC' the two most impor
tant examples of stratifi.ecl flow where the question 
of interfacial behavior assumes a basic signifi.
cance. Depending on the condi tions of approach , 
two possible forms of tbe interface may be Hoted. 
In one form, the inte rface may b e identified as the 
dividi.ng smfac e of two layers of liquid with dif
ferent densities, the surface being onC' of sharp 
discontinuity of densit ies but not necessarily of 
velocities . Ordinarily the interface of this type 
is the locale of inLemal wans if the difference in 
velocities at points on opposite sides of the inte r
face and at some di stance from it is large. 1£ 
mixing is present, it is in the form of eddies that 
are periodically ejected from the crests of the 
waves into the current that has the greater ve
locity. In the other form, the interface is a layer 
of transition between two CUlTents. Both the den
sities and the velocities change uniformly in the 
layer that has measurable thickness. If any 
mixing is present, it is associated with the mo
mentum exchange of turbulence, and the regular 
pattern of internal ",\TaVes is absent. Thus a 
study of interfaces may be confined to one 01' the 
othel' of these forms. 

In the present investigation , which is restricted 
to an interface with sharp discontinuity of densi
ties , one may visualize the following di sLinet 
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problems. First, what quantities are to be con
sidered in determining a cr i terion for the incicknce 
of mixi.ng? Second, witb CUl'l'ent velocities exceed
ing the critical velocity of the cri terion, how is 
the amount of mixing related to the velocity? 
Third, what is the exact mechanism of flow that 
procl uces the mi.xing? 

About a decade or so ago at the NaLional 
Hydrauli c LaboraLory, experimenLs were carried 
out to study each of these three questions. After 
having sLudied the first and Lhe second of them 
with some degree of satisfaction wiLh the r esults 
obtained, \ve were about ready to en ter into the 
stuely of Lhe third, whi ch obviously is beset with 
co nsiderable experimental c1iffi cul tics and theoreL
ical uncertainties. UnforLunately at that t ime 
it became necessary to suspend Lhe hydraulic 
work in th e labo ratory, and since t hen we havC' 
had no opportunity to ret uL'l1 to our original plans. 
::vleanwhile considerable interest in these matters 
has developed. Since numerous i nq uiries have 
been received about the progress already made, 
it was decided to make these r esults known not
withstanding their incompleteness. 

II. Determination of the Critical Velocity 
of Mixing 

Observations on the instability of interfaces 
were mad e for the condition where the upper, less 
dense liquid was flowing over a heavier liquid a L 
r est in a pool. The essentials of the apparaLus 
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and the arrangements arc shown in figure l. The 
apparatus consisted of a closed flume with vertical 
glass walls and was limi ted at the en trance by a 
constant level tank and at the exit by a discharge 
tank. The large reservoir of the circulating 
liquid, which was the lighter liquid , was connected 
to the constant level tank through a pump. To 

The flowing current caused the lower liquid to 
be dragged out in the downstream direct ion. In 
the small and the medium flumes, the escape of 
the lower liquid was prevented by tilting the 
flumes by means of screw-jack supports. This 
method was not practicable for the Jarge flume. 
Instead, the flume was fixed In a moderately 

DISCHARGE 
TANK 

RESERVOIR OF HEAVY LlOUID 

CONS TANT 
LEVEL 
TANK 

RESERVOIR OF L IGHT LlOUID 

FI r. L· HE 1. Diagram of flume ond acces80,·ieR. 

prevent the tn-lnSmlSSlon of pump vibrations to 
the flum e frame, tlw connection to the constnnt 
level tank was made through a flexible rubber 
tu bing. The return flow pnssed from the dis
cllarge tnnk into a metering tank of the or ifice 
type , whi ch in turn discharged its contents con
tinually into the reservoir of light liquid below. 
The volume of the eirculating liquid during a test 
remained the same, and since the reservoir volume 
was many times larger than the volume of the 
fiume , mixing in the flume during a run had very 
little effect on the density of the upper liqu icl. 
The loss of the heavier liquid from the pool during 
tests was mad e up at intervals by drawing from a 
reservoir placed at a higher elevation. 

For the purpose of examining the effect of 
Reynolds number, three flumes of various sizes 
were employed. They were rectangular in cross 
section , with the greater dimension vertical, wi th 
cross sectional dimensions of 2 by 4 cm, 4 by 8 
Cill , and 11 .3 by 28.5 cm . The length in each 
case was about 25 times the total depth. The 
flumes were operated full , keeping the deptlls of 
th e two layers equal or nearly equal. Aecord
ingly, the hydraulic radii associated with the cur
rents were 0.50, 1.00, and .3.27 cm . The flumes 
will be referred to as the small , the medium, and 
the large flume. 
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inclined position. Wh en the velocities of the 
current were too high , the lower liquid that wa s 
dragged out was prevented from entering the 
lower r eservoir by drawing it of!' througll a trap 
at the exit encl . The id ea involved in the mcLhod 
is shown in figm e 2. 

The determination of the critical velocity; that 
is, the velocity at which the mixing of the liquid 
of the l o ·\~'er layer with the upper commenced, or 
was aboLi t to commence, was clone visually by 
noting the condition of the interface. At low 
velocities a smooth interface was discernible even 
when the lower liquid was not colored. At tIl is 

/~ 

-- CURRENT OF 
LIGHT LIQUID 

FIGURE 2. D i agram of diveTieT for heavy liq1lid dragged 
out of jl1l1ne by the CUT rent. of tight l-iquid. 
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initial stage, observations showed that at the 
in terface, and in a fini te band on the two side of 
the interface, the flow was laminar even wh en th e 
central regions of th e upper curren t were eddying 
0 1' turbulen t. When the veloci ty of the curren t 
was increased to some defini te value depend ing 
on the densities and the viscosi ties of the two 

I li quids, the in terface appeared to be covered wi th 
ridges extending from one glass wall to the otber . 
Tbese ridges moved progressively downstream , 
and their crest lines were parabolic in shape, the 
cr est heigh ts being greatest at the cen ter . Wi th 
a sligh t increase in the value of the curren t velcc
ity, waves appeared in a new configuration. The 
interface now was covered wi th waves of shor ter 
crest lines . In the tests wi th the large flume these 

i crest lines were one-half or one- third of the cbannel 
width . The appearance of the waves and their 
sequence was regular. The movement was pro
gr eSSIve. The predominant wavelength I·emained 
constant, or nearly so, througlJout the channel 
length. With fur tilCr increase of tbe veloc ity of 
the current, the waves became sharp-crested , and 
mixing commenced. At the beginning the mixing 
was sligh t, and it a ugmenled wi th subsequ ent 
increases in velocity. It appeared that increased 
velocities did not substantially affect tbe wave
lengths of the inte rfacia l waves, a! though there 
was a tendency for tbe lengths to decrease sligh tly. 
The most marked influ ence of the increas ing veloc
i ties was to a ugment the heigh t of LJl e sharp
cr ested waves, the size of the eddies emanating 
from the crests, and the freq uency of depar t ure of 
the eddies. Practically, the mecllanism of m ixing 
was an ejection of eddies from the crests into the 
moving current, as show n diagrammatically in 
figure 3. 

Now, wh at constit utes the cri tical veloci ty of 
mixing is a matter difficul t to decide. The method 
that we employed is as follows: In the record book 
was en tered a descrip tion of the appearance of the 
interface, together wi th a qu alitative statement 
regarding thc degree of mixing for a measured 
velocity of the current. The interface, for exam
ple, was describ ed as being smoo th, or having para
bolic ·waves, or mixed waves, or sharp cres ts, or 

, agitaled crests. The mixing was desc ribed as 
absen t, or sligh t, or modera te, or excessive. We 
note the velocity Uo• the maximum veloc ity r ecord
ed in th e book as corresponding to a smooth in ter-
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face and to no mixing. Next we take the velocity 
UI , which is the average of all the velocities a so
ciated wi th sligh t mixing. The mean value of Uo 
::tnd UI is chosen to represen t the critical veloci ty 
of mixing. It is denoted by Uc . The average 
value of the velocities associated with moderate 
mixing are denoted by U2 , and the average valu e 
a bove which there was always excessive mixing 
as U3 . 

Th e test liquids were tap wate r and sugar solu 
tions. Four series of tests were made. I n three 
of the series the upper liquid consisted of tap water, 
a nd tests were made in all three flumes. The pur
pose of these tests was to determine the effect of 
the R eynolds number of the upper current on the 
incidence of mixing. The four th series of Lests 
was in tended to determine tbe effect of viscosi ty 
on mix ing. These tests were made wi th the medi-

--- CURRENT OF LIGHT LIQUID 

POOL OF HEAVY LIQUID 

FIG URI!: 3. Diagram of process oj mixing. 

um flume. Both the upp er liquid a nd the lower 
liq uid were sugar solu tions. The fractional differ
ence of the densi ties was kep t practically constan t, 
but the viscosity of the upper liquid was varied . 
The vclOclty data from th e tests of the four series 
a rc given in tables 1, 2, 3, and 4. 

Run 
--

C- I3.. . 
C- I4.. . 
C- IL. 
C- I6.- . 

C- 17 . .. 
C- 18 .. _ 
C- 19 •.. 
C- 20 .. _ 

C- 21. .. 
C- 22. •• 
C-23 . . _ 

TABLE 1. Nlixing tests in the small flum e 

(Hydrau lic radi us=0. 50 em) 

PI p , VI v, UC ~J~I_~~~_ ---
g/em' glcm' cm2/sec em'/see ern/sec em/sec em/sec em/sec C11t/sec 
1. 000 1. 097 0.0086 0.0174 7. '15 6.97 7. g·1 9.96 10.01 
1. 000 1. 185 .0086 . 04 55 9 . .14 8. 12 /0. 16 12. 85 15.28 
I. 000 1.173 . 00&5 . 0395 10. 18 8.47 11. 89 14. G5 23. (;5 

1. 000 I. 14V . 0084 .0283 7.99 7.00 8.98 12. (i l 16.53 

1. 000 1. 095 . 0080 . 0151 7. 12 6.3'1 7.9 1 10. 15 14.65 
1. 000 I. 0(;4 . 0080 . 0120 6.98 5.9 1 8.06 10.35 14. 24 
1. 000 I. 061 . 0079 .0 11 9 6. 19 5.58 6.81 9. 16 12.56 

1. 000 1. 036 .0082 .OJO I 6.25 5.65 6.85 8.02 9.63 

1. 000 I. 017 . 008 l . 0088 5. 21 4.61 582 6.96 8.37 
1. 000 I. 007 .0082 .0083 4. 08 3.92 4.27 5.0 1 5.41 
1. 000 1. 226 . 0081 . 0800 8. 14 7.96 9.52 14.71 20.45 
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TABLE 2. Mixing tests in the rnedi1lrn flurn 

(Hydraulic radius= 1.00 em) 

Run PI _ P' 1_"1 _1_ v, _ U, Uo UI U, U3 

g/em3 g/em' cm'l. jsec cm'l j sec em/sec em/sec em/sec em/sec em/sec 
D-L _. 1. 000 1. 038 0.0088 0.0131 4.39 3.85 4.93 5.37 6.63 
D -2._ . 1. 000 1. 044 .0095 .0129 4.59 3.96 5.23 5.50 5.81 
D - 3._. 1. 005 1. 052 .0095 .0140 4.55 4.47 4.62 5.02 5.41 
D-4 __ . 1. 026 1. 062 .0 106 . 0137 4. i5 4.47 4.62 5.02 5. ,11 

D -5 ___ 1. 037 1. 085 . Otl8 .0175 5.52 5.05 5.99 6.67 7.62 
D -6 __ . 1. 049 1. 094 .0137 .0204 6.49 6.07 6.91 7. 45 8.60 
D -L _. 1. 064 1.103 .0163 .0235 6.88 6.86 6.91 7.27 i . 71 
D-8 __ . 1. 074 1.]]9 .0178 .0277 7.18 6.68 7.68 8.03 8.23 

D -9 __ . 1. 088 1.122 .0192 .0268 7.04 6.53 7.56 8 04 8.80 
D - I 0 ._ 1. 100 1. 139 .0203 .0301 6.97 6.77 7. 18 7.60 8. 75 
D - IL I. 128 1.164 . 0233 .0351 7.68 7.65 7.72 8.20 8.00 
D - 12 .. 1.146 1.183 .0276 .0449 8.56 7.96 9.1 7 9.26 9.31 

D - 13 __ 1.161 1. 203 . 0336 . 0591 9.98 9.31 10.66 11. 28 12.19 
D - 14 __ 1.171 1. 204 . 0393 .0642 10.46 9.78 11. 15 11. 93 12.60 
D-15 __ 1. 205 1. 245 .0799 . 1563 13.29 12. 17 14.4 1 14 .98 15.46 
D -16 _. 1. 225 1. 257 . 1020 . 1970 13.17 11. 74 14.61 15.80 16.74 

T A BLE 3. Mixing tests in the rnedi1lm flurn e 

(Hydraulic radius=1.00 em) 

Run PI P' "I 
p, U, Uo UI U, U3 

------ - -- - - ------------ -----
g/em3 g/em3 cm'l/sec cm2/sec em/sec em/sec ern/sec em/sec em/sec 

D - 18_ . 1. 000 J. 266 0.0085 O. 1890 10.12 9. 12 lJ.13 ~ - - - - -- -------
D -19 __ 1. 000 1. 139 . 0092 . 0318 7.86 6.44 9.28 11.10 --- ----
D - 20 _ . 1. 000 1. 135 .0090 .0264 8.3 1 6.02 10.60 13.50 15.57 
D - 2 L . 1. 000 J. ]33 .0094 .0272 8.54 6.62 10.47 12 . .J4 13.25 
D - 22 1. 000 1.158 .0094 · 0370 8.56 6.57 10.56 12.43 14.96 

D - 23 . J. 000 1. 104 . 0094 .0204 7.30 5.98 8.62 10.83 12.06 
D - 2L . 1. 000 J. 094 · 0092 . 0180 6.55 5.68 7.42 9.92 12.03 
D - 25 __ 1. 000 I. 102 .0092 . 0139 6.87 5.74 8 00 9.89 II. 38 
D - 26 _. 1. 000 I. 069 .0090 .0143 6.28 5.54 7. 03 1 

8.96 10. 51 

TABLE 4. lYlixing tests in the laTge flurne 

(Hydraulic radiu s=3.27 em) 

Run PI P2 
VI I "' 

U, Uo ~J __ ~J~_ - ---- -----

g/em3 g/em3 crn2/sec cm2Jsec em/sec em/sec em/sec em/sec em/sec 
E-L .. J. 000 I. 0489 0.0090 0.0126 5.32 4.83 5.92 7.32 8.33 
E - 9 .. J. 000 1. 046 · 0094 .0 131 5.57 4.76 6.39 8.11 9.20 
E - II I. 000 1. OIG .0093 . 0101 3.84 3 08 4.65 6. 16 6.76 
E - 12. 1. 000 I. 150 .ono .0404 8.27 7.02 9.52 12.50 13.45 

E - I3.._ I. 000 1. 134 .0103 .0328 7.95 6.58 9.32 I I. 64 13. ]5 
E - 14._. 1. 000 1. 116 · 0099 · 0251 7.13 5.31 8.95 10.49 12.41 
E - 15 .. 1. 000 I. ][0 · 0098 · 0213 7. 09 5.79 8.39 10.90 12. '15 
E - 17._. l. 000 1. 060 .0 106 .0 160 5.50 5.00 6.00 6.92 7. 98 

E - 18 .. 1. 000 1. 03] .0100 .0122 4.93 4.46 5.20 6.86 7.34 
1': - 19.. . I. 000 I. 033 · 0101 · 0125 4.37 3.46 5.28 6.17 7.03 
E - 20 . I. 000 I. 030 · 010! · 0122 4.36 3.92 4.80 (i. 29 6.96 
E - 21 .- I. 000 1. 022 · 0098 · 0112 4.36 3.56 5.17 6.38 7.55 
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III. A Theoretical Basis for the Dimension
less Parameter of the Critical Velocity 

If it were not for the inertia and the r estraining 
effect of the upper current on the motion of the 
interfacial internal waves, we would introduce 
directly the criterion for wind-generated waves 
derived by Jeffreys as the desired criterion [1 , 2].l 
J effreys has shown that at the moment of 
developing wind waves 

(1) 

where U is the velocity of wind over water that is 
still initially , j./2 is the kinematic viscosity of 
water, f1p is the difference between the densities 
of water and air, PI is the densi ty of air, S is a 
numerical constant , and g is the acceleration of 
gravity. 1 

Jeffrey's m ethod for the analysis of the wind 
veloci ty criterion shows a marked departure I 
from the well-known derivation due to K elvin. < 
The hypothesis that the flow in air is irrotational 
is abandoned, and instead it is supposed that the 
mot ion of air is such as to introduce a pressure 
variation over the water surface of the magnitude 

(2) 

wbere S is a numerical constan t referred to as the 
sheltering coeffi cient, U is the velocity of the air 
over the crest, h is the surface elevation of the 
wave above the undisturbed surface, and x is in 
the direction of wind motion . 

J effreys has concluded from observations on 
the initial formation of wind waves in a river and in 

~ th e waters of a large pond that the velocity of a 
wind just strong enough to raise waves is 110 
em/sec, the average of three observations. The cor
responding valu e of Sis 0.274. Substituting these 
values in eq 1, we get for the criterion, writing 

(3) 

the value 
8 = 0.215. (4) 

The problem of interfacial waves bet\veen two 
moving layers is a q ll estion of small oscillations 

I Figures in brackets indicate the literature references at the end of thl, 
paper . 
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about a steady state of motion. Let the velocity 
of the upper layer be U, and of the lower layer zero . 
Let the corresponding densities be PI and 
Pz(= ~P+PI)' The wavelength and the period 
being A and T , the internal waves may b e assumed 
to be given by 

h= a' eos (kx- ut). (5) 

where k= 27r/A and u= 27r/T . Supposing that. the 
motions are lrl'otational everywhere, that the 
wavelengths are · small in comparison with the 
depths of the layers, and that the wave h eight is 
small with respect to the wavelength, analysis 
gives for the velocity w of the waves 

w= ?,-=!Z+ [ !fL Llp _ ! U2J ~ ' (6) 
k 2 2 lc PI 4 

provided that the sq uare of Llp/ PI is negligible with 
respect to unity [3]. In stable waves u is real , and 
thus 

(7) 

As was noted previously, thei nternali nterfacial 
waves just prior to the setting-in of mixing are 
regular in form and move progressively down
stream without changing their form. Th e regu
larity and the perman ency of form indicftte t ha t 
there is a mecha nism by which the upper curren t 
is fUl'nishing energy to the wave mo tion of th e 
lower liquid just sufficien t to counter the diss ipa
tion due to visco us effects . There are UU'ee 
conceiyable methods of furnishing tbe energy. 
The energy supply may be effected through the 
normal str esses PZZl or the tangential stresses pxz, 
or by the combination of t hese stresses. Since for 
the ultimate purpose of the analysis, which is the 
derivation of dimensionless parameters, the selec
tion is not important, it will be supposed that the 
transfer is made by the normal stresses Pm and the 
tangential stresses p xz vanish. 

The dependence of p zz on the wave form must 
be known. The dissipation of waves through 
viscous forces has a dil'ect bearing on the relation, 
and it is n ecessary that the ordinary equations of 
motion involving the viscosity terms be considered . 
These equations, neglecting the second-order terms, 
are 
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(8) 

OW 1 op 2 
- =-- - - q+ v\,7 w, ot p OZ . (9) 

and 

(10) 

It is implied that z is drawn ver t ically upwards. 
I t will also be supposed that the origin is in the 
undisturbed level of the interface, and t hat x i 
taken in the direction of wave motion. The 
quantities u and w denote the particle velocity 
components along the axes :r and z, respectively. 

It has been shown by Basset [3], that the above 
set of equations is sat isfi ed by 

oq, 01/1 u = - - - , ox OZ 
oq, 01/1 w=-- +- , oz ox 

and 

provided that 

oq, 
p /P= 8t - gz, 

(11) 

(12) 

(13) 

Basset [3] and later Lamb [4] have applied these 
to the determination of th e dampi-ng of the surface 
waves of a homogeneous layer. In relVorking the 
soluLions we wish to find the condition that corre
sponds t~ no damping. It is to be noted that 
only in th e even t that 1/1 becomes negligible may 
Lhe flow be rcgarded as inotational. 

I t seems th at the above equaLions and th e solu~ 
t ion derived from them can be applicd direetly to 
th e case of in ternal waves after resort ing to th e 
following ar t ifice. The presence of th e upper cur
rent is imagined to be evidenced in two ways only. 
First, the dynamical action of the curren t consists 
of the normal stresses pzz . Second, the intensity 
of gravity in the lower liquid is reduced from 9 to 
g' , so that 

(14) 

Accordingly, in the place of eq 12 we will write 

/ oq, , 
P pz= ot - g z. (15) 
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For the case of infinite depth and liquid at rest 
corresponding to the wave profile, 

h=a cos (kx- crt) , (5) 

correspond the solutions of eq 11 : 

(16) 
and 

(17) 

with 
(18) 

If the case of cellular waves be excluded, m de
notes that root which has its r eal part positive. 
Thus, 

(19) 

and 
(20) 

In this solution we arc supposing that there is 
no bodily movement of the lower layer as a whol e, 
so that the surface kinematical condition is 

ohjot=(J) , 

and this leads to 

z= o, 

h=-'!.. (A_iC)eikx+at. 
a 

(21) 

(22) 

By Stokes' rule, the relations between the 
stresses and the dilatations are 

OW 
(23) Pzz=- p + 2}J. ()' x 

and ew aU) Pxz= }J. ~ox +oz . (24) 

As regards the normal stresses, it is appropriate 
to suppose, since a regular progression of waves is 
imagined, that 

p zz= _ !3Aeikx+at. (25) 

It being the convention to regardIpressures as 
negative tensions, !3 is a positive quantity. The 
dynamical surface conditions, from eq 15, 19, 20, 
22,23,24, and 25 are 

and 
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The elimination of the quantities A and C leads to 

a2 + 4vPa + g' k - a(3 - 2vk2(3 + 4v2k4 - 4v2k 3m = O. 
(28) 

where v is small , the terms contammg its square 
may be neglected, and 

(29) 

This may be written 

(30) 

The condition that the waves are neither clamped 
nor growing in height req uires that 

or, 
(3 = 4vP. (3 1) 

Thus, eq 30 reduces to 

or 

and due to the approximations assumed 

(32) 

or 

a = - crt, 

and substituting the latter in eq 22, since cr jk = w , 

h=J- (A _ iC)eikX- iut . 
t w 

Equation 27 shows that the ratio CjA is a small 
quantity when v is small. Neglecting C, 

Putting 
A jiw= a, 

h= a cos (kx- crt) . (5) 

'1'0 this corresponds the surface pressure yariation 

p zz= 4pzvk2wa sin (lcx- crt), (33) 

and therefore the pressure is small er on the for
ward face of a wave and greater on the backward 
face, as is to be expected. 
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H ere, following J effreys, we introduce Lhe 
supposi Lion that 

(34) 

that is, 
(35) 

The implication is that for the maintenance and 
for the growth of waves U is larger than w; that 
is, the current velocity is larger than w . Whrn U 
is smaller than w, the waves arG damped. The 
latter statement is du e to K elvin [5]. 

Comparing eq 33 and 35 with each other and 
ignoring the small term involving /:!"P / PI , and 
wri ting V2 for VI 

(36) 

This is Lhe relation to be satisfled between Lhe 
quantities w, [1, and k at the instant that the 
internal waves are abo ut to increase in h eight. 
R eturning to the inequality, eq 7, it may be sup
posed that the wavelengths have reached th e 
greatest values consistent with stability; that is 

k = 2g /:!,.p . 
U2 PI 

(37 ) 

Eliminat ing k beLween the lattcr two equations, 

and sincc under these conditions 

w= U/2, (39) 

(see eq 6) we finally obtain 

U 3 16 A / = 8 V 2g u P PI ' (40) 

This may be written as 

(41) 

and is the desired form for the cri terion of mixing. 

IV. Experimental Value of the Criterion of 
Mixing 

To generalize the result of Lhe thcoretical anal
ysis made above and in particular to examine the 
effect of the R eynolds number of the current on 
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mIXJng, the data of the tests will be considered in 
the parametri c forms 

and 
(42) 

(43) 

In these, PI is the density of Lhe upper flowing 
liq uid, VI and V2 are the kinemaLic viscosi Lies of the 
upper and the lower liquids, respectively , /:!"P is 
the difference in the densities of Lhe two liquids, 
Uc is the critical velocity of m ixing, and R is the 
hydraulic radi.us of the cross sect ion of the fJowing 
CUlTen t. 

However, prior to the consid eration of the mag
nitud e of the cri terion it will be helpful to present 
the ('vidence of the effect of k inemati c viscosity 
on the criterion itself. The cr iterion contains the 
quanti tirs V2 and /:!"p / PI each raised to i ts one-third 
power. The efrect of the viscosity will be seen 
best and al 0 most co nvincingly if a se ri es of tests 
are co nd ucted keeping /:!"P / PI co nstant or nearly 
constant a nd varying the kinemati c viscosity V2 

ovrr a large rallg('. .Most of the runs of the D 
ser ies in Lhe medium flumr fulfill this co ndition. 
Th e test da ta are given in table 2. 
shown in figure 4 is from this table. 
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velocity of mixing is treated as a, function of the 
kinematic viscosity of the lower liquid. The 
great majority of the poin ts aline themselves 
along a straigh t line hav ing an inclination of one 
in thrre. Since the plotting is done logarithmi
cally, this at least confirms the requirement of the 
theory. 

As regards the criterion and the effect of R ey
nolds number on it, the values of the parameter 
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8 from all the tests are shown in figure 5. One 
glance at the figure suggests that the criterion 
has one constant value below a Reynolds number 
of 450 and another constant value above it: 

and 
8 = 0.127, R e< 450; 

8 = 0.178, R e> 450 . 

(44) 

(45) 

Significantly, Re= 450 is also the R eynolds cri
terion that separates the regime of tUJ'bulent flow 
from the regime of laminar flow . 

Considering the distribution of the 8 points 
more carefully for Reynolds numbers above 450, 
some systematic variations from the mran value , 
0.178, are detectable. This would mean that 
th ere are other factors' having a secondary influence 
on the yalue of the mixing critrrion. Such factors 
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may very well be (a) the surface tension between 
the two liquids, (b) the difference between the 
kinematic viscosities of the two liquids, and (c) 
the relative densities of the two liquids. It 
would be a futile effort to speculate on the effect 
of these factors separately. Since in these present 
tests the solutions were prepared from the same 
solvent and solute, one may say that all these 
factors or quantities are functions of t:"pl PI' Thus 
it would be appropriate and also sufficient to 
consider the dependence of 8 on t:"pl pl ' For that 
pUJ'pose the graph in figure 6 has been prepared. 
That 8 values vary with t:"pl PI appears to be un
mistakable. 

It is interesting to compare the value of the 
criterion for the mixing between two liquids ob
tained in these tests with the cri terion that may 
be associated with the formation of wind waves . 
The latter, as determined from the observations 
of Jeffreys, has been mentioned previously. The 
value found by Jeffreys was 0.215, and this is not 
very different from the mean value of the mixing 
cr iterion of the tests; that is, the value 0.178 . 
When the very great differences in the conditions 
of these two phenomena are considered, the close
ness of the two values is quite surprising . 

V. Mean Velocity Distribution in Currents 
The fact , as shown earlicr in this paper, tha t 

the criterion of mixing takes on two different 
values, one va.lur when the R eynold s number of 
the cUJ'l'ent is below 450 and another value when 
above, may be explained on the grounds of velocity 
distribu tions. For the changes of the interface. 
the velocities near the interface are the important 
ones. The representation of the data, however, 
was based on the mean flow, and it will be illumi
nating to examine the variation of the mean ve
locity distributions in the cross section of a square 
channel for laminar and turbulent flows. 

For this purpose we take a square of side 2l, 
draw an inside square of side 2 (l -s), with the 
('cnters coinciding, and consider the space betwcen 
the two (fig. 7) . This space is a frame of width 
s. D enoting the mean velocity in the complete 
large square by U, and in the frame only by Us, 
we wish to find the variation of us/u with sll. If 
tIle flow is turbulent, using the Blasius law of 
velocity, and supposing that. the wall shear is 
constant along the entire perimeter, i t is a simple 
matter to show that 
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Us (s /lH 15- Ss /l) 
U 7(2-s /l) 

(46) 

Values of this relation are shown in fig ure' 7. 
Accordingly, when the flow is t urbulent, the 
velocities near the interface are no t mu ch dif
ferent from the mean velociLy of the enLire sedion. 
In the actual conditions of the tests, the differ
ences are somewhat smaller than is indicated by 
the curve, since the liquid at the interface is in 
motion, and this was ignored in the derivation 
given above. 

T he computation of a similar resul t for the con
dition of laminar flow could have been made from 
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FIGURE 7. Nlean ve locity distributions in a square channel 
for laminar and tW'bulent Te gimes. 

the formula of velocity dis tributioll in a rectangu
lar channel that Bateman gives [6]. However, 
computations from this particular formula are 
somewhat cumbersome, and it was decided to 
derive a simpler formula involving algebraic poly
nomials only. 

Taking the axis of the channel as the z axis, 
pressures decreasing with z, the equation of motion 
IS 

(47) 

where p is t he pressure, uniform across a normal 
section. Let 2l be the length of t he square side. 
Let u", be the maximum velocity in the section; 

Mixing in Stratified Flows 

that is, the velocity at x= O, y = O. Writing the 
val iablcs 

U 
U-= x, 

In 

(4 ) 

and in troducing the dimensionless form of the pres
sure term, 

1 l2 Op 
-- -= -K 
J.l. U rn Oz ' 

the equation of motion now becomes 

V 2X= + I1, 
where 

02 02 

V 2= Os2+ 0r/ 

The boundary conditions are 

X= o, S= l , -IS,s;! '} 
X= O, 7) = 1, - 1::::S:::: 1, 

X= O, S= O, 7) = 0. 

(49) 

(50) 

(5 1) 

The velocity term may be expanded in terms of 
algebraic polynomials: 

. .. , (52) 

where aX2 is a particular solution of eq 49 , and the 
r emaining polynomials X4, Xs, ... arc the olution 
of 

(53) 

The quantities a, b, c are numerical constants . 

Since the cross section is a symmetrical one, the 
polynomials X2, X4, Xs ... are functions of S2 and 
7)2. Also, in particular , the section i a squar e, 
and thus t he value of the polynomi als will not be 
altered when S is replaced by 7) and 7) is r eplaced 
by S. Subject to these condit ions 

X2 = S2+ 7) 2, 

X4 = S4 + 7)4- 6S27)2, 

Xs=ss+ 7)8- 2SS67)2_ 2SS27)6+ 70S47)4 ... 

As aX2 is solution of eq 50: 

a=-K/4. 

} (54) 

(55) 
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This determines K from the constant a. For th e 
det ermination of th e constants a, b, and c we 
write from eq 51 

x = O, 7] = 1, .\ = 0, 

x = O, 7] = 1, .\ = 1, 

0 2X/O.\2= 0, 7] = 1, .\ = 0. 

Accordingly, 

a + b+ c=- I , } 

2a - 4b+ 16c= - 1, 

a - 6b - 28c = 0. 

Solving th ese simul taneously, 

a= - 0. 8456, } 

b= - 0.1 581, 

c= - 0.00368. 

} (56) 

(58) 

The r ela tion between the pressure fall and the 
maximum velocity now is 

Op = 3 38'> I:!YITl OZ . ~ [2 , (59) 

and b etween ~ the mean velocity and maxImum 
velocity, 

(60) 

The values of us/u as determined in this analysis 
are shown likewiseiin figure 7 by th e curve labeled 
"laminar." Ac(: ,rdngly, in laminar Hows the 
velocities n eal' t h e interface are appreciably lower 
than th e m ean velocity of th e en tire section, and 
this fact will lead to a smaller value of th e mixing 
cri terion if i t is computed on th e basis of mean How. 

VI. Nature of Assumptions in the Analysis 
for the Criterion of Mixing 

It is necessary to call a t tention to th e approxi
mate nature of th e assump tions that were made in 
th e derivation of the criterion . 

The first assumption is that th e velocity of 
advance of th e in ternal waves can be ob tained by 
th e ordinary well~known wave formula. The 
formula refers to th e case of discrete densities 
and a surface of velocity discon tinuity at the in ter
face. Actu ally, al th ough th e con dit ion of discrete 
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velocities on tho two siell's of the interface is n early 
satisfi ed , on t he contrary the velocities are no t 
discontinuous. In fact, at th e instan t just pre~ 
ceding th e forma tion of nondeformable waves, the 
Howat th e interface a nd on th e two sides of i t is 
viscous, and the regime is laminar. According 
to fin analysis relative to the boundary layer of 
th e in terface whe.n th e density differ ence and the 
viscmity differ ence of th e two liquids are small , 
th e velocity a t th e in terface is nearly half that of 
th e curren t, the lower liquid b eing a pool [7] . 
During some of the runs small wax beads loaded 
wi th lead par t icles were introduced. These would 
fall through the ligh ter liquid, but in reaching the 
lower liquid the beads would Hoat a t the interface. 
The motion of the beads, when ever this was ob
served, showed that th e interfacial velocity was 
n early h alf th a t of th e current . F or example, in 
run E- 19, corresponding to th e curren t velocities 
2.29 ,3 .53, and 4.56 cm/sec, the interface velocit ies 
no ted were l. 37, 1.78, and 2.12 cm/sec, respec
t ively. Thus, in a more precise deriva tion of the 
velocities of th e interface waves, a t tention migh t 
be given to th e laminar regime of the interface. 

The seco nd assump tion consists of a sta temen t 
as to th e wavelengths a t tained at th e instant th e 
mixing is about to commen ce. The waveleng ths 
for the current velocity are maximum values con
sisten t with the condi tion of stability; that is, 

(61) 

\ 'Vhen ever records of wavelengths were k ept, the 
r ecord ed values appeared to be in agreem en t with 
the formula , as can be seen from th e data in figure 
8. The wavelengths were estimated r a th er than 
accurately measured . This fact and also the fact 
tha t th e m easuremen ts are few appreciably 
weaken th e value of th e evidence shown. 

The third assump tion assigns to th e waves a 
value of velocity propagation in conformity with 
th e waveleng ths; that is, 

(62) 

Although in m any cases this r elation h eld n early 
true, th ere \v-ere no ted ins tan ces when th e wave 
velocity was larger , and in th e vicinity of w= 0.8 Uc• 

The final assumption is in r egard to th e supply 
of en ergy to t he in ternal waves. The source of 
supply is though t to be due to th e eddies in th e 
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troughs or depressions of th e upper curren t. Th e 
supply is of such m agni tude as Lo balance that par t 
of th e cl issipation of th e inLem al waves taking 
place in th e liquid of Lh e lower pool. Probably 
tIlis idea is correct. However, our attempLs Lo 
verify it by observations on th e m ech anism of fl ow 
did not prove s uccessful. 

'Wha tever be the details of a n ew an alys is, car
r ied ou t with greater rigor and with proper assump
tions, the parametri c form of th e cri terion of mix 
ing \\"ill no t be modified. Whatever ch anges ar e 
ob taill ed will be in th e nature of replacing th e nu
m erical constallts appearing in eq 40, eith er by 
n ew constan ts or by a n ew fun etion involving th e 
cl ensities and viscosities of th e two liqu ids appear
ing as a correction. 

VII . The Amount of Mixing With Increasing 
Current Velocity 

The second purpose of th e investiga tion was to 
d etermin e the amount of mixing when th e velocit ies 
of th e current ar e above the cri tical valu e. The 
amount of mixing, q, may b e defined as th e vol
ume of the h eavier liquid that crosses unit area of 
th e interface in unit time. The dimensions of th e 
qu antity q are that of velocity , and the symbol 
Um will be used for this quan tity. The tes ts of 
th e amount of mixing were made with th e large 
flume. . 

Mixing in Stratified Flows 

The experimen tal determinations of q, or of Urn, 
are b ased on th e follo wing simple concep ts. Let 
V b e th e volume of th e upper liquid . In th ese 
tests , V is th e volume of th e ligh ter liquid con
ta ined in it ially in th e r eser voir below a nd prior to 
its in t roduction into th e flume. The h eavy liquid 
of th e pool is highly colored with a da rkish-blue 
water-soluble dye. Let N b e th e number of 
coloring particles in uni t volume of th e h eavier 
liquid. L et A i b e the to tal area of th e in terface. 
As a resul t of mixing th e upper liquid b ecom es 
t in ted . L et dN be the number of coloring par t icles 
en tering in to uni t volume of the upper liq u id d Llr
ing th e time interval tJ.t when th e curren t v elocity 
is constant for this in ter val. 

B ecause of con t inui ty of mass 

VdN= A iqN tJ.t . 

InLrodu cing Lh e symbol 

tJ. 0 = dN /N, 

V tJ.O 
q= A itJ.t" 

(63) 

(64) 

(65) 

\Ve may r efer Lo tJ.0 as th e increase in Lite frac
Lional con centration of th e upper liq uid . 

During th e conduct of tes ts the velocity of the 
upper curren t w as changed to th e valu es UI, U2 , 

U3, . . . at th e t im es to, tl , t2 , . . . • Thus, 
during th e t im e in Le rval t l - to, the veloci ty of th e 
CUl'ren t was cons tan t and equal to u l • In gen eral, 
cl Lll'ing th e t ime interval tn- tn- I, th e curren t 
velocity was Un. At th e t imes to, t l , t2, . • • ; that 
is, at th e times th at n ew v elocit ies were eSLablish ecl , 
samples 80, 8 1, 82, . . . 8,. of th e liquid in th e 
r eservoir b elow were tal(en . L et th e partial con-
centra tions of these samples b e 00, 0 1, O2 , • • • 

On, respectively . Thus to obtain th e ra te of mixing 
qn, when the velocity of th e curren t is U n, we 
consid er the equation 

(66) 

The determination of the partial concen trations 
o of the samples 8 was effected by the use of 
pho toelectric cells. Standard solutions of known 
partial concentrations of 0, 2, 4, 6, 9, and 10 
percen t, using the h eavier liquid from the pool as 
base, were prepared. These were introduced one 
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at a time into a rectangular glass jar with plane 
polished surfaces. The jar was interposed be
tween a source of light of constant illumination
mtensity and a photoelectric cell , and the milli
ampere reading of the cell excitation was noted . 
The milliampere reading was taken as a measure 
of the partial concentration of the sample in the 
jar. These measurements of the standard solu
tions of known partial concentrations established 
a calibration curve. Next, the milliampere read
ings of the samples 80, 81, . . . 8 n were obtained. 
By reference to the calibration curve, the partial 
concentrations Co, CI , ... Cn were then deter
mined. 

The mixing-rate values as determined by the 
above process for run E - 14 are given in figure 9. 
The circles correspond to the photoelectric meas
urements. The square marl,"s the velocity UI , 

which by visual observation was associated with 
the condition of slight mixing. The triangle 
marks what we have judged as the critical velocity, 
Uc • The distribution of the observation points 
marked by circles can be best approximated by a 
curved line. This same condition was observed 
in practically all of the runs of the E ~eries . 
Neverth eless, for the purpose of effecting sim
plicity in the representation, a straight line is 
drawn, starting from tIle point of slight mixing, 
UI . This means that, approximately, the amount 
of mixing is proportional to th e increase of the 
current velocity above the velocity U1 of slight 
mlxmg. Accordingly, 

(67) 

The value of C, the constant of proportionality, 
from all the runs of the series E tests , made with 
the large flume, are shown in figure 10. It would 
seem that the magnitude of the constant decreases 
when the relative density of the pool liquid is 
increased. We shall ignore, provisionally , the 
effect of density. Furthermore, there is a corre
lation between the velocities U1 and UC) such 
that, UI = 1.15Uc• On this basis, the simplified 
form of the law of mixing rate will be 

It was unfortunate that, due to the limitations 
of the apparatus and the capacity of the pump, it 
was not possible to have current velocities higher 
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than those employed in the tests. It is important 
to have an idea of the limiting velocity where the 
law ceases to be linear, or nearly linear, and of 
the marked changes that may occur at the higher 
velocities. Another undesirable aspect of the 
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FIGURE 10. Relation of amount of mixing to relative densi
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apparatus was the shortness of the flumes. It 
was not always possible to divert correctly the 
dragging of h eavier liquid at thc exit end. In 
some cases the diversions were somewhat excessive 
and in others somewhat deficient , and, therefore, 
because of the shortness of the flume , errors were 
made in estimat ing thc mixing rates, Urn. 

It will be interesting at this point to inquire 
about the increased frictional force between the 
two liquids clue to the mixing. The frictional 
force caused by the maintenance of th e waves at 
the interface may be expressed as 

(69) 
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where U is the current velocity and dE/ell the 
dissipation in the waves pCI' unit area of interface. 
Writing for the shear, 

(70) 

where il is the coefficient of friction, it is seen that 

(71) 

As an estimate it may be supposed that the dis
sipation will take on the same value as for sur
face waves in contact with air . The expression is 

(72) 

Hence, 

(73) 

Assume that w = U/2, a condition that wa observed 
in some tests, and 

(74) 

This would indicate that, a and ).. r emaining the 
same, il decreases with in.creasing U. Actually, 
however , a increases with U. Let it be assum ed 
for the present that a2 is proportional to U and 
that ).. is unaltered. Then the value of the 
coefficient can be obtained by noting the condi
tions at the onset of mixing, and 

(75) 

where a and).. are the wave dimensions at the co n
dition of slight mixing. Using the observed 
values ),, = 2.0 em , a= 0.2 em, 1' = 0.01 cm2/sec., 
and Uc= 10 cm/sec ., we obtain 

il = 0.0010. (76) 

D enoting next the addi tional shearing resist
ance due to mixing by 7 2, 

(77) 

since the liquid crossing the interface is initially 
at res t, and after cross ing the interface it takes 
on the velocity of the current. VVriting 7 2 in the 
form 

(78) 

then 
(79) 

Mixing in Stratified Flows 

Introducing the expression for Urn from eq 68 

Thus, if the m ixing law as found above is valid 
also for large values of U, the coeffi cien t of friction 
due to mixing is 

(81 ) 

These results show that for moderately small 
channels and moderately small velocitie the 
friction coefficient at the interface is smaller than 
the coefficient ordinarily obtained for smooth
walled channels . Perhaps this explains our failure 
to obtain reliable r eadings of pressure fall along 
the flumes during the tests. 

VIII. Mixing in a Large Body of Water 

The bearing of the results of the present in
vestigation on the interfacial mixing occurring in 
large bodies of water in stratifi ed flow must be 
diseussed. 

In the laboratory experiments, where rela tively 
short flumes are used and one of the liquids, the 
lower or the upper , is at l'esL, and the other is 
in motion, the state of the interface is one of 
discontinuity of density. In the case when the 
lower heavy liquid moves, it will be supposed that 
the flow has continued for a long time and that 
the characteristic wave front is absent. Under 
these co nditions, the interfacial stability, the 
critical velocity of mixing, and the mixing for 
velocities above the critical may be studicd. All 
these, however , refer to a r each tha t is to be looked 
upon as a type of initial length. 

In the phenomenon transpiring in natural en
vironments and thus involving large bodies of 
water in stratified flow, it may be assumed that 
conditions arise so that initial r each es are estab
lished. It is expected that the changes taking 
place in the initial length will be similar to those 
observed in a laboratory . What is not known 
definitely in this respect is the direct applicability 
of the results to be obtained in a laboratory 
investigation to the prototype magnitudes. Cer
tainly, however , a qualitative similarity, at least, 
must exist. 

If that is granted, the application of the labora
tory results must be restricted to a very short 
reach, which will be viewed as the initial reach . 
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Beyond this in the remaining reach, which will be 
of considerable length, the conditions for mixing 
and the manner of mixing will be of a differ en t 
type, obeying different laws. For the mixing in 
the initial reach will establish in the following ad
joining reach a transition layrr between the 
liquids, and in this transition layer the density 
will vary continuously. As an illustration of how 
this can b e brought about, we may visualize the 
following situation. A current of fresh water of 
depth H is flowing with a uniform velocity over a 
pool of heavier liquid. In places in the initial 
length, portions of liquid coming from the lower 
pool will spread themselves in the upper current 
only gradually. Let it be supposed that the 
sprea,ciing is proportional to time, this being meas
ured from the instant of departure from the lower 
liquid. The density gradient established for this 
case can b e obtained readily. Taking the instant 
when the spreading is completed and the area 
covered is a square of sides of length H , the con
centration along a vertical may be represented by 

C= A + B/y, (82) 

for finite distances away from the interface. 
Now, the actual law of spreading for a given 

a,ctual case may not be as simple as in the above 
illustration. As long as it is assumed that spread
ing of liquids ej eded from below into the upper 
curren t and in the initial length is gradual, a 
qualitatively similar law for the concentrations as 
the one mentioned above will be expeeted. But 
these distributions imply the existence of trans i-
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tion layers. 'Vhereas the mlxmg in the case of 
sharp interfaces is brought about by the ejection 
of eddies at the crests of the internal waves, the 
mixing through the transition layers must be asso
ciated with the momentum exchange of turbulent 
motion. This is a matter to be approached using 
the basic ideas of the Pnindtl and Richards 
criterion for mixing and is, therefore, a subject 
outside the scope of the present invest igat ion . 

The author expresses his appreciation to K. 
Hilding Beij , Assistant Chief of the National Hy
draulic LabOl'atory, for his editorial review of the 
paper and for constructive suggestions. 
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