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The transmission of reverberant sound through homogeneous single walls has been 

investigated theoretically and experimentally. Random incidence sound-transmission 

measurements were made on homogeneous walls of aluminum, plywood, and plasterboard. 

The results were found to be in satisfactory agreement with a modified version of a theoretical 

treatment first given by Cremer, which postulates that the wall impedance has a resistive 

component in addition to its mass reactance and a stiffness reactance resulting from the 

occurrence of flexural waves. Two of three parameters that are required to predict the 

transmission loss, namely, resistance, and critical flexure frequency, the third one being mass, 

are evaluated from the experimental data in such a way as to obtain the best fit between the 

theoretical and experimental results. Conditions under which the mass law of sound trans­

mission may be ass umed to be valid are investigated in detail by studying the behavior of 

Rayleigh's transmission law, which takes into account the compressional waves induced in 

the wall. 

Experimentally, it was found that considerable improvement in transmission loss could be 

obtained by applying a fairly substantial sound-absorbent blanket to one of the faces of a 

homogeneous wall. 

1. Introduction 

Previous investigators [1 to 5]1 have given 
theoretical treatments for the attenuation of a 
plane sound wave upon transmission t.hrough 
multiple partitions consisting of two or more septa 
separated by airspaces. In all of these derivations 
only normally incident sound waves are considered· 
Consequently, it is difficult to compare the theo­
l'etical predictions with the experimental results 
obtained on walls for which transmission loss char­
acteristics are determined [6] under the excitation 
of reverberant sound fields containing random 
waves with random angles of incidence. 

Also in the previous derivations [1 to 5], it has 
usually been assumed that each panel of the double 
wall combination has a mass reactance only. This 
is equivalent to assuming that each individual 
septum obeys the familiar mass law. However, 

1 Figures in brackets indicate the literature references at the end of this 
paper. 
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it is well known that many homogeneous walls 
deviate considerably from the mass law. Conse­
quently, it was necessary to investigate the trans­
mission of reverberant sound through single walls. 
By utilizing a modified version of a treatment first 
given by Cremer [7], it was possible to determine 
a suitable equation of motion for each septum, 
which could then be inserted into the equations 
governing the transmission tlU'ough the double 
walL 

In this paper, the attenuation of an obliquely 
incident plane sound wave upon transmission 
through a single wall is computed. By using the 
customary reverberant sound field statistics, the 
attenuation is integrated over all angles of inci­
dence to give the average transmission loss. The 
same technique is applied in studying the trans­
mission loss through double walls, which will be 
given in a subsequent paper . In addition to the 
theoretical treatment, experimental resul ts on 
single and double walls will be given. 
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II. Transmission Through Single Walls 

1. Attenuation of an Obliquely Incident Wave 

In figure 1, an oblique plane wave is incident at 
an angle f) on the infinite wall. If Pi is the acoustic 
pressure in the incident wave, then there will be 
a reflected wave with pressure PT' and a trans­
mitted wave with pressure Pt. It is required to 
determine the ratio pt!p t. Consider any small 
area of the wall located at point (0,0). Then 

Y AXIS 

I , 

FIGURE 1. Geometrical relation between incident, reflected 
and transmitted pressure waves. 

there are two conditions which obtain at the 
boundary between the sound field and the wall , 
which suffice to determine the desired ratio, that 
is, (1) continuity of X-component of particle 
velocity, and (2) the relation between the acous­
tic pressure difference acting across the interface 
and the motion of the wall. 

Let the pressures be represented by expressions 
of the form : 

where 
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Pi=Pieiwt-ik(Z COB 0+11 Blo 0), } 

PT=Preiwt-ik(-z COB 0+11 Bin 0). 

PI=P ,eiwl-ik(Z COB 0+11 Bin 0), 

k 211" W... I h . . =>;=c' ,,=wave engt III all'. 

(1.1) 

(1.2) 

The directions of propagation of the waves are 
in the x-y plane. As the particle velocity is re­
lated to the pressure by the expressi.on 

. i op 
~x=- '>" 

pw ux (1.3) 

the first boundary condition at point (0,0), 
results in the following: 

(1.4) 

where ~o is the velocity amplitude of the wall in 
the x-direction, whereas the second boundary 
condition requires that 

(1.5) 

Here Z", is the mechanical impedance per unit area 
of the wall. Whence, a, the ratio of the incident 
to transmitted amplitude becomes 

a=Pi= l+Z", cos e. 
PI 2pc 

(1.6) 

2. Basic Assumptions 

In the derivation of eq. 1.6 it has been assumed 
that it is only necessary to consider a small area 
of the wall for which the projection of the wave 
front on it has practically constant phase. This 
treatment may be justified by the consideration 
that a reverberant sound field may be treated as 
the resultant of effects due to sections, having a 
small area, of wave packets with random angles 
of incidence and random phases. Also, use may 
be made of Schoch's [8] asymptotic law, which 
states that at sufficiently high frequencies above 
the fundamental frequency of a vibrating plate, 
the plate breaks up into small zones that vibrate 
independently of all other zones. Any small area 
of the plate vibrates in accordance with the sound 
pressure acting on this small area only. 

Other assumptions that are implicit in this 
derivation can best be discussed with reference to 
a specific type of Z"" that is, one in which the wall 
is assumed to have a mass reactance only, corre­
sponding to which 

Z",=iwm, (2.1) 

where m= mass of wall per unit area. Now, 
Rayleigh [9], by considering the compressional 
waves induced in the wall by the action of the 
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sound waves, has shown that the attenuation is 
more generally give)). by 

( l ) + i . ( l ) [ PICI cos fJ + pC cos fJ1 ] a =COs at -2 SIn al - --fJ fJ ' pC cos I PIC I cos 

where 

l = thickness of wall . 
fJI = angle of refraction of wave in wall . 
PI= density of wall material. 

(2.2) 

CI = velocity of sound in wall material. 
AI=wavelength of sound in wall material. 

In eq 2.2 a phase factor given by Rayleigh that 
does not effect the magnitude of lal has been ig­
nored since we shall concern ourselves only with 
absolute values. For al l« 1, or 27rl/Al(COS fJ1)«1, 
eq 2.2 becomes 

a = 1 +i 27rl cos fJ1 (PICI cos fJ + pc cos fJ 1 ) . (2.3) 
2 Al pc cos fJI PICI cos fJ 

If we restrict ourselves to angles less than the 
critical angle as defined by Snell's law and as is 
explained below, then if (pc cos fJI )/(PICI cos fJ)«1, 
which is equivalent to (PC) / (PICI)«1 since cos fJ1 

and cos fJ are of the same order of magnitude, eq 
2.3 reduces to 

1+iwm cos fJ 
a= 2pc' (2.4) 

which is identical with eq 1.6 when eq 2.1 is sub­
stituted in the latter equation. Thus, it will be 
seen that eq 2.4, which we shall call the mass law ex 
is valid, provided the specific acoustic impedance 
of air, pc, is much less than that for the wall mate­
rial, and the thickness of the wall is much less 
than the wavelength of sound in the wall. 

I t is of interest t o investigate the behavior of 
eq 2.2 in the vicinity of fJ = 90 0 , since the mass law 
a , (eq 2.4) predicts that the incident wave will be 
totally transmitted at grazing incidence. First, 
it is to be noted that, in accordance with Snell's 
law 

(2.5) 

and the critical angle of incidence fJc is given by 

(2.6) 
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or since for ordinary materials cdc» 1, we see 
that the critical angle of incidence is rather 
small. Thu , for a brick wall cdc ~ 10, and there­
fore fJc~6°. For angles greater that fJc cos fJ1 , 

which may be written as 

co fJI= {1 - (~Y sin2 fJ r, (2.7) 

becomes imaginary, i. e., sin fJ> C/Cl. Then let 

. {(Cl)2 . } ~ . , cos fJ1 =t C sm2 fJ - 1 =t cos fJlI (2.8) 

where cos fJ;, from its definition, may be greater 
than unity, and also al =ia;=i(27r/A.I) cos fJ;. 
Equation 2.2 becomes 

a=cosh (a;l) - -2i sinh (a;l ) [pc cos fJ~ 
PICI cos 

If a; l « 1, for fJ> fJc, then 

lw , lw . 
- cos fJl ~- sm fJ« l , Cl C 

PICI cos ~]. 
pc cos fJ1 

(2.9) 

so that this condition corresponds to l « A. < AI> and 
is to be compared with the condition l« AI when 
fJ < fJc, previously derived. Equation 2.9 by a 
first-order expansion of cosh (a;l) and sinh (a;l) 
becomes 

a= 1+~ :; cos fJ{ 1_(~)2 [(tY sin2 fJ-l ] }, 
PICI cos2 fJ 

(2.10) 

which for angles close to 900 reduces to 

Thus total transmission occurs at an ano·le less 
than 90 a when tan fJ= pd p, and since pd p ~ 103, fJ is 
very close to 90 0 • At 90 0 , ho wever, the attenua­
tion becomes infinitely great. Furthermore for 
angles not close to 90 0 , eq 2.11 reduces to the mass 
law a, (eq 2.4), even though fJ>fJc. 

3. Average Attenuation for a Reverberant Sound 
Field 

In a reverberant room, waves are incident at 
the transmitting wall from all possible directions. 
Since the phases are distributed at random the , 
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r 
energy of the resultant wave is a summation of the 
energy of each individual wave component. 
Each packet of energy incident at angle 6, is 
greater than its corresponding transmitted packet 
by the factor lal 2• Let T be the ratio of the total 
energy transmitted by the wall to the total energy 
incident on the wall, then in accordance with the 
usual reverberant sound field statistics [6] 

1r 

T 

(2" cos 6 sin 6 do 
Jo lal2 

.. 
2 ("2 cos 6 sin 0 dO. (3 .1) 

Jo lal 2 ". 

502 cos 6 sin 6 d6 

For a wall having a pure mass reactance, i. e. a 

defined by eq 2.4, the transmission loss (TL) , 
which is defined as 10 loglo (lM is given by 

TL= 10 log(~)=10 log a2-10 log [In (1+a2)], 

(3.2) 
where 

wm 
a=- ' 

2pc 

Equation 3.2 is the random incidence mass law, 
which is to be distinguished from the normal 
incidence mass law given by 

(3.3) 

which is readily obtained from eq. 1.6 and eq 2.1 
by setting 6=0 0 and noting that in this case 
1/T=laI2• 

In table 1, a comparison between the normal and 
random incidence transmission loss values is made. 
Thus, it will be seen that the effect of random 
incidence is to materially reduce the transmission 
loss relative to what would be observed in the 
case of normal incidence. 

TABLE 1. Transmission lo ss 

Normal Random Difference incidence incidence 

db db db 
10 5.9 4. 1 
20 13. 3 6. 7 
30 21. 6 8. 4 
40 30. 4 9. 6 
50 39. 4 10. 6 
60 48.6 11.4 

N either the normal nor the random incidence 
mass law agrees with experimental results on light-
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weight walls to be described below. However, it is 
possible to obtain reasonable agreement with 
experiment if it is postulated that the wall 
impedance Zw contains in addition to its mass 
reactance a resistive term. For this purpose it is 
assumed that 

Z 2r +. w= cos 6 ~wm, (3.4) 

and in accordance with eq 1.6, there results 

a= l+R+i wm cos 6, (3.5) 
2pc 

where R=r/ pC, the resistance in pc units. Further­
more, in this case the transmission loss becomes 

TL= 10 log a2-1O log [ In{ 1 +(l~RY}J (3.6 ) 

From the method used in introducing the resist­
ance coefficient r in eq. 3.4, it will be seen that it 
has been assumed that a normally incident wave 
experience much less resistance than a wave at 
oblique incidence. This seems to be a natural 
assumption to make, since it is to be expected 
that a wave at almost grazing incidence would 
have high attenuation in passing through the 
material because of its long path length, whereas 
a normally incident wave would have little attenu­
ation because of its shod path length. In addi­
tion, from eq 3.5 it will be seen that the effect of 
the resistive term is to reduce the high trans­
mission obtained at grazing incidence for the 
random incidence mass law. Since at low fre­
quencies the mass reactance is rather small, while 
R is independent of frequency, the effect of R will 
be to increase the low frequency transmission loss, 
whereas at high frequencies it will have negligible 
effect. 

In figure 2, application of the random incidence 
mass law, eq 3.2, and the more general equation 
that includes the resistance t erm, eq 3.6, to ex­
perimental results obtained on a Ys 4-in. aluminum 
wall are shown. It will be seen that eq 3.6 may 
be made to fit the experimental data if R is taken 
to be 2.16. The optimum value of R was deter­
mined empirically so as to give the best fit with 
the data . . 

In the next section we shall consider modifica­
tions required in Zw when flexural waves are 
excited in the wall. Before taking leave of the 
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FIG URE 2. Transmission loss of a }t4-in. aluminum wall. 

m=0. 12 gjcm'. Curve 1: transmission IOS5=1O log a'-IO log [In{l+a')]; 
curve 2: experimental; curve 3: 

t ransmission loss= 10 log a'-1O 10g [ In { 1+ ( I~R)'} ] ' where R=2.16. 

present discussion we need to investigate further 
the lelationship between Rayleigh 's exact expres­
sions Ceq 2.2 and 2.9) and the random incidence 
mass law. 

Since the mass law in the form of eq 2.11 holds 
only when a;l« 1, it is of interest to determine 
what limitations occur as a result of this restric­
tion. From eq 2.9, for pc cos O;«PICI cos 0, 
which is valid for all values of 0 except those very 
close to 90°, provided P« Pl, we may write 

For sma.ll a~l we take cosh a~l= 1 and sinh 
a~l= a~l. This substitution results in the mass 
law lal2• Since both the cosh and sinh increase 
with increasing argument, we wish to find an 
upper bound to a~l such that the deviation of eq 
3.7 from the mass law will not be too great,. 
Furthermore, the second term of the right-hand 
side of eq 3.7 is much greater than the first, so 
that practically all of the deviation will be due to 
sinh Ca~l»a~l . If we use the value of a~l such 
that sinh2(a~l)/(a~l)2=2, there will be approxi­
mately 3 db more loss for this value of a~l as 
compared to the mass law. When a~l= 1.5, 
[sinh(a~l)]/ Ca~l)= 1.4195, which is a sufficiently 
close approximation to ·,/i. This results in 

. 0 1.5c __ 
sm =-;;;r< l, (3.8) 

where CAl is 211' times the fl'equency in cis, l is the 
thickness in centimeters. The value of 0, pro­
vided O==::' 90°, defined by eq 3.8, say Om, may be 

Sound Transmission Through Single Walls 

- - - - ---------- - --------,. 

taken as the maximum angle of incidence for 
which the mass law expression Ceq 2.4) represents 
very closely the Rayleigh expression Ceq 2 .9) . 

The whole state of affairs is pictured in figures 
3 and 4 for the case of a brick wall for which the 
physical constants were taken as Pl = 1.5 g/cm3, 

cI = 4.3 X I05 em/sec, cdc= 12.5 , l= 2 in. for j= 
4,096 cps, or l= 4 in. for j = 2,048 cps, etc. It 
will be seen from figure 3 that Om in this case is 
about 24°, and the Rayleigh expression Ceq 3.7) 
for angles greater than Om results in values for 
lal2, which are much larger than the lal 2 ob­
tained from the mass law. Figure 4 shows that 
the T integral Ceq 3.1), using the integra~d 'Xm 

corresponding to the mass law and integrating to 
90° will result in a value of T that is much larger 
than that which the Rayleigh expression would 
give. To obtain an accurate value of T under 
such circumstances, it would be necessary to 
integrate the exact Rayleigh expression. How­
ever, a rough approximation to the integral could 
be obtained by integrating the mass law expression 
from 0= 0° to O= Om. The accuracy of this approxi­
mation would increase as Om increases. Thus, if 
we let u = coszO, and Om be the maximum angle 
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8 in. thick at 11,024 cis, etc. 
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of incidence for which the integral (eq 3.1) will he 
evaluated, we have from eq 3.8 

2 2.25c2 

um=cos 0",= 1- w2l2 ' (3.9) 

where O::::;:um ::::;: l 
and eq 3.1 becomes (using Zw=iwm) 

{ I du 1 1+ a2 

r= J um 1+a2u=(? In l + a2um' 
(3. 10) 

Now 

or 

(3.11) 

Since um= O, when 0",= 90°, we see that restric­
tions on the maximum angle of integration 
begin to occur only when 0 .56paa~p2 <=:< 1, which , 
since (pd p)2<=:< 106, means that this phenomenon 
should be taken into account only when the wall 
is of such a nature t.hat its normal incidence trans­
mission loss is of the order of magnitude of 60 db 
or greater. In this case it would be much better 
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to use the exact Rayleigh expression than to 
attempt to use eq 3.10. 

4. Flexural Waves; Experimental Results 

The case of flexural waves has been discussed 
in some detail by Cremer [7]. We shall state his 
results and point out wherein the present method 
differs somewhat from his presentation. 

By using the wave equation for t he motion 
of an infinite plate, Cremer shows that the wall 
impedance for a plane wave incident at any angle 
becomes 

(4.1) 

where 

Q= Young's modulus 

s=Poisson's ratio 

CI = Velocity of flexural wave. 

In the above the velocity of the wall ill the 
x-direction is represented by 

where kl= w/Cl = 27r'/AI, Al = wavelength of sound in 
the wall. The wall thickness is assumed to be 
small compared to A and AI. H ence no x-depend­
ent term occurs in ~ . 

The appearance of the negative reactance term 
in the wall impedance is evidently due to the plate 
stiffness. It will be seen that it is possible for 
Zw to become zero at the frequencies for which 
the bracketed term goes to zero in eq 4.1. The 
coupling between the acoustic wave and the 
flexural wave is given by the condi tion 

C=Cl sin 0, (4.2) 

where C is the velocity of sound in air. Further­
more, it is readily shown that if c, is the velocity 
of a flexural wave in the absence of driving forces, 
then 

so that Z w becomes 

Pw2 
c/=-­m 

Z'D=iwm ( 1- ~4 sin40)-

(4.3) 

(4.4) 
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It is to be noted that Zw becomes zero when 
C,= C17 that is, when the velocity of the free 
flexural wave is the same as that of the driven 
flexural wave. This phenomenon Cremer has 
called the coincidence effect. The lowest fre­
quency, fe, at which the coincidence effect takes 
place occurs when (J = 7r/2 and is given by 

Now 

Pw~ = 1. 
mc4 

or eq. 4.4 may be written as 

(4.5) 

Zw=iwm(I-J.: sin4(J} (4.6) 

By determining Young's Modulus from meas­
urements on longitudinal waves in a long bar of 
the wall material, an expression for P in eq 4.5 
can be derived that results in the following 
express ion for fe 

.y'3c2(I-s2)t 
7rc ll ' (4.7) 

where CI is the velocity of a longitudinal wave in 
the bar, and 1 is the plate thiclroess. 

So far we have not considered the effect of a 
resistance t erm in Zw. Cremer introduces the 
dissipation effect by replacing Q by Q (1 +i E), 
·where E Q is the complex part of Young's Modulus 
which results in damping. However, when- It 
was attempted to use this method in experiilleiits 
described below, extremely large values of ;;~re 
required to give any reasonable answers. In 
addition, the dissipation term had the wrong 
functional dependence on angle of incidence. It 
will also be seen that for frequencies much below 
fe, eq 4.6 regains its simple mass law form, the 
complex Young's Modulus would have no effect, 
and this theory would predict no dissipation for 
thin partitions. Thus, for the Ys4-in. aluminum 
wall shown in figure 2, je=30,000 cps, so that no 
flexural effects would appear at audio frequencies, 
and consequently no dissipation would appear if 
We followed Cremer's treatment. Accordingly, 
we introduce the r esistance term here in the same 
way as in ection II, 3. The complete expression 
for a, including flexural effects is then 

_ 1+R+iwm cos(J(I _f2 . 4(J) a - 2 f2 SIn , 
pC e 

(4.8) 

Sound Transmission Throuqh Sinqle Walls 

and T is obtained from /a /2 by eq 3. 1. Unfor­
tunately, the integral (eq 3.1) appears to be un­
integrable in general in terms of elementary 
functions. H ence in what follows, numerical 
integration was utilized. 

From eq 4.8 it will be seen that the transmission 
loss will depend on three constants R, m, and f •. 
Of these tluee constants, m is known, j c can be 
computed from eq 4.7 if all the other constants in 
this equation are known or measured, while R is 
unknown. Experimental measurements of trans­
mission loss were made on 7~-in . plywood, and 
H-, 1-, and 2-in. plasterboard walls. The Rand 
f . were determined empirically by choosing those 
values that gave the best fit with experimental 
results. R was determined by fitting an equation 
of the form eq 3.6 to the experimental data for 
frequencies from the lowest up to about one 
octave below the value offc. 

In the case of figure 5, which is the transmission 
loss for a X-in. plywood wall, two critical flexure 
frequencies were computed, i. e.,1c= 900 cis, or 
1c= 1,885 cis. The first value corresponds to CI 

for fir wood for a wave parallel to the wood fiber 
of 5.2 X 105 cm/s. The second value corresponds 
to CI for a wave perpendicular to the fibers equal 
to 2.4 X 105 cm/sec. The best fit was obtained for 

1c= I ,885 cis. In addition to jc= 900 c/s, an 
f c= 2,048 c/s, where the dip in the experimental 
curve occurs, was also tried. 
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FIGURE 5. Tmnsmission loss of a 7f-in. plywood wall. 

",=0. 70 g/cm'. Curve 1: experimental; curve 2: R=8.3. f,=1885. 

Figures 6, 7, and 8 give the results obtained on 
different thiclroesses of plasterboard. In the M-in. 
plasterboard case, there is some doubt as to which 
is a better fit, jc= 2,048 cis or j.= 4,096 c/s. 
From eq 4.7 it is to be expected that j. for the 
various thicknesses of plasterboard should be 
inversely proportional to thickness. Consequently, 
iffc= 512 cis be taken as correct for the 2-in. wall, 
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thenfe should be 1,024 cis for the I-in. and 2,048 
cis for the X-in. wall. The experimental results 
roughly approximate this sequence of values for fe. 
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FIGURE 6. Transmission loss of a 7~-in. plasterboard wall. 
m=1.02g!cm'. Curve 1: experimental; curve 2: R=10.5, (,=2,048; curve 3, 

R=1O.5, f,=4,096. 
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FIGURE 7. Transmission loss of a l-in. plasterboard wall. 
m=2.03 g!cm'. Dotted curve: experimental; solid rurve 2: R=1O.5,J,= 768. 
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FIGURE 8. Transmission loss of a 2-in. plasterboard wall . 
m=4.06 ~!cm' . Curve 1: experimental; curve 2, R = 15.3,J,=512. 

The variation of R with thickness is worth 
noting. No appreciable change was observed 
between the }~-in . and I-in. wall, whereas an 
approximately 50-percent increase occurred be­
tween the I-in. and 2-in. wall. Although the 
experimental points lie above the theoretical 
curves at the lowest frequencies, it is not possible 
to change R without changing the predicted trans­
mission loss at the minimum point at which 
flexural effects are pronounced, and also the 
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theoretical transmission loss curve in the low­
frequency region will go up or down accordingly 
as R is increased or decreased. To some extent, 
the rather slow variation of R with thickness 
indicates that some of the dissipation may be due 
to the type of mounting or restraints at the 
boundaries of the wall. Since this was the same 
for all three walls, it would not be expected to 
change. The walls were slightly less than 6 by 
7}~ ft in size and were wedged in place in an opening 
of this size and then sealed in with a gypsum plaster 
seal. Experimental details are given in [6]. 

5 . Transmission Through Inhomogeneous WaUs 

In this section we consider some additional ex­
perimental data bearing on the transmission of 
sound through single walls of an inhomogeneous 
character. 

We consider the case of a wall having a thin 
veneer of a different. material on its surface. The 
wall has a fiexua.l frequency of fe, occurring in the 
audio range, whereas the veneer has anfe outside of 
the audio range. It might be expected tha.t such 
a. combination would have an f e somewhere be­
tw('en the two extreme values, so that the com­
posite panel would begin to deviate from its mass 
law characteristics at a frequency somewhat 
higher than that of the wall without the veneer, 
thus resulting in an over-all higher transmission 
loss. In figure 9 are shown the results on a com­
posite panel of this type. In this experiment the 
base panel was t.he X-in. plywood wall of figure 5, 
to which was applied a }~4-in. aluminum sheet on 
both faces by glue and tacks. No significant in-
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crease was observed over and above what would 
be eAllected on the basis of an increase in mass. 
Thus, it may be concluded that a thin veneer 
relative to a thicker core can have little effect on 
the over-all transmission loss. This bears on the 
question of the acoustic effectiveness of lining 
doors with metal. 

Another type of experiment that wa tried js 
illustrated in figures 10 and 11. Here it was 
attempted to filter out obliquely incident waves 
by inserting a honeycomb structure in front of the 
wall so that waves travelling at or near grazing 
incidence would be impeded. The first structure 
tried consisted of egg crate separators shown in 
figure 10. The next structme consisted of oda 
straws about 2% in. long placed in front of the 
wall (fig. 11). There were approximately 150,000 
straws used in the "strawcomb" hown in the 
figure. The principle involved is that if obliquely 
incident waves can be filtered out, then the trans­
mission phenomena would be due solely to nor­
mally incident waves, thus eliminating flexural 
vibrations and raising the transmission loss com­
pared to tbe random incidence case. The results 
obtained in a series of tests in which the straw­
comb was placed in front of various thicknesses of 
plasterboard are shown in figme 12. Alt.hough 
some increase in transmission loss was experi­
enced, it was hardly as much as one might expect. 
Upon considering the action of the straws in 
greater detail it will be seen that for frequencies 
such that the wavelength is much greater than the 
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FIGURE 11. Strawcomb used in attempt to filter out waves 
incident at oblique angles. 
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FIGURE 12. Effect of placing strawcomb of figure 11 in 
front of plasterboard walls. 

A, M-in. plasterboard; B. I-in. plasterboard; C, 2-in. plasterboard. -, 
tests made with 2~-in . strawcomb in front of w311; - -. straweomb removed. 
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2}Hn. straw length, the straws do not essentially 
change the boundary conditions (1) and (2) given 
in section II, 1. Thus the total pressure acting at 
the mouth of each straw is Pi+ Pr, whereas the 
x-component of particle velocity is certainly con­
tinuous, inasmuch as this is the only component 
that would be transmitted down the straw. The 
particle velocity is increased somewhat inside the 
straw because the solidity, i. e., the ratio of wall 
volume to total volume, was of the order of 10 
percent. Weare thus led to the conclusion that a 
strawcomb of this type could not change the 
behavior of the wall to any great extent with the 
exception that transverse intelference patterns 
or normal modes in the room located at the wall 
face would be broken up by the strawcomb. 
Meyer [2, 3] has indicated that in the ease of 
double walls such modes tend to reduce the effec­
tiveness of the double wall. We shall discuss this 
use of the strawcomb in double walls in a sub­
sequent paper. 

The improvement in transmission loss obtained 
at the higher frequencies by use of the strawcom b 
may have been due to an absorbent effect of such 
a structure. Some measurements of the improve­
ment in transmission loss obtained by hanging an 
absorbent blanket immediately in front on the 
source side of the plasterboard walls of figure 12 
(without strawcomb) are shown in figure 13, 
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13. Effect of applying an absorbing blanket to a 
homogeneous wall. 

····0 ··· , 3·in. glasswool, 1.0 Ib/ft2 on plasterboard walls; -<:r-, 
l;14·in. hairfelt, 1.2Ib/ft2 on plywood walls. 

curve 1. The absorbent in this case was 3 in. 
of glass wool having an average density of 11b/ft2. 
The improvement resulting from the addition of 
t he glass wool blanl.:et was approximately the 
same for the Yz-, 1-, and 2-in walls. Accordingly, 
the average increase in loss for these three walls 
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is plotted in figure 13. Curve 2 of figure 13 
gives the results obtained on the improvement 
resulting from gluing on to the far or receiving 
room side of a Yz-in. plywood wall, 1 %-in. hair fel t 
having an average density of 1.2Ib/ft2 • Some addi­
tional improvement, of the order of 3 db, is 
obtained by gluing ra ther than hanging the blanket 
loosely. A general discussion of this problem has 
been given by Cook {IOJ. It will be seen from 
figure 13 that this t.ype of treatment produces a 
rather large effect. Consequently, it should be 
borne in mind in practical noise reduction prob­
lems. In addition to the improvement in trans­
mission loss, use may be made of the absorption 
provided by the blanlmt to increase the over-all 
noise reduction. 

One other observation is probably pertinent 
from a practical point of view. In the case of the 
plasterboard wall series, if the improvement in 
transmission loss that results from doubling t.he 
mass of the wall is averaged over all 10 test fre­
quencies , it will be found that doubling the mass 
results in an average improvement of approxi­
mately 4 db. This result is in accord with previous 
data [11, 12]. 

III. Conclusion 

The experimental results and theoretical treat­
ment show that there are three important physical 
prope.rtjes of a homogeneous wall, namely, its 
mass, internal damping or dissipation, and its 
ability to propagate flexural waves, which deter­
mine its sound transmission loss. Furthermore, 
the importance of the effect caused by random 
angles of incidence of the sound waves in a rever­
berant room has been demonstrated. The experi­
mental results were utilized to determine the 
values of Rand j. for the different walls in ques­
tion. This effectively determines the value of the 
wall impedance, Ztc. Knowing Ztc it will be pos­
sible to investigate the performance of double 
walls consisting of two single walls separated by 
an airspace. This will be considered in a subse­
quent paper. 

The author acknowledges the assistance of 
Seymour Edelman and Henry J . Leinbach , Jr., 
who carried out the experimental observations. 
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