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Basis of the Application of Network Equations 
to Waveguide Problems 

By David M. Kerns 

A systematic and general formulation of the concepts and the conditions that underlie 
t he technique of the applic!ttion of network equations to ,,,aveguide problems is presented. 
The discus ion is guided by a formulation of what may be called the transducer concept, 
according to which, essentially, a transducer is a power-transfer device which is to be de
scribed only in terms of external characteristics. Waveguide and circuit devices are con
sidered as transducers whose terminal phenomena are electromagnetic fields varying harmoni
cally with time. The basic t'l.sk is then the definition of suitable terminal variables character
izing the terminal fields. The construction of variables of this kind for waveguide transducers 
is discussed in considerable detail; for circuits, for which suitable variables are voltage and 
current, the construction is sketched. Transducer theory is defined, discussed, and illustrated 
by the development of selected r ehtions of the theory, and is shown to coincide with much 
of what is generally connoted by "theory of four-terminal networks." 

As a matter of interest and importance in applications of the technique, derivations of a 
rather general reciprocity theorem and of 3 version of Foster's re'l.ctance theor~m are included. 
Both theorems apply to both waveguide and circuit structures. 

1. I~troduction 

The usefulness of the application of nctwork 
equations to waveguide problems is rather well 
Imown. So-called equivalent circuits have been 
used since the beginning of intensive work in the 
microwave field, and they are employed in an 
increasing numbcr of published papers. This 
employment of network equations, however, often 
unnecessarily appears to 1'e t to a considerable 
degree upon intuition, or upon assumed, rather 
than proved, analogy with behavior of low
frequency cil'cuit devices. It is, of course, readily 
accepted that the procedure can be logically formu
lated and that analogies can be proved. Valuable 
discussions have in fact been given by Saxon,t 
Altar,2 and other . Footnote references 1 and 2 
both contain, in particular, proofs of reciprocity 
theorems applying to waveguide struetlU'es and 
thus establish an analogy of the kind men tioned 
above. But neither of these references is primarily 
concerned with a general and basic study of the 

1 Radiation Laboratory, MIT, memorandum, consisting of an introductory 
section for notes on lectures by Julian chwingcr: Discontinuities in wave
guides, prepared by David S. Saxon ( Pob. 1940). 

' .WilIiam Altar, Pme. lnst. R adio Engr., 35, 478 (1947). 
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application of network equaLions to waveguide 
problems. Indeed, no general and basic study 
has appea.r ed, and yet there is an evidenL need for 
uch a study. The primary purpose of the present 

paper is to provide a systematic and basic formu
lation of the technique in question. 

The discussion begins wiLh a brief formalization 
of what may be called thc Lransducer concept, 
according to which, essentially, a tran ducer is a 
power-transfer device which is to be described 
only in terms of external characteristics. Al
though the ideas here involved are familiar, it is 
important that they be specified with reasonable 
precision and completeness, ince the whole ois
eussion may be regarded as a development of the 
application of th e transducer concept to a particu
lar class of transducers. 

The basic task is thus reduced to the formula
tion of a method of quantitative descrip tion of the 
external behavior of a class of transducers whose 
terminal phenomena are electro magnetic fields 
varying harmonically with time. This class in
cludes both waveguide and conventional circuit 
devices. In many cases (and only such are con-
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siclerecl), the terminal electromagnetic fields can 
be adequalely charactf'riz.ecl for purposes of trans
ducer theory in terms of a finite number of pairs 
of variables. The construction of variables of 
this l,ind (terminal variables) for wanguicle trans
ducers is discussed in considerable detail; for 
circuils, for which suitable yariables arc voltage 
and cUlTent, the construction is sketched. o'nce 
terminal variables arc defined, the characteristics 
of a given tr ansducer can be quantitatively de
scribed in terms of the relationships imposed by 
the transducer upon its terminal yariables. 

Transducer theory may be saiel to be the study 
of properties of classes of transducers defined by 
the specification of the mathematical form of the 
relations connecting the terminal variables. In 
the present instance, transducer th eory so defined 
coi.Hcides with much of what is generally connoted 
by "theory of four- terminal networks. " The 
method and th e meaning of transducer theory 
from the standpoint of this paper arc illustrated 
by the development of a n umber of selectedrela
tions. 

Finally, as a matter of interest and importance 
in connection with the application of the teclmique 
(but not as something fundamental to the tech
nique itself), two theorems are proved: namely, a 
very general reciprocity theorem similar to one 
given by D allenbach,3 and a version of Foster's 
reactance theorem which is somewhat more gen
eral than that given by M acLean.4 These the
orems are given for transducers of either wave
guide or circuit type as deductions from Maxwell's 
equations. In order to prove theorems of this 
kind it is, of course, necessary to impose suitable 
hypotheses concerning the interior of the trans
ducers considered. Transducer theory proper , 
which is exclusively concerned with terminal 
phenomena, provides an extremely useful frame
work in which to state results, which may incleed 
be of either experimen tal or theoretical origin. 

The treatment given here was developed as a 
part of the material for a course of lectures given 
at the National Bureau of Standards by the author 
in the spring of 1947. This paper retains some of 
the pedagogical aspects of the lecturc material. 
The topic was suggcsted by Harold Lyons, and 
the author is grateful to him for suggestions and 
encouragemen t in the preparation of the paper. 

• W. D~llenbach, Der R ezlpro<ltatssat< des elektromagnetischen Felde" 
Archly filr Elektrotechnik, Bel. 3B, Heft 3, 1~3 (March 1042). 

• W. R. MacLean, Proe. lost. Radio Engrs., 33, ~39 (194~) . 
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II. Transducer Concept 

Since much use will be made of certain general 
ideas involved in the concept of a transducer, it is 
desirable io include definitions a.nd a brief dis
cussion of these ideas. A suitable ba.sic definition 
is that a transducer is "a device actuated by 
power from one system and supplying power in the 
same or any other form to a second system."5 
The surfaces (or points) through (or at) which 
power enters or leaves a transducer will be called 
terminal surjaces . This term will serve for general 
purposes, and it anticipates the more specific 
meaning to b e imparted later. The generalization 
of the basic concept to include transducers with n 
terminal surfaces is useful and is made here; 
except perhaps for n= 1, this generalization is 
quite acceptable . For n = 1, the term transducer 
is not apt, but it is convenient Lo have this case 
formally included. The use of the term transducer 
usually implies a concen tration of attention on 
external characteristics of a device. This aspcct 
of the concept is ,taken as fundamental and is 
developed in the following paragraphs. 

The description of a transducer, as such , is to be 
accomplished solely in terms of phenomena oc
CUlTing at the terminal surfaces; that is, only such 
q uan tities come into consideration as arc acces
sible to ex ternal meas uremen t. For a given 
transducer let th e vari ables quantitatively speci
fying the terminal phenomena, the terminal 
variables, be denoted by Xl, X 2 , X 3 , . • •• The 
characteristics of the transducer are then mathe · 
matically expressible as the aggregate of the 
relationships imposed by the transducer upon its 
terminal variables: 

(1.1 ) 

Sets of equations of this kind, describing the 
characteristics of a transducer, will be called the 
equations of the transducer. 

One is ordinarily interestecl not only in the 
properties of individual transducers, but also in 
the proper ties of t ransducers formed by combina
tion of other transducers. The characteristics of 
a composite transducer can be calculated from the 

• Webster's N ew International Dictionary, 2d cd ., unabridged (0 . & C. 
M erriam Co., Springfi eld, Mass ., 1934). 
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characteristics of its individual members if the 
relations connecting variabl es of one transducer to 
variables of another (when th e two transducers are 
joined) are provided. Equations expressing the 
relations imposed by the joining of two trans
ducers will be called .7oining equations. 

Transducer theory may be defined as the Lheory 
of properties of classes of transducers, the classes 
being defined by the imposition of hypotheses on 
the mathematical nature of the transducer eq ua
tions considered , and the joining eq uat ions being 
given. Transducer theory thus yields properties 
possessed in common by all members of a given 
class ana is disting uished from any theory dealing 
with particular properti es of any individ ual 
member of any class, or, morc generally , hom any 
theory depending upon hypotb eses concerning the 
inner nat ure of a Lransducer. 

These ideas have served as a general guide in 
the organization of th e subsequen t discussion , and 
they arc more sp ecifi cally employed (and thus 
illustrated) in secLion VI. 

III. Waveguide Transducers 

The term wateguide, as u cd throughout this 
paper, denotes those type (and only those types) 
consisting of either one hollow conductor or two 
concluctors, one of which is hollow and encloses the 
other. The Lerm therefore inclu des types of 
waveg uides, such as hollow rectangular pipes, 
which do not support a principal mode, as well as 
types, sucb as coaxial line, which do support a 
principal modc. A wa'l/eguide transducer is for
mally defined as a transducer that has waveguide 
leads for iLs input and ou tput connections. Thc 
number of waveguide leads is arbitrary, and the 
waveguides may individually be of arbitrary 
cross section . Th e leads of a waveguide trans
ducer are, by hypot11esis, ideal waveguides; that 
is, waveguides of perfectly cylindrical geometry, 
made of perfectly conducting,meLal, and filled with 
a medium tha t is bomogeneo us, isotropic, non
dissipative, and linear. Th e terminal surfaces of 
a waveguide transducer arc cross-sectional (mathe
mati cal) surfaces wi Lll in Lll e waveguide leads (or 
within the waveguide leads proj ected ). The 
interior of a waveguid e out to a Lerminal surface is 
an integral part o£ the interiOl.~ of it waveguicle 
transducer . Tlwl"c is, however, no criterion, 
axcept that of conven ience, for tbe locat ion of a 
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FI GURE 1. H"aveguide tmnsd!lcer with two terll1inal SUT

faces , 81, 8 2• 

terminal surface along a waveguide lead. It will 
be convenient for purposes of visualizat ion to 
l'egal'd the tCl"minal surfaces as being loca tecl 
within th e waveguide leads a t some d istancc from 
any discontinuity, as indicated in fig ure 1. A 
sl1 ift in the posi tion of a terminal sul"face from one 
given position to anoth er is equivalent to con
necting a tfansd ll cer consisLing of the appropriaLe 
length of iclc'al waveguide at th e original tcrminal 
surface in Lhe ,,-n Hgll id e in question ; this is n 
maLh ematical process, <tIlel the details arc giyen at 
a later point in the disc ussion ( ec. VI). 

Examples of waveguid e transducers ma:v be 
found among devi crs employed in practice ill the 
entire audio-radio spectl"Um. Such devices may 
be, for example, atte lluaLo rs, caviLy resonators , 
transform ers, crystal mixers, transmission sys
tems consist ing of sending and receiving antennas 
and in tervening space and obj ects, sections 
of uniform wayeguide, junctions and t ransi
t ions between t ,,-o or more waveguide of one 
or more types, and amplifiers. Provided merely 
that t hey possess waveguid e leads, such devices 
arc directly admi ssible to the class of wave
guide transducers, regardless of th e frequen
cies for which they may be designed. For prac
t ical reasons, the waveguide leads of" a lo,,--£re
quency device must, of course, be of a t pc tha t 
supports a principal mode. The concept of a 
waveguide t ransducer is effectively a generaliza
tion of the usual concep t of a 2n-pole (or a 2n
terminal network) . 

The specificat ion of idea~ waveguid e leads facili
t ates the mathematical definition of terminal 
variables which precisely describe the electro
magnetic field on a terminal surface; the corre
sponding physical situation is well-defined, since 
unshielded leads arc exclucl cd. As far as the 
mathematics is concerned , the subsequent treat
ment applies unchanged to ideal waveguide con
sisting of open parallel conductors. But at very 
high (microwave) frequencies th e hypothesis of an 
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ideal waveguide of this type is pnlCtieally unten
able. On the other hand, the fact that at suffi
ciently low frequencies the exact geometry of 
leads becomes unimportant is familiar, though 
perhaps no t obvious from the standpoint of field 
theory. An indication of the nature of the approxi
mations involved in the consideration of parallel
conductor and ordinary wire leads is given in the 
latter part of section V. 

IV. A Class of Problems of Special Interest 

It is assumed that the field within a waveguide 
lead varie harmonically with tim e, with fre
quency w. This case is in itself very important in 
practical problems, but the assumption actually 
involves no real loss of generality, since an 
arbitrary time variation may be resolved into 
sinusoidal components. The t imo dependence 
will be represented by the implicit factor exp 
(jwt), and the treatment will thus involve complex 
amplitudes, rather than instantaneous real quan
tities. Within a waveguide lead, then, the electric 
field E and the magnetic field H satisfy Maxwell's 
equations in the form 6 

curl E=-jwJ.1,H } 
curl H=+jweE 

(4.1) 

where the parameters J.1" e (representing respec
tively permeability and dielectric constant) are 
positive real scalars independent of E, H , position, 
and time (p., E may depend upon w). The field is, 
moreover, subject to the boundary condition that 
the tangential component of E yanish on the 
surface of the waveguide. 

The most general field satisfying the above 
differential equations and the boundary condi tion 
can be expressed as a sum of an infinite number of 
elementary particular solutions (modes) charac
teristic of the cross section of the waveguide. 
(The fact that the waveguide modes cannot easily 
be calculated in detail except for a very few simple 
shapes of cross section is here immaterial. For 
the purpose of this paper, only general results of 
the theory of waveguides, holding for waveguides 
of arbitrary cross section, are needed .) For a 
given waveguide, and at any given frequency, the 
number of nonattenuated modes is finite or zero , 
and the number of attenuated modes is infinite. 

6 Rationalized mks, or Giorgi, units are employed throughout. 
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The class of problems primarily to be considered 
in the text of this paper is now limited as follows: 
It is assumed that one transducer interacts with 
another (when they are connected) through the 
agency of only one waveguide-mode. It is further 
ass umed that this one-mode condition is fulfilled 
as a con seq uence of the following more detailed 
conditions, which correspond to the usual case in 
practice: (a) the operating freq uency is such that 
one and only one mode can be propagated without 
attenuation in a waveguide (the propagated mode 
is then obviously the lowest mode), and (b) the 
length of waveguide lead is great eno ugh to pro
vide very high attenuation of higher modes.7 

These conditions ins ure that the waveguide lead 
interconnecting two waveguide transducers will 
act as an effective mode-filter. R egardless of the 
complexity of the field whieh may exist at either 
end of th e section of ideal waveguide, the trans
ducers can interact only through the agency of the 
one nonattenuated mode. 

It may happen that the one-mode hypothesis is 
still applicable, even if a waveguide supports no 
nonattenuated modes, or more than one non
attenuated mode. But such cases are relatively 
rare in practice, and will not be considered ex
plicitly. I t is, however, of some interest to 
drop th e one-mode hypothesis and to consider 
any finite number of nonattenuated modes con
tributing to the interaction " :of two waveguide 
transducers, even though this case is also one 
seldom enco untered. The extension of the sub
seq uent theory to cover this more general case is 
not difficult; it is given in the appendix. 

A given system can be resolved into simpler 
systems-consisting of waveguide transducers 
satisfying the one-m ode hypothesis in the form 
adopted-insofar as the given system consists of 
parts connected (or separated!) by sufficiently 
long sections of waveguide in which only one 
mode is propagated without attenuation. The 
essential point to b e observed is that an inter
connecting lead by hypothesis is a section of ideal 
waveguide. This is not to say that an imperfect 
physical junction between waveguides cannot be 
involved; an imperfectl j unction, like any other 
discontinuity, belongs in the interior of a wave
guide transducer. 

, It may be said that for any frequency below and not close to a bigher-mode 
cntofT frequency, and for any kind of waveguide, the higher-mode attenna
tion in a distance of a few times some mean linear measure of the cross section 
is of the order of 10-3 0)' 10-1 in amplitude. 

Journal of Research 

) 



It may be noted that the conditions that have 
been imposed (viz. , harmonic time-dependence, 
and the one-mode hypothesis) are directly con
cel'ned only with the situation within a waveguide 
lead; no condition is directly imposed on the nature 
of the interior of a waveguide transducer. 

V. Definitions of Terminal Variables 

The task now is, first, to set up suitable defini
tions of terminal variables, and then to consider 
the most important properties of these variables 
as 'defined. In accordance with the one-mode 
assumption introduced in section IV, it will be 
sufficient to consider only one mode- ft non
atten uated mode- in pecifying the field on a 
waveg uide terminal sllrface. 

It is desitable at this point to set forth bricJlY 
results of waveguide theory in sufficient complete
ness to meet later, as well as immediate, needs. 
From waveguide theory, it is known that the 
transverse components Em, H ", of the most general 
one-mode waveguide field with harmonic time
dependence may be written in the following form: 

Em=[Cm exp( -~{3mzm)+Dm exp(~{3mZm)]Eom} (5.1) 
Hm=[Om exp(-J{3mzm)- Dm exp(J{3mzm)] H om 

where 

(5.2) 

In these expressions, the subscript m denote the 
waveguide considered; the coordinate Zm and the 
unit vector k m arc parallel to the cylindrical sur
face of the waveguide, with positive sense di
rected into the transducer. f3m, Y m, F om are, 
respectively, phase constant, wave-admittance, 
and electric-field function characteristic of the 
mode involved. Om, Dm arc arbitrary complex 
amplitudes (at zm= O) of the traveling-wave 
components of the field traveling in the positive 
and negative zm-directions, respectively. The 
phase constant {3m and the wave-admittance Y m 

in general depend upon the frequency (wm ), the 
constants of the medium (f.l m, Em), the geometry 
of the cross section, and the mode involved; 
for principal modes, however, {3m=wm..j f.lmEm, 
Y m= ..jEm/ f.l m. For all nonattenuated modes, · {3", 
and Y", are real and positive. The vector Fom 
lies in a transyerse plane and is a function of 
position in the transverse plane, but not of Zm; 
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the form of F o", depends upon the geometry and 
upon the mode involved. The field equations 
leave F om undetermined to the extent of a con tant 
multiplier. F om is then uniquely determined 
(apart from sign) by the convenient normalization 

(5.3) 

the integral being taken over the cross section 
8m of the waveguide; eq 5.3 requires in particular 
that Fom be real. Fom is one member of the set of 
mutually orthogonal functions for the different 
modes in the mth waveguide. 

It is now a simple matter to define the terminal 
variables. It will be worth while to consider 
definitions of two alternative pairs of variables. 
The terminal surface is for convl'nience specifically 
taken as a plane cross sectional surface; the 
t.angential components of the field 011 this surface 
arc then Em, H rn , as given by eq 5.1 for the par
ticular z",-plane in which the terminal surface lies. 
The possible values of Em, H m on the m tb terminal 
surface may be expressed in terms of quantities 
V"" 1m by means of the equation 

Em= Vm'Y-'~2Eom'} 

Hm= l m'Y!':.Hom; 
(5.4) 

01', alternatively, in terms of quantities Am, Bm 
by means of the equations 

E,n ='Y-,~,;2(A",+ Bm)Eom' } 
(5.5) 

Hm='Y-o~2(Am-B m) Hom, 

where 'Y!':. denotes the positive root of a positiye 
real number to be chosen at convenience.s These 
equations formally define the terminal variables 
Vm, 1m and A m, Bm. Vm and 1m are complex 
amplitudes respectively measuring the total tan· 
gential electric and magnetic components of the 
physically determined field on the terminal sur
face. Am and Bm are complex amplitudes respect
ively measuring the incident and emergent 
travelling-wave components of the physically 
determined field on the terminal surface. The 

S Tile factor 'Y.m inserted in eq 5.4 will appear as a characteristic impe
dance (see p. 521). Greater generality with respect to the choice of 
multiplicative fr.ctors is permissible (but not useful); for example. arbitrary 
and independent complex constants could be inserted in the definitions of 
V .. and 1m. 'rhe form adopted. for t.he definition of Am. Em iSm~~~I!OneOf 
several equally convenient pOSSibilIties. For e,ample. a factor 'Y .... lllstead 
of 'Y -.!to could be inserted. 
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dependence of V m , 1m and Am, Bm on Zm, which is 
apparent upon comparison of the defining eq 5.4, 
5.5 with eq 5.1, is not indicated explicitly, since 
the terminal surface is ordinarily considered to be 
in a fixed position. The pair Vm , 1m and the pair 
Am, B m are obviously related to each other by 
the equations 

Either one of the pairs could be defined in term 
of the other by means of these equations. The 
expressions for power and the equations for the 
interconnection of two waveguide transducers in 
terms of these variables arc of essential interest 
and are easily obtained. 

Consider the complex power W", supplied to 
the transducer at the m th terminal surface. This 
power is given by the integral of the inward normal 
component of the complex Poynting's vector over 
the terminal surface 

Wm=~ J (EmX H !) . k mdS, (5.7) 

where H '!. is the complex conjugate of Hm. The 
real part of W m is the t ime average of the instan
taneous input power, and the imaginary part of 
lIT'm is the amplitude of the reactive power ex
change across the terminal surface. Employing 
the defining eq 5.4 for Vm , 1m , the definitions 
5.2 of Eom, H om, and the normalizing condition 5.3, 
one finds 

W _ 1 V 1* m-2 m ""- (5.8) 

For Am, Bm, one finds via either eq 5.5 or 5.6, 

In this form the real and the imaginary par ts are 
exhibited separately. The presence of the factor 
1/2 on the righ t-hand sides of eq 5.8, 5.9 means 
that Vm, 1m and Am, Bm as defined are to be in ter
preted as peak (rather than as root-mean-square) 
amplitudes. 

The mathematics of the interconnection of 
waveguide transducers is handled by considering 
that a termina.l surface (No.1, say) of one trans-
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ducer coincides with a terminal surfa ce (No. 2, 
ay) of another. For the time being, it is assumed 

tha t the terminal surfaces coincide at a point 
within the interconnecting lead at some distance 
from any discon tinuity, as indicated in figure 2. 

rr I 

.f2. ..;, / 

..th. .!::! ' 
( 

"-
~ 

FHl URE 2. Coincident terminal swjaces. 

vVith the common terminal surface so located, 
the actual fi eld on the surface may be assumed 
to be very nearly the field of the one nonatten
uated mode. The transvelse components of the 
field on the surface may then be describ ed by the 
alternative pairs of equations 

El=Va;;'/2E01' } 

Hl= I!,y~(2Hol' 

E - T T - 1/2E } 2- Y 21'02 02, 

H~ =I21'~~2 H 02, 

(5.10) 

(5.11) 

'which apply respectively to the two sides of the 
surface. In order that the whole field (normal 
and tangential components) be continuous across 
the mathematical surface, it is sufficient (as well as 
necessary) that the transition of the tangential 
components of E, H be continuous at all points 
of the surface. Thus eq 5.10 and 5.11 mustrepre
sent identically the same field : 

H,= H2 • 

Using eq 5.2, these equations become 

VI F 01 (I' 01 y)-1 /2 = V2F 02(1' oZY2)-1/2, 

I lkt X F 01 (I' ot Y t)I/2= I 2k2 X F 02(1' 02 Y Z)l/2. 

Waveguide 1 and waveguide 2 are electrically 
identical; hence Yl = r Z and Fot=±Foz . Assum-
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ing that F ol and F 02 are chosen to have the same 
sign, the equations expre ing the fact that the 
two transducers arc joined become 

- I l= I 2/NI2' 

where N 12= ("IoJ/"I02)1{2. 

The expression of the same fact in terms of AI, 
B l , A 2 , B2 is 

ince the value of "10m is arbitrary, and since 
waveguide 1 and 2 are electrically identical, it is 
clearly convenient and sensible to have "1 01 = "102; 

otherwise an apparent discontinuity appears at a 
place where there is no physical di continuity at 
all. If "101="102, then N I2=I, and th e above 
equations reduce to 

(5.12) 

} (5.13) 

It will be assumed that the "10m are so cho en that 
joining equations are always o{ this {orm. 

The following definitions are useful and serve 
to bring out further significance of the terminal 
yariables Vm, 1m and Am, Bm. The quantity 

(5.14) 

is called the impedance of the field on the mth 

terminal surface. "Imm may be further character
ized as a looking-in impedance, since, if the real 
part of "Im,n is positive, the average power input 
at the mth terminal surface is also positive (eq 5.8). 
The ratio 

Bm 
A m =Pmm (5.15) 

is of the nature of a reDection {actor. (The term 
reflection coefficient is ordinarily applied only when 
all A's other than Am arc zero and the transducer 
itself docs not act as a source.) If the absolute 
\-alue of Pmm is less than unity, the avcrage power 
input at the mth terminal surface is positiye 
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(eq 5.9). From eq 5.6, the rcIation between 
"Imm and Pmm is given by 

l + Pmm 
"Imm="Iom -1- - , Pmm 

-Pmm 

"Imm-"Iom 

"Imm+"Iom' 
(5.16) 

Both quantitics, "Imm and Pmm, depend not only on 
the characteristics of the waveguide transducer 
involved but also upon the excitation and ter
mination at terminal surfaces other than the 
mth. D efinitions of more general quantities of 
both types 

(5. 17) 

should also be recorded. The first is a transfer 
impedance, the second a transmission factor (cf 
parenthetical remark above), from the mth to the 
ph t.erminal urJace. These quantities are of 
COUl' e no more characteristic of a waveguide 
transducer than "Imm and Pmm are. 

That particular value of "1m .. that cOlTesponds to 
a field consisting soldy of an incident wave 
(Pmm= 0) is called the chaTacteristic impedance of 
the field in the mth waveguide. This character
istic impedance has the arbitrary value "10m. The 
most conYe11ient specific value to usc is "Iom= 1 
(ohm) (m=1,2,3, . . . n), inespecLi,-e of th e 
of the characteristics of tbe waveguide with which 
it is a sociated. Since this makes "10m disappear 
in the formulas, however, it is slightly more in
formaLive to leave "10m arbiLrary, and it will be left 
arbitrary in the subsequent general arguments. A 
set of V's andl's or a set of A's and B's may be 
said to represent the fields with which tJ1CY are as
sociated. It will be convenient to designaLe Lhe 
two schemes as V, I-representaLions and A,B-rep
resentations, respectively. A particular repre
sentation of either kind is defined by specifying 
a particular set of characteristic impedances "10m. 

The quantities Vm , I m , A m, Em are not ordinarily 
regarded as directly measlll'able (except possibly 
Vm) I m at low frequencies), although their values 
in a given case in any chosen representation can be 
calculated from experimental data if desired. But 
the actual values of the terminal variables them
sevles are seldom of interest. The terminal vari
ables serve as extremely useful auxiliary q uantit.ies 
for the calculation of quantities of more direct 
interest, such as power, power ratio, impedance 
etc., which involve only products and ratios of the 
Lerminal variables. 
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It may be noted that the commonly used values 
of characteristic impedance, such as, for example, 

~ (for all types of waveguide; 

Y =wave admittance) 

w~ (for rectangular waveguide 

of dimensions wXh, h<w) 

2 1y log ~ (for coaxial waveguide, 
7r rl 

radii r2,rl ;r2> rl) 

(5.18) 

have no pecial significance in the theory of wave
guide transducers. The actual usefulness of the 
quanti ties 5.18 as characteristic impedances is 
largely in the calculation . by conventional trans
mission-line eq nations of reflection at a plane 
j unction of two waveguides of similar geometry 
but of differing dimensions or media. 9 Such 
calculations, however, are not in the domain of 
transducer theory. 

For principal modes, Vm, 1m differ in no essential 
respect from voltage and current as defined in the 
treatment of transmission lines as circuits with 
distributed constants. Transmission-line voltage 
and current may be defined by the line integrals 

im= .£ Hm· ds, (5.19) :r CQ 

where, as shown in figure 3, CPQ is any path from 
a point on conductor P to a point on conductor 
Q, CQ is any path encircling the conductor Q, and 
both paths of integration are restricted to lie 
in a transverse surface-the terminal surface Sm, 
say. Since the components of curl E and curl H 
normal to the terminal surface are zero for a 
principal mode, the line integrals are independent 
of the particular paths GPQ , CQ, and the defini
tions 5.19 then have meaning. The quantities 
Vm , im are therefore linear measures of Em, Hm , 

respectively, just as are Vm, 1m in eq 5.4.10 This 
is enough to insure that Vm , im , and V m , 1m have 
essentially the same physical meaning whenever 

• It happens that the expressions so obtained are valid if the discontinuity 
is in the medium only. If a discontinuity in dimensions is involved, only 
the second and third expressions in 5.18 are applicable, and tbey yield only 
a partial or approximate resnIt. 

10 Lineal' measures of Em, H m for modcs other than principal modes may be 
constrncted by means of line integrals. It is then necessary to specify the 

paths in detail, and the product ~ V ml':' of variables so constructed is pro) 
portional to power (rather than automatically ,qual to power). 
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eq 5.19 do have meaning. Numerical agreement 
between Vm, im and Vm, 1m can be obtained by 
suitable choice of 'Yom. 

A calculation for thespeeial case of coaxial wave
guide will illustrate the above statements. If 
the radii are r2, r1 (r2>rl) , the field-function F 0 
for the principal mode is F o=N grad (log r), 
where r1 <r<r2, and the normalizing factor 

(27r log~)-1 /2 makes Fo satisfy eq 5.3. Using eq 

5.2, and writing out eq 5.4, one obtains 

E= VN('YoY ) -I/S grad (log r), } (5.20) 
H = 1N('Yoy) +1/S k Xgrad (log r), 

It is expedient to choose 'Yo= (27r Y) -1 log~. If 
rl 

now voltage and current as given by eq 5.19 are 
calculated from the field given by eq 5.20, one 
finds 

V= VN('YoY)-1 /2 ("grad (log r) ·ds = V, Jrl 

i=IN('YoY)1/2 ~ k Xgrad (log r) ·ds= I, 

where the sense of the integration for i corre
sponds to the positive sense of k . Thus the 
identity of the two definitions is established in a 
particular case. 

The power equation (5.8) and the joining equa
tion (5.12) for waveguide transducers are formally 
the same as the corresponding equations for ac cir
cuits, in which conventional voltage and current 
appear as terminal variables. It is instructive to 
examine, even though briefly, the role of current 
and 'voltage from the present point of view. 
Voltage and current associated with any pair of 
conductors P,Q may be defined by the lihe inte
grals 

wherc C pQ is any path from a point 011 COll

ductor P to a point on conductor Q, and CQ is ' 
any path encircling the conductor Q, not also 
encircling conductor PY These definitions may 
be applied, for example, to the conductor geometry 
illustrated in figure 4, as well as to that of figure 
3, which may now be taken as a particular cross 
section of a pair of conductors that are not neces
sarily cylindrical. The definitions 5.21 can haye 

II It will be assumed that ip. defined by an integral similar to that for iQ, 
is equal and opposite to i Q. 
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FIGUm; 3. Paths of integration for vm , im • 

exact meaning for wholly arbitrary paths CPQ, CQ 

only for static fields, for which Maxwell's equa.
tions imply 

E=-grad <p, at all points, 
curl H =O, at all points outside conductors. 

(5.22) 

Inside conductors, curl H = J (anel therefore eliy 
J = O), whc]'e J is the density of conduction cur
rent. The concepts of vol tage and current, how
ever, are ftpplieel not only to static (de) probkms 
but also to certain nonstatic (ac) problems. 

A nece sary condition for the applicability of 
circuit tIH'o]'y, a such, to alternating-cW'rent 
problems is that the dimensions of the system be 
small enough, anel that the frequ ency be low 
enough so that, roughly, w,r; cl « 1, where d 
is a represen tative linear dimension of the ap
paratus. When this condition is fulfilled , retarda
tion may be neglcctcd, and the field is said to be 
quasi-stationary. The assumption of a quasi-sta
tionary field docs not imply that curl E (every
where) and cml H (outside conductors) are negli
gibly different from zero: an inductor is charac
terized by a nonnegligible value of jWJ1.H, and a 
capacitor i characterized by a nonnegligible value 
of jWJ1.E. Thus in the strictest sense of eq 5.21 , 
voltage docs not exist in an alternating· current 
problem if indtletance is prcsent, and current does 
not exist if capacitance is prcsent. Circuit prob
lems are charfl.cierizcd by the fact that regions 

/r---- ---l,..-_-_-_C!pl ..... -_K_---+,. /: ~CQ~ 
! /cl I 5 / P<i / ~ 
\ // / 

,--_____ -j / / /// C~ / 

in 4b 
FWl'RE 4. Paths of integration for VPQ, iQ. 

Network Equations to Waveguide Problems 

in which the cond itions 5.22 eriously fail are 
localized, and can be isolated by means of suitably 
drawn terminal surfaces on and ncar which eq 5.22 
may be as umed to be satisfied. For pre ent 
purposes this may be taken a the qualitative 
definition of a circuit problem; it leads clil'ectly 
to the existence of voltage and current a terminal 
variables. 

To see more fully what the foregoing statements 
mean, consider a transducer having just one pair 
of perfectly conducting wire leads, as illustrfl ted 
in figW'e 4,a. The power output from the trans
ducer is 

W=~JEXH*. kd('" 

where (J' is a surface enclosing the transducer, and 
k is the outward normal unit v ctor on (1. Tho 
output power is delivered to whatever system may 
be outside (J'. Since E =O in the conductors, t he 
areas cu t out of (1 by the conductors may be omiLted 
from the surface intezration. Let S denote Lhe 
part of (J' remaining. S is bounded by the two 
curves Cp and CQ , and may be ma.de imply con
nected (if desired) by a cut joinin:s Op and CQ 

(fig. 4,b). If it is now assumed that the condi
tion 5.22 hold on S, the exprcssion for power may 
be transformed as follows. The vector identity 

curl (¢H *)=(grad ¢)X H *+¢ curl H* 

reduces to 
curl (¢H*)=- E X H,* 

at points on S. Hence, employing Stokes' theorem 
(with due regard to signs), 

W = -~fs curl (¢H*). kclS=~ ~ Cp ¢H * ·ds+ 

l ~ ¢H *.ds. 
2 j CQ 

With the choice of signs indicated in figure 4 , and 
for paths lying in S, 

V=- f pQ E .ds= ¢Q-¢P, 

i= ~ H ·ds=- ~ H ·ds, 
j Co j CP 

and the last expression for power becomes 

Tr=~ vi*, (5.23) 
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as expected. It may be noted that it was not nec
essary to make assumptions directly concerning 
either the region inside S 01' the region outside S. 
If now S is regarded as a common terminal surface 
of two transducers (No.1 inside, No.2 outside, 
say), the joining equation for vol tage must be 

(5.24a) 

since the surfaces of conductors are equipo tential 
surfaces of a potential f unction in the neighborhood 
of a terminal surface. In equating VI and v2, th e 
positive senses of the two quantities are assumed 
to be the same. If the positive directions of i l and 
i2 are directed into the respective tran ducers at 
the positive terminal, the joining eq ua t ions for 
current are 

(5.24b) 

since eliv J =- 0 in the neighborhood of a terminal 
surface, so that CUl'l'ent must be continuous. 

Voltage and current may be said to represen t 
th e terminal fi elds in a v,i -representation (cf 
p. 522) . No arbitrary constants appear in a 
v,i-representation (because none was inserted in 
the definition of v or of i). An a,b-representation 
may be formally defined by 

2am=~m+ l'em~m, } 
2 bm-vm-l'emt m' 

(5.25) 

Although these equations are formally the same as 
t he corresponding eq 5.6, the constan ts "Iem which 
may here be usefully employed are suitably 
chosen characteristic impedances of the trans
ducers of which vm, im are terminal variables, 
rather than characteristic impedances of leads. In 
fact, quantities with the same physical meaning as 
t he "10m previously used do not exist in the circuit 
picture. The field is quasi-stationary, and the 
resolution into incident and emergent waves im
plied by eq 5.25 is purely formal. Bu t the pro
cedure is useful in network theory as applied to 
both circuit and waveguide problems; when ap
plied to waveguide transducers it leads to a formal 
resolu tion into incident and emergent ",aves, each 
of which in general is a linear combination of the 
physically defined incident and emergent waves. 

For completeness, joining equations in an 
a,b-representation should be written down . If, as 
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is assumed, "Iel="Ie2, the formal analog of eq 5.14 is 

These, of course, follow directly from the defini
tions 5.25 and 5.24. The generalization of eq 
5.26 witl] l'el;t' '(e2 is not of the same form as the 
generalization of eq 5.14 with 1'01 ;t'1'02 ' 

VI. Transducer Theory 

The power equation (5 .8) and the 
equation (5. 12), 

joining 

provide a basis for t he development of transducer 
theory for the class of waveguide transducers con
sidered. These equations are formally the same as 
the corresponding equations for circuits. Quite 
apart from the inherently similar physical meaning 
of t he quantities entering the equations in the 
waveguide and in the circuit case, the formal 
identity gu aran tees that transducer theory devel
oped for the one case is also valid for the other. 
Those parts of network theory that are truly 
t ransducer theory are in fact immediately available 
for waveguide transducers. Thus, the letter of th e 
purpose implied by the title of this paper was vir
t ually accompli shed when eq 5.8 and 5.12 were 
set up . The purpose of this section is to indicate 
more fully the methods a,nd the meaning of trans
ducer theory, mostly by presenting selected ex
amples of the theory. 

It will be convenient to usc the term 2n-pole to 
denote any transducer whose tel'minal phenomena 
are harmonically varying electromagnetic fields 
which can be specified in terms of n pairs of vari
ables Vm , I m such that eq 5.8 and 5.12 apply. The 
vari ables Vm, I m may be of the kind defined for 
either waveguide or circui t transdu cers; variables 
of Doth l~inds may indeed appear in one set of 
variables for a given transducer. By the above 
defu1itioll , a circui t or a network with n pairs of 
conven tional terminals (or wire leads) is a 2n-pole. 
A waveguide transdu cer which has n leads and 
which satisfi es a one-mode hypothesis (whether or 
not in the form specified in sec. IV) is a 2n-pole. 
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A wavegllide transducer which ha n wayeguide 
leads anel which satisfies a Am-mode generalization 

n 
of the one-mode hy po th e is is a 2 ~ Am-pole, 

m=l 

wh ore Am IS the number of nonattenuated modes 
admit ted in the m lh waveguide (appendix ). A 
lransducer that h as both waveguide leads and wire 
leads may also be a 2n-polc. 

AlLhough th e term 2n-pole is used here in a 
faid y general sense, the limitation to transducers 
with elcctromagnetic terminal phenomena is 
irrelevant so far as transducer theory is concerned . 
Vm could be interpreted as the amplitude of a 
h armonically varying force applied at a point of an 
oscillatory mechanical system, and 1m could be 
interpreted as a cOlTesponding velocity-amplitude. 
With suitable conventions, the power equations 
and th e joining equations co uld b e set up in th e 
form. of oq 5.S and 5.12, and transducer theory 
for such systems would OlCn not differ from the 
t heory for 2n-p01es . These r emarks partly uggest 
th e possibl e generality of transduccr theory. 
Transducer theory can b e vcry general because 
it only describe 01' relates external phenomena; 
it does not attempt to eX1)lain or interpret. 

A number of topics in th e tr ansducer-th eory 
of 2n-poles arc to b e treated in the following 
p aragraphs. In order t o be able to proceed, it is 
n ecessary to make a basic assumption con cerning 
the number of indep end ent equations that make 
up the set of equations for a 2n-p01e (cf eq l. 1): 
It is assum ed that the number of such equa tions 
is equal to one-half tho numbor of variables in 
every case. This provid es a working rule for 
t he mlmber of equations, but it does not define 
any pal'ticuhl' class of 2n-polos. For th e purposes 
of transducer theory a cl2-sS of 2n-poles is defined 
by specifying the mathematical fOTm of the 
transducer equations . In t h e present instance, 
consideration will be given only to 2n-poles that 
are linear in accordance with th e following general 
definition: A transducer is said to be a lineal' 
t ransdu cer if th e equations of the transducer are 
linear equations. Additional specializing concli
tions (for example, r eciprocity, 10sslessness) will 
b e considered in th e course of the following 
discussion. The usefulness of th e wealth of 
mathematical relations that transducer theory 
can give (of which only a few I1re given here) is 
obviously dependen t upon th e existen ce of 2n-poles 
which satisfy th e varioll s assumed conditions . 
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:r\ eedles to sa,y, the hypothese mentioned !1boVB 
and oth er s to be employed are not unrealislic. 

1. Linea r 211-poles with terminal variables V mt 1m 

The equation of a 2n-pole in terms of terminal 
variables Vm , 1m may be written 

fk(Vl, V2, ••• , V n, 11,12, ••• , I n) = 0, 

where, in accordance with the basic assumption, 
thero are n functions f" (k=1,2, ... , n). The 
2n-p01es to be considered arc lineal'; h ence, th e 
functions fk may be written 

CklVl + ... +cknVn+dkJl + ... + 
(6. 1) 

where k=1,2, ... , n, and th e Ckm, dkm, Ok are con
stants independen t of V m , I TI/. 12 Sin ce there are n 
independent equations, at least one of th e (2n) 1/ 
(nI)2 n-rowed detenninants of tbe n-by-2n matrix 
of the coeffi cients of the Vm and th e 1m must b e 
diIIerent from zero. This means that the sys lem 
of equations 6.1 can be solved for at least one 
se t of th e (2n) !/(n!)2 different se ts of n variables 
that can be chosen out of th e 2n varia bles V!, 
. .. , V n , 11, . . . , I n. This much is 1010wn 
from the general hypo th eses. For th e purpose of 
discllssion i t is assumed that eq 6. 1 can , in par
Li cula!', be solved for the set of V's or for the set 
of 1'S.13 The drtel'minants of the corre poneling 
mat rices 

Cll CI2 Cl n ell I dl2 dI n 

C21 C22 CZn d21 d22 d2n 
c= D= , - (6 .2a) 

Cn! Cn2 Cnn dnl d"2 . dnn 

must accordingly be nonzero . With the aid of 
the matrices C, D, and tho one-column matl'ice 

V! I I 01 
V 2 12 [)2 

V = 1= G= , (6.2b ) 

Vn I n Oh 

" Equations o[ the Corm of eq 6.1, representing the consIant and the linear 
terms of a Taylor's expansion o[ a general 1>, can serve as a basis for the first
order theory o[ a nonlinear 2n-polc. 

13 'rhis assumption is usually, but not always, satisfied in practice. This 
point Comes up again; see p. 536, scc. VII. 
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the system of equations (eq . 6.1 ) may be rewrit
ten as the matrix equation 

OV+ DI+ G=O. (6.3) 

To solve for V , this equation is multiplied through 
from th e left by 0 - 1, th e inverse of 0: 

(6.3a) 

where Z = - O-ID, V g= -O-IG. Similarily, by 
multiplying eq. 6.3 through by D-I, 

I = YV+ I ., (6.3b) 

where Y= - D- IO, I g=-D-I G. The matrix iden
tity (D-IO-I)= O-ID may be used to obtain th e 
relat ions 

The significance of the matrices of constants, 
Z, Y , V"~ I g , is readily elicited. If the magnetic 
fields are reduced to zero at all terminal surfaces 
(I= O), then, from eq 6.3a, V = V"~ Hence the 
one-column matrix V g is the matrL,{ of open
circuit 14 electric-field amplitudes'. If the electric 
fields are reduced to zero at all terminal surfaces 
(V= O), then from eq 6.3b, I = I g. R ence, the 
one-column matrix I g is the matrix of the short
circuit magnetic-field amplitudes. The relation 
between V g and I g , given explicitly in eq 6.4, 
shows that I g= O if Vg= O, and conversely . If 
V g and I g are zero , the 2n-pole is said to be source-
free.15 

The matrices Z, Yare called the impedance and 
the admittance matrices, respectively, of the 2n
pole. If, for simplicity, the 2n-pole is assumed 
source-free, and if all the elements of I excep t 
I p are zero, 

(6.5) 

where Zap is the element in the qth row and p th 

column of Z. Thus the value of Zap is that value 
of the impedance 'Yap= V q/I p (d eq 5.17 ) which is 
obtained under the conditions just stated. The 
elements Zqp are accordingly called open-circuit 
transfer (p~q) or input (p= q) impedances. It is 
easily verified that the elements Y qp of Yare 

.. It is natural and con venient to adopt certain terms from circuit theory. 
The use of the terms voltage and current for general V's and 1's, which mayor 
may not be ordinary voltages and currents, is, however, a voided in this paper. 

" This is not the same as passive in the standard meaniug of the term; the 
term 8ource-fra is here used merely to denote that a 2n-pole is such tbat its 
equations are homogeneous. 
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appr?priately called short-circuit tr ansfer or input 
adm~ttances. The algebraic relation between Z 
and Y is g iven in eq 6.4 . 

The most general linear 2n-pole can be com
pletely characterized by n(n+ 1) constants (which 
are in general complex). In eq 6 .3a, for example, 
there are the n2 elements of Z, plus the n elements 
of V" ~ The original equations (eq 6.1) contain 
2n2+ n constants, but the nature of the relations 
connecting the V's and l 's is detel'mined by 
n(n+ 1) combinations of the original constants . 

2. Linear 2n-poles with termina l variables 
Am, Bll'l 

T erminal variables A m, Bm may be defined in 
terms of V m , 1m by means of the matrix equations 

V = A + B , 

'YJ= A - B , 

2A: V + 'YoI,} 

2B - V - 'YoI . 
(6.6) 

In these equations, V and I are as defined in eq 
6.2; A and B are one-column matrices with e1e
me.nts A m ~nd Bm (m = 1,2, ... ,n), respectively. 
'Yo lS the dmgonal matrix 

'Y 01 0 0 

o 'Y02' 0 
'Yo= 

o o . . 'Yon 

The discussion immediately following, as well as 
others in which wave amplitudes A m, Bm are ex
plicitly involved, will be understood to refer t o 
waveguide transducers . Further, the diagonal 
elements of 'Yo are precisely the 'Yom appearing in 
the definitions of Vm, 1m (eq 5.4), as indeed the 
notation indicates. The resolution into wave
amp.litudes given by the right-hand pair of cq 
6.6 IS then what may be called physical rather 
than formal , and the complication of a super
posed formal resolution into wave-amplitudes 
(mentioned on p . 524) will not come into th e 
picture. 

Instead of using the relations connecting A B 
with V,I to convert the r esults of section VI '1 . .. . ' , 
It IS mstructlve to start afresh with the n ew 
variables, and to reapply the reasoning of th e 
previous paragraph. Thus, the equations of a 
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2n-pole in terms of terminal variables Am, B m 
may be written 

j~(Bl,B2, .... ,Bn, AI, A 2, •••• ,An) =0, 

where, in accordance with the basic assumption, 
k = 1,2, ... ,n. TJw 2n-poles to be considered 
arc Lo be linear with respect to A m, B m; hence, the 
[unctionsj~ may be written 

c~IB) + .... +c~nBn+d~)Al + .... +d;nAn+g~ = 0, 
(6.7) 

where k = 1,2, .... n, and the C~m' d~m, g~ arc 
constants indepcnden t of B m , A m. Continuing 
exactly as with eq 6.1 previously, one is led to 
the mathematical analogs of eq 6.3a, 6.3b, and 
6.4, viz., 

(6.8a) 

(6.8b) 

where it is assumed that the matrices Rand S 
are both nonsingular. 

It is clear that in the absence of incident waves 
(A= O), the emergent-wave amplitudes arc given 
by B = B g ; if the incident amplitudes arc adjusted 
so that A = A g , Lhe outgoing waves are thereby 
reduced to zero (B = O). If the 2n-pole is such 
that Ag(= B g)= O, it is said to be source:free. 

The matrix S is very aptly called the scatte1'ing 
matrix of the 2n-pole. If, for simplicity, the 
2n-pole is assumed source-free, and if all the ele
ments of A except Ap are reduced to zero, then 
the emergent-wave amplitude B q is 

(6.10) 

where S qp is the element in the qth row anu the 
p th column of S . Thus the value of Sqp is that 
value of pqp= B Q/Ap (of eq 5.17) that is obtained 
under the conditions just stated. The elements 
Sqp of S are called scattering coefficients. The 
Sqg are also called reflection coefficients; the 
Spq (q.,..-,p) are sometin1.e called transmis ion co
efficients. Mathematically, the interpretation of 
R is, of course, similar to that of S. The matrix 
R has r eceived litt le explicit use, and no special 
terminology for R and its elements is suggested 
here. 
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3. Relationship between Z- and S-matrices 

Since A, B arc related to V , I by homogeneou 
linear equations, it follows that a 2n-pole that is 
linear and source-free in an A, B-repre entation i 
also linear and source-free in a V, I -repre entation 
(and vice versa). Quantitative relations between 
the results of the preceding two paragraph are 
easily found. For example, the elimination of V 
and I from the equation 

(6.3a) 

for a given 2n-pole by means of eq 6.6.-gives 

A + B =Z'Yo 1 (A-B) + V g• 

Upon olving this last equation for B, and com
paring wi th the equation 

for the same 2n-pole, one obtains 

S = (Z'Y01 + 1)- 1 (X'YOl_1), 

B g = (~'YO'+ 1) - 1 V g • 

(6. a) 

(6.11a) 

(6.11b) 

It is easily verified that the two factor in paren
theses on the right of eq 6.11a commute, so that 

For computations, the form 

is convenient. Eq 6.11a solved for /j yields 

(6.12) 

There are, of course, corre ponding relations con
necting other pairs of the four matrices 7" Y and 
S,R. 

4. Change of Representation 

The values of the parameters which describe 
the characteristics of a given linear waveguide 
transducer are obviously affected by the choice 
of the 'Y om in the definitions of the terminal vari
ables Ceq 5.4, 5.5). Thus, for example, the 
transformation of the impedance matrix from 
a representation defined by 'Yom(m= l , 2 ... n) to 
a representation defined by ;Yom (m= 1, 2, ... , n) 
may be found as follows. For convenience let 7) , 

1j respectively. denote the diagonal matrices whose 
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diagon al clements are .J'Y om, -lYom , and let V, I 

and v ,1 denote the corresponding sets of t erminal 
variables. In order that V , I and 'fl,] represen t 
the same field s, it is necessary that 

ij~ IV= 1'/ -IV, } 

1 = 1'/1 
(6.13) 

(from eq 5.4). If Z and Z arc th e impedance 
matrices of a given source-free waveguid e 2n-pole 
in the two representations, 

V = ZI. (6.14) 

Eliminating V , I from the second of eq 6.14 by 

means of eq 6.13, solving for ii, 

and comparing with the first of eq 6.14, one finds 

(6.15 ) 

which is the desired formula. If in particular 
7j = 1 (charac teris tic impedances:Y om = 1), eq 6.15 
normalizes Z , and the resulting Z is the normalized 
impedance matrix z of the 2n-pole: 

(6.16a) 

In terms of the elements of the matrices involved, 
eq 6.1611, is 

(6.16b) 

A similar type of calculation yields for the 
scattering matrices Sand S, 

(6.17) 

The normalized scattering matri " is thus 

(6. 1811,) 

or, in terms of elements, 

Skm= S km( 'Y omh Ok ) I/2 . (6.18b) 

It may be noted that the transformation 
6.15 docs not affect the symmetry properties of 
an impedance matrix. If an impedance matrLx is 
symmetric in one 'Ya-representation, it is symmetric 
in any 'Yo-representation. On the other hand, 
the transformation 6.17 does affect symmetry 
proper ties. A scattering matrix may be sym-

. metri c in one representation and unsymmetric 
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lJl allother. This difference in the behayior of 
impedfince matrices and scattering matrices wi th 
respect to change of representation can be regarded 
as a consequence merely of the particular way in 
which the basic defini t ions (eq 5.4 and 5.5) were 
set up. 

If the impedance matrix of a 2n-pole is symmet
ric, then the normalized scattering matrix is also 
symmetric. This l1'lay be shown by using the 
rela t ion 6.11a, whi ch , for the normalized matrices 
sand z, becomes 

s= (z+ O-I(z- l ). 

Using the tilde to deno te the transpose of a ma trix, 

~ ~----
s = (z + 1)- I(z- l )= (z- l )(z+ 1)-1 

= (z- l ) (Z + l )-I= (z- l )(z+ 1)-I=S. 

Thus 8= S, and the symmetry is proved. 

5. Linear two-poles; joining 

For a tW'o-pole, all matrices involved in the fore
going reduce to single numbers. Eq 6.3a and 6.3b 
reduce to 

(6.19a) 

(6.19b) 

respectively. If Zll = 0, then eq 6.19b has no 
meaning; if Yl1 = O, then eq 6.19a has no meaning. 
Zl1 and Yll cannot botb be zero, on account of the 
assumed existen ce of one relation of the form 
6.l. If both Y l1 and Zll arc finite, both eq 
6.19a and 6.19b apply and they have the same 
meaning. Moreover, 

as in eq 6.4. The content of Thevenin's theorem 
and of Norton's theorem is included in the mean
ing of eq 6.19. 

Consider the connection of a two-pole source 
(whose equation is 6.19a) with a source-free two
pole whose equation is V~=Z~l I~. The system 
of equations to be solved is then 

V ;= V1, 

1;= - 11 , 

(6 .20) 
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where the last two equa tion are the joining equa
tions. Since the two two-poles when connected 
form a closed system, the number of cquations 
should be sufficient to determine a unique solution 
for the V's and 1's. The fact that there are four 
equations to determine the four variables is a con-
equence of the basic assumption concerning the 

number of independent equations for a 2n-pole. 
If ZJ1 +Z;l~ O , the sohJtion of eq 6.20 for V;, J; 

obviously 

V' - Vg, Z;, ]' _ Vg1 
l -Zll +Z;~ ' l- Zll+ Z;I' 

The appropriate specialization of eq 6.8a, 6.8b 
yields the equations of a linear two-pole in an 
A,B-representa t ion: 

B 1= Sl1A1+ B g1 , 

AI = Rll BI+ Agl 

(6.21 a) 

(6.21b) 

Remarks similar to those following eq 6.19 apply 
h ere also. The calculations with matrices that led 
to eq 6.11 may be performed for two-poles with 
numbers. The rosul ts are, of course"as in eq 6.11, 

B V g1 
81 = Z l11'OI 1+ l ' 

S ZIll'OI-'I _ l 
l1 = Z - -1+ 1' Ill' 0 1 

Z 1+ 81l 
11 = 1----0- I' 01' 

-°11 

(6.22) 

Consider the connection of a two-pole source 
(whose equation is 6.21a) with a source-free 
two-pole whose equation is B ;= S;,A;, The sys
tem of equations is then 

B1 = Su A1 + Bg1 , 

B;= S;IA~, 

B ;= A 1 , 

A;= B 1• 

(6.23) 

If Sl1S;1 ~ 1, the solu tion of these equations for 
B;, A; is 

B' - B gIS;1 
1- 1-S11 S;/ 

A ' B gi 
l = I -S' S" 11 11 

6 . Reciprocity 

(6.24) 

Suppo e that the equations of a 2n-pole can be 
expressed in the form 

(k = 1, 2, .. . . ,n). (6.25) 
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Let 

(k= J,2, ' " ' ,n ), (6.25a) 

(k= J, 2,'" ',n) , (6.251) 

where J;, J~ , . .. " 1;, is one set of independ ent 
variables and J~, J;,' . . . , 1: j " another set of 1Il

dependent variables. Consider the condi Lion 

(6.26) 

th is is the reciprocity condition, and it serves to 
define an important class of 2n-poles. The reci
procity condition greatly limi ts th e generality of 
eq 6.25. To find the form of these equations, 
first. differentiate eq 6.26 with respect to JZ ob
taining 

n oV" 
V~=~ >-1 '':' 1~ · 

m = 1 U k 
(6.27) 

But 1T; does not depend upon 1~, J;," . " J;:, so 
that the differential coefficients in eq 6.27 must 
becon tants independent of 1~, J;, ' .. . ,1:. These 
constan ts may be denoted by Zkln , say, and eq 6.27 
then state 

that is, the fWlctions i k are lineal' and homo
geneous. Let V, J respectively denote the one
column matllloes with elements V m, J m , and let 
Z denote the square matrix with elements ZJcm ' 

In this notation eq 6.2.5a and eq 6.25b become 

V' =zI' , 

V" =z]" , 

and eq 6,26 may be rewritten as 

(6 .26a) 

where ('1) denotes the matrL"X transposed. Elimi
nating V' ,V" from the last equation gives 

I" z1' - I' zJII == O. (6.28) 

But (j" zI' ) is a number, or a matrix of one 
clement, and is therefore symmetric; hence, 

I" zI' = a" zl' ) = I''ZI'' . 

529 



Eq 6.28 can thus be \Hitten 

i' Cz- z) Iff =0. 

Since I' and I'~ are arbitrary, 

'Z- z= O; 

the impedance matrix is symmetric. Thus the 
equations of a 2n-pole that satisfies the reciprocity 
condition are linear and homogeneous and can be 
written in the form 

V =zl , (6.29) 

where z is symmetric. The converse is easily 
verifif'd: if eq 6.29 holds, then the reciprocity 
condition 6.26 holds. Eq 6.29 is therefore equiva
lent to eq 6.26. 

If z is symmetric, its inverse, y = Z-I, is also 
symmetric. It was shown on p . 528, that if z 
is symmetric, thf'n the normalized scattering 
matrix is also symmetric. 

7. Lossless 2n-poles 

A 2n-pole is said to be lossless if the total time
average power input is zero for all values of the 
terminal variables. Mathematically expressed in 
terms of V , I, this condition is 

Re(PV)=O, (6.30) 

where P is the transposed complex-conjugate of I , 
and Re(PV ) is the real part of PV. If a lossless 
2n-pole satisfies the reciprocity condition, the 
following conclusions concerning the form of the 
equations of the 2n-pole can be drawn. Equation 
6.30 directly implies 

pv+ lv*= o. 

R eplacing II by zI (eq 6.29), 

P zl +I z*I *= O. 

But Iz *I * IS a single number and is t herefore 
equal to its transpose p ztI. The last equation 
becomes 

P (z+zt) I = O. 

Since I is arbitrary, 

(6.31 ) 

This equation states that the imaginary part of z 
is symmetric and that the real part is antisym-
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m etric. This much holds for any linear, lossless 
2n-polf'. But since reciprocity was assumed, z is 
symmetric, and its real part must vanish. There
fore, 

z=jx, (6.32) 

where x is real and symmetric; z is pure imaginary. 
The corresponding properties of the normalized 

scattering matrix may be derived from eq 6 .32 
via eq 6.lla, or directly from the counterpart of 
eq 6.30 in an A, B-representation. Choosing the 
latter method, the n eeded power equation is, in 
matrix notation, 

(eq 5.9 with 'Yom= l). Inserting B = sA, 

A tA - A tstsA=O. 

Since A is arbitrary, 

(6.33) 

(6 .34) 

Eq 6.34 states that the inverse of s is the trans
posed complex conjugate of 8; a matrix having 
this property is known as a unitary matrix. This 
much holds for any linear, lossless 2n-pole. But 
since s is symmetric, st= s*, and eq 6.34 becomes 

8*8= 1; (6.35) 

the inverse of s is simply the complex conjugate 
of s. 

8. Four-poles 

Four-poles are of particular importance b e
cause more complicated transducers are often 
built up of a number of four-poles connected in 
tandem. If a four-pole satisfies the reciprocity 
condition, its e.quations may be written in eith er 
of the two forms 

where the matrices z and s are symmetric, as 
written. It is often convenient to have th ese 
relations expressed in the so-called transmission
line form, defin ed by 

VI = tl1 ~2+ tI2~2' I BI =rll~2+rI2~2' } (6.37) 

I I = t21 V2+t2zI z, Al =r2IB2+r22A2, 
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where V2=V2, j 2=-I 2; and whereB2=A2,A2= B2. 
The reason for making the defmition with respect 
to the quantities distinguished by bars will become 
apparent. The new coefficients are given in 
terms of the coefficients in eq 6.36 by 

(6.38) 

It is impor tant to note that reciprocity IS now 
manifested in the relation 

i. C'., the determinant of the matrices of coefficients 
in eq 6.37 has the value unity. One may easily 
yerify t hat this is both a necessary and a sufficient 
condition that the matrices of coefficients in the 
original eq 6.36 be symmetric. 

If a two-pole whose equations are 

(6.40) 

i conne cted to the above four-pole at terminal 
urface No.2 , then eq 6.37 yield 

Bl rll sT+ rl2 
A l = PI1 = r 21sr+ r 22· 

(6.41 ) 

Thus the input impedance 'Yll (or I·eflection co
efficient Pll) is exhibited a a linear fractional 
function of the load impedance Zr (or reflection 
factor Sr). Transformations of t he form 6.41 
have many interesting and useful mathematical 
properties. (Equations of thi form hold for any 
linear source-free four-pole , whether or not the 
reciprocity condition is satisfied). 

uppose that a second four-pole is given, whose 
equations in the transmission-line form arc 

(6.42) 

where the notation is in all re peets similar to that 
of eq 6.37 . Let it be required to find tbe char
acteTistics of t he four-pole formed by joining the 
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two giyen four-pole , say with terminal surface 
No. 2 of the first coinciding wi th terminal urface 
No. 1 of the second. The notation has been 
chosell so that the corresponding mathematical 
process is merely a linear su bstitu tion. The reslll t , 
in matrix notation, is 

[VI] [ V~] 
I I = (TT' ) ]~ , 

where T and R are the matrices of eq 6.37, T' 
and H' are the matrices of eq 6.42 . Thu the 
matrix of the parameters of the combination of 
the two four-poles is the matrix product of the 
matrices of the separate four-poles taken in the 
proper order. If the four-pole described by 
eq 6.42 satisfies the reciprocity condition , the 
determinants IT' I and IR' I are each equal to 
unity. In this case, from the general r ule for the 
multiplication of determinants, 

ITT' I= l IRR' I= l 

and the composite four-pole also sati fics ill e reci
procity condition. (R eciprocity was assumed for 
thC' fir t four-pole, eq 6.39) . 

9 . Linear symmetric four-poles 

A four-pole i said to be symmetri c if iL exhibits 
the same electrical characteristics when yiewed 
from either of its two terminal surface . Thu 
the normalized z- or -matrix of a linear sym
metric (source-free) four-pole must be unaltered 
by the interchange of ubscripts 1 and 2. That is , 
it is necessary that 

Zll =Z22, 81 2=S2 1. 

(6.44) 

A linear symmetric four-pole thcreforr sati fies the 
reciprocity condition and the adclitional condi tion 
Zn =Z22 (or SIJ =S22) . If a four-pole is lossless, as 
well as linear, symmetric, and source-free, then Z 

must be pure imaginary and S must be unitary. 
The equations of a Jour-pole satisfying these 
special conditions are 0 btainecl in a familiar form 
as foll ow : Z can be written 
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where Xll, Xl2 are real. Defining XII /xI2= a, 
- 1/X12= b, the coefficients of the transmission
line form of the equations of the four-pole become 
(eq 6.38 ) 

tll = a, 

t21 = jb , t22= a. 

A characteristic impedance 'Ye of a four-pole is 
one that is transfotmed into itself by the trans
formation 6.41. For the four-pole in question, 
'Ye is given by 

which reduces to b2'Y~+a2= 1. Since the con
stants h e and a satisfy b2'Y~+a2= 1 , thry caIl be 
written 

a = cos (J, 

b'Ye = sin (J, 

as a mere matter of notation. 'Ye is real if I a 1< 1; 
8 is then also real. 'Ye is pure im aginary if I a I > 1 ; 
(J is then also pure imaginary. The four-pole may 
be characterized in terms of (J, 'Ye by eliminating 
a , b from the expressions for til , t12 , etc. The 
resulting matrix is 

T = 1 [

COS (J 

j - sin 8 
'Ye 

h e sin 8]. 
cos 8 

(6.45) 

For any fixed value of 'Ye, the matrix is defined by 
the value of 8, T = T (8). If four-poles repre
sented by T (81) and T (82) are joined, the matrix 
of the composite four-pole is T (81)T82) . Upon 
writing out the matrix product it is found that 

(6.46) 

Equation 6.45 shows that 1'(0) = 1; eq 6.46 thus 
yields 

T (8)T (-8)= 1, 

or, T -l (8) = T (- 8). It is apparent from eq 6.46 
that the matrices T «(J I), T (82) commute with each 
other. 

10. Translation of terminal surfaces 

As a further and final specialization, consider 
four-poles of the type represented by eq 6.45 with 
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'Ye = 1 prescribed. The corresponding T-matrix is I 

[
COS 8 

T (8)= .. 
J sm 8 

j sin 8]. 
cos 8 

(6.4 7) 

The R-matrix (eq 6.37 ) corresponding to this I 

T-matrix is particularly simple. From the defini
tions 6.6 (with 'Yom = l, since a normalized represen
tation was assumed in section VI, 9) and from 
the definitions following eq 6.37 one finds: 

where 

Q== [ 1 1]. 
- 1 1 

The relations connecting VI, I I find V; , 12 arc 

L sing cq 6.48 to eliminate thc V 's and 1's, 

from \\-hich one obtains 

Therefore the matrix R (8) relating B I , Al and 

For the particular T (8) considered, R (8) is readily 
found to be 

[
e-j9 

R (8)= 0 (6.49) 

R (8) obyiously shares the propertie 6.46 of T (8). 
The transformation of the reflection factor (eq 
6.41) defined by R(8) i very simple, viz., 

(6.50) 
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Among the four- poles that can be characterized 
by matrices of the form of R (e) (or T (e)) arc in
cluded all those consisting of a section of ideal 
waveguide. This is seen by employing eq 6.49 to 
wri te 

(6.51) 

find eomparing these equations with eq 5.1. I t 
is evident tha t e is to be identified as f3L , where L 
is the length of the section of ideal waveguide 
considered , and f3 is the appropriate phn,se con
stn,nt. (R (e) and T(e) were se t up for e real, cor
responding to the real values of f3 for any nOll

attenuated mode.) The determination of f3 for a 
given mode in a given waveguid e i a matter of 
exper~ment or of electromagnetic theory; f3 cannot 
be determined in transducer theory. It is thus 
logical to continue to u e the electrical length e, in 
prderence to writing f3L for the same quantity. 

It wa s remarked on p. 517 that a translation 
of n, tenninal surface of a waveguide transducer 
is equivalent to joining a transducer consisting of 
a section of ideal waveguide at t he terminal sur
fflce in question. The corresponding mathematical 
process is given by eq 6.43 for four-poles . Thus, 
if a four-pole ha a matrix T defined with respect 
to given terminal urfaces, and if terminal urface 
)l" o. 1 is shifted an electrical distance el , the corre
sponding new matrix is given by 

If, also, terminal surface No. 2 is shifted by the 
electrical di stance e2 , the rcsul t is 

(6 .52) 

Consider ncxt the joining of any two given four
poles with matrices T I , T2 , where the matricc are 

.-.----- f:Y 

FIGURE 5. J une/ion oj two Jour-poles. 
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defined with respect to terminal surfaces which 
do not necessarily coincide when the physical 
junction is mad e (fig. 5) . 

The matrix of the physically defmed composite 
four-pole is then given math ematically as a com
posite of three four-pole, 

(6 .53 ) 

where e is the electrical distance between the 
terminal surface invol \Ted (e may be positive or 
negative). 

The resul ts 6.52, 6.53 when expressed in terms 
of R-matrices, are, of course, of exactly the 
same form as eq 6.52 and eq 6.53 themselves. 
T he i:mplied algebraic details, while simple for the 
T-matrices, are exceedingly simple for the R
matrices. The s implicity of many calculations 
for four-poles in an A , B-reprcsentation in fact 
recommends the use of this representation of the 
terminal fields in many problems. For example, 
the transformation of the characteristics of a wave
guide 2n-pole corresponding to translation of the 
n terminal urfaces is readily obtained by working 
directly with the scattering matrix of the 2n-pole 
and applying the basic properties of the R-trans
formation a expressed by eq 6.51. 

VII. The reciprocity theore m 

The determination of the characteristics of a 
given 2n-pole is fundamentally a matter of ex
periment. If the details of the structure of a 
2n-pole are given, it is sometimes possible to re
place direct experimental measurement by theo
retical calculations based more or less directly 
upon Maxwell's equations. A circuit problem is 
usually regarded as specified in detail when the 
component capacitances, inductances, etc., and 
their interconnections are given . With s nch data 
given , the calculation of the characteristics of a 
2n-pole is set up in accordance with Kirchhoff 's 
laws for electric circuits, and the calculation is a 
relatively simple algebraic problem. If, however, 
instead of capacitances, inductances, etc. , the 
geometry and the electrical constants of the media 
making up the capacitors, inductors, etc., are 
given, the problem in general becomes more diffi
cult, and the solution must be based more directly 
on the field equations. wIicrowave problems are 
characterized by th e pecification of geometry and 
electrical constants and by the necessity of em-
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ploying the field equations. The solution of 
microwave problems in detail is in general ex
tremely diffieul t. .YI ueh of the difficulty arises 
because of the vector nature of the field, and 
because retardation cannot be neglected. 

The difficulty of detailed calculation of the be
havior of microwave components emphasizes the 
importance of transducer theory in calculations 
and measurements in microwave work . Condi
tionsof the type employed in section VI lead at 
once to certain necessary characteristics of the 
equations of any 2n-pole satisfying the ,-arious 
conditions. :1\1oreover, the applicability of one 
or more of those conditions (such as linearity, 
reciprocity, losslessness, sYlllinetry) is in many 
cases evident without explicit experimental Yerifi
cation. Reciprocity, in particular, is a very gen
eral and Vf·ry important property and is perhaps 
the least obvious of those mentioned. The pur
pose of this section is to give a proof of a ra thor 
general reciprocity theorem for 2n-poles. 

The reciprocity theorem is to he proyed for a 
class of 2n-poles satisfying the following condi
tion: The media involved must be s llch · that 
:Maxwell's equations b ecome linear equations at 
all interior points of th e 2n-pole. 16 No restriction 
is imposed UpOJ1 the geometry of the structure 
admittcd, other than. .that . indirectly imposed by 
the requirement that the structure shall actually 
be a 2n-pole. The geometry may, for example, be 
that of coils, capacitors, and wires or that of 
cavity resonators and waveguides. It should be 
notcd that t he hypothesis of linearity here em
ployed is of a very different type from that em
ployed in section VI. The important difference 
is that here the hypothesis applies directly to all 
points of the interior of a 2n-pole, whereas there 
it applied only to externally observable behavior 
a t the terminals. Reciprocity for a 2n-pole com
posed of circuit elements is usually regarded as a 
consequence of Kirchhoff 's laws. Under the as
sumption of passive, linear, bilateral circuit-cle
ments, Kirchhoff 's laws yield the reciprocity 
theorem almost at once. The basic assllllption 
employed in this section (viz. , linear media) differs 
,"cry much in form and slightly in content , from. 
the circuit-hypotheses just mentioned. rnder 
the present hypothesis of linearity, ::'faxlrell's 
equations are employed to deduce a reciprocity 

16 A more complete statement of the h ypot heses is given below. 
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theorem holding for any kind of 2n-pole satisfying 
the hypothesis. The theorem will therefore apply 
to waveguide transducers, circuits, and to the 
mixed type involving both circuit and waveguide 
leads. Some further preliminaries are needed in 
preparation for the proof of the theorem. 

It is necessary to define precisely what is meant 
by the interior of a 2n-pole. The region occupied 
by the electromagnotic field of a 2n-pole is denoted 
by R, and the boundary of R is denoted by S. 
Rand S are illustrated for a waveguide transducer 
with two wavpguide leads in figure 6. If the 

\ 
\ 

\ S' 

\ 

\ 

Fl r:l: RE 6. Sw/ace S Jor a u:aveguide imnsd1lcer. 

number of leads is II, the surface S may be thought 
of as consisting of n + J separa,tr parts, \ iz ., a large 
spherical surface S' (\I itll center at some mean 
posi tion in the region), phiS n separate closed sur
face;:; S~(m= l , 2, . ... ,11). The surface S~, ex
tends transversely across the mth waveguide (coin
ciding with the terminal surface Sm within the 
waveguide) , and encloses the two-pole source ter
minating the m th lead. The region R, the interior 
of the 2n-pole, is thus bounded externally by the 
surface S' and internally by the surfaces S~. 
The surfaces S~ enclose and thereby exclude the 
fields and current belonging to the two-pole 
ources. 

A 2n-pole of the type suggested in figure 6 is 
by no means completely shielded; its field extends 
to infinity. The radius of the spherical surface S' 
must be alloln'cl to become infinite for any incom
pletely shield ed 2n-pole. Furthermore, in order 
that all of the field of such a 2n-polr be included 
in R , the surfa ces S~ must fit closely over the 
surfaces of the two-pole sources, and these must 
be assumed to be perfectly shielded. A region R 
and surface S of the type just described serve for 
any waveguide transducer. If a waveguide trans
ducer is completely shielded, as illustrated in 
figure 7, an alternative Rand S may be drawn as 
shown in the figure. The subsequent argument 
will employ the notation of the preceding figure 6, 
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F I G U E E 7. v1face S for an enclosed wavegttide transducer. 

but no essential changes arc required to adapt the 
argument to the simpler bu t less general ease 
llustrated in figure 7. 

The following proof will also apply to 2n-poles 
having one 0 1' more circui t terminals of the type 
discussed in section V and illustrated in figure 4 . 
Thus any 01' all of the two-pole somces of the type 
illustrated in figure 6 could be replaced by those 
of the type illustrated in figure 4. If this replace
ment is mad e for the mth lead, ay, the surface S;" 
(of fig. 6) becomes the terw inal surface of the mth 

two-pole source. No important changes in the 
argument are involved . 

The complete statemen t of the hypothesis im
posed on th e media in R is made as follows: Max
well's equations in a very general form are 

a 
curl E= - at B (H ), 

(7.1) 
a 

curl H= + at D (E)+J(E). 

The vecLors B, D, J are respectively the magll et ic 
induetion , the electric displacement, and tlw in
du ced curren t density. The functions B (H), 
D (E ), J (E) describe the media involved . It is 
required that the medi a be such t hat these func
t ions arc lineal' and homogeneous. The most 
general h omogeneous linea l' vector funct ions may 
be wri tten 

B (H)=jl · H , 

D (E) =~; ·E, (7.2) 

J (E)=Y· E , 

\\"here the tensors . /I, () , !f, (which may ilave both 
real and imaginary parts) represent respectively 
permeabiliLy, dielectric constant, and conductivity. 
These tensors depend upon th e position cOOl'di
nates; they may depend upon the freq uency w, 

bu t not upon E, H , and the time. If, as is as
sumeel , all som crs of the fi eld vary harm onically 
with time a l frequ ency w , tlll' solu t ion of eq 7.1 
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subj eet t o eq 7.2 may be obtained in the form 
E= Eoe1wl , H = Hoe1wl , where Eo, Ho are functions 
only of position. Inserting E, H of this form in 
eq 7.1, the governing equations become 

curl E=-jwJI· H , } 
(7.3) 

curl H =+.iw/; .E+Y · E. 

Equations 7.3 determine the position-dependenee 
of the complex amplitudes of a field which varies 
harmonically with frequency w at every point of R. 
In accordance with the hypotheses in troduced in 
section I V, eq 7.3 must reduce to eq 4.1 in thc 
neighborhood of terminal surfaces. 

The tensors. 1/, /; , !/ of course reduce to scalars 
for isotropic media. If tensors arc required to 
express the properties of the med ia, it is essen tial 
for the proof of reciprocity thnt the tensors b e 
symm etric tensors. Symm C't ry of . II, () is some
times deduced from energy considerat ions, at 
least when . 1/, (; are real. It is here as umed 
tha t .11, 6, .If a re in fa ct symmetric. 

Particular solu t ions of the eq 7.3 for a given 
271 -pole are determined by the boundary condi
t ions, wbich may be expressed in terms of the 
values of k X E and k X H on S, where k is the in
\\~ardllnit normal vector 0 11 S . It is a theorem of 
electromagnetic theory that tlle solu tion of M ax
well's equations in R is uniquely determined for 
all times t> O by the valu e of E, H throughout 
R at t= O 3nd the values of k X E or k X H on SY 
(The yalues of k X E may be specified over par t of 
S, ,md the values of k X H, over the remaining part 
of S.) If, as is assumed, the 2n-pole under consider
ation is such that power is dissipated (however 
sligh tly) , the effects of the initial values of the 
field throughou t R will be trrrtl ient, a nd the steady
state field (the solut ion of eq 7.3) will be deter
mined solely by th e values of k X E and k X H onS. 

T he terminal surfaces S in form a part of S. On 
the terminal surfaces, k X E and k X H are given 
by Em and Hm (sec. V). On the remaining parts of 
the surfaces S~ the field S3 tisfies the homogeneous 
boundary condi tion k X E= O. On S' the field is 
to satisfy the so-called outward-radiating condi
tion, which insures that there are no sources out
side S' (i. e., at infinity) , and matters only for 
nonshielded 2n-poles. It follows from the unique
ness theorem and from these boundary conditions 

17 J A. Stratton, Electromagnetic Theory, p. 486 C~IcGraw·HiIl Book Co., 
Kew York, N . Y ., 1941) . 
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that the solution of eq 7.3 is uniquely determined 
by a set of n terminal fields such that either k X E 
or k X H is specified on each of the n terminal sur
faces. A set of such fields is illustrated in table 1. 
No condition is placed upon the two-pole sources 
responsible for the terminal fields , other than that 
they produce fields of frequency w. The nature 
of the ultimate sources that generate the fields is 
of no importance. So far as the 2n-pole under 
consideration is concerned, it matters only that 
cert.ain fields do appear at its terminals. 

k X E 
k X II' 

TABLE 1. A set of terminal fields 

2 

El 
H , 11'3 11, 

n 

It has been tacitly assumed that a solution 
exists for arbitrary values of the terminal fields in 
sets of the type shown in tabl e 1. The uniqu e
ness theorem insures merely that if a solution 
exists, it is unique. In ordcr to carry through the 
proof of the reciprocity theorem, it is assumed 
that the set HI, H2, • • " Hn may be arbitrarily 
prescribcd .18 

The proof of the reciprocity ' theorem is made 
to rest on two lemmas. The first of these is a very 
general reciprocity relation first given by H. A. 
Lorentz. Let E' , H ' and E" , H " be two fields 
arising from independent fl,nd arbitrary sets of 
sources with frequency w. The fi elds satisfy eq 
7.3 in R, 

curl E I=-jwfl ·H ', 

curl H I=+jw c.E ' + .'J .E', 

curl E"=-jw~II·H", 

curl H" =+jw/)·E " +,,/'.E". 

(7.4) 

D efine the vector L= E"X H"_ E " X H ', and 
form t.he yector iden tity 

di v L = H II • curl E I - E I • curl H " 

- H '· curl E 1/ + E ", curl H '. 
18 The existence ofa solution is of course to be expected in any problem with 

a genuine physicall'edigree. TIut in practice, certain idealizations arc useful, 
and the assumption made in the tex t is not always va lid . For example, if 
tte equations of a four-role are tto,e of an ideal 1 :1 transformer, 

V1= 1/2, 

- 11= 12, 
ncitt er H e 1 air -1'1, 1', nor tte pair I I, J, can te chosen arbitrarily. But 
'eitter of the rairs 171,11 or 17" Iz can he chosen arbitrarily, and corresponding 
solutions for the fields exist and are unique. 
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Substituting the expressions 7.4 for the curls, 
and making use of the symmetry of the tensor 
parameters, one obtains 

div L= O (in R), (7.5) 

which relation is the first lemma. 
The second lemma asserts that the int'egral of 

the normal component of L , taken over t he 
sperical surface 8 ' , vanishes: 

r n .(E ' X H " - E I/ X H ' )dS= O. (7.6) 
Js' 

This is most easily shown by considering the 
asymptotic form of the fields on 8' for large values 
of radius T (but the fact to be proved is independent 
of the size and shape of 8 ' ). For sufficiently large 
7', the field approaches that of a concentrated 
source at 7' = 0 , VIZ. , 

e-jfJoJT 

E' = t ' -
T 

H ' = Yo n X E' , 
e -j{J"r 

E I/ = t" - , 
7' 

H I/ = Yon X E" , 

(7.7) 

where t is a t ransverse vector function (t ·n = O) 
of the direction of the vector r, f3o= w -v;;, and 
Yo= ..J e/ JI. . (It is assumed that for large 7' the 
medium is simply free space.) The fields described 
by eq 7.7 are in general ellipt ically polarized 
spherical waves. Upon substituting eq 7.7 into 
eq 7.6 one finds that the integrand of eq 7.6 
vanishes identically, since 

t /X (t " X n ) =. t " X (t ' X n ). 

H ence one may infer that 

lim r n-L dS= O, (7.8) 
T= oo Js' 

which is the statement of the second lemma. 
After the foregoing preliminaries, the proof of 

tbe reciprocity theorem is vc ry direct. By the 
divergence t.heorem, 

(The minus sign appears 
as the inward normal. ) 
div L= O in R , so that 

because k was chosen 
By the first lemma, 
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I 
·r k .LdS= o. .J s 

Hence, by the definiLion of S, 

And by tbe second lemma, the integral over Sf 
vanishes, at least in the limit a r-'HD. But the 
terms of the summation in eq 7.9' do not depend 
upon 1', so that 

± r , k .LdS= O 
m=l ) Sm 

(and the in tegral over Sf m ust in fact be inde
pendent of r). Replacing L by the quanti.ty for 
which it is an abbreviation, 

±f ,k .(Ef X H" - E" X H f)dS=O. 
'm=l 8m 

(7. 10) 

The integral over S~ reduces in all cases to the 
integral over the terminal surface Sm. (For 
waveguide terminal smfaces, the in tegrand van
i hes on those parts of S~ that do not coincidr 
with Sm.) Hence 

The individual terms of this expression are of 
the same form as the power relation 5.8 (or 5.23). 
Therefore 

n 

~ (V~I:: - F::l~) = 0. 
l1I - l 

(7.11 ) 

Since this relation hold for arbitrary values of 
the independent variables, it i precisely equiva
lent to the reciprocity condition 6.26. This 
completes the proof of the reciprocity theorem. 

The algebraic consequence of the reciprocity 
condition were examined in section VI, 6. It was 
there shown that the equations of a 2n-pole 
satisfying the reciprocity condition are expressible 
by means of the homogeneous linear equations 

n 
V k= 2: Zkrr.Im (k = 1,2, .... , n), (7 .12) 

711 = 1 

where the matrix of coefficients Z km is ymmetric. 
The symmetry of the Z-matrix is th e essential con
tent of the reciprocity theorem; the lineari ty and 
homogeneity of the equations of the 2n-pole can 
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be inferred direc tly from the same propertie of 
Maxwell's equations in R . 

VIII. A reactance theorem 

By an application of Poynting's theorem, one 
can obtain a fundamental formula relating the 
impedance matrix of a 2n-pole to the fields in t he 
interior of the 2n-pole. Consider a 2n-pole that 
satisfies the hypotheses used in ection VII, assum
ing now for simplicity that the media involved are 
isotropic. Assume also that J.l and E are real; dielec
tric losses, if present, are to be represented by an 
equivalent conductivity included in 0'. Poynting's 
theorem (for the complex Poynting's vector) 
applied to the region R bounded by thp surface 
states that 

~Js EX H*. k(IS= JR~O'E . E*dT /-

jw JR (~ H · H* - ~ E · E* ) dT , ( .1) 

where the notation j carried over from section VII . 
As in section VII, the urface integr al may be split 
into the urn of integrals over the terminal surface 
plus an integral over the spherica(surface Sf. The 
sum of the integrals over the terminal urfaces 

reduces to the matrix product ~ It V, or to ~ It ZI, 

where Z1 replaces 1-. Eq 8.1 becomes 

~ ]tZ1=~L;, EX H*.n dS+ .F~ ~ O'E ·E*dT + 

jw r (!!:. H .H*-~ E.E*)dT' ( .2) JR 2 2 

where n deno te the outward normal on Sf . For a 
shielded 2n-pole, the Sf -integral contributes 
nothing, since the integrand vanishes. If the 
2n-pole is not shielded, the radius r of th e smface 
Sf must be made to become infinite, and R become 
a region of infinite extent. Tbe contribution of 
the Sf -integral to the right-hand side of eq .2 i 
then real (as may be seen by reference to the form 
of the field for large r, eq 7.7), and repre ents the 
time-average of the power 10sL by radiation. (For 
many circuit 2n-poles, even if unshielded , the 
radiation loss is negligible.) The second term on 
the right of eq .2 gives the Joulean and the di-

-electric power losses in the 2n-pole. The last 
term , which i pure imaginary, is 2jw time t he dif-

537 



ference of the time-a.-erage magnetic and electric 
energies of the field of the 2n-pole. Writing Q 
for the total power dissipation, and UH, UE for 
the magnetic and the electric ,energies, eq 8.2 
becomes for the special case of a two-pole, 

. 2 . 
Z II = R ll + JXll = II d2 [Q + 2)w(UH - UE )]. (8 .3) 

This equation throws some light on the physical 
meaning of impedance: Rll is determined by the 
losses ; Xu, by the reactive energy unbalance. 

It has already been remarked that the calcula
tion of the field, particularly in microwave prob
lems, is in 'general very difficult. On the other 
'hand, it is not difficult to derive a general property 
of the reactance matrix of a lossless 2n-pole. The 
property in question is a generalization of an 
essential part of the content of Foster 's reactance 
theorem for circuits, viz. , the frequency-derivative 
of the reactance of a lossless linear two-pole is 
positive, 

For 2n-poles, the cOLTesponding statement is that 
the frequency-derivative of the reactance matrix 
is positive definite. A proof of this statement will 
now be given for the generalized type of 2n-pole 
considered in this paper. 

The field of a lossless 2n-pole that satisfies the 
hypotheses of the reciprocity theorem (sec. VII ) is 
subj ect to Maxwell' equations in the form 

curl E=-jW/-LH,} 

curl H= + jwEE. 
(S.4a) 

rrhe parameters /-L, E must be real; for simplicity it 
is assumed that /-L , E are scalars and that they are 
independent of frequency in the frequency-range 
considered. (It is sufficient that 06' j ow and 
'OJ{ j aw be positive definite or zero .) Moreover, 
the 2n-pole must be completely shielded so that 
radiation loss cannot occur. The domain of the 
field E, H is a region R bounded by the surface S" 
with inward normal k . Since the physical 
boundaries of the field must be perfectly conduct
ing, the boundary condition k X E= O must be 
satisfied everywhere on S" except on the terminal 
urface S m (which form a part of S" ). Let the 

fields on the terminal surfaces be specified in terms 
of a set of magnetic field amplitudes ("currents" 
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in the circuit case) I I, 12, •• " I n. A solution 
of eq 8.4a is thereby determined, and the corre
sponding electric field amplitudes V", are related 
to the 1m by the matrix equation 

V = Z(w)I, 

where Z(w) is the impedance matrix (at fre
quency w) of the 2n-pole, and V , I are one-column 
matrices with elements Vm and T"" respectively. 
Since the reciprocity theorem applies, Z(w) is 
symmetric; and since the 2n-pole is by hypoth esis 
lossless, Z(w) is pme imaginary (sec. VI, 7). 
Hence, in place of V = Z (w)I , one may write 

V = jX(w)I , (S.5a) 

where X (w) is real and symmetric. 
Let E' , H' denote the 2n-pole field satisfying the 

boundary conditions determined by I I, 12, , 

1m at a new frequency w' = w+ ow. The field 
equations corresponding to eq 8.4a are 

curl E' = - jw' /-LH' ' } 

curl H' =+jw'EE', 
(8.4b) 

and the matrix equation corresponding to eq 8.5a is 

l7' = jX(w')I . (8.5b) 

The matrix I is arbitrary, but by hypothesis it is 
the same for both eq 8.5a and eq 8.5b. 

It should be noted that in a waveguide, the 
terminal fields determined by 1 are not neces
sarily the same for the two frequencies w' and w. 

For, going back to eq 5.4, 5.2, one finds that Hm 
and H~ are given by 

where the primes dcnote quantities associated 
with the frequency w'. The wave admittance rm 
depends on frequency for modes other than prin
cipal modes; F om, however, is a function of 
geometry and does not depend upon frequency. 
The subsequent. calculation is appreciably sim
plified by choosing "Y om (w) = [Y m(w)] - l, The V , 
I-representa tion to be used thus depends upon 
frequ ency in a particular way, and this necessarily 
affects the frequency-dependence of X (w). With 
this choice of representation, the la t two equa
tions above are replaced by the single equation 
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(8.6) 

which holds for both wand w'. 
ing equations for Em and E~ are 

The cOl'respond-

as obtained from eq. 5.4, 5.2 with 'Yom = yl. The 
m 

discussion leading to eq 8.6 and 8.7 pertains only 
to waveguide terminal fields. For terminals of 
circuit type the question of representation does 
not arise. The special choice made above per
mits the calculation to be carried through in one 
formal manner for any kind of 2n-pole - wave
guide, circuit, or mixed. 

By forming the quantity E' X H*- E X H' *, 
integrating its inward normal component over S", 
and applying the divergence theorem, one obtains 

1-:t f (E' X H*-E x H' *). k mdS= 
2 m~ l 8m 

~ f R div (E X H' *- E' X Il*)dr, (8.8) 

since E' X k = E X k = O on the conducting sur
faces . Using eq. 8.6, 8.7, and the normalizing 
condition 5.3, the left-hand side of eq. 8.8 is 
reduced to 

where Jt is the transposed complex-conjugate of 
I . From eq 8.5, this quantity may be written 

~jJ1[X(w')-); (w)] I, 

which is, to the first order in ow, equal to 

1 . (It dXI ) 2 J dw ow. (8 .9) 

Since X(w) is real and symmetric, dX /dw is also 
real and symmetric, and the quantity 8.9 is there
fore pure imaginary. 

The right-hand side of eq 8.8 is transformed as 
follows: The integrand is, by a vector identity, 

div (E X H'* - E' X H*)= H'*·curl E
E· curl H'* - H * . curl E' + E'· curl H*. 

Network Equations to Waveguide Problems 

Ma:xwell's equations 8.4 ene to eliminate the 
curls: 

div (E X H'*- E' X H*) = - jw(p,H . H'*+ 
~E' . E*)+jw'(p,H'.H*+ ~E.E'*). 

Letting H' = H + oH, E'= E+ oE, w' = w+ llw, and 
expanding the right-hand side of the last equation, 
one obtains the quantity 

correct to the first order. Hence, the right-hand 
side of eq 8.8 may be written as 

- w Imag fR(~E' IlE*+p,H*'IlH)dr+ 

jllw fR(~ E .E*+i H .H *) dr. (8. 10) 

The first term of thi expression must actually be 
zero to the first order in ow, since tbe term is real, 
and the real part of the left-hand side of eq 8.8 
is zero to the first order. This information, 
however, is incidental; the desired result is ob
tained from the equality of the imaginary terms 
of eq 8.8. From eq 8.9 and 8.10, then, 

~j(It ~: I) ow=jllwi~G E.E*+~ H . H*)dr. 
Therefore 

(8.11) 

where UH , UE represent magnetic and electric 
energies, as in eq 8.3. Since the quantity UH + UE 

is positive for every nonzero I , eq 8.11 states that 
the frequency derivative of the reactance matrix 
is positive definite , 'as was to be shown. (For w 

approaching a resonance frequency, UH + UE tends 
to infinity, so that dXjdw is not defined at such 
exceptional frequencies.) 

It is perhaps worthwhile to write down the 
generalization of eq 8.11 holding for arbitrary 
choice of the 'Yom. Let an arbitrary representa
tion of the fields at waveguide terminal surfaces 
be defined by the diagonal matrix 'Yo with diagonal 
elements 'Y01, 'Y02, ..• , 'Y on, and let Yo denote the 
diagonal matrix of wave-admittances with diag
onal elements Y 1, Y2, ... , Y n . (If some of the 
terminals of the 2n-pole are circuit terminals, the 
corresponding 'Yom and Y m are to be understood to 
be equal to unity.) Then the reactance matrix X 
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associated with the repl'esentation 'Yo is such that 19 

In a normalized reprcsentation, 'Yo= 1, and eq 
8.12 simplifies to 

J tY, !i (y'-1 ) J 4(U + U ) 0dw 0 x = HE, 

where x is the normalized reactance matrix. The 
equation is of the same form for any set of fre
quency-indepdendent 'Yo's. If the 'Yom are chosen 
so that the product 'YoYo is independent of fre
quency (as was done in the derivation of 8.11), cq 
8.12 reduces to eq 8.11, as it should. 

IX. Appendix 

1. Multimode Interaction 

The extension of the discussion of the text to include 
multimode interaction, as defined in section IV, is straight
forward. An outline of this generalization will suffice. 

Equations of the form of eq 5.1, 5.2, 5.3 hold for each 
mode '1 in waveguide m. The amplitude coefficients 
V~, I! of mode '1 in waveguide m are defined by 

E~= V!E.':., } 

H~=I!II.':.. 
(5.4') 

(A multiplier 'Ydm' which could be inserted, as in eq 5.4, is 
here omitted for simplicity.) The tangential components 
of E and II on the mth terminal surface are 

A.. Am 
E =""" E~ = """ V~E~ m .L....J m ""--.J mom' 

~=l ~= l 

Am }..m 
(A. l) 

H =""" IP = """ P IP m ~ m .L...J mOm' 
~=l ~=1 

where Am denotes the number of nonattenuated modes 
admitted in waveguide m. The complex power input at 
the m th terminal surface is given by 

Because of the orthogonality property of the waveguide 
modes, W m can be written as the sum of contributions from 
the individual modes, 

10 'l'he X in eq 8.12 is related to the X in eq 8.11 by a transformation of the 
type d iscussed in sec. VI, 4. 
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Am 

W m =2: W!, 
~=l 

where 

W!= ~ r (E~X H~·) 'k dS = l j2 V ~ I ~' 2J8m m m m m m· (5.8') 

This is the basic power expression. Turning to the joining 
equations, and referring to the notation and the discussion 
on p. 520, section V, it is clear that 

express the joining condition. From the orthogonality 
(or from t he linear independence) of the waveguide 
modes, it follows that the amplitudes must satisfy 

Vi = V i, } 
P=-I~ 

1 2 ' 

(5. 12') 

where 1] = 1,2 , .• . ,AI (and Al = >'2, of course). 
Equations 5.8', 5.12' are formally identical to the 

corresponding equations previously obtained. Thus a 
multimode waveguide transducer can be treated as 

a 2J\1I-pole, where M = ~A",. The transducer t heory of 
71'1 = 1 

section VI can be adapted to the multimode case without 
formal change in that theory by the expedient of numbering 
the variables V~, I :!, serially in some order and denoting 
t hem by V ,n, 1m, where m = 1,2, . . . , M. With this 
notation the reciprocity theorem of section VII and the 
r eactance theorem of section VIII apply formally un
changed. 

For some purposes, however, it is convenient to retain 
the superscript ident ification of m ode and the subscript 
identification of waveguide. The eq uations of a linear 
source-free waveguide transducer, having n = 2, Al = 2, 
A2 = 3 , for example, may be written 

V' 1 z g Z~~ z g z g z g I I 

V l Zi~ Zir Zn zg Zi~ II 

n zg Z~i Z~~ zg Z~~ Ii 
V 2 

2 zg Z~T Z ~} Z ~~ Z~~ Ii 

V~ Z~l Z~T Z~~ 2 ~~ Z~~ l' 2 

The coefficient Z: may appropriately be called the open
circuit t ransfer impeda nce from mode}Jo in waveguide k to 
mode '1 in waveguide m. If the reciprocity condition is 
satisfied, t h e above impedance matrix is symmetric, i. e. 
Z:~=ZZ~ · 

WASHINGTON, Apl'il20, 1948. 
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