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Electron Optical Observation of Magnetic Fields
By L. Marton and S. H. Lachenbruch

The electron optical analog of the ‘““Schlieren”” method may be used to explore electro-

magnetic fields where conventional methods fail.

Furthermore, a related shadow method,

especially suitable for the quantitative evaluation of such fields, has been found.
Properties of the Schlieren patterns produced by a magnet consisting of two point

poles are predicted by a mathematical analysis.

An experimental Schlieren pattern,

produced by a magnetized recording wire, is interpreted qualitatively and compared with
a powder pattern.

The related shadow method is applied to the magnetized wire. The experimental
data are shown to agree well with theoretical formulas derived from this hypothesis and

vield reasonable numerical values for the field strength and for the separation of the point

poles to which each magnetized region is assumed equivalent.

I. Introduction

In a short communication ! it was pointed out
that, in close analogy to the light optical Schlieren
effect, by means of which small variations of optical
density can be observed,®> an electron optical
Schlieren effect can be produced and used for the
observation of electrostatic and magnetic fields of
minute extent. Subsequent experiments have re-
vealed, in addition, a related and equally sensitive
method that utilizes the same apparatus as the
Schlieren method but is somewhat preferable for
the quantitative evaluation of such fields. 1In con-
trast with the dark-field Schlieren intensity pat-
terns, this related method involves measurements
on deformed shadows against a bright background.

As one illustration of the value of the Schlieren
and related methods, this paper deals with a de-
tailed description and analysis of the observation
of the magnetic fields of magnetized wires used for
recording purposes. Such wires can be magnetized
by short current pulses by means of the conven-
tionally built magnetic recording heads. Al-
though such recording wires have been used for
several years, there was little information avail-
able on the extent of the magnetized regions and
on the intensity of the magnetic field produced.
The extent of the magnetization can be determined

1 L. Marton, J. Appl. Phys. 19, 687 (1948).

2 See, e. g., H. Schardin, Toepler’s Schlieren method, Translation 156,
David Taylor Model Basin, U. 8. Navy (July 1947).
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experimentally either by means of the Schlieren
effect, or by means of a powder pattern produced
by extremely fine iron dust or a ferromagnetic
colloid.? As regards the value of the field strength,
its determination by means of the conventional
methods seems to be highly impractical because
of the very small dimensions of the magnetized
region. Under these conditions the best approach
to the problem seems to be the use of electrons for
the exploration of the fringe field extending from
each magnetized region.

A quantitative evaluation of this inhomogene-
ous fringe field is based on the deflection of the
electrons produced by the field. Measurements
on the configurations produced by this deflection
are substituted into theoretical formulas derived
from the field distribution function.

The final quantitative results are based on the
assumption that the field in each magnetized
region is the same as that produced by two equal
and opposite point poles a finite distance apart.
The observations have shown that this hypothesis
explains with sufficient accuracy all observed facts.
In the analysis that follows, for a first approxima-
tion it is assumed that the field is that of an ideal
magnetic dipole (infinitesimal pole separation),
while in section V the accuracy is improved by

3 Irvin L. Cootcr,’Elect.}Eng. 68, 433 (1949); (Digest of AIEE Paper No.
48-237).
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generalizing this hypothesis to take into account
the finite lengths of the magnetized regions.

As the basis of the analytical results, therefore,
section IT deals with a general mathematical dis-
cussion of the properties of electron paths in the
equatorial plane of an ideal magnetic dipole. 1In
subsequent sections these results are used for the
theoretical prediction of Schlieren and related
patterns and for the derivation of formulas for the
field intensity in terms of pattern measurements
and experimental constants. Experimental results
are compared with predictions. The theoretical
formulas derived are modified to take magnet
length into account. Finally, calculations are
carried out, using quantitative experimental data,
for the determination of the magnitude of the field
and of the effective pole separation, and for a par-
tial check on the validity of the underlying theo-
retical assumptions.

II. Trajectories of Electrons in Dipole Field
1. Exact Analysis

We assume the presence of a magnetic field
produced by an ideal dipole. Figure 1 is the
coordinate diagram of the dipole field in its
equatorial plane. The origin is the center of the
dipole, which is normal to the page with its north

DIPOLE CENTER

Ficure 1. Coordinate diagram for electron path in

equatorial plane of dipole.
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pole below it, i. e., its sense is such that electrons
are repelled when y and dz/dt are positive. The
z-axis is placed parallel to the initial direction of
motion, and the initial ordinate, 7, is the distance
parameter, that locates the incident ray. Polar
(r, 6) and rectangular (z, y) coordinates will be
used interchangeably.

The magnetic field in the equatorial plane of a
dipole varies inversely as the cube of the distance
r=+/z*+y* from the dipole center:

H=DM/u'n, (1)

where M is the magnetic moment and u' the
permeability of the medium, which is unity for a
vacuum when emu are used. If A is the radius
of curvature of the path at any point, 4 is in-
versely proportional to /7, and it follows from
eq 1 that

r3/| A= B=constant, (2)

which has the dimensions of area and can be
shown to be given by

B=Me/mv=M-/e[2mV, 3)

where o, V| ¢, m are the speed, accelerating poten-
tial, charge, and mass of the electron. We take
VB as a normalizing unit of length and indicate
by capital letters the normalized coordinates

Y=y/vB,

The length /B turns out to be the radius of the
one circular trajectory possible in this system.

The analytical equation of the trajectories of
electrons entering such a field have been derived *
in terms of elliptic integrals. In normalized polar
coordinates (R, ) this exact solution may be
expressed as follows:

X=2/yB, R=r/yB. (%)

0=0(R,Y,)=n—G(x/4,Y) £ G, Yo), (5)
where
y=v¢(R,Y,)=(1/2) arc cos [(Y,R+1)/R*]; (6)

F(y, k)=celliptic integral of first kind;  (7)

4 See, e. g., C. Graef and S. Kusaka, J. Math. Phys. 17,43 (1938).
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k=8/(Yi+4);

(¢+(k Yo/+/8)F(y, k), when Y,>=2;
GW, Yo)=< v—n/2+(k|Yo|//8){F, k)—F(x/2,k)}, when Y <—2; (8)
v+ (Yo/+/8) Flare sin (k sin ), 1/k], when 0==Y,=2;

and a somewhat more complex but similar expres-
sion when —2<Y<0.

The quantity Y,=y,/+B, which is the only
parameter appearing i the above solution, is
dimensionless and contains all the given condi-
tions of the problem, viz., the initial ordinate ¥,
moment M, and electron energy V. For a
monochromatic parallel incident beam, 1 and
M, and therefore B, are fixed, and y, is the basic
parameter of the system.

For such a parallel incident beam, the resulting
family of trajectories is shown in figure 2 for
equally spaced values of Y. The cases Y,=—2
and V=0 give degenerate forms: for Y,=—2 the
electron spirals without limit, approaching the unit
circle R=1 as asymptote; and for Y,=0, i. e., for
an electron initially headed for the dipole center,
the path is an equilateral hyperbola tangent to
that unit circle, having the two coordinate axes
as asymptotes and giving a deflection §=/2.

The caustic curve (shown by dot-dashed curve
marked “Envelope” in the fig.) is the locus of points
for which dY/dY,=0. This curve executes a
spiral similar in form to the Y,=—2 trajectory,
and approaches as asymptote the circle whose
equation is R=+2—1=0.4, whereas for large
X it approaches a cubic curve.

The angular deflection, 6, which is positive for
all Yy, is given by the inclination of the final
asymptote, the initial asymptote being horizontal.
Setting R=wo, eq 6 and 5 give for the final
deflection

0:9(00; ]’0):77_2 G("r/47 YO)) (9)

where (' is defined by eq 8.

The equation of the final asymptote of any tra-
jectory may be obtained as follows: The two
asymptotes of a trajectory must intersect on its
line of symmetry, which by eq 5 is the radial line

0=r—G(n/4, Yo)=m/246/2, (10)

the latter form being obtained from eq 9. But
the equation of the initial asymptote is V=1,
so that the intersection is at
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(Y=Y, X=—Y,tan8/2= — Y,[csc 6—cot §]). (11)

The slope of the final asymptote is tan 6 by defini-
tion. From these it follows that the final asymp-
tote has the equation,

Y=Yysech+ Xtan b, ory=yosec-tztand. (12)

Here the deflection 6 is itself a function of Y,
and is given analytically by eq 9. The Y-inter-
cept, Y, of a final asymptote is thus

= Y, sec 8, or 7=1, sec 0. (13)

The final asymptotes (eq 12) of the main tra-
jectories of figure 2 are replotted in figure 3,
and each is extended back to the point (eq 11)
where it intersects the horizontal initial asymptote.
These asymptotes possess an envelope (dot-dashed
curve), which is, of course, asymptotic to the
;austic of figure 2 for large XX, but whose only
significant intersection with the }Y-axis is in a

o~

lower branch, which corresponds to a negative ¥
To=—2.58. (14)
2. Small-Deflection Approximations

The results of the experiments to be deseribed
later indicate conditions (dipole strength and volt-
age) such that the normalizing factor VB is small
compared with the radius of the magnetized wire.
The quantitative results to be presented in section
V lead to a value of v/B of the order of ¥; of the
wire radius. This would imply that, in practice,
trajectories corresponding to |Y/< 15 have little
physical significance here.  For experimental pur-
poses we shall be concerned chiefly with trajec-
tories so far from the dipole center that the deflec-
tion is very small (well beyond the range of figs.
2 and 3). Thus approximate analytical expres-
sions for large |V will be experimentally useful as
well as much simpler than those involving elliptic
integrals, although the exact expressions could be
.alled for in exactly similar problems with different
physical parameters.
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Ficure 2. Trajectories of electrons in equatorial plane of dipole, parallel incidence (normalized coordinates).
Curve marked “Envelope” is the caustic curve.
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Ficure 3. Final asymptotes of the tragjectories of figure 2.
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The elliptic integral F (¢, k) can be expanded in
even powers of k& as

F (y, /c):x//—kf\{(x//—sin Y cos ¥)+0 (k). (15)

For large | Y|, by eq 15, 5, 6, and 8, the equations
of the (almost straight) trajectories can be shown
to simplify to

R=Y,/{sin —1/Y*)—1/Y?}. (16)

On setting 2= o one then obtains for the small
final deflection angle

é‘zz/)v”g. (17)

The equation (eq 12) of the asymptote becomes
approximately

Y=Y,+0 X=Y,+2X/Y, (18)
and its Y-intercept (eq 13) becomes
Y =Y, (19)

The latter implies that the two asymptotes of a
trajectory intersect approximately on the Y-axis
when | Y| 1s large.

Analogous results for a magnet of finite length
are given in section V.

III. Schlieren Observation of Intensity
Patterns

1. Description of the Method

Inits simplest form the electron optical Schlieren
effect can be observed by using an electron source,
the image of which is projected on a conveniently
placed stop by means of an electron optical lens.
This stop blocks all direct rays. In the absence of
any scattering object or deflecting field in the
space between source and lens, there is no radia-
tion reaching the space beyond the stop. If, how-
ever, in the space between source and lens there
exists a variation of the electromagnetic index of
refraction (or there is some material present that
scatters the electrons), the rays will be deflected
from their normal pattern and will form a dark-
field image in the image space beyond the stop.
This image is obviously a pictorial representation
of the deflections in the plane conjugate to the
image plane with respect to the lens.
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Although this description of the Schlieren effect
is limited to the use of a single lens, it is obvious
that the use of more than one lens may often prove
advantageous. Two special cases of more than
passing interest may be noted here. One is the
ase of two lenses, forming the image of the source
with a parallel beam in the space between the
two lenses, and the other is the case of a com-
pound instrument producing high magnification
of the Schlieren image. In the first case, the
object can be placed in the parallel beam, which
has the advantage of a rather uniform illumina-
tion. In the second case, a compound instrument
is used when the variations of the electromagnetic
index of refraction are of such minute extent that
a microscope system is needed for the observation.
It is obvious that a great number of combinations
of optical elements can be adapted to the needs of
the experiment for the many possible applications
of the Schlieren effect (some of which are listed in
our previous short communication; see footnote 1).

It is not our intention here, however, to describe
all the possible variations of the experimental
arrangement. Rather this section deals with the
special application of the method to the observa-
tion of the magnetic field of the magnetized wire
described in the introduction (sec. I). After a
theoretical discussion of the effect, based on the
results of section IT and intended for general
reference, the detailed laboratory procedure and
experimental results are described.
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Fiaure 4.  Electron optical diagram of Schlieren apparatus.

2. Theoretical Analysis

The electron optical arrangement for obtaining
Schlieren images of the inhomogeneity produced
by a dipole is shown schematically in figure 4,
whose plane is the equatorial plane of the dipole,

413



D. A converging lens, L, is placed at a distance
X, sufficiently far beyond D so that all electron
trajectories may be considered as coinciding
with their asymptotes there. In the absence of
the deflecting field, a parallel beam of electrons
will be blocked by the center stop, ), placed at the
lens focus. Rays deflected sufficiently by the
dipole field pass the stop and are collected on a
fluorescent screen, S.

It is obvious from figure 4 that the distribution
of electrons on the screen, S, is an image of the
virtual distribution that is obtained in the plane,
S’ conjugate to that of the screen by extrapolating
all the final asymptotes back to that plane. Thus,
if the plane S” is at a distance X to the right of
the dipole, an electron of initial ordinate Y, will
have at the screen an ordinate p)}, where Y is
given by eq 12, and w is the magnification pro-
duced by the lens; and the properties of the
distribution on the screen may be predicted from
a study of the intersections of the asymptotes of

14 T I I I T

Ficure 5. Distance Y of final trajectory asymplotes of
figure 3 from optic axis at fived distances X beyond dipole,
as function of initial distance parameter Y.
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figure 3 with a vertical line at abscissa X. (In the
experiments X=0.)

If the screen, lens, and dipole positions, and
therefore the conjugate abscissa X, are fixed, the
position } (more precisely, uY) of any electron
on the screen is a unique function of its initial
ordinate Y, as given by eq 12 and figure 3.
Figure 5 1s a plot of } versus Y, for several
different values of X. Forlarge | Y| all the curves
approach the 45° line Y=1Y,. It is obvious that
the inverse function defined thereby (Y, as
function of Y, for fixed XX) is multiple-valued;
1. e, in general, the electrons reaching the screen
at a given ordinate Y may originate in any of
several initial ordinates Y.

The distribution of electrons on the screen is
then obtained as follows: In a parallel, monochro-
matic incident beam of uniform linear current
density oy, the total electron current in an ele-
mentary initial interval (Y, Y,+dY,) is aoldY|.
These electrons form at the screen an elementary
iterval (Y, Y+dY), so that they contribute to
the current density at this point on the screen
an amount

O'i:U()EdYo/([Y}. (20)

Hence the relative current density o/, at the
screen, which serves as a measure of the intensity
of the electron beam at any point, ¥, on the
screen, is given by

o Gi_ ~\ - 1 7
m.:Z 60_2‘([Y°/(1YJ72 I(ZY/([Y()” (21)

where the summation is over all values of Y
which correspond to the given value of Y, i. e,
over all branches of the multiple-valued function
described above. Graphically, the density func-
tion o/g, at any point ¥ on the screen is obtained
from figure 5 by adding up the reciprocals of the
absolute slopes of the appropriate curve at all
points® at which it has the ordinate Y.

The resulting distributions are plotted in figure
6 for the same fixed values of X. A point of
infinite density appears at the value of ¥ corres-
ponding to the ordinate of the caustic of figure 3
at each abscissa X; but the density approaches

5 The curves of figure 5 are not plotted in the region —2.1<Y,<0. In
about three-fourths of this region, 4 lies between 7/2 and 3x/2, so that the
electrons turn around and never reach the sereen. In the remaining narrow
interval # varies from 37/2 to « and back; the curves, if plotted, would have
an infinite number of branches of practically infinite slope dY/dYo, and so
do not contribute appreciably to the distribution.
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unity rapidly as [Y| becomes large, indicating a
rapid falling off to the uniform initial density, as
modified only by the lens magnification effect.
The value, or values, of Y, corresponding to any
point on a curve of figure 6 may be determined
with the aid of figure 5.

Under the conditions of the experiments about
to be described, the phenomenon takes on a con-
siderably simplified form, due to the following
considerations:

(a) The Schlieren experiments were performed
only for the case
(22)

i. e., the case for which the dipole center itself is
in the plane conjugate to that of the fluorescent
screen.  For this case the magnetized wire is
imaged with the same magnification as the pattern
surrounding it, and appears on the screen as a
dark band across the pattern.

(b) Whereas figure 6 assumes an unlimited
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Ficure 6.
relative to density oo in absence of dipole field—along
line S of figure 4, normal to optic axis at fived distances
X beyond dipole, based on extrapolated final asymptotes of
initially parallel paths.

Distrebution of virtual electron density o—

Actual density distribution on fluorescent screen S, conjugate to &', is
obtained by multiplying ¥, and dividing e/ao, by magnification p.
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range of Y, 1. e., an infinitely wide and unob-
structed initial beam, the effective Y -range is
actually limited by such factors as finite beam
thickness, finite lens aperture, and the presence of
the center stop.

(¢) Values of Y, near zero are also excluded,
due to the finite wire thickness. As noted in
section II, 2, results indicate that the excluded
central range is roughly the interval —15<Y < 15.

The effect of the Y -range limitations (b) and
(c) is to reduce to zero those intensity components
due to the excluded values of Y, without changing
the intensity components elsewhere. The pat-
terns thus have a finite extent, measurements on
which may be used for a rough quantitative deter-
mination of the field under ideal experimental
conditions.

Limitation (c¢), furthermore, permits a much
simplified analytical treatment of the problem,
with the aid of eq 17 and 18. For these large
values of | Y[, eq 18 becomes the basic equation
on which the distribution is based. In the general
:ase this is a cubic in Y, determining Y, as an
at-most-three-valued function of Y. But under
condition (a) above, for which eq 22 applies, eq 18
reduces to eq 19:

(23)
whence the density function (eq 21) reduces to
gloy=1; (24)

i. e., limitation (¢) restricts us to regions far enough
away from the dipole so that the initial uniform
density is essentially unchanged.

At the same time, limitation (b) causes this
density to fall off abruptly to zero at the values
of Y corresponding to the outermost rays, as
determined by beam width, lens aperture, stop
size, ete. Thus, with its central portion hidden by
the wire image in accordance with limitation (¢),
the pattern may be expected, in general, to extend
out a certain distance on either side of the wire,
as represented by the inequality

)'mluS )FS ) vmﬂxx (25)

where Vim and Y, are funetions of the phyvsical
parameters of limitation (b).
For example, where the lens aperture size is the

most stringent limitation, by eq 18 and 23, Y.
and Y. are given approximately as solutions of
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Irm1n+’2Av ,/)7r2nln+RL:()y
)rmax_erAXvL/)?nax_h)L:Or (26)

R, being the radius of the aperture in the lens
plane X=X;. Or, when the physical size (radius
R, in normalized units, r, in length units) of the
center stop is the determining limitation, one ob-
tains approximately
g YT A% - [9F ]y e
ymlnz—_\“z_,{/’c, )max~+\2f,’/lcr (2(>
7 being the focal length.
Analogous inequalities for the case of magnet
of finite length are given in section V.

3. The Schlieren experiments

The experiments were carried out by means of a
slightly modified electron microscope. This
electron microscope, of horizontal design, consists
of an electron gun, three magnetic lenses, and a
fluorescent screen. The electron gun is identical
with the one deseribed in one of our previous com-
munications ® and, for the purpose of this experi-
ment, it has been operated at 40 kv. The lenses are
of the conventional ironclad design, without
internal polepieces, and have 10,000 turns of No.
23 copper wire each. The inner bore diameter of
the iron enclosure is % in., and the gap width is
Y in. In most experiments only one lens of the
instrument was used for producing the Schlieren
image, and the other two lenses were not connected
at all. The lens most used for the experiments is
the projector lens of the electron microscope, thus
reducing the whole instrument to the simplest
instrumentation as described in section ITI, 1. In
some experiments, however, the condenser lens of
the instrument was switched on for the purpose of
obtaining increased intensity of the image. As the
condenser lens was used as a weak lens, it did not
influence the essential optical arrangement, al-
though it enhanced the available intensity. In
most experiments the object consisted of a
0.0046-in. diameter cobalt-nickel-plated brass wire,
placed at distances varying from % to 2 in. from the
lens center. On the image side of the lens was
placed a center stop, consisting of a 0.040-in.
diameter copper disk supported by two very fine
metallic cross-wires (0.0013-in. diameter). The
fluorescent screen for the observation of the image

6 I, Marton, J. Appl. Phys. 16, 131 (1945).
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was placed at a distance of about 13 in. from the
lens center.

A typical Schlieren image from a magnetized
wire is shown in figure 7, A. This particular wire
was magnetized by short current pulses spaced at
about 0.017 in. distance. The dark shadow of the
wire is easily recognized in the image, surrounded
by the bright Schlieren images. Such an image
gives immediately a good qualitative picture of the
extent of the magnetic field and allows judgment
about the extent of the magnetization along the
wire axis. A comparison with a powder pattern (see
footnote 3) produced on the same wire permits an
easy identification of the magnetized regions
(fig. 7, B).

The equatorial planes of the alternately polar-
ized dipoles of the wire correspond to lines of ap-
proximate symmetry drawn through the centers
and peaks of the Schlieren images appearing in

MR ;~"'3W~ 3 ’f?\ i < .

i - b3 £ - e

< A o

Frcure 7. (4) A typical Schlieren pattern; total magnifi-
cation of wire about X 150. (B) Powder pattern identifying
magnetized regions of same wire; total magnification about
X 150.

(Courtesy of Irvin L. Cooter; see footnote 3).
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figure 7, A, on alternate sides of the wire image.
The illumination appears approximately uniform,
as predicted by eq 24, out to the extremity of the
pattern, where it drops off to zero. In this par-
ticular image the pattern of any one dipole is
visible beyond the wire on only one side of it,
indicating an asymmetrical type of outer limitation
on the final beam.

An observation made in the course of the ex-
periments is worthy of mention. During the
focusing of the image of the magnetized wire, it
is found that the out-of-focus images of the wire
are not straight. The image of the magnetized
regions 1s displaced with respect to that of the
nonmagnetized ones, and this displacement re-
verses on crossing the focus. The explanation of
this phenomenon 1is rather obvious: when the
lens is adjusted to focus the image of a plane
closer to the lens than the actual object, the elec-
trons passing by in a magnetized region are de-
flected with respect to those passing through a
nonmagnetized region (see fig. 8, a). The result

— | Z
:D‘EZ'V':: \/L \:

L s

Ficure 8. Optical diagram in an equatorial plane, showing

method of focusing wire on screen.

(a) Wire too far from lens, image A B not centered; (b) wire in focus, image
AB approximately centered; (¢) Wire too close to lens, image A B not cen-
tered.
is that the image of the magnetized region appears
displaced as compared with the nonmagnetized
region. If the lens is adjusted to produce an
image of a region beyond the actual object (see
fig. 8, ¢), the lens sees the beam coming from a
direction that is the backward prolongation of
the asymptote of the deflected beam. Thus the
adjustment of the lens for a straight image of the

Electron Optical Field Observation

849618—49——9

magnetized wire (fig. 8, b) constitutes a rather
simple criterion for the best possible focus. Al-
though this is not an absolute criterion, eq 19
indicates that no appreciable errors are involved
under the existing experimental conditions. 1t 1s
possible, furthermore, that this effect may itself
serve as a method for the quantitative evaluation
of the field strength.

IV. Bright-Field Shadow Method for
Quantitative Investigations

1. Description of the Method

In one of our Schlieren experiments described
in the preceding section, it so happened that the
shadow 1mage of the center stop (produced on
the screen by projection from the virtual source
between the lens and the stop) was displaced
laterally by means of an external deflecting mag-
netic field. By adjusting the image of one of the
fine supporting silver wires to be parallel with
the image of the magnetized wire, we found that
the image of that silver wire was not straight but
zigzag when in the neighborhood of the image of
the magnetized wire.

This accidental observation gave rise to the new
bright-field image method, mentioned in the
introduction, for exploring the magnetic field.
Extensive experiments with this method have
indicated that it lends itself especially well to
quantitative work. Insertion of a series of easily
obtained experimental measurements into theo-
retically derived formulas has yielded fairly con-
sistent values for the field strength, and close
agreement with theory. Furthermore, the diffi-
culties inherent in quantitative measurement of
intensity patterns are not present in this method.

Figure 9 is a diagram of the arrangement used
in this method. The diagram is in the equatorial
plane of one of the dipoles comprising the mag-
netized wire,” which is normal to the diagram
and is centered about S’ the north pole being
below the diagram, whose orientation is therefore
the same as that of ficures 1, 2, and 3. When
the wire is not magnetized, parallel rays passing
the wire are focused by the lens, whose principal
planes are at ', P, and cross over at the focus 7,
as illustrated. They are then partly blocked by
the stop and its supporting silver wires, which are

7"The dipole assumption used here yields a first approximation. The
extended results given in section V lead to greater accuracy.
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in a plane through €. One of these cross-wires,
GG, is made parallel to the wire S” (normal to
the diagram plane), so that its shadow 77, on
the fluorescent screen S (conjugate to S”) will be
parallel to—and, for small displacements from
the axis, hidden by —the image of the magnetized
wire.

When the latter is magnetized, however, the
resulting deflection of the incident beam is found to
produce on the screen a zigzag cross-wire shadow
of nonuniform width, whereas the magnetic wire
image remains practically unchanged. (See fig.
10.) Measurements on this deformed shadow, for
each silver wire displacement ¢, may be sub-
stituted into theoretical formulas yielding inde-
pendent estimates of the dipole strength. The
degree of consistency with which these data follow
predicted laws serves as a measure of the ap-
plicability of the theoretical assumptions.

-
£

Ficure 9. Electron optical diagram of arrangement used in
bright-field method.

Displacement ¢ of thin cross-wire GG+ is adjustable. Rays shown apply
in absence of magnetized wire S’.

Ficure 10. Detailed electron optical diagram of arrange-
ment of figure 9, showing electron paths through deflecting
field of magnetized wire S’ in an equatorial plane.
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2. Theoretical Analysis for Isolated Dipole

Figure 10 is similar to figure 9, except that S’
now represents a magnetized dipole. The two
curved rays represent portions of the paths of the
limiting electrons which, after deflection by the
magnetized wire S’, just pass the cross-wire GG,
unblocked. The dashed lines GAE’, G’A'E’
are the asymptotes of these curved trajectories.
Primed points and quantities represent conjugates
of corresponding unprimed symbols with respect
to the lens; points such as ¢/, ', A’, A, and
distances such as v/, ¢’, «’, ¢/, are thus defined.
All labeled distances are defined as positive when
as in figure 10, and negative when in the opposite
sense.

In addition to the ideal dipole assumption, the
following experimental conditions regarding orders
of magnitude are to be taken into account:

(a) The actual source is at a sufficiently great
distance so that the net effect does not differ ap-
preciably from that of the parallel incident heam
of figures 9 and 10.

(b) All lateral distances and angles involved
are sufficiently small to make geometrical aberra-
tions negligible, so that Gaussian dioptries is
applicable.

(¢) The distance s’ is so large that the lens may
be considered as outside the magnetic field.

By conditions (b) and (¢) the rays £A, and
A (fig. 10) are straight lines and are conjugate
to the asymptotes I£’A] and E’A’ with respect
to the lens. Thus the effect of the magnetic
field and distant source is equivalent to that of a
virtual source at F’, defined as the point of
intersection of the two limiting asymptotes.
The resulting one-to-one correspondence reduces
the analysis to a study of the geometry on the
left-hand side of the lens. The geometry of the
image is then obtained directly through the
introduction of magnification factors.

By condition (b), furthermore, the points of
tangency G and G. may be considered as being
vertically in line with the point ' on the optic
axis.

The main part of the analysis that follows is the
derivation of a field-strength formula based on
the properties of the boundary ray G’A’GA (fig.
10), which is characterized by the distance g.
A similar result based on the other boundary ray,
(LA G A, is then obtained at once on replacing
g by g-+v. The results are put in terms of
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experimentally measurable quantities for numer-
ical application (sec. IV, 3). They are then used
to predict the behavior of the shadow image
as the cross-wire is moved normal to the optic
axis (sec. 1V, 4), yielding means of checking the
agreement between theory and experiment both
qualitatively and quantitatively (see footnote 7).
The dipole trajectory formulas of section II
an now be applied to figure 10. Since the polar
orientation of the dipole with respect to the plane
of the diagram is the same in figures 9 and 10
as in figure 1, S’A’Al of figure 10 corresponds
to the positive y-axis of figure 1. Hence for the
ray (" A’GA of figure 10, the notation of section 11
gives
¢’ =10 and @' =7 (28)
But as was pointed out in section I, 2, indications
are that the paths of all electrons that pass the
magnetized wire correspond to large |Yl, for
which simple approximate formulas are applicable.
The paths involved in this experiment correspond
to | Y| so large that deviations from these approx-
imate formulas are negligible. From eq 28 and
the results of section II, then,—in particular
eq 19, 17, and 4,—

= (29)

o =N =2 ) (30)
a’—g'=¢' (¢’ —8')>0; o ¢'=(a’—g')/ (¢’ —¢').

(31)

Solving eq 30 for B and eliminating ¢’ through
eq 31, we obtain the important formula

B=a"2(a’'—g’)/2(c'—s"). (32)

But B, as defined by eq (2), is a constant of the
dipole and source, so that eq 32 should yield the
same value of B for different values of ¢’. When
B has been so determined, the magnetic moment
M, and the field strength /7 at any distance 7»
from the wire axis, can be obtained immediately
from eq 3 and eq 1, which give

M=B+2mV/e, and H=M/r*. (33)

For B in square millimeters, » in millimeters, and
17 in volts, I is given in oersteds by
JEI=88. 7B\ E (34a)

Electron Optical Field Observation

When V=40,000 volts, as in the experiments, the
field in oersteds at 0.1 mm from the wire aris
(about two wire radii) is

H=6.74X10°B,; (34b)

at 0.2 mm it is one-eighth of this; ete.

The formula 32, when put in a form involv-
ing experimentally measurable quantities, and
combined with eq 34, yields a numerical value
for H based on the boundary ray G’ A’GA (fig. 10)
alone. An exactly similar formula based on the
other boundary ray G, A’ G, A, would be equally
satisfactory:

B=(a'+o' @'+’ —g —7)[2(c'—5")
— a2 (@, —g,)/2( —). (35)

The second form of eq 35 involves the introduc-
tion of new notation:

g+=g+v, tr=a+a, g =g+, al=ad' +o,
Ye=—7, ep=—a, v4=—7, db=—a'.  (36)

Use of this notation makes it possible to inter-
change the roles of the two boundary rays in any
equation or statement, merely by inserting the
subseript -+ in the symbols ¢, v, @, «, ete., wherever
it is missing, and removing it wherever it appears.
Throughout section IV, 3 the possibility of such
an interchange will be understood. Hence,
although a large portion of the text treats explicitly
only the ray (’A’GA, every statement involving
that ray will contain implicitly an exactly anal-
ogous statement involving the ray G, AL G A,

3. Adaptation of Resultsto Experimental Conditions

Before translating eq 32 into a form for experi-
mental use, we introduce some new notation.
First, the analysis up to this point has been in
the form of a study of deflections in the equatorial
plane of an isolated dipole of known polarity.
Actually the magnetized wire consists essentially
of a series of dipoles (see footnote 7) of alternating
polarity but approximately equal strength. Hence
any configuration on the fluorescent screen will be
a composite picture from which, in general, two
basically different sets of measurements can be
obtained: one set pertaining to the equatorial
planes of the (approximately identical) dipoles of
one polarity, and another corresponding set for
the oppositely polarized dipoles. Certain distances
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measured normal to the optic axis in figure 10 (a,
o, a’, o, g, g") will not, in the general case, be the
same for the two sets of dipoles. Subscripts 7 and
2, referring to the two opposing dipoles, will be
appended to these quantities whenever it is de-
sired to distinguish between them; but the deci-
sion as to which dipole polarity is to be assigned
each subscript will be left arbitrary for the present.

A difficulty in notation is presented by the fact
that figure 10 is oriented according to dipole polar-
ity. This implies that the positive y-direction
(normal to the optic axis) for one set of alternate
dipoles will become the negative direction for the
other set of dipoles, so that the composite image
on the fluorescent sereen will require a nonuniform
sign convention. And if the displacements ¢ and
g, of the cross-wire edges ¢ and G, respectively,
(fig. 10) are ¢, and ¢g,, when one specific dipole is
considered, then for either adjacent dipole the
corresponding displacements are

g2=—41, and go =—@s, (37)
whence also, from eq 36,
V2= — N1=Y1+-= — VYot (38)

To eliminate these difficulties we arbitrarily
define starred quantities as follows:

G == = = § U =3 @ =%, G = — @5

Y =v=—1=—71+="72+=—7%; ete. (39)
Thus starred quantities have the same magnitudes
as corresponding unstarred quantities, whereas
their algebraic signs are determined by dipoles of
the first polarity (subscript 1) and are therefore
reversed for quantities with subseript 2. If a
coordinate system is set up on the fluorescent
screen, the use of starred quantities implies a uni-
form sign convention throughout the screen; af
and a¥ are then the ordinates of one rim of the
shadow at its intersection with the equatorial
planes of alternate dipoles, as shown in figure 11.

1-=- A2

a;

Lag= _05

Frcure 11.  Diagram of a typical bright-field shadow of
cross-wire.

Straight band is image of magnetized wire.
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Finally, in order to introduce experimentally
measurable quantities into eq 32, we define
several magnifications:

p=s/s’=magnification of magnetized wire image
on screen; (40)

v=_(s—"N/c—=TT,/GG. (fig.9) (41)

=magnification of silver wire as determined by its

shadow on screen in absence of magnetic field

N;= a,/’y: ai+/7+ (42)

= corresponding shadow magnification in presence
of magnetic field (1=1,2);

w=cfc'=y/v'=g/g’ (43)

=magnification associated with cross-wire plane
OGG . and its conjugate plane C"G" (.

Ordinarily only u and » will be known experiment-
ally, the others being obtainable therefrom, as will
be shown.

From eq 40 and 43, and the image formula
1/s+1/s’=1/¢’+1/c=1/f, we obtain

e=f(1+w), s=f(1+n), (44)

whence eq 41 yields a simple formula for » in
terms of p and »:

w=p/v. (45)
Equations 39—45 yields the relations

a=—a}p, g=—g=g w=g%y;
¢ =clo=f(14v/u),  (46)

a,=a}/u,
s'=slu=f(1+1/u);

from which eq 32 may be put in terms of measure-
ments on the fluorescent screen:

B=a#(af—vg*)/2u*(v—1)f, (472)
and
B=a3?(vg*—a?)/2*(v—1)f. (47b)

Two additional formulas, from measurements on
the other boundary ray, are implied by eq 36:

B=ai (afy —vg?) 20> (v—1)f,

B=a? (vt —af,)[262(— 1),

(47¢)
(470
where gt =g*+~*.

Equations 47 will, in general, give four inde-
pendent estimates of B from a single composite
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image, using measurements on the displacements
of both edges of the shadow and for dipoles of both
orientations, provided the displacement ¢* is
known. For certain special cases, however, the
number of independent results obtained from eq
47 is reduced or increased.

(Case 1) When, as in the experiments deseribed
herein, the displacements ¢* and ¢, are not known
accurately, they may be determined algebraically
by solving the eq 47 simultancously in pairs,
whereupon the four equations yield but two com-
pletely independent estimates. When the cross-
wire thickness y*=g¢#—g¢* is known, three inde-
pendent estimates are possible.

(Case 2) Under certain conditions a double or
triple shadow appears, as shown in the next sec-
tion, yielding additional independent measure-
ments.

(Case 3) For the symmetric case, for which the
cross-wire is centered on the optic (z-) axis, we
have

gi=—g*=7*/2, (48)
Wi =0 (49)
a =—a?, (50)

so that eq 47a and 47d are identical, as are also
eq 47b and 47¢.

(Case 4) For the case for which the cross-wire
is tangent to the optic axis, we have

g*=0, at=—a%=a,, (51)

so that both eq 47a and 47b reduce to
B=a3[2u*(v—1)f. (52)

(Casge 5) When the cross-wire shadow is thin in
comparison with its displacement, i. e., when
la;| <<lai|, then ai=a}, ai=ak, g*=~gf,
so that eq 47¢ and 47d are approximately identical
with eq 47a and 47b respectively, and therefore
annot be considered as independent in numerical
work. In this case, however, in place of eq 47¢
and 47d, two other equations

a;=ry/(3—2vg*/a¥), 1=1,2, (53)

may be used for independent checks on eq 47a and
47h. These are expressions for the shadow thick-
nesses, obtained by differentiation of eq 47a and
47b, with

dg;=~, da;=a;, dat=at(1=1,2), dB=0. (54)

Electron Optical Field Observation

An evaluation of B from a screen image by
means of eq 47 requires only the two measure-
ments af and a%, the displacements of one shadow
edge from the axis of the magnetized wire image
at the centers of alternate magnetized regions.
The focal length f and the magnifications u and »
may be determined from independent measure-
ments. In particular », the shadow-magnification
for an undeflected beam, may be determined ac-
curately from the shadow of the center-stop disk
itself instead of that of its fine supporting wires.

The value of B so determined, and the known
electron accelerating voltage 17, may then be sub-
stituted directly into eq 34 for a determination
of the field strength /1 at any specified distance
7 from the magnetized wire axis.

The value of B determined by eq 47 may be
verified by any or all of the following methods:

(a) For thick shadows, the calculation from
eq 47a, b may be repeated using the measure-
ments af, and af,, for the other shadow edge,
as in eq 47¢, d.

(b) For thin shadows (Case 5 above) the differ-
ential formulas (eq 53) may be checked against
measurements on the shadow thicknesses «, and
. The numerical agreement of each of these is
equivalent to an independent check on 5.

(¢) The above calculations may be applied to
several photographs corresponding to different
cross-wire displacements ¢*  Results may be
averaged, and their range of variation used as an
indicator of the accuracy of the final figure.

4. Shadow Form as Function of Cross-Wire Dis-
placement

A theoretical investigation is now made of the
manner in which the shadow moves along the
fluorescent screen and in which its thickness
changes, as the silver wire is moved across and
beyond the optic axis; i. e., the functional depend-
ence of @ and « on ¢ will be studied. Certain
recognizable peculiarities in the shadow behavior
afford a qualitative check between experimental
conditions and theoretical assumptions, while
additional quantitative predictions are also
obtained.

As in Figure 10, suppose the rim G of the
silver cross-wire to be displaced a distance ¢*
from the optic axis, with resulting shadow-rim
displacements af=ai(¢*), ai=a3(g*) and shadow
thicknesses o=y (9%)=ai(g*+v*)—ai(g*), and
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w—a(g*)=ai(g*)—ai(g*+y*), at points cor-
responding to alternate equatorial planes; and let

ay=ai(0)=—a3(0), ap=0a;(0)=a5(0), (55)

be the corresponding values of these quantities
when ¢*=0. Then by eq 47 and 52, af*(af—
vg*)=ai?(vg* —a¥) =ai=2u,(v—1)fB=constant, or

v *:@j’f_<aj>"2, RAPP (@“ o
g a also aog ayo—l- \ » (56)

(7 (12 o
where
ay=[2 p*(v—1)fB]'*=constant. (57)

Thus ¢* is related to both ai and ¢ by cubic
equations, which if solved may make the af
triple-valued functions of ¢* in some intervals,
and single-valued functions elsewhere.

Figure 12, based on eq 56, is a plot of the de-
flections af (in normalized form af/a,) of the
shadow rim A, as functions of ¢* (in normalized
form vg*/a;). The deflections a, of the other
shadow rim A, are identical functions of g% =g¢*
+~*. This graph may be interpreted as predict-
ing theoretically the form of the zigzag shadow
image on the screen, corresponding to a given g*.
With this given g* as abscissa, the ordinate af de-
termined by the curve marked ‘“9=1"" in figure 12
represents the maxrimum displacement of the edge
of the zigzag image, as measured from the image
of the magnetized wire axis as a coordinate axis;
such a maximum displacement occurs at points
along this axis corresponding to the equatorial
planes of the dipoles of a particular polarity.
Similarly the ordinate af determined by the curve
marked “7=2"" represents the displacement of the
same shadow edge at the intermediate points
(centers of the dipoles of opposite polarity).?
(The two displacements of the other shadow edge
are given by corresponding ordinates with
g% =g*+~* as abscissa).

These two displacements are equal and opposite
when ¢g*=0, and approach coincidence (straight
shadow) as ¢* becomes large. For intermediate
values of ¢* figure 12 shows a peculiar behavior of
the shadow. For »g*/a,<1.89 (=3X2-%) the
two displacements are on opposite sides, i. e.,
a;<0. As ¢g* passes this critical value, indicated

¢ Although the curves are plotted for positive ¢* only, those for negative
¢* (seldom needed—see end of first paragraph of sec. IV, 3) are obtained

by changing the signs of both coordinates while interchanging “i=1" and
‘i=2” curves.
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Ficure 12. Displacements aF (normalized) of shadow
edge on screen, in equatorial planes, as functions of dis-
placement g* (normalized) of corresponding edge of
cross-wire itself.

by the point P, two new branches of the “1=2"
curve appear, and ay becomes triple-valued, so
that they are actually three shadow images for
dipoles of the second polarity. Although one
of these images is usually hidden by the magnetized
wire image, whose half-thickness is of the order
of 0.5 a, in these experiments, the appearance of
two others instead of the usual single image yields
an additional independent estimate of 5. As g*
increases further, however, this additional image
disappears behind the magnetized wire image,leav-
ing only the outermost image, on which the effect
of the magnetic field becomes less and less marked.

There remains the analysis of shadow thickness
and magnification. For a thick shadow, the
thicknesses «f are obtained from figure 12 as
differences Aa} between ordinates corresponding
to abscissa differences Ag*=~* |y*| being the
cross-wire diameter; and the corresponding shadow
magnifications n;=«a /v*, as defined by eq 42,
are proportional to these thicknesses. 1In fact, the
magnification ratio n,/v, expressing the shadow
magnification in the presence of the field in units
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of that obtained with zero field, is obtained
directly (and in proper units) as the slope of the
chord joining the two relevant points on the ap-
propriate curve of figure 12. For such a slope
is of the form

Aafa0)[A(vg*[ag)=of [ry*=nfv..  (58)

For a shadow so thin, however, that v* and o*
are of differential magnitude (Case 5 above), the
two points implied by eq 58 are so close together
that a good approximation of n,/v is given by the
instantaneous slope of the curve at the abscissa
g* or g%. This slope is given analytically by
eq 53, which, with the aid of eq 42 and 56, may be
put into the form

nfv=ay Jry=1/[1+2(a/as)?];

N fv=ayJry=1/[1—2(a/a0)~?]. (59)

Combination of these with eq 56 yields n; and n,
(also a; and a,) as functions of g* for a thin shadow.
Figure 13, based on eq 59, is a plot of the shadow
magnifications n; or thicknesses «; (in normalized
form n,/v) versus ¢* (in normalized form vg*/a,).
It is essentially a plot of the derivatives of the
functions of figure 12.
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Ficure 13. Magnifications n; (normalized) of thin shadow,

in equatorial planes, as functions of displacement g¢*
(normalized).
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An important theoretical conclusion from eq 59
concerns the magnification 7, of a very thin cross-
wire centered about the optic axis. Here ¢* and
g% differ negligibly from zero, so that eq 59 and
51 yield

Nofv=1/3; (60)

i. e., when an infinitesimally thin cross-wire is cen-
tered (i. e., g*=0) the shadow magnification n, is
exactly one third of its value v in the absence of the
field. 'This implies, in figures 9 and 10, that
TT,=3a, and that the cross-over /£ (projected on
the optic axis) is twice as far behind the focus F
as the cross-wire C is beyond it, when the latter is
centered. It also implies that «, of eq 55 is equal
to »y/3.

Figure 13 shows the manner in which the two
n; for a thin shadow vary from »/3, at ¢*=0,
to v as ¢g*>wo. The three magnifications n,
beyond the critical point P refer to the three
images indicated by figure 12. The magnification
is infinite at the critical point P (¢*=1.89).
Negative magnifications imply an inverted shad-
ow, and a cross-over between cross-wire and
screen.

5. Qualitative Experimental Results

The apparatus used in the bright-field method
experiments is essentially the same as the
Schlieren apparatus described in section III, 3.
The latter, together with the introductory re-
marks in section IV, 1 describing the rearrange-
ment, should constitute a sufficient deseription of
the experimental procedure involved.

Figures 14 and 15 are (magnification approxi-
mately X 3) configurations on the fluorescent screen
for different silver wire positions. The wide
dark band is the image of the magnetized wire,
whereas the thinner, distorted band is the shadow
image of the cross-wire. In figure 14, A the
cross-wire is sufficiently far from the optic axis
so that its shadow has negligible curvature;
whereas figure 14, B and C shows the result of
moving the cross-wire closer to the optic axis,
until the central position (¢9*=—g¢g¥) is approx-
imately reached in figure 14, ¢. Figures 15, a
and b are similar to figures 14, b and ¢ but involve
somewhat different physical parameters. (A por-
tion of a dark circle appearing on the side of some
of the photographs is part of the shadow of the
center stop itself.) The turning points, i.e.,
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points of maximum and minimum deflection of
the shadow, correspond to the equatorial planes
of the dipoles (magnetized regions).

Fraure 14.
of cross-wire and electron optical image of magnetized
wire (straight wide band).

Shadow patterns showing distorted shadow

Light optical magnification about X3. (A) Cross-wire at great distance ¢*
from optic axis; shadow practically straight. (B) Cross-wire at smaller but
appreciable distance ¢* from optic axis. (C) Cross-wire approximately
centered on optic axis (¢*=0)

Frcure 15.

Shadow patterns similar to figure 14 but with
different electron optical parameters.

These figures can be seen to agree well, quali-
tatively at least, with the theoretical curves of
figures 12 and 13. Kach photograph corresponds
to a particular abscissa g* on those graphs, or more
precisely, to two abscissas ¢* and g, * for the two
edges of the cross-wire. In accordance with figure
13, when the shadow bulges out on both sides of
the central image (figs. 14, C and 15, B)it is thicker
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on the side that shows the greater bulges; and
these thicknesses appear to be of the order of
one-half—somewhat greater than the theoretically
predicted one-third—of that of the straight shadow
of figure 14, a. The discrepancy seems to be
explained by the results of the next section.

Of particular interest are ficures 14, b and 15, a—
figure 15, a being by far the clearer—which follow
very closely the theoretical predictions of section
IV, 4 regarding the peculiar behavior of the
shadow in the vicinity of the eritical point P
of figures 12 and 13. Not only (a) the extreme
thickness of the shadow at alternate equatorial
planes in ficure 15, a, but also (b) the small bright
spot bounded by the thick shadow and the mag-
netized wire image, and (¢) the very slight but
distinet bulging on the opposite side of this central
immage, are explained by the “=2" curves of
figure 12, which indicate that these photographs
correspond to a cross-wire displacement such that
the upper edge of the cross-wire corresponds to a
g* to the right of the point P, whereas the ¢ for
the lower edge lies to the left of . Both the
outer boundary of the thick shadow and the
outer boundary of the bright spot are shadows of
the upper edge, with no corresponding shadows of
the lower edge.” Furthermore, the bulging on the
opposite side of the central image represents part
of the third shadow, shown by the negative
branch of the curve in figure 12.

This apparent qualitative agreement of theory
and experiment may be interpreted as a tentative
verification of the ideal-dipole assumption as a
first approximation. For a more accurate approxi-
mation, section V introduces a new parameter, and
more positive results are obtained in section VI,
in which the quantitative data are analyzed.

V. Correction for Magnet Length

The analysis up to this point has been based on
the assumption that the elementary magnets of
the wire are ideal dipoles. Although this assump-
tion may be expected to yield results of the correct
order of magnitude, the main limitation on their
accuracy is due to the fact that a theoretical dipole
is infinitesimally short. In these experiments
measurements were taken at small distances, com-

9 Due to a slight nonparallelism, one of these thick shadows in figure 15, a
is in fact broken, the two boundaries of the break being shadows of the lower
edge.
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parable with the magnet length, which by figure
7, b is about two wire diameters.

A considerably better approximation, therefore,
may be expected if one assumes the form of the
field to be that of two equal and opposite point poles
separated by some distance 2X.  As A»—0 this re-
duces to the dipole assumption, whereas the addi-
tional parameter X\ introduced yields one more
degree of freedom. A method is derived whereby
the equivalent pole separation 2\ for the wire
magnets is evaluated in the process of determining
H.

The effects of this generalization of the basic
assumption on the preceding analytical results are
summarized below. Kach equation having a
direct analog in the earlier sections is numbered
with a prime, implying a reference, for comparison,
to the equation bearing the corresponding un-
primed number,

Fract analysis (sec. 11, 1):
The field distribution in the equatorial plane of
the magnet is now

H=M/u (+NPP=M/u'7, (1)

where 7= A2=distance from either pole to
(r, 8) in equatorial plane.
The exact differential equation of motion is not

as simple as earlier. If, however, we define

A=\+B, R=(R:+A2)'72 Y=(Y2+A%)7

the exact solution (eq 5) becomes an approximate
solution for the new case when £ and Y, are re-
placed throughout by some variables /2 and Y7,
where R<RE<R, Y <Y, <Y,.
Small-deflection approrimations (sec. 11, 2):
For large Y, the final deflection now becomes
S) 0

~

0 ~2/Y3=2/(Y3+4A2), (17")
and the equation of the final asymptote
V="V =200 (A2 A2 (187)

Theoretical Schlieren analysis (sec. 111, 2):
Inequalities 26 and 27 for the predicted limits
on the pattern become respectively

mln+2XL/( min
Yl“ﬁx_l—- 2A /( max A\z)

A& )—{‘ RL*O
=/ =0); (26")

Electron Optical Field Observation

and
o \"\Ti_ 2f/rc; Ymax ~ + \/A\2+2f/rj

Determination of H by bright-ficld method (secs. 1V,
2; 1V, 3):
The formulas (eq 32

) min =~

and 35) for B become
B=(a"?4+N\)(a’—g’)/2(c’ —s")

=(a2+N)(a\.—g )2’ —5"). 35

The formula (eq 34a) for determining // from 3
becomes

H=33.7 BY2/(r24\2)3%, (34)

In terms of measurements on the screen,

B= (a{®+p*N*) (0 —vg™) 2u*(v—1)f, (47a7)

and
B=(a3®+ N (vg*—a) 212 (v—1)f, (47b")

with similar expressions at the other boundary as
in eq 47c and 47d.

The shadow thicknesses «;, @ obtained by
differentiation for thin shadows become

a;=vy[1+4 (uNa?)’)/[34 (uNai)*—2va*/af], i=1, 2
Shadow form as function of cross-wire displace-

ment (sec. IV, 4):
The relations (eq 56) between ¢g* and a become

(s /ag)™2/[1 4 (uN/ao)?(as/ay) =2,

2[[14(uNag)?(as/ag)~2],

vg* [ag= a5 |ag—
(56")
vg* [ag= a3 [ay+ (a3/ag)

where a, is considered as defined by eq 57 rather
than by eq 55.
The corresponding magnifications 7, n, of thin

shadows become

m/v=ai/vy

=1/ {1+ 2(affay) [ (aF fao)*+ (N a0)*] %}

(59")
Nofv=c[vy

=1/{1—2(a3 /ao)[(a5/ac)*+ (u\/ao)*]7*}.

In place of eq 60, for the case of a very thin cross-
wire centered about the optic axis,

ai)*]/[3 4 (uN/af)?].

The effect of these changes on figures 12 and
13 is in a direction indicating considerably better

no/v=[14 (uN/ (607)
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agreement between observation and theory, as
will be shown in the next section, in which the
theoretical and experimental shadow magnifica-
tions are compared.

VI. Quantitative Results

The general equations '° (eq 47”) for B, on the

generalized hypothesis of section V,may be written

B=w+Nu, (61)

where, on this hypothesis, 5 and \ are constants
of the wire, whereas w and « are variables:

w=a|af—vg*|/2u*(v—1)f, (i=1 or 2).

03

} (62)

w=|a¥—vg*/2(—1)f.

In any photograph, each measurement of the
displacement of a shadow boundary, in the equa-
torial plane of a dipole of either polarity, yields
a pair of experimental values of w and w, provided
the displacement ¢g* has been determined. Equa-
tion 61 implies that under the generalized hypothe-
sis these points should lie on a straight line whose
slope and w-intercept are (—\?) and Brespectively.

On the earlier hypothesis of an ideal dipole,
however, the equations (47) for B take the form

B=w, (63)
implying that the same experimental points would
lie along a horizontal line if the dipole case were
applicable.

Figure 16 shows a plot of 22 experimental points
(u, w) obtained from shadow-edge displacement
measurements in different portions of figures 14
and 15. In each case ¢g* was determined by
equating the values of the right member of eq 61
at two values of @, so that the two points so
obtained are not entirely independent of each
other, and each is given only half weight in all
averaging. The 18 singly encircled points in
figure 16 form 9 such pairs, whereas cach of the
4 doubly encircled points represents an entirely
independent measurement; the 22 points are thus
equivalent to 13 mutually independent measure-
ments.

10 All primed equation numbers appear in section V.
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The solid line, fitted to the points by least
squares, has a slope

—N=—0.00790 mm?, (64)

and a w-intercept

B=2N1>¢105 mm?: (65)
3x16°
g o
B
\ =
2
\ %o 3
o 0
(= o
E |SH pees e e S G = | e e O S e
=z o, N © o
o ° ©
| o
o
o
o
0 0.5 1.0 1.5X103
u
Ficure 16. Plot of expertmental measurements, and fitted

theoretical lines, for determination of wire parameters B
and N required for evaluation of field strength.

These are therefore the parameter values obtained
on the hypothesis that the field is that of two point
poles separated by a distance 2\. From eq 64,
this equivalent pole separation is

22=0.178 mm=1.5 magnetized wire diameters.
(66)

-

This agrees well with figure 7, b, showing actual
elementary magnets about two diameters long,
and hence places each equivalent point pole about
one-fourth of the way in from extremity to center
of the magnet.
From eq 65 and 34’ one obtains a magnetic
field (in oersteds; » in millimeters)
H=0.144/(2>+0.0079)%. (67)

This distribution is plotted in figure 17. At 0.1
mm from the wire axis, or about 0.04 mm from
the wire surface, it has a value of 60 oersteds.
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Ficure 17. Theoretical field distribution of magnetized
wire on hypothesis of section V', based on data in figure 16.
(r=distance from wire axis.)

Curve is meaningless for r < wire radius.

The degree to which the correction for magnet
length improves the accuracy of the results is
seen by comparing the solid line in figure 16 with
the broken horizontal line obtained by simply
averaging the ordinates of the points (see eq 63).
This shows that the dipole hypothesis (without
correction) would yield a value By=1.48>107°
mm?, which is 30 percent less than the B of eq 65.
The very pronounced slope of the solid line, with
relatively low standard deviation therefrom, is
an indicator of the extent to which experimental
conditions approximate the generalized hypothesis.

Further verification of the hypothesis is pro-
vided by a comparison of the actual shadow thick-
ness with that predicted by eq 59’. It is to be
noted that the magnification ratios for figures

Electron Optical Field Observation

14, ¢ and 15, b in the following table would be
only about 0.33 according to the original dipole
hypothesis.

| Magnification ratio
i (nifv)
Figure number I ‘
: ll;:;;l't'l— Measured

|
14b 1 0.814 | 0.818
“4,c |1 .492 | 515
4,¢. . ________ 2 LA447 | 435
15 8. - 1 . 832 | . 841
15, b (averaged) 1 . 432 . 400
15, b (averaged) . | 2 . 344 . 370

Finally, from eq 65, one obtains for the normal-
izing unit of length used in sections I and 111,

v B=0.0046 mm,

which is about one-thirteenth of the wire radius,
thus justifying the small-deflection approxima-
tions used.

VII. Conclusion

Although the preceding description refers to a
very special application of the electron optical
Schlieren and related methods, these methods
are capable of wide application to the observation
and measurement of electric and magnetic fields
not susceptible to investigation by established
techniques (see footnote 1). Other examples, in
some of which preliminary experiments have been
undertaken, are space charge fields, standing
electromagnetic waves, time-varying fields, and
ferromagnetic domains.

Essentially, the methods introduce a new cate-
gory of objects to observation by means of electron
optical systems. In the past, electron optics has
been used to observe or to form images of two
types of “objects”:

(1) Objects emitting electrons, whereby the
image is used for the study of surface properties
and emission phenomena.

(2) Observation by scattered electrons, in which
:ase the image formation shows differences in the
scattering properties of different parts of the
object and is therefore confined to observations
of “transparent’ or “translucent’ objects.
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To these two categories we now add a third
category of objects: electromagnetic fields. The
methods here described are essentially methods
designed to form visible images of field distribu-
tions and to interpret them.

The authors acknowledge the assistance of
Irvin L. Cooter, of the Magnetic Measurements
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Section, who prepared the wire samples and fur-
nished important information on their properties;
Daniel L. Reverdin and John A. Simpson, who
conducted additional experiments to provide
supplementary data; and Andrew A. Nargizian,
who carried out the extensive photographic meas-
urements and numerical calculations leading to
the set of final results.
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