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Interfacial Instability and Mixing in Stratified Flows
By Garbis H. Keulegan

When a liquid flows over a body of heavier liquid, with which it is miscible, an interface

may be formed at which there is a sharp discontinuity of densities but not necessarily of

velocities.

As the relative velocity is increased, waves are formed at the interface, and at

a critical velocity, mixing begins by the formation of eddies periodically ejected from the

crests of the waves.

from theoretical considerations, were determined experimentally.

The numerical values of a criterion for mixing, whose form was derived

Experimental data were

also obtained on the relation of the amount of mixing to the relative velocity of the liquids

at velocities higher than the critical.

I. Introduction

The intrusion of salt water in rivers that com-
municate with the seas and the silting of reservoirs
receiving muddy waters are the two most impor-
tant examples of stratified low where the question
of interfacial behavior assumes a basic signifi-
cance. Depending on the conditions of approach,
two possible forms of the interface may be noted.
In one form, the interface may be identified as the
dividing surface of two layers of liquid with dif-
ferent densities, the surface being one of sharp
discontinuity of densities but not necessarily of
velocities. Ordinarily the interface of this type
is the locale of internal waves if the difference in
velocities at points on opposite sides of the inter-
face and at some distance from it is large. If
mixing is present, it is in the form of eddies that
are periodically ejected from the crests of the
waves into the current that has the greater ve-
locity. In the other form, the interface is a layer
of transition between two currents. Both the den-
sities and the velocities change uniformly in the
layer that has measurable thickness. If any
mixing is present, it is associated with the mo-
mentum exchange of turbulence, and the regular
pattern of internal waves is absent. Thus a
study of interfaces may be confined to one or the
other of these forms.

In the present investigation, which is restricted
to an interface with sharp discontinuity of densi-
ties, one may visualize the following distinet
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problems. First, what quantities are to be con-
sidered in determining a criterion for the incidence
of mixing? Second, with current velocities exceed-
ing the critical velocity of the criterion, how is
the amount of mixing related to the velocity?
Third, what is the exact mechanism of flow that
produces the mixing?

About a decade or so ago at the National
Hydraulic Laboratory, experiments were carried
out to study each of these three questions. After
having studied the first and the second of them
with some degree of satisfaction with the results
obtained, we were about ready to enter into the
study of the third, which obviously is beset with
considerable experimental difficulties and theoret-
ical uncertainties. Unfortunately at that time
it became necessary to suspend the hydraulic
work in the laboratory, and since then we have
had no opportunity to return to our original plans.
Meanwhile considerable interest in these matters
has developed. Since numerous inquiries have
been received about the progress already made,
it was decided to make these results known not-
withstanding their incompleteness.

IT. Determination of the Critical Velocity
of Mixing

Observations on the instability of interfaces

were made for the condition where the upper, less

dense liquid was flowing over a heavier liquid at

rest in a pool. The essentials of the apparatus
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and the arrangements are shown in figure 1. The
apparatus consisted of a closed flume with vertical
glass walls and was limited at the entrance by a
constant level tank and at the exit by a discharge
tank. The large reservoir of the ecirculating
liquid, which was the lighter liquid, was connected
to the constant level tank through a pump. To

The flowing current caused the lower liquid to
be dragged out in the downstream direction. In
the small and the medium flumes, the escape of
the lower liquid was prevented by tilting the
flumes by means of screw-jack supports. This
method was not practicable for the large flume.
Instead, the flume was fixed in a moderately

* ‘ CONSTANT
DISGHARGE RESERVOIR OF HEAVY LIQUID LEVEL
TANK VG

il 0

~—— CURRENT OF LIGHT LIQUID

POOL OF HEAVY LIQUID!

1 [

/

:.

-—— OVERFLOW

METER

. ORIFIGE ‘

RESERVOIR OF LIGHT LIQUID

Frcure 1.

prevent the transmission of pump vibrations to
the flume frame, the connection to the constant
level tank was made through a flexible rubber
tubing. The return flow passed from the dis-
charge tank into a metering tank of the orifice
type, which in turn discharged its contents con-
tinually into the reservoir of light liquid below.
The volume of the circulating liquid during a test
remained the same, and since the reservoir volume
was many times larger than the volume of the
flume, mixing in the flume during a run had very
little effect on the density of the upper liquid.
The loss of the heavier liquid from the pool during
tests was made up at intervals by drawing from a
reservoir placed at a higher elevation.

For the purpose of examining the effect of
Reynolds number, three flumes of various sizes
were employed. They were rectangular in cross
section, with the greater dimension vertical, with
cross sectional dimensions of 2 by 4 em, 4 by 8
em, and 11.3 by 28.5 em. The length in each
case was about 25 times the total depth. The
flumes were operated full, keeping the depths of
the two layers equal or nearly equal. Accord-
ingly, the hydraulic radii associated with the cur-
rents were 0.50, 1.00, and 3.27 em. The flumes
will be referred to as the small, the medium, and
the large flume.
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Diagram of flume and accessories.

inclined position. When the velocities of the
current were too high, the lower liquid that was
dragged out was prevented from entering the
lower reservoir by drawing it off through a trap
at the exit end. The idea involved in the method
is shown in figure 2.

The determination of the critical velocity; that
1s, the velocity at which the mixing of the liquid
of the lower layer with the upper commenced, or
was about to commence, was done visually by
noting the condition of the interface. At low
velocities a smooth interface was discernible even

when the lower liquid was not colored. At this
h 2
~——— CURRENT OF
LIGHT LIQUID
F(
‘.[ POOL OF
” HEAVY LIQUID
Ficure 2. Diagram of diverter for heavy liguid dragged

out of flume by the current of light liquid.
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initial stage, observations showed that at the
interface, and in a finite band on the two sides of
the interface, the flow was laminar even when the
central regions of the upper current were eddying
or turbulent. When the velocity of the current
was increased to some definite value depending
on the densities and the viscosities of the two
liquids, the interface appeared to be covered with
ridges extending from one glass wall to the other.
These ridges moved progressively downstream,
and their crest lines were parabolic in shape, the
crest heights being greatest at the center. With
a slight increase in the value of the current velee-
ity, waves appeared in a new configuration. The
interface now was covered with waves of shorter
crest lines.  In the tests with the large flume these
crest lines were one-half or one-third of the channel
width. The appearance of the waves and their
sequence was regular.  The movement was pro-
gressive.  The predominant wavelength remained
constant, or nearly so, throughout the channel
length.  With further increase of the velocity of
the current, the waves became sharp-crested, and
mixing commenced. At the beginning the mixing
was slight, and it augmented with subsequent
increases in velocity. It appeared that increased
velocities did not substantially affect the wave-
lengths of the interfacial waves, although there
was a tendency for the lengths to decrease slightly.
The most marked influence of the inereasing veloc-
ities was to augment the height of the sharp-
crested waves, the size of the eddies emanating
from the crests, and the frequency of departure of
the eddies. Practically, the mechanism of mixing
was an ejection of eddies from the crests into the
moving current, as shown diagrammatically in
figure 3.

Now, what constitutes the critical velocity of
mixing is a matter difficult to decide.  The method
that we employed is as follows: In the record book
was entered a description of the appearance of the
interface, together with a qualitative statement
regarding the degree of mixing for a measured
velocity of the current. The interface, for exam-
ple, was described as being smooth, or having para-
bolic waves, or mixed waves, or sharp crests, or
agitated crests.
absent, or slight, or moderate, or excessive. We
note the velocity U, the maximum velocity record-
ed in the book as corresponding to a smooth inter-

The mixing was described as
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face and to no mixing. Next we take the velocity
U,, which is the average of all the velocities asso-
ciated with slight mixing. The mean value of U,
and U; is chosen to represent the critical velocity
of mixing. It is denoted by U.. The average
ralue of the velocities associated with moderate
mixing are denoted by U, and the average value
above which there was always excessive mixing
as Us.

The test liquids were tap water and sugar solu-
tions. Four series of tests were made. In three
of the series the upper liquid consisted of tap water,
and tests were made in all three flumes.  The pur-
pose of these tests was to determine the effect of
the Reynolds number of the upper current on the
incidence of mixing. The fourth series of tests
was intended to determine the effect of viscosity
on mixing. These tests were made with the medi-
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Fraure 3.  Diagram of process of mixing.
um flume. Both the upper liquid and the lower
liquid were sugar solutions. The fractional differ-
ence of the densities was kept practically constant,
but the viscosity of the upper liquid was varied.
The velocity data from the tests of the four series
are given in tables 1, 2, 3, and 4.

TaBrLe 1. Muxing tests in the small flume

(Hydraulic radius=0.50 em)

Run | p1 | p2 vi | wn | U. Uy U, U, Us

/ [P
glem3 |cm?/sec

g/em?3

cm?/sec rm/.\'wr}un/su' cm/sec | em/sec | em/sec

C-13...| 1.000 | 1.097 (0.0086 |0.0174 | 7.45 | 6.97 | 7.94 | 9.96 | 13.01
C-14__| 1.000 ‘ 1.185 | . 0086 | .0455 | 9.14 | 812 10.16 12.85 |
C-15.__| 1.000 | 1.173 | . 0085 | .0395 | 10.18 | 8.47 | 11.89 | 14.65 |
('—»l(i,,,‘ 1.000 | 1.149 | . 0084 | 0283 A | 7.00| 8981261
C-17__| 1.000 ‘ 1.095 | .0080 | . 0151 | 7.12 7.91 | 10.15 | 14.65
© m,__} 1.000 | 1.064 | L0080 | .0120 | 6.98 8.06 | 10.35 | 14.24
C-19___| 1.000 | 1.061 | .0079 | .0119 | 6.19 6.81 | 9.16 | 12.56
©-20.__| 1.000 | 1.036 | .0082 | .0101 | 6.25 | 6.85 | 8.02 9.63
C-21___| 1.000 | 1.017 | .0081 | .0088 | 5.21 | 4.61 ‘ 582 | 6.96 8.37
C-22_ | 1.000 | 1.007 | .0082 | .0083 | 4.08 | 3.02 | 427 501| 5.4
C-23.__| 1.000 | 1.226 | .0081 | .0800 | 8.14 | 7.96 | 9.52 | 14.71 | 20.45

‘ ‘ ‘

‘ |
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TaBLE 2. Mixing tests in the medium flum
(Hydraulic radius=1.00 cm)
Run P P2 \ 2 1 va ‘ U. Uy ‘ Uy U, Us
| N
|
glem3 | g/lem? cmzlsec cm?/sec| cm/sec | cm/sec | cm/sec | em/sec | em/sec
D-1___| 1.000 | 1.038 |0.0088 10. 0131 4.39 | 3.85| 4.93| 5.37 6. 63
D-2 _ | 1.000 | 1.044 | .0095 | .0129 4.59 3.96 5.23 5.50 5.81
D-3._.] 1.005 | 1.052 | .0095 | .0140 4. 55 4.47 4.62 5.02 5. 41
D-4___| 1.026 | 1.062 I L0106 | .0137 | 4.75 | 4.47 4.62 | 5.02 5.41
D-5___| 1.037 | 1.085 ‘ L0118 | .0175 | 5.52 | 5.05 | 5.99 | 6.67 7.62
D-6__| 1.049 | 1.094 | .0137 | .0204 | 6.49 | 6.07 | 6.91 7.45 8. 60
D-7__.|1.064 | 1.103 | .0163 | .0235 | 6.88 | 6.86 | 6.91 7.27 il 201
D-8 __|1.074 | 1.119 | .0178 | .0277 | 7.18 | 6.68 | 7.68 | 8.03 8.23
D-9___| 1.088 | 1.122 | .0192 | .0268 | 7.04 | 6.53 7.56 | 8.04 8.80
D-10-_| 1.100 | 1.139 | .0203 | .0301 (L || Gk 7.18 | 7.60 8.75
D-11__| 1.128 | 1.164 | . 0233 | . 0351 7.68 | 7.65| 7.72 | 8.20 8.00
D-12_ | 1.146 | 1.183 | .0276 | .0449 | 8.56 | 7.96 | 9.17 | 9.26 9.31
D-13__| 1.161 | 1.203 | . 0336 | .0591 9.98 | 9.31 | 10.66 | 11.28 | 12.19
D-14__| 1.171 | 1.204 | .0393 | .0642 | 10.46 | 9.78 | 11.15 | 11.93 12. 60
D-15__| 1.205 | 1.245 | .0799 | .1563 | 13.29 | 12.17 | 14.41 | 14.98 15. 46
D-16__| 1.225 | 1.257 | .1020 | .1970 | 13.17 | 11.74 | 14.61 | 15.80 16. 74
TaBLE 3. Mizing tests in the medium flume
(Hydraulic radius=1.00 ecm)
Run p1 p2 V1 V2 U. Uy U, U, Us
glem3 | g/cm3 cmz/sec‘cm?/sec cm/sec| cm/sec | cm/sec | cm/sec | cm/sec
D-18__| 1.000 | 1.266 |0.0085 |0.1890 | 10.12 9.12 | 11.13
D-19 | 1.000 | 1.139 | .0092 | .0318 7.86 6. 44 9. 28 a -
D-20 1.000 | 1.135 | .0090 | .0264 8.31 6.02 | 10. 60 3. 5. 57
D-21__| 1.000 | 1.133 | .0094 | .0272 8. 54 6.62 | 10.47 | 12.14 13. 25
D-22 | 1.000 | 1.158 | .0094 | .0370 8.56 6.57 | 10.56 | 12.43 14. 96
D-23__| 1.000 | 1.104 | .0094 | .0204 7.30 | 5.98 | 8.62 | 10.83 12. 06
D-24 1.000 | 1.094 | .0092 | .0180 6. 55 5. 68 7.42 9.92 12.03
D-25__| 1.000 | 1.102 | .0092 | . 0139 6.87 5.7 8.00 9. 89 11. 38
D-26_ ‘ 1.000 | 1.069 | .0090 | .0143 6.28 5. 7.03 8.96 10. 51
| |
TasLE 4. Mixing tests in the large flume
(Hydraulic radius=3.27 ¢m)
= : ‘
Run v | U Uy U Uz ‘ Us
glem3 ‘ glem3 | cm /wc‘cm?'vec cm/sec l cm/sec | cm/sec | cm/sec ‘ cm/sec
E-8 | 1.000 | 1.0489,0.0090 |0.0126 5.32 | 4.83 5.92 | 7.32 8.33
E-9 1.000 | 1.046 ‘ 0094 | . 0131 5.57 4.76 6.39 8.11 9.20
E-11 1.000 | 1.016 | .0093 | . 0101 3.84 3.08 4.65 6. 16 6.76
E-12 ‘ 1.000 | 1.150 | . 0110 ‘ . 0404 8.27 7.02 9.52 | 12. 50 13. 45
i
E-13_ 1 1.000 | 1.134 | .0103 | .0328 | 7.95 6. 58 9.32 | 11. 64 13.15
E-14 { 1.000 | 1.116 | .0099 | .0251 | 7.13 5.31 8.95 | 10.49 12.41
E-15 1.000 | 1.110 | . 0098 | .0213 7.09 5.79 8.39 | 10.90 12. 45
E-17 i 1.000 | 1.060 | . 0106 | .0160 5. 50 5.00 6.00 6.92 7.98
E-18 ,,j 1.000 | 1.031 | . 0100 | .0122 4.93 4.46 5.20 6. 86 7.34
E-19 ‘ 1.000 | 1.033 | . 0101 ‘ 0125 4.37 3. 46 5.28 6.17 7.03
E-20___| 1.000 | 1.030 | .0101 | .0122 4.36 3.92 4.80 6.29 6. 96
E-21___| 1.000 | 1.022 | .0098 | .0112 4.36 3. 56 5.17 6.38 7.55
| | |

ITII. A Theoretical Basis for the Dimension-
less Parameter of the Critical Velocity

If it were not for the inertia and the restraining
effect of the upper current on the motion of the
mterfacial internal waves, we would introduce
directly the criterion for wind-generated waves
derived by Jeffreys as the desired criterion [1, 2].!
Jeffreys has shown that at the moment of
developing wind waves

D Lo

== vg 22, 1)
where U is the velocity of wind over water that is
still initially, », is the kinematic viscosity of
water, Ap is the difference between the densities
of water and air, p; is the density of air, S is a
numerical constant, and ¢ is the acceleration of
gravity.

Jeffrey’s method for the analysis of the wind
velocity criterion shows a marked departure
from the well-known derivation due to Kelvin.
The hypothesis that the flow in air is irrotational
is abandoned, and instead it is supposed that the
motion of air is such as to introduce a pressure
variation over the water surface of the magnitude

p=~8p, U*dh/dz, (2)

where S is a numerical constant referred to as the
sheltering coefficient, U is the velocity of the air
over the crest, A is the surface elevation of the
wave above the undisturbed surface, and z is in
the direction of wind motion.

Jeffreys has concluded from observations on
the initial formation of wind waves in a river and in
the waters of a large pond that the velocity of a
wind just strong enough to raise waves is 110
cm/sec, the average of three observations. The cor-
responding value of §'1s 0.274.  Substituting these
values in eq 1, we get for the criterion, writing

() [0,

0=0.215.

(3)
the value

(4)

The problem of interfacial waves between two
moving layers is a question of small oscillations

I Figures in brackets indicate the literature references at the end of this
paper.
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about a steady state of motion. Let the velocity
of the upper layer be U, and of the lower layer zero.
Let  the corresponding densities be p;  and
p(=Ap+p). The wavelength and the period
being X and 7', the internal waves may be assumed
to be given by

h=a cos (kx—at). (5)

where k=27/\ and ¢=2x/T. Supposing that the
motions are irrotational everywhere, that the
wavelengths are small in comparison with the
depths of the layers, and that the wave height is
small with respect to the wavelength, analysis
gives for the velocity o of the waves

p 1 . ]%
o il i Ul RIC

provided that the square of Ap/p, is negligible with
respect to unity [3].  In stable waves o is real, and
thus

2<“« .
V<3 &

As was noted previously, the internal interfacial
waves just prior to the setting-in of mixing are
regular in form and move progressively down-
stream without changing their form. The regu-
larity and the permanency of form indicate that
there 1s a mechanism by which the upper current
is furnishing energy to the wave motion of the
lower liquid just sufficient to counter the dissipa-
tion due to viscous effects. There are three
conceivable methods of furnishing the energy.
The energy supply may be effected through the
normal stresses p.., or the tangential stresses p,.,
or by the combination of these stresses. Since for
the ultimate purpose of the analysis, which is the
derivation of dimensionless parameters, the selec-
tion is not important, it will be supposed that the
transfer is made by the normal stresses p.., and the
tangential stresses p,. vanish.

The dependence of p.. on the wave form must
be known. The dissipation of waves through
viscous forees has a direct bearing on the relation,
and it is necessary that the ordinary equations of
motion involving the viscosity terms be considered.
These equations, neglecting the second-order terms,
are
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bu‘ _1_ 577 2 2__ @j 62 S
of = 5 or TV Vi=gataw (8)
bo) 10 2
61;?:_5 ag—ng AV )
and
0 o)
o+ 370 (10)

It is implied that = is drawn vertically upwards.
It will also be supposed that the origin is in the
undisturbed level of the interface, and that z is
taken 1in the direction of wave motion. The
quantities #» and w denote the particle velocity
components along the axes r and z, respectively.

It has been shown by Basset [3], that the above
set of equations is satisfied by

__99_0y \lf
U= 22’ + (1)
and
o)
Plo= a(f—‘!lf, (12)
provided that
vie=0, F=nw. (13)

Basset [3] and later Lamb [4] have applied these
to the determination of the damping of the surface
waves of a homogeneous layer. In reworking the
solutions, we wish to find the condition that corre-
sponds to no damping. It is to be noted that
only i the event that ¢ becomes negligible may
the flow be regarded as irrotational.

[t seems that the above equations and the solu-
tion derived from them can be applied directly to
the case of internal waves after resorting to the
following artifice. The presence of the upper cur-
rent ts imagined to be evidenced in two ways only.
First, the dynamical action of the current consists
of the normal stresses p... Second, the intensity
of gravity in the lower liquid is reduced from ¢ to
g’, so that

g/:sz. (14)

Accordingly, in the place of eq 12 we will write

a ~
Plo—3p—9'2. (15)
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For the case of infinite depth and liquid at rest
corresponding to the wave profile,

h=a cos (kx—at), (5)

correspond the solutions of eq 11:

= Aetzgi=tet, (16)
and
Y= Oemzeikt-i-“t, (17)
with
m*=k>+ a/v. (18)

If the case of cellular waves be excluded, m de-
notes that root which has its real part positive.

Thus,

u=— (ik Ae**+mCem) g*=+, (19)
and
w=— (kAe*— ik Oem?) =+t (20)

In this solution we are supposing that there is
no bodily movement of the lower layer as a whole,
so that the surface kinematical condition is

hfdt=w,  2=0, 1)

and this leads to
k / 5 ik a; ¢
h=—-& (A—1iC)e=+e, (22)

By Stokes’ rule, the relations between the
stresses and the dilatations are
ow
Pzz=— —Z)+2# b?’ (23)
and

ow  Ou
Prz=H @4‘&)' (24)

As regards the normal stresses, it 1s appropriate
to suppose, since a regular progression of waves is
imagined, that

Dos=—B A=t (25)

It being the convention o regard]pressures as
negative tensions, 8 is a positive quantity. The
dynamical surface conditions, from eq 15, 19, 20,
22,23, 24, and 25 are

(a4 2vk*a-+g'k—Ba) A+i(g'k+2vkma) C=0, (26)

and
2uvk* A+ (a+2vk*) C=0. (27)
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The elimination of the quantities A and € leads to
o+ 4vkia+g'k — o —2vk*B+ 4%kt — 4’ kP m =0.
(28)

where » is small, the terms containing its square
may be neglected, and

o+ 4vk*a+g'k— af—2vk*8=0. (29)
This may be written
2 +4(vk*—B/4) a= — g’k -+ 2vk*B. (30)

The condition that the waves are neither damped
nor growing in height requires that

vk*—B/4=0;
or
B=4vk>. (31)

Thus, eq 30 reduces to

o’=—g'k+2vi*B,
or
o= —g'k-+8vkt,

and due to the approximations assumed

o= —‘_(]’k, (32)
or
(0U= _O'i

)

and substituting the latter in eq 22, since o/k=w
h:Tl, (A_,io)eikz—z’qz.
iw

Equation 27 shows that the ratio (/4 is a small
quantity when » is small. Neglecting (|

h:‘i eikz— igl .,

1w
Putting
44./1‘(4):@,
h=a cos (kr— qt). (5)

To this corresponds the surface pressure variation
P..=4pwk*wa sin (kx—at), (33)

and therefore the pressure is smaller on the for-
ward face of a wave and greater on the backward
face, as is to be expected.
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Here, following Jeffreys, we introduce the
supposition that

P2:=Sp (U —w)*dh/dz, (34)
that is,

P..=8Sp (U—w)?ka sin (kx—ot). (35)

The implication is that for the maintenance and
for the growth of waves U is larger than w; that
is, the current velocity is larger than . When U
is smaller than o, the waves are damped. The
latter statement is due to Kelvin [5].

Comparing eq 33 and 35 with each other and
ignoring the small term involving Ap/p;, and
writing », for v,

(U— w)2:41/2k.

- - (36)

This is the relation to be satisfied between the
quantities w, 7, and k at the instant that the
internal waves are about to increase in height.
Returning to the inequality, eq 7, it may be sup-
posed that the wavelengths have reached the
greatest values consistent with stability; that is

)

k=%
U p,

(37)
Eliminating k& between the latter two equations,
— 3 8 ‘

U(U—w)? o= g v298p/p1, (38)

and since under these conditions
w="U/2, (39)
(see eq 6) we finally obtain

16

Ui="§ v:9p/p. (40)

This may be written as
0= (vogAp/p))"|U, (41)
and is the desired form for the criterion of mixing.

IV. Experimental Value of the Criterion of
Mixing

To generalize the result of the theoretical anal-
ysis made above and in particular to examine the
effect of the Reynolds number of the current on
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mixing, the data of the tests will be considered in
the parametric forms

0= (vog/Ap/p1)"* (42)
and

O0=0(U.R/v). (43)

In these, p, is the density of the upper flowing
liquid, », and », are the kinematic viscositics of the
upper and the lower liquids, respectively, Ap is
the difference in the densities of the two liquids,
U7, is the critical velocity of mixing, and R is the
hydraulic radius of the cross section of the flowing
current.

However, prior to the consideration of the mag-
nitude of the eriterion it will be helpful to present
the evidence of the effect of kinematic viscosity
on the criterion itself. The criterion contains the
quantities v, and Ap/p; each raised to its one-third
power. The effect of the viscosity will be seen
best and also most convincingly if a series of tests
are conducted keeping Ap/p, constant or nearly
constant and varying the kinematic viscosity »,
over a large range. Most of the runs of the D
series in the medium flume fulfill this condition.
The test data are given in table 2. The plotting
shown 1n figure 4 is from this table. The critical
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Frcure 4. Relation of critical velocity of mixing to kine-
matic viscosity of heavy liquid.

velocity of mixing is treated as a function of the
kinematic viscosity of the lower liquid. The
great majority of the points aline themselves
along a straight line having an inclination of one
in three. Since the plotting is done logarithmi-
cally, this at least confirms the requirement of the
theory.

As regards the criterion and the effect of Rey-
nolds number on it, the values of the parameter
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6 from all the tests are shown in figure 5. One
glance at the figure suggests that the eriterion
has one constant value below a Reynolds number
of 450 and another constant value above it:

0=0.127, R,<450; (44)
and
0=0.178, B,>450. (45)

Significantly, R,=450 is also the Reynolds cri-
terion that separates the regime of turbulent flow
from the regime of laminar flow.

Considering the distribution of the © points
more carefully for Reynolds numbers above 450,
some systematic variations from the mean value,
0.178, are detectable. This would mean that
there are other factors having a secondary influence
on the value of the mixing criterion. Such factors
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may very well be (a) the surface tension between
the two liquids, (b) the difference between the
kinematic viscosities of the two liquids, and (¢)
the relative densities of the two liquids. Tt
would be a futile effort to speculate on the effect
of these factors separately. Since in these present
tests the solutions were prepared from the same
solvent and solute, one may say that all these
factors or quantities are functions of Ap/p;.  Thus
it would be appropriate and also sufficient to
consider the dependence of © on Ap/p,. For that
purpose the graph in figure 6 has been prepared.
That © values vary with Ap/p, appears to be un-
mistakable.

It is interesting to compare the value of the
criterion for the mixing between two liquids ob-
tained in these tests with the criterion that may
be associated with the formation of wind waves.
The latter, as determined from the observations
of Jeffreys, has been mentioned previously. The
value found by Jeflreys was 0.215, and this is not
very different from the mean value of the mixing
criterion of the tests; that is, the value 0.178.
When the very great differences in the conditions
of these two phenomena are considered, the close-
ness of the two values is quite surprising.

V. Mean Velocity Distribution in Currents

The fact, as shown earlier in this paper, that
the criterion of mixing takes on two different
values, one value when the Reynolds number of
the current is below 450 and another value when
above, may be explained on the grounds of velocity
distributions.  For the changes of the interface,
the velocities near the interface are the important
ones. The representation of the data, however,
was based on the mean flow, and it will be illumi-
nating to examine the variation of the mean ve-
locity distributions in the cross section of a square
channel for laminar and turbulent flows.

For this purpose we take a square of side 2/,
draw an inside square of side 2 ([—s), with the
centers coinciding, and consider the space between
the two (fig. 7). This space is a frame of width
s. Denoting the mean velocity in the complete
large square by u, and in the frame only by u,,
we wish to find the variation of u,/u with s/l. If
the flow 1s turbulent, using the Blasius law of
velocity, and supposing that the wall shear is
constant along the entire perimeter, it is a simple
matter to show that
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u;__(s/D)r(15—8s/l) (46)
u 7(2—s/l)
Values of this relation are shown in figure 7.
Accordingly, when the flow is turbulent, the
velocities near the interface are not much dif-
ferent from the mean velocity of the entire section.
In the actual conditions of the tests, the differ-
ences are somewhat smaller than is indicated by
the curve, since the liquid at the interface is in
motion, and this was ignored in the derivation
given above.

The computation of a similar result for the con-
dition of laminar flow could have been made from
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Ficure 7. Mean velocity distributions in a square channel

for laminar and turbulent regimes.

the formula of velocity distribution in a rectangu-
lar channel that Bateman gives [6]. However,
computations from this particular formula are
somewhat cumbersome, and it was decided to
derive a simpler formula involving algebraic poly-
nomials only.

Taking the axis of the channel as the z axis,
pressures decreasing with z, the equation of motion
is

(47)

op 02u+b"~’u>
oz M\ox? Toz2)

where p is the pressure, uniform across a normal
section. Let 2/ be the length of the square side.
Let u, be the maximum velocity in the section;

Mixing in Stratified Flows

that is, the velocity at =0, y=0.
variables

Writing the

uin:xy

=5 (48)
Y

[:77-

and introducing the dimensionless form of the pres-
sure term,

1o (49)

the equation of motion now becomes

Vix=+s, (50)
where
, 0% 0%
v 46{2 i—and

The boundary conditions are

X:O} g‘:l) _IS"ISI,
e I R ) (51)
=), =0, =

The velocity term may be expanded in terms of
algebraic polynomials:

x=1+axstbxy+cxs+ . . ., (52)

where ax, is a particular solution of eq 49, and the
remaining polynomials x4, Xs, . . . are the solution
of

V5= (53)

The quantities @, b, ¢ are numerical constants.

Since the cross section is a symmetrical one, the
polynomials Xz, Xs Xs - . . are functions of {* and
7*. Also, in particular, the section is a square,
and thus the value of the polynomials will not be
altered when ¢ is replaced by 7 and 7 is replaced
by ¢. Subject to these conditions

} (54)

a=—«/4. (55)

7X2:§-2+n2!
Xo= {1t — 67,
Xs=§*+n° —28¢%°— 28+ 700 " . . .

As ax, 1s solution of eq 50:
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This determines « from the constant a. For the
determination of the constants @, b, and ¢ we
write from eq 51

x=0, =1l =0,
x=0, g=1, (=1, (56)
0?x/0¢?=0, n=1, =
Accordingly,
a+b+c=—1,
2a—4b+16c=—1, &Y
a—6b—28¢=0.
Solving these simultaneously,
a=—0.8456,
b=—0.1581, (58)
c=—0.00368.

The relation between the pressure fall and the
‘maximum velocity now is

op__
oz

3.382 ‘i}éﬁ‘, (59)
and between the mean velocity and maximum
velocity,

u=0.4797u,,. (60)

The values of u,/% as determined in this analysis
are shown likewiseiin figure 7 by the curve labeled
“laminar.”  Accordngly, in laminar flows the
velocities near the interface are appreciably lower
than the mean velocity of the entire section, and
this fact will lead to a smaller value of the mixing
criterion if it is computed on the basis of mean flow.

VI. Nature of Assumptions in the Analysis
for the Criterion of Mixing

It is necessary to call attention to the approxi-
mate nature of the assumptions that were made in
the derivation of the criterion.

The first assumption is that the velocity of
advance of the internal waves can be obtained by
the ordinary well-known wave formula. The
formula refers to the case of discrete densities
and a surface of velocity discontinuity at the inter-
face. Actually, although the condition of discrete
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velocities on the two sides of the interface is nearly
satisfied, on the contrary the velocities are not
discontinuous. In fact, at the instant just pre-
ceding the formation of nondeformable waves, the
flow at the interface and on the two sides of it is
viscous, and the regime is laminar. According
to an analysis relative to the boundary layer of
the interface when the density difference and the
viscosity difference of the two liquids are small,
the velocity at the interface is nearly half that of
the current, the lower liquid being a pool [7].
During some of the runs small wax beads loaded
with lead particles were introduced. These would
fall through the lighter liquid, but in reaching the
lower liquid the beads would float at the interface.
The motion of the beads, whenever this was ob-
served, showed that the interfacial velocity was
nearly half that of the current. For example, in
run E-19, corresponding to the current velocities
2.29, 3.53, and 4.56 cm/sec, the interface velocities
noted were 1.37, 1.78, and 2.12 em/sec, respec-
tively. Thus, in a more precise derivation of the
velocities of the interface waves, attention might
be given to the laminar regime of the interface.
The second assumption consists of a statement
as to the wavelengths attained at the instant the
mixing is about to commence. The wavelengths
for the current velocity are maximum values con-
sistent with the condition of stability; that is,

rU2
)\“gAp/pl (61)
Whenever records of wavelengths were kept, the
recorded values appeared to be in agreement with
the formula, as can be seen from the data in figure
8. The wavelengths were estimated rather than
accurately measured. This fact and also the fact
that the measurements are few appreciably
weaken the value of the evidence shown.
The third assumption assigns to the waves a
value of velocity propagation in conformity with
the wavelengths; that is,

w=U_/2. (62)

Although in many cases this relation held nearly
true, there were noted instances when the wave
velocity was larger, and in the vicinity of 0=0.8U..

The final assumption is in regard to the supply
of energy to the internal waves. The source of
supply is thought to be due to the eddies in the
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Figure 8. Comparision of observed with computed wave-
lengths at initial mixing.

troughs or depressions of the upper current. The
supply is of such magnitude as to balance that part
of the dissipation of the internal waves taking
place in the liquid of the lower pool. Probably
this idea is correct. However, our attempts to
verify it by observations on the mechanism of flow
did not prove successful.

Whatever be the details of a new analysis, car-
ried out with greater rigor and with proper assump-
tions, the parametric form of the criterion of mix-
ing will not be modified. Whatever changes are
obtained will be in the nature of replacing the nu-
merical constants appearing in eq 40, either by
new constants or by a new function involving the
densities and viscosities of the two liquids appear-
ing as a correction.

VII. The Amount of Mixing With Increasing
Current Velocity

The second purpose of the investigation was to
determine the amount of mixing when the velocities
of the current are above the critical value. The
amount of mixing, ¢, may be defined as the vol-
ume of the heavier liquid that crosses unit area of
the interface in unit time. The dimensions of the
quantity ¢ are that of velocity, and the symbol
U7,, will be used for this quantity. The tests of
the amount of mixing were made with the large
flume.

Mixing in Stratified Flows

The experimental determinations of ¢, or of {7/,
are based on the following simple concepts. Let
V' be the volume of the upper liquid. In these
tests, V is the volume of the lighter liquid con-
tained initially in the reservoir below and prior to
its introduction into the flume. The heavy liquid
of the pool is highly colored with a darkish-blue
water-soluble dye. Let N be the number of
coloring particles in unit volume of the heavier
liquid. Let A; be the total area of the interface.
As a result of mixing the upper liquid becomes
tinted. Let dN be the number of coloring particles
entering into unit volume of the upper liquid dur-
ing the time interval At when the current velocity
is constant for this interval.

Because of continuity of mass

VAN=AgNAt. (63)

Introducing the symbol

AC=dN/N, (64)
VAC -
([:AllA}' (6’))

We may refer to AC as the increase in the frac-
tional concentration of the upper liquid.

During the conduct of tests the velocity of the
upper current was changed to the values u;, s,
ws, . . . at the times fo, t, t,, . . . . Thus,
during the time interval t,—t,, the velocity of the
current was constant and equal to u,. In general,
during the time interval t,—¢,;, the current
velocity was u,. At the times ¢, t, ¢, . . . ;that
is, at the times that new velocities were established,
samples sg, §;, 8o, s, of the liquid in the
reservoir below were taken. Let the partial con-
centrations of these samples be (4, €, O,

C,, respectively. Thus to obtain the rate of mixing
¢, when the velocity of the current is u,, we
consider the equation

V((;vnuon~l) »
e fli(tlz’_‘tn—l) . (66)
The determination of the partial concentrations

(' of the samples s was effected by the use of
photoelectric cells. Standard solutions of known
partial concentrations of 0, 2, 4, 6, 9, and 10
percent, using the heavier liquid from the pool as
base, were prepared. These were introduced one
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at a time into a rectangular glass jar with plane
polished surfaces. The jar was interposed be-
tween a source of light of constant illumination-
mtensity and a photoelectric cell, and the milli-
ampere reading of the cell excitation was noted.
The milliampere reading was taken as a measure
of the partial concentration of the sample in the
jar. These measurements of the standard solu-
tions of known partial concentrations established
a calibration curve. Next, the milliampere read-
ings of the samples sy, s;, . . . s, were obtained.
By reference to the calibration curve, the partial
concentrations Oy, Oy, . . . C, were then deter-
mined.

The mixing-rate values as determined by the
above process for run E-14 are given in figure 9.
The circles correspond to the photoelectric meas-
urements. The square marks the velocity 7,
which by visual observation was associated with
the condition of slight mixing. The triangle
marks what we have judged as the critical velocity,
U,.. The distribution of the observation points
marked by circles can be best approximated by a
curved line. This same condition was observed
in practically all of the runs of the E series.
Nevertheless, for the purpose of effecting sim-
plicity in the representation, a straight line is
drawn, starting from the point of slight mixing,
U,. This means that, approximately, the amount
of mixing is proportional to the increase of the
current velocity above the velocity UJ; of slight
mixing. Accordingly,

U./(U-Uy)=C. (67)

The value of ), the constant of proportionality,
from all the runs of the series E tests, made with
the large flume, are shown in figure 10. It would
seem that the magnitude of the constant decreases
when the relative density of the pool liquid is
increased. We shall ignore, provisionally, the
effect of density. Furthermore, there is a corre-
lation between the velocities /; and U,, such
that, (/;=1.15U,. On this basis, the simplified
form of the law of mixing rate will be

U,=3.5X10"4(U—1.15U,). (68)
It was unfortunate that, due to the limitations
of the apparatus and the capacity of the pump, it

was not possible to have current velocities higher
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than those employed in the tests. It is important
to have an idea of the limiting velocity where the
law ceases to be linear, or nearly linear, and of
the marked changes that may occur at the higher
velocities.  Another undesirable aspect of the
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Ficure 10. Relation of amount of mixing to relative densi-

ties of the two liquids.

apparatus was the shortness of the flumes. It
was not always possible to divert correctly the
dragging of heavier liquid at the exit end. In
some cases the diversions were somewhat excessive
and in others somewhat deficient, and, therefore,
because of the shortness of the flume, errors were
made in estimating the mixing rates, U,,.

It will be interesting at this point to inquire
about the increased frictional force between the
two liquids due to the mixing. The frictional
force caused by the maintenance of the waves at
the interface may be expressed as

1dE

I C/T *d*t”) (69)
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where U is the current velocity and dF/dt the
dissipation in the waves per unit area of interface.
Writing for the shear,

ni=feU?/2, (70)

where f; 1s the coefficient of friction, it is seen that
2 dE -

h=0e @t (71)

As an estimate it may be supposed that the dis-
sipation will take on the same value as for sur-
face waves in contact with air. The expression is

179 L oty -
G =167 uea? /N (72)

fi=320 37 /G”,)( ‘%) (73)

Assume that w= U//2, a condition that was observed
in some tests, and

Fi=8m3(»/\U) (a/N)2 (74)

Hence,

This would indicate that, @ and X\ remaining the
same, f; decreases with increasing V.  Actually,
however, a increases with [J. Let it be assumed
for the present that @ is proportional to (7 and
that X\ is unaltered. Then the value of the
coefficient can be obtained by noting the condi-

tions at the onset of mixing, and

a\’ —
fi=28x* }\VUC <)\ , (75)

where @ and X are the wave dimensions at the con-
dition of slight mixing. Using the observed
values A=2.0 em, ¢=0.2 c¢m, »=0.01 c¢m?/sec.,
and UU,=10 em/sec., we obtain

£,=0.0010. (76)

Denoting next the additional shearing resist-
ance due to mixing by 7,

Tzszm l’/Yy (77>

since the liquid crossing the interface is initially
at rest, and after crossing the interface it takes
on the velocity of the current. Writing 7, in the
form

ra=fop U2, (78)
then

fo=2U,/U. (79)

Mixing in Stratified Flows

Introducing the expression for U, from eq 68
f,=7.0X10"*(1=1.15U,/U). (80)

Thus, if the mixing law as found above is valid
also for large values of U, the coefficient of friction
due to mixing is

£2<20.0007. (81)

These results show that for moderately small
channels and moderately small velocities the
friction coefficient at the interface is smaller than
the coefficient ordinarily obtained for smooth-
walled channels. Perhaps this explains our failure
to obtain reliable readings of pressure fall along
the flumes during the tests.

VIII. Mixing in a Large Body of Water

The bearing of the results of the present in-
vestigation on the interfacial mixing occurring in
large bodies of water in stratified flow must be
discussed.

In the laboratory experiments, where relatively
short flumes are used and one of the liquids, the
lower or the upper, is at rest, and the other is
i motion, the state of the interface is one of
discontinuity of density. In the case when the
lower heavy liquid moves, it will be supposed that
the flow has continued for a long time and that
the characteristic wave front is absent. Under
these conditions, the interfacial stability, the
critical velocity of mixing, and the mixing for
velocities above the critical may be studied. All
these, however, refer to a reach that is to be looked
upon as a type of iitial length.

In the phenomenon transpiring in natural en-
vironments and thus involving large bodies of
water in stratified flow, it may be assumed that
conditions arise so that initial reaches are estab-
lished. It is expected that the changes taking
place in the initial length will be similar to those
observed in a laboratory. What is not known
definitely in this respect is the direct applicability
of the results to be obtained in a laboratory
mvestigation to the prototype magnitudes. Cer-
tainly, however, a qualitative similarity, at least,
must exist.

If that is granted, the application of the labora-
tory results must be restricted to a very short
reach, which will be viewed as the initial reach.
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Beyond this in the remaining reach, which will be
of considerable length, the conditions for mixing
and the manner of mixing will be of a different
type, obeying different laws. For the mixing in
the initial reach will establish in the following ad-
joining reach a transition layer between the
liquids, and in this transition layer the density
will vary continuously. As an illustration of how
this can be brought about, we may visualize the
following situation. A current of fresh water of
depth # is flowing with a uniform velocity over a
pool of heavier liquid. In places in the initial
length, portions of liquid coming from the lower
pool will spread themselves in the upper current
only gradually. Let it be supposed that the
spreading is proportional to time, this being meas-
ured from the instant of departure from the lower
liquid. The density gradient established for this
case can be obtained readily. Taking the instant
when the spreading is completed and the area
covered is a square of sides of length 7, the con-
centration along a vertical may be represented by

for finite distances away from the interface.

Now, the actual law of spreading for a given
actual case may not be as simple as in the above
illustration.  As long as it is assumed that spread-
ing of liquids ejected from below into the upper
current and in the initial length is gradual, a
qualitatively similar law for the concentrations as
the one mentioned above will be expected. But
these distributions imply the existence of transi-
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tion layers. Whereas the mixing in the case of
sharp interfaces is brought about by the ejection
of eddies at the crests of the internal waves, the
mixing through the transition layers must be asso-
ciated with the momentum exchange of turbulent
motion. This is a matter to be approached using
the basic ideas of the Prandtl and Richards
criterion for mixing and is, therefore, a subject
outside the scope of the present investigation.

The author expresses his appreciation to K.
Hilding Beij, Assistant Chief of the National Hy-
draulic Laboratory, for his editorial review of the
paper and for constructive suggestions.
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