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Potential Problems and Capacitance for a Conductor

Bounded by Two Intersecting Spheres

By Chester Snow

Formal expressions, as series and integrals, are derived for the external potential, which
takes on assigned values on the two spherical boundary surfaces—either when the body is
alone or when it is in any given axially symmetric electrostatic field. This is) effected by
representing a given function f(z), for 1<x< =, as a complex integral whose variable is
the parameter u of a Legendre function P,_i;(x) or Qu—1;(x).

The capacitance of the conductor is found as a series, whose terms involve psi-functions
and vanish with 1/n like n=2.  This is transformed into a formula depending upon a series

whose nth term vanishes with 1/n like n~14.

In case the two spheres intersect at an angle w, which is a rational fraction of 2w, the
capacitance is given in finite terms involving complete elliptic integrals, which is Q.
The field, or electrostatic potential is given in finite terms when w=nw/m, where m is

any positive integer, and n=1, 2, 3, or 4.

The cases n=3, n=4 involve elliptic functions.

These would permit the exact computation in finite terms of the penetration of an external
applied field into a cavity with any angular aperture.

I. Introduction

This paper is concerned with the electrostatic
field outside a body (in most cases a conductor)
bounded by two intersecting spheres; some sec-
tions are shown in figure 1. The potential has
assigned values on its boundary (in most cases
constant). The body may be isolated, or it may
be in the presence of an external distribution of
fixed charges that are axially symmetric.

To obtain the resulting potential distribution is
therefore a question of finding the Green’s func-
tion, this being the potential at any external
point, P, when the boundary is kept at zero poten-
tial under the influence of any circular line-charge,
M, which is coaxial with the axis of symmetry.

When the Green’s function is found (as an in-
tegral or as an infinite series), the application to
the conductor alone leads to expressions for its
capacitance. There is also some physical interest
in the evaluation of the electric field when the
conductor is under external influence, such as a
circular line-charge. This refers not only to the
case of sections a, ¢, or d but also to those with
cavities as in b, e, f of figure 1. In the latter, we
may be interested in the amount of penetration of
the external influence into the cavity, especially
when the aperture is small.
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The capacitance will be finite if one, but not
both, of the intersecting spheres has infinite radius.
The radius ¢ is taken as that which is always
finite. This is on the right in all the case of
figure 1. Passing to figure 2, a, the arc A,C of
the meridian section has radius a. This sphere
has the semiaperature 6.

The angle, w, of intersection of the meridian
arcs is shown in figure 1 and also figure 2, a.
This angle @ could have any value between zero
and 27, but it is evident from an inspection of the
several cases in figure 1 that we may avoid a
repetition of crescent-shaped sections, and with
no loss of generality, by the restriction

0<0<xm and 0<w<2m. (1.1)

The radius a, of the second are (fig. 2, a, arc A,C)
is thus given by
sin 60

SR 1.2

=86 (w—0)] (-2

The capacitance will be a function of both
angles, which may be denoted by C.(0).

To avoid getting lost in details that must be

considered, we place here an outline of the main
argument and the procedure we hope to follow.
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© w=6+T
w=60+m, 6=

€ f
w=2T
(thin shell )

Ficure 1. Azial sections of conductors.

The cylindrical coordinates, z, p, will be used
ouly in the initial picture, the z-axis being the axis
of symmetry. As the conducting boundary is
generated by revolution around the z-axis of the
circular arcs A,C and A.C of figure 2, a, we need
only consider that half-plane of z=z-ip for which
p>0. This half-plane, cut along the circular arc
AoC (radius @), may be represented conformally
upon the semi-infinite strip of the wvariable
{=a-+1p, as indicated by similar letters in figure
2, a and figure 2, b. The equation of transforma-

tion is
_ §—0
z=—=¢c. cot (—727 ;

c=a sin 6.

(1.3)

where
(1.4)

% The real equations giving # and p in terms of
the toroidal coordinates « and B are
P sin (@a—60)
~ " cosh p—cos (a—¥0)
_ sinh g 5
and P=C cosh B—cos (a—6)’ (1.5)
and conversely,
2 2 2 2 ]2 2
cot (a—0)=""2 7, coth = C—j%pi"-, (1.6)
ST ldo2—+d B2
VdrFdp*=c ade s (1.7)

cosh B—cos (a—0)

a Half-plane of z=z+ip cut along arc 4.C.
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Ficure 2.

(Boundary of conductor isarc a=0, and a=w); b, semi-infinite strip in plane of {=a-+if.
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The dotted circular arcs and the arcs bounding
the meridian section of the conductor (=0, a=w)
are parts of the locus of the equation (a=-constant)

CZ

[z+c-cot (a-9)]2+P2=m'

(1.8)
The family of circles B=constant (orthogonal to
the family a=constant) has the equation
62

224 (p—c-coth B)!=——5—>-

sinh? g8 (1.9)

Figure 2, a is drawn for the case in which 7<w<lmw
-+6.

When z and p are expressed in terms of o and g,
the transform of any function F(z, p) will be
written F(«, ().

The dependent function most suitable for these
coordinates is not the potential V' but the function
W, where

V(@,p)=V(a,8) = ycosh g—cos (a—0) W(a,B)
(1.10)
The potential equation,

VWE<D?%W+%DJV:Q
transforms into

1 .
<Di+D§ +4Tsmi273> Ysinh g W=0 (1.11)
or

(m+m+mm@m+buea
which has particular solutions,

W= (C, cos va-+C; sin va) - (C5 P,_y; (cosh B) 4
@, (cosh B)), (1.12)

where (', (5, (s, Oy are arbitrary constants, P and
@) being Legendre functions of cosh B8 of the first
and second kind, respectively, with parameter
=z

In a problem with V given as a periodic function
of a for 0<a< 27 on the entire surface of a toroid,
whose ftrace is some circle =g’ =-constant, the
function W would thereby be a given periodic
function of « on this circle. The parameter » in
particular solutions of the form (1.12) would there-
fore be determined by the requairement that
cos va=cos v(a+27) and sin va=sin r(a+f2m),
which require »=0, or an integer n. Hence de-
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velopment in a Fourier Series of the given function
that represents W (a, ) is the key to the solution
of such a problem.

However, the problem we have to consider is not
completely analogous. The given function is here
a function of g, for 0< < =, so that it resembles
a case in which given functions of e must be repre-
sented by a Fourier integral. Normal functions
do not exist, and the integral representations that
will be required are not Fourier integrals.

In this problem the solution, W, must be con-
structed in the form of an integral with respect to
, of solutions like eq 1.12, in the strip of figure 2, b.

0<a<wand 0<B< o,

which takes assigned values on the circular arcs
a=0, and a=w. To outline the method we may
omit many details to be considered later. From
here on we let

r=cosh B (1.13)

since we have no further need for the sumbol z as a
cylindrical coordinate. On the boundary arc
AyC (a=0) of figure 2, a,

V0, B)=Vi(x)=+x—cos 8§ W(0, 8). (1.14a)

On the are 4,0 (a=w),

V(wy B):V_,(x):\‘/x—cos (wie) W (wy 3)1
(1.14b)

where Vi(z) and V,(z) are given functions of z
that do not become infinite at ¢ where 2= o.
This assigns boundary values to WV,

WO, =)=t

e (1.14a")
Vz—cos 0

W, B)zfQ(x)L-J(x)—r —, (1.14b")

Vx—cos (w—~0)
so fi(z) and f,(x) are given functions for z for
1<z< o, both vanishing like 27 when z— .

If a potential V' is required that is harmonic
outside the body, vanishes at spatial infinity and
takes the assigned values V,(z) and V,(x) on the
boundary of the body, it might be expected to be
given by an integral representing W(a, 8), the
integration being taken with respect to the
parameter ». We may consider » a complex
variable y=v,+ v, and imagine the integration to
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be taken along some abscissa »;=constant, in the
v-plane.
We then consider a solution of eq 1.11 of the
form
D IE fRrahtety PR ()
W(a’ﬁ)_ri y—iw SN YW

[sin »(w—a) F(v) +

sin va Fy(v)] dv (1.15)

for 0 <a=<w and 1=<z=cosh =< x.
This is an integral with respect to » of particular
solutions of eq 1.11 of the form of eq 1.12.
Spatial infinity in the plane figure 2, a corres-
ponds to the single point a=6, =0, in figure 2, b.
If this is an ordinary point, where W remains
finite, then the potential will vanish at spatial
infinity as required, since the radical in eq 1.10
vanishes. At the boundary «=0, the integral
representing W becomes (for 1=<=z=< =)

- 1 vitico
w(o, 8) :fl(x)zﬁ . v () P,_,(2)dv. (1.16a)
And at the remaining boundary, a=w,
1+io
W, =@ =5 | vRG)P.s @)y, (1160)

For each boundary arc the same problem is
presented, of finding a function, F(»), which is an
analytic function of a complex variable v=v,+i,
in some strip or half-plane of », this function F(»)
being the solution of the integral equation.

1 vitioco
f(x):EL_iw vyFW)P,_,, (x)dy for 1<2< o,
(1.17)

where f(z) is an arbitrary, given function of .
The abscissa »,= R (v) =constant, which is the path
of integration, must lie within limits to be found,
which will depend in part upon the nature of the
function f(x) and in part upon the nature of the
development-function P,_,(xz). The solution of
this integral equation is the subject of section 111
in which certain sufficient limitations upon f(x)
are found.

For this it is first necessary to place in section 11
some known properties of P, () and Q,_,;(z) as
functions of z and also of ». The things of especial
importance for the integral representation (eq
1.17) are the principal terms of the asymptotic
expansions of these two Legendre functions, both
as to z=cosh f—> = (v fixed) and as to y—>o (z
fixed).
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After the integral representations are found in
section ITI, the remainder of the paper consists in
finding the Green’s function in terms of a more
fundamental function, S, and in exploiting this
discovery for various applications. These applica-
tions are concerned with finding series more suit-
able in their convergence than that which first
appears for computing capacitance. Also we find
the cases in which the capacitance may be com-
puted in finite terms. There are some cases in
which the potential may be found in finite terms.

To outline this and to show the physical or
geometrical role of the principal functions that
appear, we may consider first the simple case in
which the conductor is a complete sphere, the
sphere w=m. In this case the arc 4,C of figure 2,
a (w=m) is the continuation of the first circular
arc, a=0, of radius «.

The Green’s function V. (e, 8; o', B') is defined
as the potential at any point P(a, 8) outside the
sphere when there is a circular line-charge M’ with
trace at some fixed point P’(a’, B’) also outside
the sphere, while the sphere is kept at zero poten-
tial. The fixed point, P’, is a point of singularity,
for the potential becomes infinite when P tends to
coincide with P’. Tt is the only one in the dielec-
tric region (outside the sphere).

In case the line-charge M’ shrinks to a point-
charge at some point P’ (2’,0) or P’ (a/,0) on the z
axis, 1t 1s well known that the external potential
(Green’s funection) at P is equal to that of the
actual point-charge at P’ plus the potential at P
of a fictitious point-charge M’/ within the sphere
at a point P’/. This point P’” is the image of P’
by reflection in the sphere. The charge M’ must
be opposite in sign to M’ and suitably chosen
proportional to M’. (But M’ #—M’ as in the
two-dimensional case of an endless ecircular
cylinder.)

It will appear, and is fairly evident, that the
same holds true for a circular line-charge, when
(as we assume throughout) this is zoaxial with
the # axis. Reference to eq 1.5 and to figure 2, b
indicates that the image P’/ («’’,8’”) of P’ (a’,8")
must be a point outside the strip 0<a<w(=w),
having the same height, that is, 8”/=p". Also in
figure 2, b, the points P’ and P’ should be equi-
distant from the vertical line A4,C of figure 2, b,
which represents part of the spherical boundary.
By the same reasoning P’ and P’/ must be equi-
distant from the line a=0 of figure 2, b. Hence
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there must be more than one image point P’ of P,’
obviously an endless set of such image points to
right and left, periodically distributed in the
aB-plane. However, all of these are represented
on the z, p-plane by the single image point P’
inside the sphere.

As long as we are concerned only with a con-
ductor in the shape of a complete sphere there is
no sense in viewing the virtual charge at P’/
as the superposition of an infinite number of
charges. If we gradually change the boundary
arc from w=m, this hidden structure makes its
appearance and the innumerable images cannot
in general be found within the conductor of figure
2, a. The Green’s function Vi (e, 8; o/, 87) of the
more general conductor (., m) cannot be expressed
as the effect of any distribution of charges within
the conductor of the x, p-plane.

The explanation may be found if we first extend
the meaning of V.(a, B; o, B’) to the entire
x, p-plane, in the sense that P(«, 8) is the general
point in the half-plane, while there are two fixed
line charges one at P’ the other at its image point
P, We may for the moment consider them both
real and regard the spherical surface (e=0 and
a—m) merely as a surface where Vi 1s zero,
This half-plane is represented on any semi-infinite
strip of a-width 27 in the «, g-plane. Hence,
extending its meaning still further, Vi («, 8; o/, /)
is a real periodic function of a with period 27 having
two singularities in any period interval such as
0<a< 2.

As eq 1.10 suggests, it is simpler to consider the
W-function as the Green’s function, say Wi (a, 8;
o', BY) for the differential eq 1.11. This also will
be a periodic function of « with period 27 having
two singular points in a period interval.

From this it is a natural step to regard W, as
the difference of two values of a simpler function
Sy (e, B, BY), which has period 27 in « but only one
singularity in a period.

For the sphere w=m, we find

Il/'1l’(a7 6;0‘,; ﬁ’) :ST(O{—(X/, By B/)_Sﬂ(a+a,y By B,)
(1.18)

In case of a conductor bounded by two intersecting
spheres the generalization is

u/yw(a: 135 a,7 ﬁ,> :Sw(a_a,a 676/>_Sw(a+a/y 67 B/>7
(1.18)

Conductor Bounded by Two Spheres

where S.(a, B, B') is the generalization of S, («, 8,
B’) and is the fundamental function for this
problem. S.(«, 8, ') is an even periodic function
of a with period 2w having one singularity in any
period interval such as 0<a<20.

The special function S;(a—a’,8, B/) introduced
in section 11, eq 2.25, is in effect the W function
corresponding to the potential at P («, 8) produced
only by the circular line charge with trace at
P’ (o, B). Itis, except for a simple but variable
factor, a Legendre function ¢ ,, with argument
[cosh B cosh B’ —cos (a—a’]/sinh g sinh B’.

Its great practical advantage is that S, («, 8, 8)
may be computed in terms of the complete elliptic
integral K for any value of its argument (eq 2.32).
Unfortunately no finite expression has been found
for the general function S, (a, 8, /).

The addition— theorem for _,; gives two forms
of Fourier’s cosine series in « with coeflicients that
are products of Legendre functions of cosh g and
cosh 8" (eq 2.26). The analogous series for S, is
found in eq 4.9.

As indicated in eq 1.15 to 1.17 the natural
method of solving this problem will be through the
use of integrals along some abscissa »,=constant
in the plane of the complex variable v—yp, | i,.
Anticipating this, we derive such an integral repre-
senting Sr(a, B, B/). In section IV eq 4.6 is
found, the similar integral representing its gen-
eralization S,(a, 8, 87).

In section 1V is derived the relation

2tw

— B, ﬁ'>’ (1.19)

m

m—1
[ w/m(a, ﬁ, 6,) i; Agw <a+

where m is a positive integer.

Out of this relation flow all the cases (rational
values of w/m) for which the field outside the con-
ductor may be found in finite terms.
four infinite sets of values

w=mnm/m where n=1, 2, 3, or 4, while with each
n, the denominator m may be any positive integer.
The two sets with n=3 and n=4 involve elliptic
functions. This is the subject of section IX.

On the other hand, 1t is found in section VIII
that the capacitance is given in finite terms (with
elementary functions) when w=nx/m, where n and
m are any positive integers, subject to 0<w< 2.

In case n or m (or both) are large, these expres-
sions may be less suitable for computation than
some of the series in section VII, which apply for
any w. In particular the form of eq 7.9 is a series

These are
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of the form >3 A, sin® nrf/w where the coefficients
1

A, approach zero with increasing z like 7%,

In the sections that follow, we have not used the
method of images as a guide. The results however
may be interpreted from that point of view by an
extension of the concept of images, in the course
of which will appear the reason why the method of
images has not been followed.

Interpreted on the endless «, 8-plane, the Green’s
function V. (or W), being periodic with period
2, will of course have all its singularities end-
lessly repeated. The z, p-half-plane of figure 2, a,
which corresponds to actual space, is represented
upon any semi-infinite strip of the «, g-plane of
a-width 27.  But the inverse representation of the
entire «, 8-plane upon the z, p-plane requires the
latter to be imagined with infinitely many leaves
lying above and below the plane of the paper of
figure 2, a. Successive leaves are connected
along the circular cut 4,C of figure 2, a, so that
instead of crossing this cut we are forced up or
down to another sheet.

All the singular points in «, B-plane correspond
to singular points on various sheets of the z,
p-surface, all lying under or above the two points
P’, P of the first sheet, so it appears, looking
down on them, as if there were only two.

For the general case w#zm, the region of the
2op—plane 0< a< 2w (where 0<w<2w) is repre-
sented on any strip of the «, g-plane of width 2w.
Conversely, to represent the entire «, g-plane on
the xp-plane, this must be many-sheeted, with
cuts at a=0, a=2nw, where n takes all integral
values positive and negative. The endless num-
ber of singular points in the «B-plane will corre-
spond to an infinite distribution in the x,p-plane, of
singular points that appear to be on the circle
B=p’, some inside the conductor and some out-
side—apparently in the dielectric space where we
placed only one. This one at P’ is on the first
sheet, and the others on different sheets but not
hidden by P’.

The potential produced at a point P in the
dielectric region of the xp-plane (the first sheet or
plane of the paper in fig. 2, a), by a real or virtual
circular line-charge with trace at P’ also in the
plane of the paper, is a comparatively simple
expression given in section II. This expression
becomes infinite when P coincides with P’ as it
may without leaving the zp-sheet of actual space.
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But if P’ is in another sheet, then P could come
over it and cover it up, but the potential must
remain finite and continuous since the singularity
is on another sheet. Obviously the expression for
the potential at £ is only to be found by an
“analytic continuation” with respect to Laplace’s
equation, of the solution in one sheet due to
singularity not on that sheet. If there were no
alternative but the “method of images,” we
should have to wrestle with the questions of
topology and find the “law of diminishing bright-
ness” from one sheet to another. This way the
method of images becomes a burden.

If it were not for this law of diminishing bright-
ness, the entire circle =g’ in the zp-plane would
appear continuously illuminated with singular
points. TIts effect would be to show a finite number
of first magnitude (depending upon w). These
would stand out among constellations and fainter
nebulae. If at a turn of a lever the angle w were
gradually altered, there would be certain rational
values of w/m, say w=mn=/m, for which the kaleido-
scopic view clears up. The luminous background
disappears and there remains only a finite number
of singular points on this circle. This corresponds
to eq 1.19, in which S.(«, 8 8/) may be evaluated in
finite terms. Even then some of these images
must be considered anomalous, as they appear to
be in the dielectric region on the circle g=4g’.

II. Preliminary Equations

Those known relations between Legendre func-
tions that will be required are placed in this section
for reference. Also the known expression, in the
coordinates «, 8, for the potential of a circular line-
charge, whose generalization is fundamental to the
problem, is presented here.

Since z 1s a favorite notation for a real variable
and there is no further use of the rectangular co-
ordinate z, there should be no confusion if from
here on we let z=cosh 8. The two functions, y=

Q,—1;(x) and y=1Q_,_,,(x) are solutions of Legendle S
equation
Lle—vr@i=(r—3)v@, @D
where for 1<az< o,
1)) |
-1 = BT Ay F<4 ’“””ﬁ)
(2.2)
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Considering 0<g< e, that 1s, 1<<z<o, it is
evident that @,_,,(x)/T <%—l—u> is an integral func-

tion of the complex variable v=»,+41v;, so that
Q,_.;(z) is an analytic function of », whose only
singularities in the finite »-plane are on the nega-
tive real axis where

y=v+10=— n—i—%) where (n=0 1,2,3, . ..).

These are simple poles of the factor T’ <%—}—v>-

The other factor, 1/T'(1-+v), vanishes when v—=—mn,
but eq 2.2 shows that

Q‘n % x) Qn % x)y

and @,_(2) is a finite and continuous function of
z for 1<o<{ow.

For all other values of » the two solutions,
Q. (@) and Q_,_,;(x), are linearly independent as
shown by the identity,

@ —=1)[@r—3s () @Ls— 3 () — Q135 () . Q55 (2)]

=7 tan vr. (2.3)

()

cot v
Py_y (@)= oz l:(‘)a:)vl’(lﬂL

26) L

(2.1')—‘1}1‘(1—10

For general values of z and », the solution P,_,,
(z) of eq 2.1 may be defined by

cot vmr

= = [@— 3 (2) — Q1 (@)].

(2.4)

Whenever @,_,; exists it is linearly independent
of P,_,;, as shown by the identity derived from
eq 2.3
@ = D)[Qs-ss(2) Py (@) — Qs @) Py (1) =
(2.5)
Considering z as a constant real parameter
greater than one, it is evident that the definition
(eq 2.4) makes P, 1 (x) an even integral function

of »; for the poles of cot vm at v=n are removed by
the vanishing of the bracket. Also the poles of

. : 1
either @-function at v=—g4n are removed by

the vanishing of cot vr.
Using eq 2.2 in eq 2.4 gives, for 1<z<{ »,

r( 12342 140 Z>—

—; x‘zﬂ' (2.6)

From analytic continuations of the hypergeometric functions in eq 2.2 and 2.6 we obtain,

for 0<B< o,

i) (o) | eemer () e(y)

=U I'(s+1)T(s+»+1)

and
,_/(x)—e“’JrV)ﬂF( 11— "6>, (2.8)
whence
P_,(@)=Py(x)=1.
P,_,,(x)=cosh 6‘(”+V)F<4 5 4—1-2; 1; tanh? B>
and

Qo3 (@) =P,_(z) log (2 coth §)—

COSh B (Y4+v) ‘D

Every @Q-function of cosh 8 becomes logarith-
mically infinite when g—0, for by applying
Gauss’ transformation to eq 2.6 and 2.4 with
x=-cosh B, we find

cosh g~ °° (anh B)“" “S+V+ ) (2.9)

( 1) - rrs+1) 7

(O

Conductor Bounded by Two Spheres

< tanh B>°“’ <P228:+V:; >|:¢ <2s+v+%>—¢(8+1):|’

(2.10)

383



where
¥(2)=T"(2)/T(2).

For the manipulation of certain integrals we
require only the principal term in the asymptotic
expansion of these functions. This is needed in
two senses, the one when z— o (with » constant)
and the other when »— o (with z constant). From
eq 2.2 and 2.6 it may be shown that

When x=cosh f— =,

Q=0 if 5> —2 (or v=—1,-2,—3, . . .) |
>.
— o ifV1<—'% (or v£—1,—2, . . . . )J
(2.11)

Hence

Qv_—0, and Q_,_,—0 if —%<V1<%'

(2.12)
Consequently,
Pyoy—0 if =5 << 5 (with any »)
— o if%< |v1| (with any »,)
(2.13)

(If v3—0 and »— i%, e )
Let A=X\,-F2X\, and v=»,}vs.

By eq 2.1 and the corresponding equation with
vy=X, we find, by use of eq 2.10 and 2.11, that if

V1> _%)
J;w QV*% ('l‘) Q)\—gg (x)dx=

| I
‘_p_gﬁ'?y)?:i(wg) i A=,

(2.14)

whence

J;“’ Q- voss () Qr— s () da=

#(—rt3)4(:+3)

p2—\2

lf >\1>V1.

(2.15)
From this, by use of eq 2.4 and the identity

L D—r t: 2.16

¥ V+“2" —y —v+§ =7 tan »m, (2.16)
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it follows that

“ i
J; P,,_%(.Z')Q)\_,,é (l‘)dt:;\t;z if ] V1 | <>\1
(2.17)

If the conditions stated are not satisfied, each
of these three integrals diverges. If they are,
each converges absolutely because of the expo-

nential factor arising from exp [—(v+%> ,8] in
eq 2.7.

In the second sense we consider 8 fixed

0<B< .

When v=»,+iry—>w»,
asymptotic term.

there is the known

=

T e
QV—‘/z (COSh B) N\/m ?;,,’

which becomes zero or infinity according as »,=0 or
»1<_0. This also applies when »— along the neg-
ative real axis of » without passing through the

poles of @,_,, at v= —(n_—{—%)-
Whence

(2.18)

c T ew
Q_V_;/; (COSh 6) (7 :FZ\/—.?THl}{B T;J (219)
and by eq 2.4,
Bt ie—yB
P,_, (cosh gy~ -2V (99

v2r sinh B
(where upper sign is for , >0, lower for 7,<0.

Whence P,_,, always becomes infinite when the
real part of » (i. e. »,) becomes + .

On the other hand if »,—>4 « while », remains
finite, each of these functions vanishes, and in
such a manner that, when 1<z< =, the integrals
along any finite abscissa »,.

*ntic
J vF(v)P,_,(x)dv and

1—iw

*n+ico }
Jm-iw PE0) @y @)y S (2.21)

will converge if, and only if,

viF(»)—0 when vy—>+4 . )
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Another relation that will be required may be
derived from

M =@k 0<
@),_.; (cosh B):J [2(cosh B—p]= fo r< »
(2.22)

This is, in effect, Schlafli’s integral, and is shown
to be equivalent to eq 2.7 by expansion of the
integral. If this is written

7 e [

and the variable of integration ¢ is replaced by g’
where 2¢7#' = (1—t?)/(cosh f—t) in both, but

t=e# —+/1—2¢ % cosh B4-e Vs’
in the 1st mtegral and
t=eF+ +
in the 2nd mtegml, it is found that the two in-

Sx(a, B;a’, B') =

- i €n Qn—% (COSh B)
m™ 0

tegrals are equal, so that

] ©
Quos (cosh )= 7o [

For reference, the appropriate expressions may
be placed here that represent the potential at any
point P(x,p) or P(«,B), which is due only to a
circular line-charge M’ with trace at P’(z")p"), (i. e.
P, B)).

It may be written V,(«a,B8;a’,8 )* Al %[cosh

_’ﬁdﬂ

Vv (oshB —cosh B'

(2.23)

B—cos(a—0)] [cosh B’—cos(a’—ﬂ)]} S,r(a—a',ﬂ,

). (2.24)

where St is never negative and defined by
S:(a,B,8)= —72; [sinh 8 sinh 8]~ %#@Q_.,
<coshB cosh B’ —cos a)_

sinh 8 sinh g’
. The so-called addition-theorem for this function
is

(2.25)

2 €n Qu_ s (cosh B') P,_,, (cosh B) cos na if 0===8’

" where =% e,—1 for n>0 The series converges
when g=28,” provided that cos a71.

When g'—0, the line-charge shrinks to a point-
charge on the z-axis, and this-becomes

SN —

ycosh B—cos «

- i en Qn_r; (cosh B) cos ma, (2.27)
T %

which converges for all values of @ when 0<3< »,
but not when =0, since cach coefficient (),

P, ., (cosh g') cos naif 0 =p'=g, (2.26)
then becomes infinite. However,
1
Si(a, 0, )=———; (2.28)
| sin 5 |

since the radical is always positive in eq 2.27.

The preceding series are useful, but we may now
derive an integral representing S:(«, 8, /) more
useful and comprehensive. Both forms of series
(eq 2.26) may be derived from it: also it converges
even when g=p’=0.

1
S (e, 8, 6 3 cos v

Jri—io

where

1 1 0=<|a|<27 when g+
—3 <n< D) and (o\\a\<27r when g=p’

ntie cog y (ﬂ—]al) P

_y; (cosh B) P,_,; (cosh B') dv,
To prove this, first take the path along » =

(2.29)

constant where O<v1<-;— and replace P,_,; (cosh g)

by the second member of eq. 2.4, which gives

1 (»ti® cos V(1r—|a|)
S, («, B, B )——m ﬁl . - Q,_s; (cosh B) P,_,, (cosh p") dv+

rtio —

L z w‘) Q_,_.; (cosh B) ,_,; (cosh B") dv.

T )i sin v

The substitution »=—»" in the 2nd integral gives (since P_,_,,=P, )
—1 (—wti® cos v (71— |al)
[2:_71:{]_”1 ~ ——m?ﬂ_‘— Q,_.; cosh B) P,_,, (cosh 8) dv.

Conductor Bounded by Two Spheres
849618—49——T7
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This path may be translated from the abscissa—u,, to that, +» >0, of the original path, taking

. . . 2
into account the contribution to I, of amount - Q_.; (cosh g) P_

Hence if 0<|a|< 27, eq. 2.29 is equivalent to

S, B, B) =2 @ (cosh §) Py (cosh )= % [

T

where 0<»; <1.

- sin v

,; cosh 87 of the pole at »=0.

2

ntie cog p (r—

|=]) Q,_.; (cosh ) P._,, (cosh g’) dv.
(2.30)

This is valid when g and g’ are interchanged.

When g’ < B, the asymptotic expressions (eq 2.18
and 2.20) show that this path may be closed with
an infinite semicircle on which » >0. It then
encireles (in a positive trigonometric direction)
the poles at v=n=1, 2, 3, . . . where sin ym=0.
The sum of the residues gives the series (2.26).

The special case /=0 of eq 2.29 gives on refer-
ence to eq 2.27 the integral representation,

V2
Sala; B, O)*v/ciosih B—cos o
1 [‘““"" cos v(r—|al) P

COS v

i (cosh B)dv, (2.31)

(2

yj—i

1 1 0=a=<2rif B0
where —5 <n<y and <O<a<21r if =0/

It may be noticed that the value of S:(«, 8, 8')
may be found from tables of the complete elliptic
integral K with modulus £. Equation 2.7 shows
that

Q- () =2k K(k) (2.32)

where k=x— 22— 1=¢"# when z=cosh 8.
\

III. Integral Representations of a Given
Function

We may now take up the problem formulated
in eq 1.17. Let f(z) be a function of the real
variable, z=cosh B, for 1<z< =, which may be
given arbitrarily in this interval except for certain
restrictions to be found. Consider the problem of
finding the function F(v) of the complex variable
y=v1-Fivs, which is the solution of the integral
equation,

f(xyz;r%f”‘mVF(V)PV_%m)dV for1<z< o, (3.1a)

11— 1o

where an essential part of the hypothesis for
determining F(v) is that this equation holds when
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the path of the integral is along any abscissa
vi=constant, which lies in some half-plane, to be
found, say

—t=n<n< o ad —o<nl e, (3.1b)
This implies that
vI(v) is analytic in this half-plane. (3.2a)

It also implies that F(») vanishes in a certain
manner when »— e in any direction lying in this
half-plane.

In case f(z)—> = when z—1, the integral (eq
3.1a) is only required to converge for 1<<z< . In
that case, as shown in eq 2.21, it is necessary that

v F(v)—0 when »— .

(3.2h)

In case f(1) is finite, the convergence of eq 3.1a
for z=1, (where P,_,,(z) =1) requires

»’F'(») is bounded when y— . (3.2¢)

This condition shows the convergence of

va (v)dv, where the path p i1s an infinite semi-
P

circle that closes the path. Since by eq 3.2a
*yitico

J ‘l vF(v)du—{—va(v)dv:O, the first integral
v1—i D

converges.
Let
G\ = f f@) Qr_y; (x)dx where N=X;+i),.
J1

Assume for the moment that restrictions on the
nature of f(x) may be found that are sufficient to
make G(\) an analytic function of X\ in the half-
plane »,</\; and to make G(\) vanish like F(v) as
specified in (3.2 a, b, ¢). (v, is to be found).
Take a positive abscissa a=v,+¢, if 0<y, or a=e
when »,=<0 where € is a positive constant, arbi-
trarily small.
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Taking »,=a in eq 3.1a and replacing f(z) in the
mtegral defining G(N) by the integral (eq 3.1 a)
gives

=1 ﬁ o Jj: VFG)P,_,. (2)dv.

We may prove that F(») =G (v) in the half-plane
0<a=w, and the conditions (eq 3.2) will then be
sufficient (in those cases where »,<0) for the con-
tinuation of the equation F(»)=G(v) down to
this negative .

The validity of interchange of order of integra-
tion may be secured by taking \; >a,

a+tico ©

o)=L f VJ«'@)«luf N
T Ja—iw J1 -

Since N\ >a=v, >0, we have by eq 2.17 the abso-

lutely convergent integral,

[7 Qs Prssrda=— 1y

so that

Goy——.! J'"w 20F ()

T2 a—iw VE—N?
or 3.2¢, this converges absolutely so the inversion
of order is permissible.  Also, since F(») vanishes
at »—o  this path may be closed by an infinite
semicircle on which v, =a >0. Tt then encircles in
positive direction the single pole at »=X. Conse-
quently by Cauchy’s theorem G(N\)=F(\) when
a< < o, that is, F(») =G (») for a<y,< o

Therefore, when eq 3.1a holds for the half-
plane (eq 3.1b), its solution is

dv, and by eq 3.2 or

F()— ﬁ " (@) Qsgl@)dz. (3.3)

In that case f(z) has the integral representation,

1 ((ntix b
f(f):;r_[ e VP,,»%((I')(IVJI f(.’[)/)(zy_%(x/)dx/’
(3.4)
for 1<ze<w,

where the path is along any abscissa v, in the half-
plane »y<»,. The value of », depends in part upon
the nature of f(z) when z— o see eq 3.17 below.
In case v, 1s negative this is equivalent to

1 vtico ©
@)= f v Qy_s;(2)dv ﬁ @) P,_yy@)de,

vi—i®
(3.50)

Conductor Bounded by Two Spheres

where the path is along any abscissa v, in the strip

vo<v1<|yo| where »,<0.

Relation (3.5 a) is derived by noting that the
function

F(—vy)= J;w f(@)Q_,_15(x)dx 1s analytic where

— o <y<|y|. Henece, when, and only when,
19<_0, there exists a strip in which #(») and F(—v»)
are cach analytic. In that case, P, ., () in eq 3.4
may be replaced by its definition in eq. 2.4. In
the resulting integral with ()_,_.,, make the substi-

tution »=—»" and then translate the path to the
original. This gives eq 3.5a. If welet »=—»"ineq

3.5a and then recover the path by translation, this
gives

*ritic o
@ == [ v [ P ez,

(3.5b)

where vo<v;< |y

Taking hali the sum of eq 3.5a and 3.5b gives, by
use of eq 2.4,

1 yy—ico
1(x) T [-1( v tan 7P,y (x)dv

[ )Py, 350

where vy <v;<|vo|.

The last three representations of f(x), eq 3.5a, b,
¢, are of limited application compared to the first
in eq 3.4 since they require that », be negative,
the imaginary axis » =0, being than a possible
path. It is evident that they apply along the
imaginary axis when ¢#*f (cosh g)—0 as g— o if f(z)
satisfies the other conditions to be given in eq 3.6a
and 3.6b below, for in that case the integral

f;‘o (@) P,_,;(z)dz will converge.
1

When f(z) satisfies certain sufficient conditions
to be given in eq 3.6, the sense in which this
function is represented by eq 3.4 may be indicated
as follows:

For this let

1 *vitiv ) To , , ,
1aam = | P sy |6 Qs
and

o(@)= (limit> (limit) I(z,20,m).

n—>® T
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If z is a point at which f(z) is not infinite, we may
prove that ¢(x)=[f(x+0)+f(x—0)]/2 or f(x) if
this is a value of z where f(2) is continuous.

As before it is sufficient to take 0<a=p,< .

¢(x)~(l1m) hm) [fx)a’x a.mP,_/(:r)Qy (@) dy

Zo—> o 1]4)00
a+i VI
ﬂ—ln

where x=cosh g and z,=cosh g,.

,_1;(cosh B) @, _1;(cosh B")dv,

The limit 25—« of the 2’-integral is the transform
F(v) of f(z)(3.3), and this integral converges ab-
solutely and also uniformily as to », in any finite
interval —n<w,<7». Hence taking »,=a >0,

(hm) llm) f sinh g’f(cosh g")dB’

2o/ \pp—>

It is here assumed that the constant z is a value
for which the assigned function f(z) is not infinite,
but also not necessarily continuous.

In the r-integral the integrand is an analytic
function of », that is, without singularity at any
finite point for which —1<(»,. Hence the in-
tegral from the point a—in to a-in (where
a>0) may be taken along any path between
these terminal points, which lies to the right of
them. Taking the path as a semicircle of radius
7, we may then take n so large that the integral

¢ (1) = lim> <1im> L f ﬂ"ea(ﬂ—w\/
Bo—> © e/ TJ0

smhﬁf( osh §)

will differ by an arbitrarily small amount from
that which is obtained by use of the asymptotic
expansions (eq 2.19 and 2.20). This is

fa. vP,(cosh B)Q,_.;(cosh B)dv=

t v(B—B") —
2+/sinh B sinh B’L_in ‘ a
16 B=F sinn(8—8)
Jsinhgsmhg B—F
Hence
sinh g8’ sinp(8—8") )

B— B

Assuming (3.6 a, b, ¢) below, and that f(z) is of
limited variation in any finite interval, this limit
becomes, by Dirichlet’s theorem,

#(a)= [f(cosh +-0) +f(cosh g—0)]
=1 [f@+0) +/@—0)],

which is the meaning of eq 3.4.

The following restrictions upon f(z) are sufficient
to make its transform, F(»), satisfy the conditions
(eq 3.2a,b,c) and to define the limiting abscissa »,.

In the interval 1<z< = there may be at most a
finite number of points z;, 5, . . . where f(z) has
finite or infinite discontinuities. None of these
points are limit-points, that is, f(z) is of limited
variation in any finite interval. All are such that

fr |f(x)|dz converges for any finite z.  (3.6a)
1

There is a real constant 6 (which may be posi-
tive, negative, or zero) such that when z=cosh
B>,

J@) ~C@)z~2=C(B)e%, (3.6b)

388

where O(z) Is bounded. Similarly, when z—1,

7@) ~ Co(e) (@— 1) =50y (B) (1 —~28) %o
8

or Jf@)~C) log (z—1)

(Cy(x) bounded).

Reference to eq 2.7 shows that the limiting
abscissa of the half-plane, in which F(») is analytic,
is the algebraically greater of the two ’

where (3.6¢)

(3.7)

1 1
V():é_(s or vo— _é

The proof of this, that is, the derivation of the
three conditions (eq 3.2a,b,c from eq 3.6a,b,c), (for
vo defined in eq 3.7), may be made by investigating
the series obtained by use of eq 2.7, which is

F0) Eﬁ” 0 ) ﬁ " sinh 8/(8) Qu_sg

= I‘<s+%>1‘<s—!—u-l—»12—

(cosh B) dB:§ g I(sF1)I'(s+v+F1)
J; ¢~ @981 —¢26) f(cosh B)dp.

(3.8)
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When g is large the most important term is the
first (s=0), and it is evident that the convergence
of this integral at the upper limit is secured (what-
ever the value of §) by taking », >», where y, is
defined in eq 3.7. This will make F(») analytic in
the hali-plane », >, as required in eq 3.2a.

For the remaining conditions (3.2b, ¢) we may

Fi6) =" 3

first consider the case where the only singularities
of f(x) are at =1 and z= «. For this purpose
take for comparison the function

Ji(@)=fi(cosh B)=e¢"%(1—¢726) %0, (3.9a)
whose transform is
’ 1\ 1 (. 1 1 1
1 (8+2> 1 <.\+v+2> T (8+2 l:v+5 2:') o

4

=0 T(s+1)T(s+»+1)T <s+% [V—H—%:I"}“Y)

where y=2(1—4¢,). Since v is positive this series

converges absolutely in the half-plane and we may

show that »*~?F(») is bounded when »—o . (3.9¢)
1 . ;

For eq 3.2b we have 2—260>—2- since 60<£- For

eq 3.2¢ when §,=0, (1) finite, »*/'(») is bounded.

Since a positive constant M could be found such

|[F () | <M|F\(v)],

Fi(v)~ r (7)

so that for sufficiently large finite values of »,

.. () |.

“ N 1‘(ls—|-1)<s+u+ )

I'(v)

that is,

where C; and C, are positive constants, and

\WF(‘Y) I'(v)

4|F\(v)]

V7 T(»)

this would suffice when eq 3.9¢ is proved.
To prove this we have

Pta) .- ,l: ) (1_)] : o
Tzt~ 1-+zero () | when z is large.

Hence in the series of eq 3.9 b, » may be taken
so large that the series will differ by any pre-
assigned small fraction of itself from

(243

1 3= ° I‘( —}—1) (a—l—v+z> <s+ |:v+ :I)

()

0 +1><a+9 [V+ ])

<G| 22

POl 0 g <]§ [V+ ﬂ)

| H<u+%) < 4—|m>

H(y)=

‘( 2> Lr+y)

0 (vt

(1 1.
l) F (5; v, V—|—’Y+§’ 1)'
2

When » is large this becomes

r <7+%>

Replacing » successively by » +}3 and %(v-f—;)

H) ~

it is evident that the inequality last written,
leads to

4 GRei<d,

Conductor Bounded by Two Spheres

so that when |»] exceeds a certain finite value in
the given half-plane,

'y (v) =¥ 20 (v)

1s bounded.

It remains to consider the internal singular
points of f(x) at x;, ,>> . . . Since these are all
subject to the condition of eq 3.6a it is evident
from the integral (eq 3.8) that they can have
nothing to do with the boundary »=v, of the half-
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plane in which F(») is analytic. It may also be
shown that they contribute to F(v) terms that
vanish more rapidly with increasing v than the
principal terms in eq 3.2b, ¢, which are determined
by the nature of f(z) at x=1. The proof could
be made by use of a comparison function, which
is a linear combination of f,(z) and of f,(z) where

fo@)=a for 1<e<z;,=b for ;<2< .
The transform F,(») 1s found by eq 2.1 to be

(3.102)

F2(V) =

i— D@y (@)], (3.10b)

2

i lot(a—b)@
”_Z

which is analytic in the half-plane ——vo<v,, this

o being determined by the fact that f,(x)is bounded.
Also when v—o, @, ,,(x)—0, as in eq 2.18, so0
v*F,(v) is bounded (as it must be since f,(1)=a
and §,=0). For this example the integral repre-
sentation (eq 3.4) becomes

s vPy_,, (1‘)

= et @b @D Q@) dv=
4 —1
@, 101 1= iy =) o i i 6o (3.11)
whero <v1<°o.
In p(ntlcular
il (e gle (6
= e j—i—z dv=1 for 1=z~ (3.11')
4
Where <v,
1 ytio ?Q:_}z(.zl)P,,_lﬂf (.I') Hire
= = @hy=
7|'7/ V1~l.°° 92
P
Oifor l=2x<z;,— —mq for v, <e<owo. (3.11")

In general for a function f(z), which becomes
infinite when 2—=z,—0 in such a manner that

71—0
j; [f(@)|dz converges as in eq 3.6a we could

choose a positive constant @ so large that

;_I‘LII_”]‘(I) Q- (@)dz| <a f:’ Q- (x)dx

One could show by comparison with f,(z) and
Fy(v) that the internal singular points of f(z) do
not affect the conditions of eq 3.2a, b, c.
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The alternative assumption placed in eq 3.6¢ of
a function that becomes infinite like log (z—1),
when 2—1 is illustrated by the third example
fs(x), which could be used for comparison,

Fo()=falcosh §)= 5 Qoa(cosh §) =
-
N

714 . nl 1 1’ -
r(s+3) e (3 oo+ Jie) @2

which is an integral function of 6 when >0, as it
then converges for any finite 6. From eq 2.10

with Vzﬁ—%it is evident that when g—0(z—1),
1
f2(B) ~ -3 log (z—1) ~ —log B.

We find by —eq 2.14,
. v (s+3) 96
o2

which is analytic in the entire v-plane except for

(3.12b)

the pole at u:}-

50 and those on the negative real

axis at vz—(n—}-%) where n=0,1,2,3 ... The

. 1. c
pomnt v:5—§1s not a pole, since numerator and

denominator of F; both vanish.

Hence F;(v) is analytic in the half-plane defined
in eq 3.7.
The psi—function has the asymptotic expansion

¢ <v+%>~log <y+%>+zero <~1;)
il G

I (5)
log <V+ >
and v%F(y) ~— 5 2 ~__ 2750 as in eq 3.2b. The
ST ) a

integral representation (eq 3.4) of this function

SO

Fs(V)

becomes, after replacing é by N+ % where A=X\;+
i)‘Z:
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e (H-f) ‘b,(H )

Q- (@ )‘M’J

Yo p2—\?
(@)dy for 1<z< (3.13)
1
where—X\, <y, and—§ <.
A fourth example with 5:% is
T—
(3.14a)

f4 (x)= \/x

The transform is found by use of eq 2.1 to be
== w&—% : . T .
F,(v)=~ Qﬁ S (x)dr= o (3.14b)

Equation 3.4 becomes
7\/5 :lfyl+iml)
e il W

This is a special case =0, of

1<e< o (3.15¢)

v (x)dx for
where 0<y,

1<r< @ o
()SaS?r) (3.16a)

- sm<s—}— >
ey

m COS v
TUORET

2
f5 (@) =——2=—— where
VI—Cos a

Fy() __mCos V(7r—a)

v COS vw

dN=

—1]“’ cos N(r—«)

1 J—ie(N2—1?) cos A

Sl]lya“sll] S
( +2>
28‘20 (5+§> — 12

which is analytic in the half-plane.

(3.16b)

rtan iz
v
)—V

The integral representation of a function f(x) as
in eq 3.4 and 3.5a are special cases u=0 of the fol-
lowing integral identities involving associated

0<y,< @ since 2 Z (

Conductor Bounded by Two Spheres

J(@)=

Legendre functions P%_, (z) and @“_,(z), where
the constant p=pu,+1iu, is arbitrary.

1 Iwm-m < u+2>

: - Py, (x)dv
e v 1 v
LT COS ur, <V+ — *>

jl Tf@) @ (2)dx! for 1<e<l w,  (3.17a)
1 1
where §—6<v1< © zul(l—<yl+2><vl< ©
and in case 6—" >0, for the function f(z),
1 vitico Iﬂ<V_p'—{—-l
f(ﬁf):iw' 08 1) e N vQ4_ . (x)dy
)
/(r DEE () dn (3.17b)

whmv—(B— ><v1/5—‘]2 all(l—(m—i—l)-) <.

In the present problem the potential has as-
signed values (which are axially symmetric) on
the boundry of the conductor. In the more gen-
eral problem these integrals would be required for
w=0 or any positive integer.

Similar identities could be given in which the
lower parameter » is a constant, the upper p being
the variable of integration. 1 have obtained else-
where! integral identities in which the develop-
ment-functions are solutions of a general type of
differential equation. For the range — o <z »
these may be specialized to give Mellin’s form of
Fourier Integral, and for the range 0<z<_ = to
give Laplace’s transform.

IV. Potential With Given Values on Bound-
ary of the Conductor—the function S,

Let V(a,8) be a potential that vanishes at
spatial infinity and has no singularities at any
point in the dielectric region D corresponding to
the strip of figure 2, b, 0<<a<<w and 0<B< .

1 The Hypergeometric and Legendre functions, NBS Mathematical Table
MT15, p.128-176 (1942). This paper isno longer available, but may be found
in the larger libraries.
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At the boundary of conductor, a=0 and a=w,
the potentials V(0, g) and V(w, B) are given
functions of .

Writing

vcosh B—cos (a, 8) W(a, B),

V(a, B)= (4.1)

the function of W to be found is a solution of
eq 1.11 without singularities in the strip of figure
2, b, and which takes on the boundary values

)= VOB
WO, B) =@ = T 5 —cos 8

W (o, B) =fi @) =——n 2. )

cosh B—cos (w—~0)

(4.2)

Since spatial infinity corresponds to a=6 and
B=0, eq 4.1 shows V will vanish at infinity if
W8, 0) is finite.

In determining W with assigned boundary

figure 2, a and the application to potential, for it
is then obvious that the width o of the strip in
figure 2, b may be any finite constant. Some
definitions of functions that will be useful are
thus obtained for w=mnr and w=nr/m, in which
case the function of fundamental importance may
be obtained in finite terms.

Suppose the functions f,(z) and f,(z) satisfy the
conditions (3.6 a, b, ¢) where § of eq 3.6b is either
6y Or 0.

If we also make the restriction

%-—g <6< » (where 6=, or d,), (4.3)
this permits assigning boundary values of potential
that become infinite when g—> o whatever the
value of w, but it only permits f, and f, to become
infinite in case 0<w< 2.

By this condition the boundary »,=v», of eq 3.7
of the half-plane, where eq 3.4 applies, lies to the
left of »y=7/w. Hence the required W-function is

values fi(z) and fo(z), one could forget about by eq 3.4
1 m/w—0+Fi= sin @
W)= [ P @do{ B [ fa) @ + S [ e Quosse)d| (44
. @ . 1 wjw—0+ico , 7 p = ’ d
Wi ﬂ>=f L P Qo) [R5 ey | = [ 0 %

f"“‘"” cos V(w oz)

e Sin vw

This may be written

W 8) =5 Da | T (=050 (e, B, 8) 1) Sulo—et, B, 8}

In this equation the function S.(e, B, B’) is by
definition an even periodic function of « with

ntiw o
Sule 8, =g [ oKl —le)

—im SIN vw

where the path ,;,=constant is in the narrower of
the two strips,

1 1
5 <n< 3 (so tan 77 ) } o
—mle<v<wlw (80 1/sin yws )

Py 1,(2) Q35 )dy—f £@) _"‘fyl+i cos va

tan v P,_y;(cosh B)P, i, (cosh g")dv,

Poosga) Qs
where 0<y;<7/w.

p—ie SIN VW

(4.5)

period 2w, which may be defined for the particular
period-interval —w<a<w by

(4.6)

(When 0<w<2w), the first is the narrower). By
the method used in getting eq 2.30 from eq 2.29
it is found that eq 4.6 is equivalent to

Sw(a; B, ﬁ,)zg Q-%(COSh B)P—%(COSh 8 _%f

where 0<»,<rw/w.

The same is true with 8 and g’ interchanged. By

nFie cog v(0—lal) Q
- sin yw

,_1;(cosh B) P,_i,(cosh B")dv, (4.8)

closing the path this leads to the Fourier series,

Sule, 8, B)==3
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— ;?;()J €,Qnrso-15(cosh g) P

(4.9)
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When 0=p=p’; otherwise these are to be inter-
changed.

The form (4.8) shows immediately the equiva-
lence of eq 4.4 and 4.5. The singular points of
S, are at a=+2n7w/w, B=pF’, where n=0, 1, 2,
. Hence if 7/w is irrational the functions
S and S have only one singular point in common
(at =0, B=4").

The period interval —w<a<w was taken for
the definition of S, in eq 4.6 in order that

cos v(w—|al)

- —0 when vy—>- «.
Sin vw

For some purposes it is more convenient to con-
sider « in the interval 0<<a< 2w, so that the sin-
gular points are on the boundary of the interval.
Any expression that represents Sw for the interval
0<a=w 1s sufficient to determine S, for all
values of a. The periodicity combined with the
fact that S, is an even function of « gives

S.(2w—a, 8, ) =8.(a, B,8)  (4.10a)

and

D.S.(a, B, 8)=0, when a=+w
=0, when a=0, or 2w if g#p’
=— o when a—-40 if =4’

=+ o when a—>20—0 if 3=p'.
(4.10b)

The functions S.(a, 8, 8') and S, («, B, /) each
go to + @ when a—0 and 8—g’, but their differ-
ence remains finite.

When a—0 and g—g" >0, both functions be-
come logarithmically infinite (since the singular-
ity is a line-charge).

=1l
7 sinh 8

(4.11a)

Sw(“;BHB,)'\’S ( Byﬁ)
logvVa?+ (8—8')%,

plus terms that remain finite. In case 8’=0 and

a—0, —0, the singularity is a point-charge and,

as in eq 2.27, both became finite.

—+finite terms.
(4.11b)

Sw<a)6; O)NSw(ﬂ: ,3, 0) 'r 2+ﬂ‘

Subtracting eq 2.29 from eq 4.6 gives (taking
the path up the imaginary axis of »)

So(a,B,8")—Sx(a,B,8)=

f I:cos v(w—|a) :2 Z“-—cos V(vr—lal)]
P, i, (cosh B)P,_15(cosh B )d

COos vm

where |a|< 27 and |a|<2w.
For a=0, this becomes

S (0 ﬁ Bl)ﬂSW(OyB:Bv:

f [tiﬁ . ]Pv%(ﬂf)l’»_%(x’)du.

Since the bracket vanishes when »—+4 « this
series converges, as shown by eq 2.21, if g and g’
are not both zero. It will be shown in a follow-
ing section that eq 4.11b is true.

The Fourier series (eq 4.9) is of the form

- Z A, cos (nraw),

W n=0

where the coefficients A, , depend upon « and n
in the particular form as a function of nr/w or
(suppressing g and g’)

a)— 2 e ' <—nf> cos <@Z"‘>

Let m be a positive integer, and replace « by

2w
a‘l“m t,

S, (w%‘“t):ii:em (’“’)< 0s 2 A

n=0 m

Summing from t=0 to t=m—1,

t=0

Now
Z cos — (a+

2ut

m—1
S, ( 2wt> 4 enF <n7r> Z OB 2(,915 )

> 0, when n/m is not an integer,

=1m cos <ﬂ> when n/m=Fk=an integer.
w/m

Conductor Bounded by Two Spheres
849618—49—8
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Hence
=y 2wt ke kwa
=0 Sa (a-l— \ w/m;, kﬁ( >
:Su, /m(a) o
That is,

2wt
Sumter, 8,8) =2 S. (at228.8) @12)
This may be written in the following forms in
which the argument of every S-function lies in its
first, positive, half-period interval.
For 0<a=5_ 1 and m>1,

w/(?m n(a,B, BI):S (ayﬂ 6,)'*—

2 [ 5. (g tass )45, (5o i—ass) ]

(4.12a)
and for 0<a=< c:nvwhele m=1,

Sw/2m(ayﬁ)l3/) :Sw(ayﬁyﬁ/) +Sw (w—a,ﬂ,ﬂ') —l_

E;j I:Sb, %"+a,5,5’>+8w (%’—a,ﬁ,ﬁ’ﬂ, (4.12b)

where the sum is absent in the case m=1.
Taking w=m, gives (by eq 2.32) Sy/n(a, B, 8/) in
terms of a finite number of complete elliptic
integrals.

In particular for g'=
eq 2.31,

0, this gives, by use of

1
Z%;/cosll B—cos (a+2xt/m)
(4.13)

S,,—/m(a,ﬁ,o) - 'V/§

where the radical is always positive.

V. Grounded Conductor Under the Influ-
ence of a Circular Line-Charge,Green'’s
Function

A total charge M’ in the shape of a circular line-
charge coaxial with the z-axis has for its trace a
point P’ (x’,p’) in the half-plane of figure 2, a or
P’'(«/, B) in the {¢-strip. Consider P’ in the
dielectric region (D) (0<a’<<w). The potential
of this line-charge, together with that of the
charges it induces on the conductor (at zero poten-
tial), is given at any point (e, 8) in (D) by

V(a, B8;a, ﬁ’):% v[cosh B—cos (a—8)] [cosh B’ —cos (a'—8)] W, (a, B; a’, 8,

(5.1)

where

11710(0‘) B; ﬂl):Sw (a_a/y 5’ B,) _Sw<a+a,y ﬁ,- B/)'

(5.2)

Proof: The second function with positive argu-
ment, a-+a’< 2w, has no singularity in this period-
interval. The first has only one (at a=ao’, B=4'),
and by eq 4.10a, together with eq 2.24, it follows
that S, at this point differs from S; there by finite
terms.

The potential V., vanishes at spatial infinity
(a=0, B=0) since the radical in eq 5.1 then
vanishes.

Also W, vanishes at the conducting boundary,
a=0, because S, is an even function of its first
argument. At the remaining boundary W, van-
ishes since S, is also periodic in its first argument
with period 2w.

Hence this W-function is the Green’s function
for eq 1.11 whatever the value of w. The potential
V., is the Green’s function for the potential
equation if 0<w< 2.

394

Using the series (4.9) in eq 5.2, gives for
I=a=o,

7 ’ ’ 8 < ’
Wi/ \8) =, 2@, , (cosh g)P,, , (cosh §)
n=l T3 oY

. nma . n7ra/
il (== )i ( —=
w w

when 0=p3=pg’, otherwise 8 and B’ are to be
interchanged.
If 7=+/2+p% eq 1.5 leads to

(5.3)

r~ycosh B—cos (a—6) =c- 2\/00S (0;;0) (5.4)

The total charge M induced in the conductor
is given by

M+M'=lim (rV,),

r—>®

so by eq 5.1 we get
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&

~ . [cosh B"—cos (o’ —0) w/§
M=—M \/77'9 Pl [* —

vcosh B'—cos (o’ —0)

The surface density of charge on the boundary
of the conductor is a function of cosh g defined
by 4ms (cosh g)=0V/on, where dn is the linear
element normal to the conductor, pointing toward

) —cda
it. By eq 1.17,dn=_ B—cos 6
+cda

cosh B—cos (w—0)
the first arc, a=0, the density is given by

at the arc a=0

at the arc a=w. On

and =

2

M’ (’OS}I B’ —cos (o/ —0)
2ma; (cosh ﬁ):m

(cosh B—cos 0)*2D,.S,(’, B, 8"). (5.6a)

On the second are,

f\[ cosh B’ —cos (a’—0)

_4

2710, (cosh B) =

6*('0S ((J)*o))suDa‘Aqw(w—a,; ﬁ; 6,)
(5.6b)

(cosh

From here on we consider =0 and write

S.(a, B) for previous S, («a, ,0). (5.7)

When the radius p” of the line-charge shrinks to
zero, there is then a point charge M’ at P’ (a’,0)
on the z-axis. The potential becomes

M’ | sin < _0>]
Vola, 8, a’,0)= 5
C \/
[cosh B—cos (a—0)]"* W, (a, B; a’,0), (5.8a)
where
VVW(O‘: 6; a,z 0) :Sw(a_a,) 6) _Sw (a+ Ol/, 6) .

(5.8b)

The induced charge (eq 5.5) becomes
. ad—0 ;
sin — 5 1 I:Sw(a 40, 0)—
Sw(a’—80,0)+ —F—

1
a/—ﬁi . (580)
s

Conductor Bounded by Two Spheres

M=—M'

*R*—{-S 0+a,0,8)—S,(0—,0,8 ):I (5.5)
The surface densities become
. o' —0
27a, (cosh ﬁ)zM st (7 2 >J

02~/§

[cosh B—cos 0*2D .S, (’, B); (5.9a)
—M’ sm<' — > l
27ay (cosh B) = —
& b 2
[ cosh B—cos (w—8) 2D /S, (0—a’, B).

(5.9b)

For comparison with this, the logarithmic po-
tential v,(a,B; a’,8), which is a solution of
(Da+Dj)v=0, analogous to eq 5.1, corresponds
to two endless line-charges each of charge m’/2
per unit length, perpendicular to the plane of
figure 1.

The conductor is now bounded by two endless
circular cylinders with trace a=0 and a=w. The
two parallel line-charges are at P’(2’,p’ and
P (', —p"), that is, P’(«’, ') and P’ (a’,—p’).
The potential is

Z)w(a, ;a’yﬁ/):

m’ o cosh 7 (8—B") Jwu—cos m(a+a’) jw

2 log [Losh 7(8—B’) Jw—cos m(a—a’)/ :|+
m’ o [:(Osh 7(8+B") Jo—cos w(a+ta’ )/w:l

2 cosh m(8+B') Jw—cos T(a—a’) jw

When the two line-charges come together to make
one of strength m’ with trace at P’(a’,0) on the
x-axis, this becomes

v, (a,B;a’,0)=

I |:cosh mB8/w—cos 7 (e a’)/w]

cosh m8/w—cos m(a—a’) |w

The charge induced on the cylinder is —m’ per
unit length. Tt is distributed with surface densi-
ties, per unit length, perpendicular to the plane
of figure 1, on arc a=0,

cosh B—cos 6 ]

_m,’lr . 1ra'
2 soshif)=————sin—— = |k
Eace i) Cw w [cosh mB/w—cos ma/ /w
and on arc a=w,

—m'w . wa [ cosh 8—cos (w—@_].
Cw

S111 -
w [cosh7B/w+tcosTa[w

2w ay(cosh B)=
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VI. Potential of the Charged Conductor
Alone

The formulation of this potential will be simpler
if we first evaluate a limiting case of the S-func-
tion. When g’=0, this is given by the second
series (eq 4.9) for all values of « and all positive
values of 8,

Su(e, B

1 (cosh B) cos __g

)= 2 enllo

N

Replacing the @Q-functions by their equivalent

integral expressions given in eq 2.23 leads to

Sw(a; ﬁ) =

V2 f B’
e — 2e,6” " © cos N 5
+cosh B ~—cosh B nZ ¢ mafw

Since
= sinh 78’ /w
=nrf'lw an — .
'/LZ=0 2€q8 Gt i cosh (78'w) —cos rajw’

this becomes

sinh (7B’/w)dp’

Sola, B= wi)zf B T -
& ,:cosh -, —cos E:I vcosh B’ —cosh B (6.1a)
or
Iy = .
Sule, =22 bl (6.1b)
bl [cosh Z—COos E] \/ cosh “X— cosh B
w m
or
S.(e, B)= sinh z cosh xdx (6.1¢)

These integrals converge except at singular points,
a=2nw, 3=0.

To put in evidence the nature of the singularity
of S., we may now define a function G,(a, B)
that is finite for all real values of «, 8, and o,

= I:cosh2 —cos? 4] \/ nh2 sinhzg

™

ESw (ay 6) - B =
w\/cosh2 ;Lw—cos“’ ’7253
Sula, =T S, <lr§ fw—5>

To show this replace w by 71in eq 6.1c and then

Gu(a, B)

(6.2)

and is an even periodic function of « with  replace « and B by ma/w and 78/w. This gives,
period 2w. after multiplying by /w,

cosh2 TB og? T& @ n=0 ¢ ¢

2w
sinh z cosh x dx .
3 (6.3)
cosh? z— cos2 75— |+/sinh? z— slnh2
=

Substracting this from eq. 6.1 gives

1

(6.4)

G.(a, ,B)—— sinh z cosh
l:cosh2 —Cos —:I \/ T
1rﬁ ™

which becomes when =0

™
— dz,
—sinh? g/2 w\/ sinh? z—sinh? ;%BO:I

Go(a, 0)_ cosh z sinh z | o
(cosh%c cos? ——> sin h% @
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This converges throughout the period interval,
boundaries included, 0<=a=2w. This is evident
from the fact that when cos?(ra/2w)=1, the value
of the integrand at the lower limit, =0, is the

finite quantity é (g—%) .

Using the series in eq 6.3 gives

4 2 nmwo
Gulor, B) =, 25 en 08 =
[Qn,,,w_% (cosh B) — Q1 <cosh %f?)] (6.5)
When g—0, we find from 2.10,
hm Qrr /014 (cosh B) — Q1 (cosh f):l:
nw T
SO
G, (x,0)= Z €, COS i
W n=( w
e(ert)o(ptyeim] o
When 7 is large this bracket is [ ] Nlj_;fr;),é"f}

which shows that the series is absolutely con-
vergent for any real a.

Now consider the potential (5.8a), which is in-
duced by the point-charge M’. The charge, M.
induced on the conductor will vanish if the point-
charge of constant ‘strength, AM’, is moved to
spatial infinity (a’—#6).

However, if the strength M’ of the point-charge
is allowed to increase as it recedes, and in such a
manner that

M
7o @)

I M’
1m —
a—p C

=—V'=lim

sin

o

then the induced charge, M, on the conductor
will approach a finite limit, which by eq 5.8¢ is

M=cV§S,(26,0)4-lim #_0‘—3&(&—0,0)
e sina2 ‘ ’

This limit exists and may be put in terms of the
function @, for

a «@ —1
lim| —)a=
sin ax bl]l X z= ()

Hence taking z=(a’—6)/2 and a=7/w, it 1s evi-
dent that

i {ﬁ—&@"—"’ﬂ: -
S1N - —
2

which 1s finite, so that

sin (L;0>‘ S, (a—0,0)=1.

We thus find, without integration, the following
expression for the total charge M on the conductor
existing alone (and therefore at constant potential).

M=cV°[S.(20,0)—G.(0,0)], (6.9)

G.(0,0), (6.8a)

lim (6.8b)
a—0

or by eq 6.2,

. ™ Y
A[:(,Vo l:mi (7;0/“7) +Gw(20, 0) —Gw(O, 0)]

(6.97)
The potential (5.8 a) belonging to this charge
becomes
Vi, g)=—V \/‘0*”_‘2‘“( 2 (S (a—0,8)—
So(et0, B)].

This vanishes at the conducting boundary a=0 be-
cause S, is an even function of «. It vanishes
at the other boundary, because S, is
periodic in « with period 2 w.

At spatial infinity a=6, =0, it takes the form
.0, but by eq 6.8 b this is just —V° Hence by
adding the constant V° we find the Newtonian
potential of the charged conductor alone, in the
form

Vi, B)=V" {1_\/cosh B—cos (a—b) [Sul—b, 8)—

a=w,

2

Sw(a+0,6)]}- (6.10)

This may be written, by use of eq 4.9, since

B'=0 by eq 5.7

V(e §)= VO V0 \/cosh B—(;os (a—10)

Conductor Bounded by Two Spheres

nwf nwo

Z Qn,, 1 (cosh B) sin ™ gin (6.11)
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By use of eq 4.8 with 8’=0, this may be written
as an integral. The occurance of the absolute
value |a—0| in the integral presents two cases

(see fig. 2, a).
Case 1 (0=a=0)
Ve, )=

cosh B—cos (a—0)
8,

4 (vti®sinva sin v(w—0) Q
sin vw

s—15(cosh B)dv,
(6.12a)

TV ) n—io

where 0<y,<rw/w.

Case 2 (I=a=<w)

Via,p)=V'—
o /cosh p—cos (a—0)_
vey/ Z
4 (tiegin vl sin v(w—a)
=1 D S ve Q,_1;(cosh B)dv,

(6.12b)
where 0<y,<w/w.

The method of finding the total charge (eq 6.9)
on the conductor is based on the general property
of the Newtonian potential of any finite distri-
bution of total charge M, as in eq 5.4,

limit (V) =M

=00
To check the expression (6.9) we may multiply
eq 6.10 by » where, as in eq 5.4,
. ¢+/2+/cos (a—0)
V(A —=c*/r?) (cosh B—cos (@a—8))

which becomes, when 7 is large (8 and a«— 6 small),
Cc \/-2 o Cc

‘/COShB—COS( —9) \/(cosh;ﬁ/Z—cosZ(»agJi)-

This gives

M —[im

1
yolim { "
80 \/ cosh 5—Cos <T)

[Sw(a_oy 5)—Sw(a+0;5)]}

1
sin a/2

=8,(29, O)—hm I:S (ar, 0) —

—8,(260,0)—G.(0,0)+1lim
a0

m_ 1

. ma  SIn a2
w sin o
2w

—S.,(26,0)—

by eq 6.2
Gw(o;o):

verifying eq 6.9.

For general values of w, the expression (6.9) or
(6.9)" for total charge cannot be expressed in
finite terms. The next section, VII, is concerned
with its series expansion and its transformation
into a series more suitable for computation.

The direct method of getting M would consist
in evaluating separately the charge A, corre-
sponding to the boundary «=0 and the charge
M, on the remaining boundary a=w.

Thus
- ) 7 2may(cosh B)sinh BdB
M,=2x f po,(cosh ,B)dS—CZJ; Gl e
or d
(7 270 (2)de
.7\41——62]; m) (613&)
and similarly,
2
Mz—Cf [xjg; ]2, (6.13b)

where, by eq 6.12a,

27a;(cosh B) = __[eosh g—« 5—005 0] <

and
[cosh g—

2may(cosh B)=+ 50 S

Using these densities gives

M1:9K_0 fy“”“’ v sin »(w—0) 0 I‘ \ZQ, 1 () I
i o=t Sin vw J1 yaz—cos s 6
=cV'F(w—0,6) (6.15a)
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[2 (ntie v sin y(
cosh B—cos 6]% ¥ f
v

cos (w—10)] @T{) V

o)) Q. _1;(cosh B)dy

wl 1—i Sin v
(6.14a)
B g V2 (i vsin g /
p —[cosh B— cos (w—0)] s f,_m P Q,_15(cosh B)dy.
(6.14b)
and
cVO ((ntie ysin w8 (7 4/2Q,_i(2)
M=% —— ———
T Ju—io S vw J1 z—cos (o—0)
=cV°F(6,0—9), (6.15b)
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where

0<nv<w/w.

If it were necessary to evaluate M, or M,, the
z-integral in each case is obtained from eq 3.16b,
but in terms of an s-series. The integration with
respect to » could then be performed by deforming
the path and evaluating the residues at the poles of
the integrand. The s-series in eq 3.16b would
lead ultimately to a double-series in the expression
for F(w—6,0). We do not pursue this further as
eq 6.9 gives M where

M=M,+M,—cV[F(o—6,0)+ F(8,0—8)]. (6.16)
VII. Capitance of the Conductor

If lengths are in centimeters, the capacity € of
the conductor is C,(6)=M/V" (in centimeters), by
eq 6.9 and 1.4,

Ow(e>:asino{Sw(20, 0)— [5 (a,0)— slllla /9] }
a0
—a sin 0 [S.(20,0)—G.(0, 0]

—

wsin =
w

=a sin 0 G,(20,0)—G,0,0) |- (7.1)

A formula by which the capacitance could be
computed is (from eq 6.7)

C.(6) as;n 0{ T 0—82 11-7”0':1#(71-{—‘))-—

sin
w

¢ (H-i-”)—i- log rf:l } (7.2)

where values of the psi-function may be taken
from tables such as the six tables, No. 7 to No. 12,
of ¥ (x) given by Davis.?

For actual computations, Cw(f) of eq 7.2
could be expressed as a finite number of terms
plus an infinite series of the form

TQ (Os (Il1ra @) = N
e

r=0

Z A, sin? (nr/w),

=i
where only a few terms would be required if the
coefficients A, vanish with increasing = like,
say, n~ " instead of like n7% in eq (7.2). To get
such a form we may, in eq 7.2, make use of the
known asymptotic expansion of the psi-function,
valid when z is large with positive real part

1 )¢5, .
¥(z) ~log 2—22—%—; = o (7.3)
where the Bernoulli’s numbers are
1 1 1 1 5 691
Bl—g) Bg—gﬁ) Bg*ﬁ) B4—3’0) ]g:)‘GG, ]}6*273()‘

By use of this it is found by expanding y (n—i—é)
and ¢ <£g+1) in powers of 1/n that odd powers

cancel up to n~'', giving

HEHRIC N
(o)

1 6
o SN - . yd
8 p;( 1)zte, @n)? +1010< > (7.4)
where
T 31 127
a=1 =15 =57 4= 30
, . (7.4))
¢ -‘)7—i—28 and ¢ *518+”
s—at gy e 91

The remainder (n='*) is less than the last term
retained (in this case the term for p=6). It
vanished to higher order than n™'? (presumably
like n~*).

If p is a positive integer, the following type of
cosine-series converges for

I=a=<2w,

. . . 7['(1\
and its sum is a polynominal A, ( > of degree
w

2p in (7%)
Co) |G 7

@nt ' 2 =1l (2p)!

2 H. T. Davis, Tables of the higher mathematical functions, I (Principia Press, Bloomington, Indiana, 1933).

Conductor Bounded by Two Spheres
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where

T
S0 =551 Br =22 (7.6)
S, =1.644934
S, =1.082323
S =1.017343
Ss =1.004077

Sio=1.000995

With the second member of eq 7.5 we could form
series whose sum represents a polynominal in
(ra/w) of 12th degree, which could be computed
without the necessity of computing the Fourier

series, let
< >2p
<_1)p+1cﬂ [ 220 ] h2p<7ra>

2(%)=52
(7.7)

This may be written as the sum of 6 Fourier
series

()= 25 (— e, [1— (g)]
Z cos (nra/w) i

2 (7.7
Equation 6.7 is
Go(a, 0):‘%{% log g—i-"z:‘{ cos <MTa>
[#(n+3)—v ("2 +5)+10e 7]}
:%{%10g£+ﬂ<_7;_a > nza},
(7.8)
where
s e -s () )
2
52 (— e, [1 ?29 ] (7.8)

For large n, eq 7.4 becomes

A, ~ % Zero <%>

Hence, very few terms of the infinite series in eq
7.8 will be sufficient.

400

Formula (7.1) for capacitance becomes

0. 0) ﬁﬁlnj{i,_ 4 I:H(O) g (27())]_

- o
SEA,,sm w}. (7.9

The polynominal H(?) may be computed by eq

7.7 and 7.5, @ being replaced by 26 and again by
zero for H(0). This formula (7.9) is the exact
equivalent of eq 7.2. It becomes an approxima-
tion when the infinite series in eq 7.9 is replaced
by the first two or three terms, but it gives a
much closer approximation than the same number
of terms of the series (7.2). Formulas for C will
be found below, in finite terms, when 7/ rational
say w=nm/n, but if either of the integers n or m
is large, the new formulas may not be preferable
to eq 7.9 for numerical computation.

The capacitance of a conductor that consists
of two unequal spheres in external contact may be
computed by this method.

Let

2a
b= L
a+a1

where 0<a,<a, and 0<b<1. (7.10)

Equation 1.2 shows that ¢ and » each approach
zero, their ratio being

g
[ SRS

In this case the capacitance is

a a, ( ™ \
00(0)=&ﬁlm”‘4[H(0)—H(7rb)]—
SZA sin? ;b} (7.11)
where

H(xh)=§ é (=171 2 hy(wt),  (7.12)

(wb)z’ (=17 _xb\ (xb)*!
th(ﬂ'b)—“Z(—l ) + 2 (71'—27) m’
(7.13)
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and

— 1)
A, \//(n+ )—logn 62((27)1 &,

1

(7.14)

so A, ~Zero <7Tll“> when 7 is large.
For equal spheres b=1.

VIII. Capacitance in Finite Terms (w/w
rational)

By eq 4.12, in which g and g’ are each zero and
w=nm,

m—1 /
Smr/m(a; 0): 2 Smr 2n1rt’
=0 m

Hence, to obtain S,(a, 0) when w=nw/m, we
require expressions for S,.(a, 0). These are found
from eq 6.1c with B=0. It is necessary to dis-
tinguish between even and odd n.

For odd, write w=(2n— 1), and for even take
w=2nm where n is a positive integer in each case.
Equation 6.1c¢ gives

S(?n—-l)ﬂ'(a; 0) =
gf“’ - ~sinh 2 cosh rde
0 o v | ench? e anc2 &
sinh (2n—1)x l:(,osh Z—COS 4n—2:|’

(8.1a)

in which we take « in the period interval,
(64
— (4pn—2 = G
0<a<2w=(4n—2)m S0 0g4n 2<7r.
Similarly,

2 (=
Sgn,r (a, O) :;L

sinh z cosh z dz

—— (8.1Db)
sinh 2nx l:cosh%— cos? g]}
4n

where « is in the period interval,
0<a<2w=4nrt 80 0<_ fn <.
These may be integrated by use of the substitu-

tion t=cosh z, if we make use of the finite products
that are valid for real or complex z, and n>>1

sinh 2n—1)z n-1 COsh’z—cos® 2:’?—1
: =2n—1) II
sinh « s=1 Sine 81{4
2n—1
(8.2a)

Conductor Bounded by Two Spheres

. coshz— cos? 5T
sinh 2nz el 2n
— o=, N e SR
sinh « cosh s=1 ST

sin? ;
2n

&

(8.2h)

Considering these ratios as polynominals in
=cosh x, we find the following resolution into
partial fractions for their reciprocals,

sinh x -
sinh (2n—1)x

L (1—)s*! sin’ ( )LOS (9”_]>

— cosh?z— cos? <2 _1>

n

(8.3a)
—1)s+1 2
sinh I(Oshir ] = 1) - s,li( )
sinh 2nz < >
cosh r— cos?
(8.3b)

For n™>1 the integrals (eq 8.1a, b) become

bl ST ( s )
2 ey, oy, )
on—1

5 ST «
$=1 2 2
COS™ ¢ s COSE e =
2n—1 2

S(2n l)r(a 0)

9 (e 1 o 1 dt
= 5 an ST 2, \/tz -1
le t*—cos on t2—cos? 4n

(8.4b)

Letting t=1/cos ¢, the integrals in eq 8.4a and
8.4b become I and I®, where

I(“’Zlfm 1 +
Bl 1—cos + ci

on—1 908 ¢
1 - 1 _
ST (04
1-4cos op—1 ©08 ¢ 1—cos 4n—o ©0S b
- ds,
1+cos in—o cos ¢
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]a»:l fw/? 1 1 .
2 cos ST\ 1—cos 37 cos ¢

2n 2n

1 .
s
1—{—005% cos ¢ coS @

1 1
( e g do.
1—cos E}cos ¢ l—l—cos@ cos ¢

Now

: =
TSN 7y 0=y<lm,

l /2 dd) -
T Jo 1+cosvycose¢p
T

1 /2 dd) B
L e = i o<,

1—’)//1r__

lf"ﬂ cos d¢ 1
T Jo 1—0057005¢ Ccos Y

sin vy
Hence,
I(a): ~ 1 = 1 e
’ . ST
sing Sin — 4n—
s
= =
I®_ql N T eFh
sin °©  gin &
277

The formulas obtained, which apply throughout
the fundamental period interval 0<a< 27 (boun-
daries excluded where S, («,0)—> ), are

2 ([l d 1
;J; 1—cos? icos?& sin v' if 0y <L,
S (a,0)= S /2 for 0<a< 2.
1 (=2 cos ¢pd¢ 1—2v/m .
;ﬁ 1—cos? y cos? ¢ sin 2y B0 v For n>>1 and 0<<a<2w=(2n—1)27, we find
1 - (_ 1)s+1 SiIl 52’/8L
S(Zn_l),,(a, 0): o Z} (8.5)
on— 1) sip — % &= C: N S
(2n—1) sin in—>o sm —i—sm 1
: 28w
— sl
1 2 U e -
S sine/2 2n—175 a 28w (3:6°)
S on—1 “®2p—1
a
. . 1—
(by eq 8.3a with z=1a/(4n—2)). T
. (o, 4 .
For the even integer, we get Sar(e, 0)= sin /2 or 0<{a< Zo=4m. (8.6)

For n>1 and 0<a< 2w=4nm, it 1s found that

. o ST « S
= (—1)=** sin? wl o 1Tm
Sl 0= 21— | S/ sin sl S
cOS o cOoS 7
OZW 1l (=1 (1_'7> Sml
(8.7")

Tsina/2 n&

by eq 8.3b with z=ia/4n). If a« were replaced
by |a|, these expressions would all serve for period
interval —w<a<<w. It is readily verified that
these expressions for S, («, 0) satisfy the condition
of symmetry,

So(a,0)=8,(2w—a, 0) so that D,S,(a,0)=0
when a=w.

402

(84 ST

cOoSs élb_ CcOS ’h’
Since eq 8.5 to 8.7" are all valid for the period-
interval, 0<Za< 2w, these may be used in eq 4.12
to obtain S, (a, 0) for its positive period interval.
The second form (eq 8.5)” is used only to get

a0, 0)= I:S (e, 0)— /o:l for a=0. The same

blll

remark applies for eq 8.7’
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The capacitance is given by eq 7.1, in which
the most suitable form to be used here is

O,(0)=a sin 0[S, (20, 0)— G, (0, 0)]. (8.8)

In the formulas for capacitance given below it

Consequently, 0<20< 2w, that is 20 is in the first
positive period-interval.

X m—1 1
Crm(0)=a-+asin >, | — N ]f )
= Sin<7r—{—6) sin
m m

is understood that 6 satisfies the two inequalities (8.9)
of eq 1.1, namely, where m™>1.
For w= EU Ve <27, where 1<n=2m
0<6<7 and 0<0< w. ™ ™, Where &
. 2sm
c T il (=1 g s
Can-ve(6) =322 053 > = 1 +
% =1 )i 7= sin( - sin —{-sm
2m Zn
. 28w
n—12m—1 (“]> ol Sl“ M ¥1 2m—1 1
: (O )
PRR Cn=123 =iy (8.10)
COS TS op— 2m
a .
03,(0):<l—; (§—sin 0) (8.11)
< 0> | 2t
m—1 = -
('2”/’71(0):(1_, (0—sin 0) +a sin 02 "72”, 2 —an ‘)1r7;m , (8.12)
sin +6 -
< m >
where m >2 (fig. 1, a).
2nm
For w=g <.47r where 1<n<2m—1,
41 it °T RYEL
O onx (0) 7(1 Sln LS55 % : 1) o (Zm':,l, . l,h'e/7l'
T n §=1 t=0 ( ‘)hr —((s s sin sin s /n
2m— n 2m
S
eIy L LR (1 _"> sin 7+ 2m—2 .2m—1
= = 8.13
. ':Z“\l co8 52" —cog T ’=El il | L S
= =l n 2m—1
The case w=27 1s a thin spherical shell with a : aa,
hole of angular aperture 26. The capacitance is o = ) s G = 00 vart-a?
givenineq 18.11. When the conductor is formed (8.14)

by two unequal spheres intersecting orthogonally,
there are two cases, o==/2 and w=37/2. The
first equation (8.8) with m=2 gives the capaci-
tance, for 0<0<7/2, (see a,b of fig. 1)

the radius @, being a tan 6 by eq 1.2.
The other case w=37/2 is given by eq 8.9 with
n=2 and m=1,

a sin 0

(Y";W/‘) (0

Conductor Bounded by Two Spheres

5 4 L
e —{ :
V3 3 sin 0 sin +; +sm 2 cos g <COS f—}- sin %
P & 3 3 3

(8.15)
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When 6=m/2, this conductor is a hemisphere, the
face a=w=37/2 is a plane face. This gives

03;r,2(7r/2)—f— (v3—1)=.8453a, (8.16)

as the capacitance of the hemisphere of radius a.
(Fig. 1, d). Placing 6=m/2 in eq 8.11 gives

O 1r/2)—a< 1)— 8183a (8.17)

as the capacitance of a hemispherical bowl.

In general when w >, as it may be in eq 8.9 or
8.12, we may then take 6=w—m, in which case the
conductor has one plane boundary as in figure
1, ¢, d.

IX. Electric Field in Finite Terms

The only case in which the field, that is, S,
(e, B, B’), has been found in finite form where
neither 8 or B’ is zero, has been given in eq 4.12
with w=m/m. This means that the potential due
to any circular line-charge in the presence of the
conductor at zero potential is found at all points
in space in terms of a finite number of complete
elliptic integrals, for the case of an infinite set of
values of the form * w=m/m, m being any positive
integer.

When g'=0, we may find three other infinite
sets corresponding to w=nw/m where n=2, 3, or 4.
These give the electric field in finite terms due to
the charged conductor alone, or to the conductor
under influence of a point-charge on the z-axis.
It is merely a question of evaluating S,.(a, B),
that is, Sy.(a, B, 0) for n=1, 2, 3, 4.

To do this, place w=n= in eq 6.1b,

sinh z dz

S,,,(a,ﬁ):@fm .
& 5/"<coshx—cos;t)\/coshmc—coshﬁ
©.1)

Using the finite product,
9 .
coshnx—cosh6=2”‘lﬂ",;},[coghx__c()s<_ti;iﬂ@):|,

(9.2)

3 The potential was given for the case w==/m by H. M. Macdonald, Proc.
London Math. Soc., (1), XXVI, p. 156 (1895).
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gives

S,“,(a B)=—mp 2n/2

f sinh z dz .
M(coshx cos~>\/ Tz I:coshx cosh (ﬁ 9”“)]

Let

2'=coshz

9.3
xo=cosh g/n and x,:cosh<5 27rt2>} (9.3)

where t=1,2,3,... (n—1).
This becomes

ﬂf(a B) 2n/2
dz’

JI” (x’—cos %)v" (@' —x) (@ —x) ...

Letting ’ =xyz, this becomes

(x/_xn—l)

Sn‘ll'(a; 3) :mxgo) n/2

f . _ds
=) oo

For n=1 and n=2, this integrates with elemen-
tary functions. When n=3 and when n=4, it in-
tegrates with elliptic functions. For n=5 this
integral is hyperelliptic. For n=1 we obtain

V2

v/cosh B—cos a

. (x_xL—l>
To

(9.4)

Sr(a: B)

as before.
The expression for S;,,(«,B) is given in eq 4.13.

The ease n=2 or w==2x

Equation 9.3 gives z,=cosh 8/2 and 2,=—u,, so
eq 9.4 becomes

Sye(ce, )= 1 J‘l &2 dx

zom )i (z—cosy)yri—1
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where

vcosh B—cos
V2. coshB/2 3, (9.5)
0<y=7m when 0<a/2=7

cos a/2

cosh ¢ 5/2 and sin y=

COS Y=

and when 8—0, y—a/2 for 0<a/2=<.
It is sufficient to restrict « to the half-period in-
terval

0<a<w=2m.
The substitution z=1/cos ¢ gives
1Y
L dé T
82"(0"6)_%7_[; 1—cosycos¢ &osiny
or
s = V[ g (502,
e /CObhﬂ—(OSa m cosh /2

(9.6)
which reduces to eq 8.6 when g=0.

It may be noticed that the factor of the bracket
is S:(a, B). This appears in the two following
forms.

The case n=3 or w=3m

Consider « in the half-period interval 0<a=w=
3m s0 0<a/3=m. The modulus £ is defined by

cosh (8/3)

k=113 w74 cosh? (8/3) —

(9.7a)

Let v (in the interval 0<y<

by
\/3 <c0%h f——> (cosh B/3—cos a/3)

cny=—"—
\/ (cosl ~——>—i—(cosh B/3—cos a/3)
(9.7b)

2K) be determined

It is found that

Sz (e, B) =
v2 { ‘)K I:snva’n'y :I_ v }’

Jcosh B—cos 1+cny K
(9.7¢)
where Z(v) is Jacobis zeta-function,
“ I E 1 E
Z(u):ﬁ dr*u’dp’ —u Kzla(u)—u é

Conductor Bounded by Two Spheres

The quarter-period for modulus & is K while K’
is that for complimentary modulus k’=+1—k?

When B—0

k—1, K—>7; Ko

-—l—(o o;f
eny—dny—>sech 'y—r— a >0if 0<alr
E—LOS 3
sny—Z(y)—tanh vy
S0
2K’ [snydny | —tanhy
14eny 1+scch v
1—sech v v sin (a/6) __ 2 sin &
1+sechy  sin /3 \/3 6
Hence eq 9.7¢ becomes
1 2 6) 1
SSW(CY; 0) :—*7(1 - zlnll(la//)2 77”&—
gy & VO sl a (e
sin 5 sin

——s 1 —— - —_—
— 2
(e B — ]

3 (u)s 3 cos )

in agreement with eq 8.5” (with n=2).

The case n=4 or w=4r

Consider « in the half-period interval 0<a=
w=4r, s0 0<a/4=m.
Let
2 cosh’ B/4
~ coshp/2
and
where 0<y<2K.

It 1s found that

/§
vcosh B—cos

l:l = lsin“1 (kesny)
™

Six (e, B)=
K’ vy
Hzm-3g] ©9
When g—0, this gives for 0<a/4<m/2,
k—1, K'— g, K— o, eny— sech y=cos a/4
sny—Z(y)— tanh y=sin «/4.
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Therefore,

a
L= 47r_ 1
sina/2 4 cos a4
Hence by eq 4.12 the potential or electric field
may be found in finite terms when w=nm/m where
n=1,2,3,0or 4 and m is any positive integer.

Siz(a, 0)= as in (8.7) with n=2.

X. Summary of Formulas for Computing
Capacitance and Field

The conductor has a meridian section bounded
by the two arcs =0 and a=w of figure 2, a.
Several sections are shown in figure 1. The
capacitance is a function C,(6) of the two angles
wand 0. In case I=w—m, the conductor has one
plane boundary.

For general values of w the capacitance may be
computed by eq 7.2 or by its equivalent but more
rapidly converging series (7.9).

This method is applicable to the case of two
unequal (or equal) spheres in external contact
eq 7.11. The capacitance may be computed in
finite terms with elementary functions when
w=nm/m where 0<w<27, m and n positive
integers.

The case, w==/m capacitance by eq 8.9
w=2n—1)r/m, for 1<n<2m by eq
8.10
w=27 (thin shell with aperture 26 figure
1b) by eq 8.11
w=2x/m(m >1) by eq 8.12
w=2nr/2m—1), (1<n<2m—1) by eq
8.13
Special cases,
w=m/2 eq (8.14) and w=3w/2 (eq 8.15)
w=37/2, (0=m/2) hemisphere (eq 8.16)
w=2m, (§=m=/2) hemispherical bowl (eq
8.17)

The potential due to grounded conductor in presence of a point-charge A’ at any point P’ (a’,0)
on the z-axis may be computed at any point P(e«,8) by eq 4.9 which is

Vala, B; o, O)IAf sin

I \/cosh

Since S, (a,
tions. This gives

=008 (0=0)ig (a—of, B)—Sulato’, B].  (10.1)

B) denotes S,(a, B8, 0), the second series (4.9) with 8’=0 may be used for these S-func-

8M’

Cw

a’f

Ve, 85 a’, 0)= :

cosh B—cos (a—0
2

nra’

= . Mra .
; Qﬂnl (cosh B) sin T, Sme (10.17)

ol

which converges for all points not on the z-axis, with exponential convergence factor exp (—f +§'> B,

so the first term =1, is the principal part when g is large.
For computing V on the z-axis, the S-functions in eq 10.1 may be expressed in terms of G-func-

tions by use of eq 6.2.

é

2

M'n

Vi(e, 0; o, 0)=

8 ©
—Z sin ™ gin "
™ n=1

This series could be reduced to one more rapidly
convergent as in the transformation from eq 7.2
to 7.9.

For the potential V,(a, ) at any point («, 8)
due only to the conductor charged to a constant
potential, eq 6.11 gives

406

s

Then use of the series (6.7) gives

a—~0 1 1
2 ’{sin r]a—a}!‘ 7o —{—a"_{_

2% sin

[ (ot 3)-v ()]}

(10.17)

| /i:(fsfl B cos (a—10)
-y
[Su(a—0, B)—Sa(a-t0, ﬂ)]}- (10.2)

T’w (ay B) - VO
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By use of the series (4.9) this becomes

8yo h 8—cos («—6
Vler, )=V"— \/COS‘B oelezf).

7(7['6(

Z Qn,, l(cosh 8) i e (10.2")

On the z-axis this may be replaced by

0
Vole, 0)=Vo0— le sin

a—@l - 1

7r[a—9\
sin

1 < nwa . nwb
(a+0) - nZ sin L, Sinc o
I:\l/ (n +A)> <H+9>+lo<r f]

(10.2'7)

The potential at any point P«,B), due to the
gounded conductor in presence of a circular line-
charge M’, with trace at any 1)0’1}1L P’ (a!, B') is
given by eq 5.1 and 5.2 where the S-functions may

be computed by the series (4.9). In case w=x/m

Conductor Bounded by Two Spheres

(m a positive integer) the S-functions are given
in finite terms by eq 4.12 with w=m, that is,

. , , m—1 7Tf ,
kSvr/m (a:i:a ;B;B)“* ‘S <a:t0‘ _*n/’ﬁyB)’
(10.3)

where each S; function is given in terms of a com-
plete elliptic integral in eq 2.32.

In the case of a point-charge on the z-axis, the
Se-functions of eq 10.1 are given in finite terms
when

w=nw/m wheren=1,2,3 or4, and m

is any positive integer. Similarly, the potential
of the charged conductor alone is given by eq 10.2.
The expressions are found in eq 9.5, 9.6, 9.7, and
9.8 for Sy (a, B), Ss-(a, B) and Sy, (a, f). The last
two cases,n=23 and n=4,involve elliptic functions.
Using these in the general formula (eq 4.12) with
w=nm and B =0 gives
m
117r/m( B) Zlean a+£zrf’ B) (10 4

WasninagToN, February 8, 1949.
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