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Basis of the Application of Network Equations

to Waveguide Problems
By David M. Kerns

A systematic and general formulation of the concepts and the conditions that underlie
the technique of the application of network equations to waveguide problems is presented.
The discussion is guided by a formulation of what may be called the transducer concept,
according to which, essentially, a transducer is a power-transfer device which is to be de-
scribed only in terms of external characteristics. Waveguide and circuit devices are con-
sidered as transducers whose terminal phenomena are electromagnetie fields varying harmoni-
cally with time. The basic task is then the definition of suitable terminal variables character-
izing the terminal fields. The construction of variables of this kind for waveguide transducers
is discussed in considerable detail; for circuits, for which suitable variables are voltage and
current, the construction is sketched. Transducer theory is defined, discussed, and illustrated
by the development of selected relations of the theory, and is shown to coincide with much
of what is generally connoted by *‘theory of four-terminal networks.”

As a matter of interest and importance in applications of the technique, derivations of a
rather general reciprocity theorem and of a version of Foster’s reactance theorem are included.
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Both theorems apply to both waveguide and circuit structures.

I. Introduction

The usefulness of the application of network
equations to waveguide problems is rather well
known. So-called equivalent circuits have been
used since the beginning of intensive work in the
microwave field, and they are employed in an
increasing number of published papers. This
employment of network equations, however, often
unnecessarily appears to rest to a considerable
degree upon intuition, or upon assumed, rather
than proved, analogy with behavior of low-
frequency circuit devices. It is, of course, readily
accepted that the procedure can be logically formu-
lated and that analogies can be proved. Valuable
discussions have in fact been given by Saxon,!
Altar,? and others. Footnote references 1 and 2
both contain, in particular, proofs of reciprocity
theorems applying to waveguide structures and
thus establish an analogy of the kind mentioned
above. But neither of these references is primarily
concerned with a general and basic study of the

1 Radiation Laboratory, MIT, memorandum, consisting of an introductory
section for notes on lectures by "Julian %chwmfzor Discontinuities in wave-
guides, prepared by David S. Saxon (Feb. 1945).

2 William Altar, Proc. Inst. Radio Engr., 35, 478 (1947).
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application of network equations to waveguide
problems. Indeed, no general and basic study
has appeared, and yet there is an evident need for
such a study. The primary purpose of the present,
paper is to provide a systematic and basic formu-
lation of the technique in question.

The discussion begins with a brief formalization
of what may be called the transducer concept,
according to which, essentially, a transducer is a
power-transfer device which is to be described
only in terms of external characteristics. Al-
though the ideas here involved are familiar, it is
important that they be specified with reasonable
precision and completeness, since the whole ais-
cussion may be regarded as a development of the
application of the transducer concept to a particu-
lar class of transducers.

The basic task is thus reduced to the formula-
tion of a method of quantitative description of the
external behavior of a class of transducers whose
terminal phenomena are electromagnetic fields
varying harmonically with time. This class in-
cludes both waveguide and conventional circuit
devices. In many cases (and only such are con-
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sidered), the terminal electromagnetic fields can
be adequately characterized for purposes of trans-
ducer theory in terms of a finite number of pairs
of variables. The construction of variables of
this kind (terminal variables) for waveguide trans-
ducers is discussed in considerable detail; for
circuits, for which suitable variables are voltage
and current, the construction is sketched. Once
terminal variables are defined, the characteristics
of a given transducer can be quantitatively de-
scribed in terms of the relationships imposed by
the transducer upon its terminal variables.

Transducer theory may be said to be the study
of properties of classes of transducers defined by
the specification of the mathematical form of the
relations connecting the terminal variables. In
the present instance, transducer theory so defined
comcides with much of what is generally connoted
by “theory of four-terminal networks.” The
method and the meaning of transducer theory
from the standpoint of this paper are illustrated
by the development of a number of selected rela-
tions.

Finally, as a matter of interest and importance
in connection with the application of the technique
(but not as something fundamental to the tech-
nique itself), two theorems are proved: namely, a
very general reciprocity theorem similar to one
given by Dillenbach® and a version of Foster’s
reactance theorem which is somewhat more gen-
eral than that given by MacLean.* These the-
orems are given for transducers of either wave-
guide or circuit type as deductions from Maxwell’s
equations. In order to prove theorems of this
kind it is, of course, necessary to impose suitable
hypotheses concerning the interior of the trans-
ducers considered. Transducer theory proper,
which is exclusively concerned with terminal
phenomena, provides an extremely useful frame-
work in which to state results, which may indeed
be of either experimental or theoretical origin.

The treatment given here was developed as a
part of the material for a course of lectures given
at the National Bureau of Standards by the author
in the spring of 1947. This paper retains some of
the pedagogical aspects of the lecture material.
The topic was suggested by Harold Lyons, and
the author is grateful to him for suggestions and
encouragement in the preparation of the paper.
mch, Der Reziprozitatssaty des elektromagnetischen Feldes,

Archiv fiir Elektrotechnik, Bd. 38, Heft 3, 153 (March 1942).
4 W. R. MacLean, Proc. Inst, Radio Engrs., 33, 539 (1945).
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II. Transducer Concept

Since much use will be made of certain general
ideas involved in the concept of a transducer, it is
desirable to include definitions and a brief dis-
cussion of these ideas. A suitable basic definition
is that a transducer is “a device actuated by
power from one system and supplying power in the
same or any other form to a second system.”’?
The surfaces (or points) through (or at) which
power enters or leaves a transducer will be called
terminal surfaces. This term will serve for general
purposes, and it anticipates the more specific
meaning to be imparted later. The generalization
of the basic concept to include transducers with »
terminal surfaces is useful and is made here;
except perhaps for n=1, this generalization is
quite acceptable. For n=1, the term transducer
is not apt, but it is convenient to have this case
formally included. The use of the term transducer
usually implies a concentration of attention on
external characteristics of a device. This aspect
of the concept is taken as fundamental and is
developed in the following paragraphs.

The description of a transducer, as such, is to be
accomplished solely in terms of phenomena oc-
curring at the terminal surfaces; that is, only such
quantities come into consideration as are acces-
sible to external measurement. For a given
transducer let the variables quantitatively speci-
fying the terminal phenomena, the terminal
variables, be denoted by X;, X,, Xs, . . .. The
characteristics of the transducer are then mathe-
matically expressible as the aggregate of the
relationships imposed by the transducer upon its
terminal variables:

fl(Xl, X2; Xs .. -):0;

fZ(le X2; X3 G ) 07 (11)

Sets of equations of this kind, describing the
characteristics of a transducer, will be called the
equations of the transducer.

One is ordinarily interested not only in the
properties of individual transducers, but also in
the properties of transducers formed by combina-
tion of other transducers. The characteristics of
a composite transducer can be calculated from the

$ Webster’s New International Dictionary, 2d cd., unabridged (G. & C.
Merriam Co., Springfield, Mass., 1934).
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characteristics of its individual members if the
relations connecting variables of one transducer to
variables of another (when the two transducers are
joined) are provided. KEquations expressing the
relations imposed by the joining of two trans-
ducers will be called joining equations.

Transducer theory may be defined as the theory
of properties of classes of transducers, the classes
being defined by the imposition of hypotheses on
the mathematical nature of the transducer equa-
tions considered, and the joining equations being
given. Transducer theory thus yields properties
possessed in common by all members of a given
class and is distinguished from any theory dealing
with particular properties of any individual
member of any class, or, more generally, from any
theory depending upon hypotheses concerning the
inner nature of a transducer.

These ideas have served as a general guide in
the organization of the subsequent discussion, and
they are more specifically employed (and thus
illustrated) in section VI.

III. Waveguide Transducers

The term waveguide, as used throughout this
paper, denotes those types (and only those types)
consisting of either one hollow conductor or two
conductors, one of which is hollow and encloses the
other. The term therefore includes types of
waveguides, such as hollow rectangular pipes,
which do not support a principal mode, as well as
types, such as coaxial line, which do support a
principal mode. A waveguide transducer is for-
mally defined as a transducer that has waveguide
leads for its input and output connections. The
number of waveguide leads is arbitrary, and the
waveguides may individually be of arbitrary
cross section. The leads of a waveguide trans-
ducer are, by hypothesis, ideal waveguides; that
is, waveguides of perfectly cylindrical geometry,
made of perfectly conducting, metal, and filled with
a medium that is homogeneous, isotropic, non-
dissipative, and linear. The terminal surfaces of
a waveguide transducer are cross-sectional (mathe-
matical) surfaces within the waveguide leads (or
within the waveguide leads projected). The
interior of a waveguide out to a terminal surface is
an integral part of the interior of a waveguide
transducer. There is, however, no criterion,
axcept that of convenience, for the location of a
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Fraure 1. Waveguide transducer with two terminal sur-
faces, Sy, Ss.

terminal surface along a waveguide lead. It will
be convenient for purposes of visualization to
regard the terminal surfaces as being located
within the waveguide leads at some distance from
any discontinuity, as indicated in ficure 1. A
shift in the position of a terminal surface from one
given position to another is equivalent to con-
necting a transducer consisting of the appropriate
length of ideal waveguide at the original terminal
surface in the waveguide in question; this is a
mathematical process, and the details are given at
a later point in the discussion (sec. VI).

Examples of waveguide transducers may be
found among devices employed in practice in the
entire audio-radio spectrum. Such devices may
be, for example, attenuators, cavity resonators,
transformers, crystal mixers, transmission sys-
tems consisting of sending and receiving antennas
and intervening space and objects, sections
of uniform waveguide, junctions and transi-
tions between two or more waveguides of one
or more types, and amplifiers. Provided merely
that they possess waveguide leads, such devices
are directly admissible to the class of wave-
guide transducers, regardless of the frequen-
cies for which they may be designed. For prac-
tical reasons, the waveguide leads of a low-fre-
quency device must, of course, be of a type that
supports a principal mode. The concept of a
waveguide transducer is effectively a generaliza-
tion of the usual concept of a 2n-pole (or a 2n-
terminal network).

The specification of ideal waveguide leads facili-
tates the mathematical definition of terminal
variables which precisely describe the electro-
magnetic field on a terminal surface; the corre-
sponding physical situation is well-defined, since
unshielded leads are excluded. As far as the
mathematics is concerned, the subsequent treat-
ment applies unchanged to ideal waveguide con-
sisting of open parallel conductors. But at very
high (microwave) frequencies the hypothesis of an
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ideal waveguide of this type is practically unten-
able. On the other hand, the fact that at suffi-
ciently low frequencies the exact geometry of
leads becomes unimportant is familiar, though
perhaps not obvious from the standpoint of field
theory. Anindication of the nature of the approxi-
mations involved in the consideration of parallel-
conductor and ordinary wire leads is given in the
latter part of section V.

IV. A Class of Problems of Special Interest

It is assumed that the field within a waveguide
lead varies harmonically with time, with fre-
quency w. This case is in itself very important in
practical problems, but the assumption actually
involves no real loss of generality, since an
arbitrary time variation may be resolved into
sinusoidal components. The time dependence
will be represented by the implicit factor exp
(jwt), and the treatment will thus involve complex
amplitudes, rather than instantaneous real quan-
tities. Within a waveguide lead, then, the electric
field E and the magnetic field H satisfy Maxwell’s
equations in the form °

curl E=—jwuH)
. (4.1)
curl H= -HweEf
where the parameters u, e (representing respec-
tively permeability and dielectric constant) are
positive real scalars independent of E, H, position,
and time (g, e may depend upon w). The field is,
moreover, subject to the boundary condition that
the tangential component of E vanish on the
surface of the waveguide.

The most general field satisfying the above
differential equations and the boundary condition
can be expressed as a sum of an infinite number of
elementary particular solutions (modes) charac-
teristic of the cross section of the waveguide.
(The fact that the waveguide modes cannot easily
be calculated in detail except for a very few simple
shapes of cross section is here immaterial. For
the purpose of this paper, only general results of
the theory of waveguides, holding for waveguides
of arbitrary cross section, are needed.) For a
given waveguide, and at any given frequency, the
number of nonattenuated modes is finite or zero,
and the number of attenuated modes is infinite.

¢ Rationalized mks, or Giorgi, units are employed throughout.
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The class of problems primarily to be considered
in the text of this paper is now limited as follows:
It is assumed that one transducer interacts with
another (when they are connected) through the
agency of only one waveguide-mode. It is further
assumed that this one-mode condition is fulfilled
as a consequence of the following more detailed
conditions, which correspond to the usual case in
practice: (a) the operating frequency is such that
one and only one mode can be propagated without
attenuation in a waveguide (the propagated mode
is then obviously the lowest mode), and (b) the
length of waveguide lead is great enough to pro-
vide very high attenuation of higher modes.”
These conditions insure that the waveguide lead
interconnecting two waveguide transducers will
act as an effective mode-filter. Regardless of the
complexity of the field which may exist at either
end of the section of ideal waveguide, the trans-
ducers can interact only through the agency of the
one nonattenuated mode.

It may happen that the one-mode hypothesis is
still applicable, even if a waveguide supports no
nonattenuated modes, or more than one non-
attenuated mode. But such cases are relatively
rare in practice, and will not be considered ex-
plicitly. It is, however, of some interest to
drop the one-mode hypothesis and to consider
any finite number of nonattenuated modes con-
tributing to the interaction”of two waveguide
transducers, even though this case is also one
seldom encountered. The extension of the sub-
sequent theory to cover this more general case is
not difficult; it is given in the appendix.

A given system can be resolved into simpler
systems—consisting  of waveguide transducers
satisfying the one-mode hypothesis in the form
adopted—insofar as the given system consists of
parts connected (or separated!) by sufficiently
long sections of waveguide in which only one
mode 1s propagated without attenuation. The
essential point to be observed is that an inter-
connecting lead by hypothesis is a section of ideal
waveguide. This is not to say that an imperfect
physical junction between waveguides cannot be
involved; an imperfect}junction, like any other
discontinuity, belongs in the interior of a wave-
guide transducer.

7 It may be said that for any frequency below and not close to a higher-mode
cutoff frequency, and for any kind of waveguide, the higher-mode attenua-
tion in a distance of a few times some mean linear measure of the cross section
is of the order of 102 or 10~ in amplitude. ’
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It may be noted that the conditions that have
been imposed (viz., harmonic time-dependence,
and the one-mode hypothesis) are directly con-
cerned only with the situation within a waveguide
lead; no condition is directly imposed on the nature
of the interior of a waveguide transducer.

V. Definitions of Terminal Variables _

The task now is, first, to set up suitable defini-
tions of terminal variables, and then to consider
the most important properties of these variables
as defined. In accordance with the one-mode
assumption introduced in section IV, it will be
sufficient to consider only one mode—a non-
attenuated mode—in specifying the field on a
waveguide terminal surface.

It is desirable at this point to set forth briefly
results of waveguide theory in sufficient complete-
ness to meet later, as well as immediate, needs.
From waveguide theory, it is known that the
transverse components E,,, H,, of the most general
one-mode waveguide field with harmonic time-
dependence may be written in the following form:

Em:[om CXP(—jﬂmzm)+1)m exXp (.’ﬁmzm)]Eam

Hmz[(]m exp(_jﬂmzm)—[)m Oxp(jﬁmzm)]Hom} (51)

where
Eom: )"71_11/21(10”” Ham: )/7:1/2 ka Fom- (52)

In these expressions, the subscript m denotes the
waveguide considered; the coordinate z, and the
unit vector k,, are parallel to the cylindrical sur-
face of the waveguide, with positive sense di-
rected into the transducer. B, Y., F,, are,
respectively, phase constant, wave-admittance,
and electric-field function characteristic of the
mode involved. C,, D, are arbitrary complex
amplitudes (at z,=0) of the traveling-wave
components of the field traveling in the positive
and negative z,-directions, respectively. The
phase constant g, and the wave-admittance Y,
in general depend upon the frequency (w,), the
constants of the medium (u,, €,), the geometry
of the cross section, and the mode involved;
for principal modes, however, Bmzwm\/ume,,,,
Y= Ven/tn. For all nonattenuated modes, 8,
and Y, are real and positive. The vector F,,
lies in a transverse plane and is a function of
position in the transverse plane, but not of z,;
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the form of F,, depends upon the geometry and
upon the mode involved. The field equations
leave F,,, undetermined to the extent of a constant
multiplier. F,, is then uniquely determined
(apart from sign) by the convenient normalization

f GRS =N
S

the mtegral being taken over the cross section
S,, of the waveguide; eq 5.3 requires in particular
that F,, be real. F,, is one member of the set of
mutually orthogonal functions for the different
modes in the m™ waveguide.

It is now a simple matter to define the terminal
variables. It will be worth while to consider
definitions of two alternative pairs of variables.
The terminal surface is for convenience specifically
taken as a plane cross sectional surface; the
tangential components of the field on this surface
are then E,, H,, as given by eq 5.1 for the par-
ticular z,-plane in which the terminal surface lies.
The possible values of E,,, H,, on the m™ terminal
surface may be expressed in terms of quantities
V., I, by means of the equations

(5.3)

Em == Vm'Y _o:r{ZEom:
} (5.4)

Hm:Im ;gHom;

or, alternatively, in terms of quantities A4,, B,
by means of the equations

Em :'y_mlr{z(Am_*_Bm)Emn, ;
Hm:'y_o:vF([lm_Bm)Homy

where 42 denotes the positive root of a positive
real number to be chosen at convenience.® These
equations formally define the terminal variables
Vw, In and A,, B, V, and I, are complex
amplitudes respectively measuring the total tan-
gential electric and magnetic components of the
physically determined field on the terminal sur-
face. A, and B,, are complex amplitudes respect-
ively measuring the incident and emergent
travelling-wave components of the physically
determined field on the terminal surface. The

8 The factor yom inserted in eq 5.4 will appear as a characteristic impe-
dance (see p. 521). Greater generality with respect to the choice of
multiplicative factors is permissible (but not useful); for example, arbitrary
and independent complex constants could be inserted in the definitions of
Vmand Im. The form adopted for the definition of Am, Bm is merely oneof
several equally convenient possibilities. For example, a factor -y},f,'ﬁ instead
of v7/2 could be inserted.

om
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dependence of V,,, I,, and A4,, B, on z,, which is
apparent upon comparison of the defining eq 5.4,
5.5 with eq 5.1, is not indicated explicitly, since
the terminal surface is ordinarily considered to be
in a fixed position. The pair V,,, 1,, and the pair
A, B, are obviously related to each other by
the equations

Vm:Am+B:rzy 2Am:‘7m+70m1m;
} (5.6)

'Yom]m:Am”—Bmy 2Bm: I/Ym_')’orn]m-

Either one of the pairs could be defined in terms
of the other by means of these equations. The
expressions for power and the equations for the
interconnection of two waveguide transducers in
terms of these variables are of essential interest
and are easily obtained.

Consider the complex power W,, supplied to
the transducer at the m* terminal surface. This
power is given by the integral of the inward normal
component of the complex Poynting’s vector over
the terminal surface

Womy [ BaxH)-udS,  (57)
where H7, is the complex conjugate of H,. The
real part of W, is the time average of the instan-
taneous input power, and the imaginary part of
W, is the amplitude of the reactive power ex-
change across the terminal surface. Employing
the defining eq 5.4 for V,, I,, the definitions
5.2 of E,,, H,,, and the normalizing condition 5.3,
one finds

r 1 2 ~
Il m::§ ‘ ij- (08)

For A,, B,, one finds via either eq 5.5 or 5.6,

u/m:{),}” [({AMEQ— :BmJQ) - (AmB::_A:Bm)]-
(5.9)

In this form the real and the imaginary parts are
exhibited separately. The presence of the factor
1/2 on the right-hand sides of eq 5.8, 5.9 means
that V,,, I,, and A,,, B,, as defined are to be inter-
preted as peak (rather than as root-mean-square)
amplitudes.

The mathematics of the interconnection of
waveguide transducers is handled by considering
that a terminal surface (No. 1, say) of one trans-
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ducer coincides with a terminal surface (No. 2,
say) of another. For the time being, it is assumed
that the terminal surfaces coincide at a point
within the interconnecting lead at some distance
from any discontinuity, as indicated in figure 2.

(7

I
\

T
»
Iz
N

Ficure 2. Coincident terminal surfaces.

With the common terminal surface so located,
the actual field on the surface may be assumed
to be very nearly the field of the one nonatten-
uated mode. The transverse components of the
field on the surface may then be described by the
alternative pairs of equations

E\.=Vy7?E,,

; (5.10)
HIZII'Y;FHOI;
E,=V:v3"?E,,

} (5.11)
szfz‘YlfHoQ,

which apply respectively to the two sides of the
surface. In order that the whole field (normal
and tangential components) be continuous across
the mathematical surface, it is sufficient (as well as
necessary) that the transition of the tangential
components of E, H be continuous at all points
of the surface. Thuseq 5.10 and 5.11 must repre-
sent identically the same field:

E,=E,,
H,=H,.
Using eq 5.2, these equations become
ViF oy (yaY) 7P =VoF (v Y2) 717,
Likey XF o (v Y1) 2= Lley X F o5 (702 Y2) 72,

Waveguide 1 and waveguide 2 are electrically
identical; hence Y;,=Y, and F,=+F,. Assum-
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ing that F,; and F,, are chosen to have the same
sign, the equations expressing the fact that the
two transducers are joined become

V1: 'mrz,
—IIZI-J/A’VM,

where Nio= (vo1/v02)'">.

The expression of the same fact in terms of A,

B, A,, B, is
YlezzBly

]\TIQBQZAl.

Since the value of w,, is arbitrary, and since
waveguide 1 and 2 are electrically identical, it is
clearly convenient and sensible to have v, =v,;
otherwise an apparent discontinuity appears at a
place where there is no physical discontinuity at
all. If ~,=v,, then N,=1, and the above
equations reduce to

V1:V2,

} (5.12)
11: —Ir_17
A=F,

} (5.13)
B]:x/lg.

It will be assumed that the v,,, are so chosen that
joining equations are always of this form.

The following definitions are useful and serve
to bring out further significance of the terminal
variables V., I,, and A,,, B,. The quantity

Vin_
.I;n o 77"771,

(5.14)
is called the impedance of the field on the m™
terminal surface. +,,, may be further character-
ized as a looking-in impedance, since, if the real
part of v, is positive, the average power input
at the m™ terminal surface is also positive (eq 5.8).
The ratio

J5% '
A =Pmm (5.15)

is of the mature of a reflection factor. (The term
reflection coeflicient is ordinarily applied only when
all A’s other than A4,, are zero and the transducer
itself does not act as a source.) If the absolute
value of p,,, is less than unity, the average power
input at the m™ terminal surface is positive
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(eq 5.9). From eq 5.6, the relation between
Ymm AN pyy, 18 given by
] —I_pmm Ymm—Yom ~
Ymm="Y om l_pmm’ pmm_')’mm_}")’om (‘)16)

Both quantities, v,., and p,.,, depend not only on
the characteristics of the waveguide transducer
involved but also upon the excitation and ter-
mination at terminal surfaces other than the
m™,  Definitions of more general quantities of
both types

V B e
TfE'Ykm’ A‘Zzpkrn (‘)] ‘)

should also be recorded. The first is a transfer
impedance, the second a transmission factor (cf
parenthetical remark above), from the m™ to the
k™ terminal surface. These quantities are of
course no more characteristic of a waveguide
transducer than v,,, and p,,, are.

That particular value of v,,, that corresponds to
a field consisting solely of an incident wave
(prm=0) 1is called the characteristic impedance of
the field in the m™ waveguide. This character-
istic impedance has the arbitrary value v,,. The
most convenient specific value to use is v,,=1
(ohm) (m=1,2,3, n), irrespective of the
of the characteristics of the waveguide with which
it is associated. Since this makes v,, disappear
in the formulas, however, it is slightly more in-
formative to leave v,,, arbitrary, and it will be left
arbitrary in the subsequent general arguments. A
set of V’s and I’s or a set of A’s and B’s may be
said to represent the fields with which they are as-
sociated. It will be convenient to designate the
two schemes as V, I-representations and A,B-rep-
resentations, respectively. A particular repre-
sentation of either kind is defined by specifying
a particular set of characteristic impedances vonm.

The quantities V,,, I,,, A, By, are not ordinarily
regarded as directly measurable (except possibly
Vo, I, at low frequencies), although their values
in a given case in any chosen representation can be
calculated from experimental data if desired. But
the actual values of the terminal variables them-
sevles are seldom of interest. The terminal vari-
ables serve as extremely useful auxiliary quantities
for the calculation of quantities of more direct
interest, such as power, power ratio, impedance
ete., which involve only products and ratios of the
terminal variables.
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It may be noted that the commonly used values
of characteristic impedance, such as, for example,

-~

Il’ (for all types of waveguide;

Y =wave admittance)

'Tv%’ (for rectangular waveguide
of dimensions wXh, h<<w)

1 Ty . .
5.7 log 5 (for coaxial waveguide,

> (5.18)

radii ry,ry;re >1y) )
have no special significance in the theory of wave-
guide transducers. The actual usefulness of the
quantities 5.18 as characteristic impedances 1is
largely in the calculation by conventional trans-
mission-line equations of reflection at a plane
junction of two waveguides of similar geometry
but of differing dimensions or media.? Such
calculations, however, are not in the domain of
transducer theory.

For principal modes, V,,, I,, differ in no essential
respect from voltage and current as defined in the
treatment of transmission lines as circuits with
distributed constants. Transmission-line voltage
and current may be defined by the line integrals

Q
V= — E, . ds,
PCPQ

i,,,:@ H,.ds, (5.19)
Cq

where, as shown in figure 3, Cpq is any path from
a point on conductor P to a point on conductor
), Uy is any path encircling the conductor ¢, and
both paths of integration are restricted to lie
in a transverse surface—the terminal surface S,
say. Since the components of curl E and curl H
normal to the terminal surface are zero for a
principal mode, the line integrals are independent
of the particular paths Cp,, Cp, and the defini-
tions 5.19 then have meaning. The quantities
Om, i are therefore linear measures of E,, H,,
respectively, just as are V,,, I,, in eq 5.4.1° This
is enough to insure that v,, i,, and V,, I, have
essentially the same physical meaning whenever

9 It happens that the expressions so obtained are valid if the discontinuity
is in the medium only. If a discontinuity in dimensions is involved, only
the second and third expressions in 5.18 are applicable, and they yield only
a partial or approximate result.

10 Linear measures of Em, Hm for modes other than principal modes may be
constructed by means of line integrals. It is then necessary to specify the
paths in detail, and the product % VmlIy of variables so constructed is pro}
portional to power (rather than automatically equal to power).
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eq 5.19 do have meaning. Numerical agreement
between v, i, and V,, I, can be obtained by
suitable choice of v,,,.

A calculation for thespecial case of coaxial wave-
guide will illustrate the above statements. If
the radii are r,, 7, (r,>>7,), the field-function F,
for the principal mode is F,=N grad (log 7),
where 7 <7<r,, and the normalizing factor N=

-1/8
<21r log :72) makes F, satisfy eq 5.3. Using eq
1
5.2, and writing out eq 5.4, one obtains
E=VN(y,Y) % grad (log 7),
(5.20)
H=]N(y,Y)*"* kXgrad (log 7),

It is expedient to choose v,= (27Y)~* log %’ Tt
il

now voltage and current as given by eq 5.19 are
calculated from the field given by eq 5.20, one
finds

v=VN(y,Y)" f "grad (log 7)-ds=V,

i:IN(%Y)I/ZSf kxgrad (log 7)-ds=1I,

where the sense of the integration for ¢ corre-
sponds to the positive sense of k. Thus the
identity of the two definitions is established in a
particular case.

The power equation (5.8) and the joining equa-
tion (5.12) for waveguide transducers are formally
the same as the corresponding equations for ac cir-
cuits, in which conventional voltage and current
appear as terminal variables. It is instructive to
examine, even though briefly, the role of current
and voltage from the present point of view.
Voltage and current associated with any pair of
conductors P, may be defined by the line inte-
grals

vo=— [ E-ds, iq—d H.ds, (5.21)

' PCpq Co
where Cpp is any path from a point on con-
ductor P to a point on conductor ), and Cj is"
any path encircling the conductor ¢, not also
encircling conductor P.'' These definitions may
be applied, for example, to the conductor geometry

illustrated in figure 4, as well as to that of figure
3, which may now be taken as a particular cross

section of a pair of conductors that are not neces-
sarily cylindrical. The definitions 5.21 can have

it It will be assumed that ip, defined by an integral similar to that for iq,
is equal and opposite to iq.
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Ficure 3.

Paths of integration for vm, im.

exact meaning for wholly arbitrary paths Crq, Cg
only for static fields, for which Maxwell’s equa-
tions imply

E=—grad ¢, at all points,
curl H=0, at all points outside conductors.
(5522

Inside conductors, curl H=J (and therefore div
J=0), where J is the density of conduction cur-
rent. The concepts of voltage and current, how-
ever, are applied not only to static (d¢) problems
but also to certain nonstatic (ac) problems.

A necessary condition for the applicability of
circuit theory, as such, to alternating-current
problems is that the dimensions of the system be
small enough, and that the frequency be low
enough so that, roughly, w+ue d < 1, where d
is a representative linear dimension of the ap-
paratus. When this condition is fulfilled, retarda-
tion may be neglected, and the field is said to be
quasi-stationary. The assumption of a quasi-sta-
tionary field does not imply that curl E (every-
where) and curl H (outside conductors) are negli-
gibly different from zero: an inductor is charac-
terized by a nonnegligible value of jouH, and a
capacitor is characterized by a nonnegligible value
of jouE. Thus in the strictest sense of eq 5.21,
voltage does not exist in an alternating-current
problem if inductance is present, and current does
not exist if capacitance is present. Circuit prob-
lems are characterized by the fact that regions

(91
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Ficure 4.

Paths of integration for vpg, 1g.
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in which the conditions 5.22 seriously fail are
localized, and can be isolated by means of suitably
drawn terminal surfaces on and near which eq 5.22
may be assumed to be satisfied. For present
purposes this may be taken as the qualitative
definition of a circuit problem; it leads directly
to the existence of voltage and current as terminal
variables.

To see more fully what the foregoing statements
mean, consider a transducer having just one pair
of perfectly conducting wire leads, as illustrated
in figure 4,a. The power output from the trans-
ducer is

W=%fE><H*-kdm

where ¢ is a surface enclosing the transducer, and
k is the outward normal unit vector on . The
output power is delivered to whatever system may
be outside ¢. Since E=0 in the conductors, the
areas cut out of o by the conductors may be omitted
from the surface integration. Let S denote the
part of ¢ remaining. S is bounded by the two
curves (p and O, and may be made simply con-
nected (if desired) by a cut joining Cp and Cp
(fig. 4,b). If it is now assumed that the condi-
tions 5.22 hold on S, the expression for power may
be transformed as follows. The vector identity

curl (¢ H*)=(grad ¢) X H*+¢ curl H*
reduces to

curl (pH*)=—EXH,*

at points on §. Hence, employing Stokes’ theorem
(with due regard to signs),

W= —%f curl (pH*) - kdS—=3 45 $H*.ds+
S & Cp
L oH* ds.

2 Cae

With the choice of signs indicated in figure 4, and
for paths lying in S,

vz—fI)QE-ds:%—%,

= H.ds=—

Ca Cp

H.ds,
and the last expression for power becomes

(5.23)
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as expected. It may be noted that it was not nec-
essary to make assumptions directly concerning
either the région inside S or the region outside S.
If now S is regarded as a common terminal surface
of two transducers (No. 1 inside, No. 2 outside,
say), the joining equation for voltage must be

T1="0s, (5.24a)
since the surfaces of conductors are equipotential
surfaces of a potential function in the neighborhood
of a terminal surface. In equating », and 2, the
positive senses of the two quantities are assumed
to be the same. If the positive directions of 7; and
i, are directed into the respective transducers at
the positive terminal, the joining equations for
current are

— =1, (5.24b)
since div J=0 in the neighborhood of a terminal
surface, so that current must be continuous.

Voltage and current may be said to represent
the terminal fields in a w»,-representation (cf
p. 522). No arbitrary constants appear in a
vi-representation (because none was inserted in
the definition of » or of 7). An a,b-representation
may be formally defined by

2(17/1 =0 + Yemlm,y }

Qbm: Um=—Yemlm-

Although these equations are formally the same as
the corresponding eq 5.6, the constants v,, which
may here be wusefully employed are suitably
chosen characteristic impedances of the trans-
ducers of which w»,, i, are terminal variables,
rather than characteristic impedances of leads. In
fact, quantities with the same physical meaning as
the v,,, previously used do not exist in the circuit
picture. The field is quasi-stationary, and the
resolution into incident and emergent waves im-
plied by eq 5.25 is purely formal. But the pro-
cedure is useful in network theory as applied to
both circuit and waveguide problems; when ap-
plied to waveguide transducers it leads to a formal
resolution into incident and emergent waves, each
of which in general is a linear combination of the
physically defined incident and emergent waves.
For completeness, joining equations in an
a,b-representation should be written down. If, as
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is assumed, vy, =2, the formal analog of eq 5.14 is

(lzzbh}
bgzal.
These, of course, follow directly from the defini-
tions 5.25 and 5.24. The generalization of eq

5.26 with ve#ve 1s not of the same form as the
generalization of eq 5.14 with v, 7 v..

(5.26)

VI. Transducer Theory

The power equation (5.8) and the joining
equations (5.12),

T/71 = Vf_),

11:—12,

provide a basis for the development of transducer
theory for the class of waveguide transducers con-
sidered. These equations are formally the same as
the corresponding equations for circuits. Quite
apart from the inherently similar physical meaning
of the quantities entering the equations i the
waveguide and in the ecircuit case, the formal
identity guarantees that transducer theory devel-
oped for the one case is also valid for the other.
Those parts of network theory that are truly
transducer theory are in fact immediately available
for waveguide transducers. Thus, the letter of the
purpose implied by the title of this paper was vir-
tually accomplished when eq 5.8 and 5.12 were
set up.  The purpose of this section is to indicate
more fully the methods and the meaning of trans-
ducer theory, mostly by presenting selected ex-
amples of the theory.

It will be convenient to use the term 2n-pole to
denote any transducer whose terminal phenomena
are harmonically varying electromagnetic fields
which can be specified in terms of n pairs of vari-
ables V,,, I,, such that eq 5.8 and 5.12 apply. The
variables V,,, I,, may be of the kind defined for
either waveguide or circuit transducers; variables
of both kinds may indeed appear in one set of
variables for a given transducer. By the above
definition, a circuit or a network with » pairs of
conventional terminals (or wire leads) is a 2n-pole.
A waveguide transducer which has n leads and
which satisfies a one-mode hypothesis (whether or
not in the form specified in sec. IV) is a 2n-pole.
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A waveguide transducer which has n waveguide
leads and which satisfies a \,,-mode generalization
n
of the one-mode hypothesis is a 22_,: Na-pole,
m=
where \,, is the number of nonattenuated modes
admitted in the m™ waveguide (appendix). A
transducer that has both waveguide leads and wire
leads may also be a 2n-pole.

Although the term 2n-pole is used here in a
fairly general sense, the limitation to transducers
with electromagnetic terminal phenomena is
irrelevant so far as transducer theory is concerned.
V.. could be interpreted as the amplitude of a
harmonically varying force applied at a point of an
oscillatory mechanical system, and 7, could be
interpreted as a corresponding velocity-amplitude.
With suitable conventions, the power equations
and the joining equations could be set up in the
form of eq 5.8 and 5.12, and transducer theory
for such systems would then not differ from the
theory for 2n-poles. These remarks partly suggest
the possible generality of transducer theory.
Transducer theory can be very general because
it only describes or relates external phenomena;
it does not attempt to explain or interpret.

A number of topics in the transducer-theory
of 2n-poles are to be treated in the following
paragraphs. In order to be able to proceed, it is
necessary to make a basic assumption concerning
the number of independent equations that make
up the set of equations for a 2n-pole (cf eq 1.1):
It is assumed that the number of such equations
is equal to one-half the number of variables in
every case. This provides a working rule for
the number of equations, but it does not define
any particular class of 2n-poles.  For the purposes
of transducer theory a cless of 2n-poles is defined
by specifying the mathematical form of the
transducer equations. In the present instance,
consideration will be given only to 2n-poles that
are linear in accordance with the following general
definition: A transducer is said to be a linear
transducer if the equations of the transducer are
linear equations. Additional specializing condi-
tions (for example, reciprocity, losslessness) will
be considered in the course of the following
discussion. The wusefulness of the wealth of
mathematical relations that transducer theory
can give (of which only a few are given here) is
obviously dependent upon the existence of 2n-poles
which satisfy the various assumed conditions.

Network Equations to Waveguide Problems

Needless to say, the hypotheses mentioned above
and others to be employed are not unrealistic.

1. Linear 2n-poles with terminal variables V.., I

The equations of a 2n-pole in terms of terminal
variables V,,, I,, may be written

fk(VI)V27 o Vn; II} IZJ 3} In)EO;

where, in accordance with the basic assumption,
there are n functions f, (k=1,2, ., ). The
2n-poles to be considered are linear; hence, the
functions f; may be written

Ck1V1+ . e +Cknvn+dklll+ s oo AF

dann+ngO, (6.1)

where k=12, . . . n,and the ¢, d;,, g are con-
stants independent of V,,, 7,,.'* Since there are n
independent equations, at least one of the (2n)!/
(n!)* n-rowed determinants of the n-by-2n matrix
of the coefficients of the V,, and the 7,, must be
different from zero. This means that the system
of equations 6.1 can be solved for at least one
set of the (2n)!/(n!)? different sets of n variables
that can be chosen out of the 2n variables V;,

. Vo, I ., I,. This much is known
from the general hypotheses. For the purpose of
discussion it is assumed that eq 6.1 can, in par-
ticular, be solved for the set of V’s or for the set
of I's.*® The determinants of the corresponding
matrices

Ci1Ci2 « « . C1p d“ (112 e dln
Co1 Co2 . . . Coy ({21 dgg oo oo (lgn

- N (6.22)
Cnl an e cnn dnl an o e e dnn

must accordingly be nonzero. With the aid of
the matrices €, [), and the one-column matrices

V1 Il !}1
Ve I, g2

V= , = , @G= , (6.2b)
Vn Irz n

12 Equations of the form of eq 6.1, representing the constant and the linear
terms of a Taylor’s expansion of a general fx, can serve as a basis for the first-
order theory of a nonlinear 2n-pole.

13 This assumption is usually, but not always, satisfied in practice. This
point comes up again; see p. 536, sec. VII.
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the system of equations (eq. 6.1) may be rewrit-
ten as the matrix equation

OV+DI+G=0. (6.3)

To solve for V, this equation is multiplied through
from the left by O, the inverse of C:

V—ZI+V,

where Z=—C"'D, V,=—C"'G. Similarily, by
multiplying eq. 6.3 through by D™,
I=YV+1,,

where Y=—D"'C,I,=—D™'@. The matrix iden-
tity (D~'0~")=C"'D may be used to obtain the
relations

7

(6.3a)

(6.3b)

V—=—2I, (or I,=—YV,). (6.4)

The significance of the matrices of constants,
7, Y, V,, I, is readily elicited. If the magnetic
fields are reduced to zero at all terminal surfaces
(I=0), then, from eq 6.3a, V=V, Hence the
one-column matrix V, is the matrix of open-
cireuit ** electric-field amplitudes. If the electric
fields are reduced to zero at all terminal surfaces
(V=0), then from eq 6.3b, /=1, Hence, the
one-column matrix /, is the matrix of the short-
circuit magnetic-field amplitudes. The relation
between V, and I,, given explicitly in eq 6.4,
shows that I,=0 if V,=0, and conversely. If
V, and I, are zero, the 2n-pole is said to be source-
free s

The matrices Z, Y are called the impedance and
the admittance matrices, respectively, of the 2n-
pole. 1If, for simplicity, the 2n-pole is assumed
source-free, and if all the elements of I except
I, are zero,

Vq:quIm (6~5)

where Z,, is the element in the ¢* row and p*
column of Z. Thus the value of Z,, is that value
of the impedance vq,=V,/I, (cf eq 5.17) which is
obtained under the conditions just stated. The
elements Z,, are accordingly called open-circuit
transfer (ps£q) or input (p=gq) impedances. 1t is
casily verified that the elements Y., of Y are

14 Tt is natural and convenient to adopt certain terms from circuit theory.
The use of the terms voltage and current for general V’s and I’s, which may or
may not be ordinary voltages and currents, is, however, avoided in this paper.

15 This is not the same as passive in the standard meaning of the term; the
term source-free is here used merely to denote that a 2n-pole is such that its
equations are homogeneous.

526

appropriately called short-circuit transfer or input
admittances. 'The algebraic relation between Z
and Y is given in eq 6.4.

The most general linear 2n-pole can be com-
pletely characterized by n(n-+1) constants (which
are in general complex). In eq 6.3a, for example,
there are the n? elements of Z, plus the n elements
of V,. The original equations (eq 6.1) contain
2n?-+n constants, but the nature of the relations
connecting the V’s and I's is determined by
n(n-+1) combinations of the original constants.

2. Linear 2n-poles with terminal variables
Am ) Bm

Terminal variables A4,,, B, may be defined in
terms of V,,, I,, by means of the matrix equations

V=A+B,

24=V++,1,
} (6.6)
vol=A—B,

2B=V—~,I.

In these equations, V and 7 are as defined m eq
6.2; A and B are one-column matrices with ele-
ments A, and B,, (m=12, - .« .  n), respectively.
v, 18 the diagonal matrix

Yol 0 0

O Yo2 0
Yo=—

0 0 -« « + Yon

The discussion immediately following, as well as
others in which wave amplitudes A4, B, are ex-
plicitly involved, will be understood to refer to
waveguide transducers. Further, the diagonal
elements of v, are precisely the v,, appearing in
the definitions of V,,, I,, (eq 5.4), as indeed the
notation indicates. The resolution into wave-
amplitudes given by the right-hand pair of eq
6.6 is then what may be called physical rather
than formal, and the complication of a super-
posed formal resolution into wave-amplitudes
(mentioned on p. 524) will not come into the
picture.

Instead of using the relations connecting A,B
with VI to convert the results of section VI, 1,
it is instructive to start afresh with the new
variables, and to reapply the reasoning of the
previous paragraph. Thus, the equations of a
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2n-pole in terms of terminal variables A,, B,
may be written

»f]'c(])’l,B% ceeo By Ay, Ay -oe e , A,) =0,

where, in accordance with the basic assumption,
k=12, - - -, n. The 2n-poles to be considered
are to be linear with respect to A,,, B,; hence, the
functions 1, may be written

C;lBl+' S '+cl:n]gn+d1’clAl+' e '+dl:-n/1n+gllcEO~
(6.7)

where k=1,2, - - - - n, and the ¢, din, g. are
constants independent of B,, A,. Continuing
exactly as with eq 6.1 previously, one is led to
the mathematical analogs of eq 6.3a, 6.3b, and
6.4, viz.,

B=SA+ B, (6.8a)
A=RB+A4,, (6.8b)
S=R-, B,=—SA,(or A;=—RB,), (6.9)

where it is assumed that the matrices R and S
are both nonsingular.

It is clear that in the absence of incident waves
(A=0), the emergent-wave amplitudes are given
by B= B,; if the incident amplitudes are adjusted
so that A=A,, the outgoing waves are thereby
reduced to zero (B=0). If the 2n-pole is such
that A.(=B,) =0, it is said to be source-free.

The matrix S is very aptly called the scattering
matriz of the 2n-pole. If, for simplicity, the
2n-pole is assumed source-free, and if all the ele-
ments of A except A, are reduced to zero, then
the emergent-wave amplitude B, is

B SovAR (6.10)
where S,, is the element in the ¢™ row ana the
p™ column of §. Thus the value of S,, is that
value of p,,=B,/A, (cf eq 5.17) that is obtained
under the conditions just stated. The elements
S,» of S are called scattering coefficients. The
S, are also called reflection coefficients; the
S,, (g5#p) are sometimes called transmission co~
efficients. Mathematically, the interpretation of
R is, of course, similar to that of S. The matrix
R has received little explicit use, and no special
terminology for R and its elements is suggested
here.
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3. Relationship between Z- and S-matrices

Since A, B are related to V, I by homogeneous
linear equations, it follows that a 2n-pole that is
linear and source-free in an A, B-representation is
also linear and source-free in a V, I-representation
(and vice versa). Quantitative relations between
the results of the preceding two paragraphs are
easily found. For example, the elimination of V'
and 7 from the equation

V=ZI+V; (6.32)

for a given 2n-pole by means of eq 6.6 gives
A+B=Zv' (A—B)+V,.

Upon solving this last equation for B, and com-
paring with the equation

B=SA+|B, (6.82)

for the same 2n-pole, one obtains
S=Zr'+1)7" (Zg'—1),  (6.11a)
By= (75" +1)7'V,. (6.11b)

It is easily verified that the two factors in paren-
theses on the right of eq 6.11a commute, so that

S=(Zng'—1)(Zrg '+ 1)7".
For computations, the form
S=1—27~;'+1)!

is convenient. KEq 6.11a solved for 7 yields

Z=(1-—8)"11+8),. (6.12)

There are, of course, corresponding relations con-
necting other pairs of the four matrices 7, ¥ and

S, R.

4. Change of Representation

The values of the parameters which describe
the characteristics of a given linear waveguide
transducer are obviously affected by the choice
of the v,, in the definitions of the terminal vari-
ables (eq 5.4, 5.5). Thus, for example, the
transformation of the impedance matrix from
a representation defined by -y,,,,,(mz'l, 2...1m) to
a representation defined by 7,, (m=1, 2, - . ., n)
may be found as follows. For convenience let 7,
7 respectively denote the diagonal matrices whose
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diagonal elements are ./y,. +/y,, and let V,I

and V, I denote the corresponding sets of terminal

variables. In order that V, I and V,7 represent
the same fields, it is necessary that

~—1T7: *IV,
LR } (6.13)

I =nl

(from eq 5.4). If Z and Z are the impedance
matrices of a given source-free waveguide 2n-pole
in the two representations,

V—=ZI, V=ZI. (6.14)

Eliminating V, I from the second of eq 6.14 by
means of eq 6.13, solving for V,
V=@n"Zy ]I,

and comparing with the first of eq 6.14, one finds

Z=mn""Zn""7, (6.15)

which is the desired formula. If in particular
7=1 (characteristic impedances v,,=1), eq 6.15
normalizes Z,and the resulting Z is the normalized
impedance matrix z of the 2n-pole:

2= i (6.16a)

In terms of the elements of the matrices involved,

eq 6.16a 1s
ka‘_“ka('Ynk'Yom)_1/2 (616b)

A similar type of calculation yields for the
scattering matrices S and S,

S=n""7S7""x. (6.17)
The normalized scattering matrix is thus
s=n"1Sn, (6.18a)
or, in terms of elements,

Skm:Skm('Yom/'Yok)l/Q' (618b)

It may be noted that the transformation
6.15 does not affect the symmetry properties of
an impedance matrix. If an impedance matrix is
symmetric in one y,-representation, it is symmetric
in any «,representation. On the other hand,
the transformation 6.17 does affect symmetry
properties. A scattering matrix may be sym-
metric in one representation and unsymmetric

528

in another. This difference in the behavior of
impedance matrices and scattering matrices with
respect to change of representation can be regarded
as a consequence merely of the particular way in
which the basic definitions (eq 5.4 and 5.5) were
set up.

If the impedance matrix of a 2n-pole is symmet-
rie, then the normalized scattering matrix is also
symmetric. This may be shown by using the
relation 6.11a, which, for the normalized matrices
s and z, becomes

s=(z+1)"1(z—1).

Using the tilde to denote the transpose of a matrix,

———

———
§=(e+ 1) (e—1)=(e—1)(z+ 1)
=D+ = =1+ 1) =,

Thus §=s, and the symmetry is proved.
5. Linear two-poles; joining

For a two-pole, all matrices involved in the fore-
going reduce to single numbers. Eq 6.3a and 6.3b
reduce to

"712211]1—{_1/1:1, (619{1)
IL=Y,Vi+1,, (6.19b)

respectively. If Z,,=0, then eq 6.19b has no
meaning; if Y;,=0, then eq 6.19a has no meaning.
Z1 and Yy, cannot both be zero, on account of the
assumed existence of one relation of the form
6.1. If both Y, and 7, are finite, both eq
6.19a and 6.19b apply and they have the same
meaning. Moreover,
Yu=2y"", Va=—2Zuly,
as in eq 6.4. The content of Thévenin’s theorem
and of Norton’s theorem is included in the mean-
ing of eq 6.19.

Consider the connection of a two-pole source
(whose equation is 6.19a) with a source-free two-
pole whose equation is V=2, I;. The system
of equations to be solved is then

V=" ==V,
Vi=Z, I,
Vi=V,
I;=——L,

(6.20)
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where the last two equations are the joining equa-
tions. Since the two two-poles when connected
form a closed system, the number of equations
should be sufficient to determine a unique solution
for the V’s and I’s. The fact that there are four
equations to determine the four variables is a con-
sequence of the basic assumption concerning the
number of independent equations for a 2n-pole.
If Z,,-+7;,7#0, the solution of eq 6.20 for Vi, I
is obviously

v,

Ve Zu e
ZII+Z;l

e

I,=

The appropriate specialization of eq 6.8a, 6.8b
vields the equations of a linear two-pole in an
A, B-representation:

Blzsu Al‘{‘th
A1:R11B1+Ag1

(6.21a)
(6.21b)
Remarks similar to those following eq 6.19 apply
here also. The calculations with matrices that led

to eq 6.11 may be performed for two-poles with
numbers. The results are, of course, as in eq 6.11,

_ Va
b=z T

:le'Yol—l_]-, (6.22)
N Zyya T 1

1+8
Zu:l’j’kSIi’Yax'

Consider the connection of a two-pole source
(whose equation is 6.21a) with a source-free

two-pole whose equation is B;=:S},4;. The sys-
tem of equations is then
B1:Su A1+Bg1;
BEZS{‘ A (6.23)
B1:A1,
A;:Bl.

If S;,S5,5#1, the solution of these equations for
B, Al is
BgISII

B=izmsn

I ,,B.ﬂ s
i s

6. Reciprocity

Suppose that the equations of a 2n-pole can be
expressed in the form

~L/yk'_‘.fk(llylb"''JI") (k:1)2)""7n)' (625)
Network Equations to Waveguide Problems

829788—49——8

Let
I/Ii:.fk<1;}I;)"“:1r/l) (k:ly:')y"")“)) (62521)
l’::,fk(lfy]; y]:l) (k:l,g,"",ﬂ), (6251)>

where 17, I,,----, I, is one set of independent
variables and 7, I;,--- -, I is another set of in-
dependent variables. Consider the condition

n

> (VaL—ViL)=0; (6.2

o=
this is the reciprocity condition, and it serves to
define an important class of 2n-poles. The reci-
procity condition greatly limits the generality of
eq 6.25. To find the form of these equations,

first differentiate eq 6.26 with respect to I, ob-
taining

, aV:; ,
Vk—g OIZ m”® (6.27)
But V} does not depend upon I}, ). ... I so

that the differential coefficients in eq 6.27 must
be constants independentof 17, I5,- ... I”. These
constants may be denoted by z;,,say, and eq 6.27
then states

n
'yIr,):Z ka'I'r,n;

m=1

Vl::fk([;)I;)' o

that is, the functions f, are linear and homo-
geneous. Let V, I respectively denote the one-
column matrices with elements V., Z,,, and let
Z denote the square matrix with elements z,.
In this notation eq 6.25a and eq 6.25b become

a—=/

V”:le,
and eq 6.26 may be rewritten as
Iy Ty =, (6.26a)

where (f ) denotes the matrix transposed. Elimi-
nating V'V’ from the last equation gives
el =T ar 0. (6.28)

But (I”’z1”) is a number, or a matrix of one
element, and is therefore symmetric; hence,

?”2[’2 (7”2[’):}’51’/.
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Eq 6.28 can thus be written
I' G—2) I =0.

Since I’ and I’” are arbitrary,

z2—2=0;

the impedance matrix is symmetric. Thus the
equations of a 2n-pole that satisfies the reciprocity
condition are linear and homogeneous and can be
written in the form

W=pll, (6.29)

where 2z is symmetric. The converse is easily
verified: if eq 6.29 holds, then the reciprocity
condition 6.26 holds. Eq 6.29 is therefore equiva-
lent to eq 6.26.

If z is symmetric, its inverse, y=27!, is also
symmetric. It was shown on p. 528, that if z
is symmetric, then the normalized scattering
matrix is also symmetric.

7. Lossless 2n-poles

A 2n-pole is said to be lossless if the total time-
average power input is zero for all values of the
terminal variables. Mathematically expressed in
terms of V, I, this condition is

Re(I'V')=0, (6.30)

where I is the transposed complex-conjugate of I,
and Re(I'V) is the real part of I'V. If a lossless
2n-pole satisfies the reciprocity condition, the
following conclusions concerning the form of the
equations of the 2n-pole can be drawn. Kquation
6.30 directly implies

I'V+1v*=o.
Replacing V by 21 (eq 6.29),
Izl 4+ T241%=0.
But Tz*I* is a single number and is therefore

equal to its transpose ['z'/. The last equation
becomes

I'(z+2NI=0.

Since [ is arbitrary,
2= —2 (6.31)
This equation states that the imaginary part of z
is symmetric and that the real part is antisym-
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metric. This much holds for any linear, lossless
2n-pole. But since reciprocity was assumed, z is
symmetric, and its real part must vanish. There-
fore,
z=jz, (6.32)
where 2 is real and symmetric; 2 is pure imaginary.
The corresponding properties of the normalized
scattering matrix may be derived from eq 6.32
via eq 6.11a, or directly from the counterpart of
eq 6.30 in an A, B-representation. Choosing the
latter method, the needed power equation is, in
matrix notation,

A'A—B'B=0 (6.33)
(eq 5.9 with v,,=1). Inserting B=s4,
AtA— Ats'sA=0.
Since 4 is arbitrary,
sl=1l, (6.34)

Eq 6.34 states that the inverse of s is the trans-
posed complex conjugate of s; a matrix having
this property is known as a unitary matrix. This
much holds for any linear, lossless 2n-pole. But
since s is symmetric, s'=s*, and eq 6.34 becomes

Fop==1g (6.35)

the inverse of s is simply the complex conjugate
of s.

8. Four-poles

Four-poles are of particular importance be-
cause more complicated transducers are often
built up of a number of four-poles connected in
tandem. If a four-pole satisfies the reciprocity
condition, its equations may be written in either
of the two forms

Vi=audi+ 2121, | 312311A1+312A2,} 6.36)
Ve=zpli+4 2015, | By=3814,4 8524,, :

where the matrices z and s are symmetric, as
written. It is often convenient to have these
relations expressed in the so-called transmission-
line form, defined by

V1=t11T72’{‘t121-2, ‘ B1=7"11§2+7”1222,
— = - 2 (6.37)
L=ty V2+t22]2, A1:7"21Bz+7'22A2,
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where V,=V,, LE —I,; and where 7)’2 =A,, ZQ =B,.
The reason for making the definition with respect
to the quantities distinguished by bars will become
apparent. The new coefficients are given in
terms of the coefficients in eq 6.36 by

tu=21u/%12, te= (2n2e2—23%) /212,

t1==1/22, toa=220/212.

(6.38)
7”11::—(311322_5‘?2)/812, 7'122811/312,
T'a1=—S22/812, Toa=1/815.

It is important to note that reciprocity is now
manifested in the relations

tutsy—titn=1; ] (6.39)

Il —7aln =1,

1. e., the determinant of the matrices of coefficients
in eq 6.37 has the value unity. One may casily
verify that this is both a necessary and a sufficient
condition that the matrices of coefficients in the
original eq 6.36 be symmetric.

If a two-pole whose equations are
Ef—‘é‘rgz

V=2, | (6.40)

is connected to the above four-pole at terminal
surface No. 2, then eq 6.37 yield

Vi, =erths B _TuSrtny
1 " 112112 f A, H T918;+Ta2
(6.41)

Thus the input impedance v;; (or reflection co-
efficient py;) is exhibited as a linear fractional
function of the load impedance z, (or reflection
factor s,). Transformations of the form 6.41
have many interesting and useful mathematical
properties. (Equations of this form hold for any
linear source-free four-pole, whether or not the
reciprocity condition is satisfied).

Suppose that a second four-pole is given, whose
equations in the transmission-line form are

Vi=taV,ttul,,
L=tV +1nl,,

B,=r{,By+rid,,
4"1; = r;lB—;+r;2/I;7
(6.42)

where the notation is in all respects similar to that
of eq 6.37. Let it be required to find the char-
acteristics of the four-pole formed by joining the
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two given four-poles, say with terminal surface
No. 2 of the first coinciding with terminal surface
No. 1 of the second. The notation has been
chosen so that the corresponding mathematical
process is merely a linear substitution. The result,
in matrix notation, is

v, 174 B B,
MG RN
I1 [2 Al 442

(6.43)

where 7" and R are the matrices of eq 6.37, 7"
and R’ are the matrices of eq 6.42. Thus the
matrix of the parameters of the combination of
the two four-poles is the matrix product of the
matrices of the separate four-poles taken in the
proper order. If the four-pole described by
eq 6.42 satisfies the reciprocity condition, the
determinants |7”| and |[R’| are each equal to
unity. In this case, from the general rule for the
multiplication of determinants,

ITT|=1 | - |[BR'|=1

and the composite four-pole also satisfies the reci-
procity condition. (Reciprocity was assumed for
the first four-pole, eq 6.39).

9. Linear symmetric four-poles

A four-pole is said to be symmetric if it exhibits
the same electrical characteristics when viewed
from either of its two terminal surfaces. Thus
the normalized z- or s-matrix of a linear sym-
metric (source-free) four-pole must be unaltered
by the interchange of subscripts 1 and 2. That is,
it 1s necessary that

$12=9821.

(6.44)

211=—7%, 212:221~]8n:822,

A linear symmetric four-pole therefore satisfies the
reciprocity condition and the additional condition
Zu=122 (OT Sy=8y). If a four-pole is lossless, as
well as linear, symmetric, and source-free, then z
must be pure imaginary and s must be unitary.
The equations of a four-pole satisfying these
special conditions are obtained in a familiar form
as follows: z can be written

l:jxu ]sz:l
= 3 o ’
JZ12 Jrn
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where a;;,, @, are real. Defining x,/2,=a,
—1/x;,=b, the coefficients of the transmission-
line form of the equations of the four-pole become
(eq 6.38)

ti=j(1—a®)/b,

t=a.

t11:a:

t?l =.7b1

A characteristic impedance v, of a four-pole is
one that is transformed into itself by the trans-
formation 6.41. For the four-pole in question,
v, 1s given by

_yetj(1—a’)/b
i Ibveta

which reduces to b*:+a*’=1. Since the con-
stants by, and a satisfy b*yi+a*=1, they can be
written

a=cos 0,

by.=sin 0,

as a mere matter of notation. v, is real if |a|<1;
6 is then also real. «, is pure imaginary if |a| >1;
6 is then also pure imaginary. The four-pole may
be characterized in terms of 6, v, by eliminating
a, b from the expressions for t,;, t,, ete. The
resulting matrix is

cos 0 JYe Sin 6

= . 6.45
7 L sin 6 cos ( )

For any fixed value of v, the matrix is defined by
the value of 6, T=T(). If four-poles repre-
sented by 7'(6,) and 7(6,) are joined, the matrix
of the composite four-pole is 7'(6,)76,). Upon
writing out the matrix product it is found that

T(00) T (05) =T (6, +06,). (6.46)

Equation 6.45 shows that 7(0)=1; eq 6.46 thus
vields

TOT(—6)=1,
or, T71(0)=T(—6). 1t is apparent from eq 6.46
that the matrices 7°(6,), 7(6,) commute with each
other.

10. Translation of terminal surfaces

As a further and final specialization, consider

four-poles of the type represented by eq 6.45 with
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ve=1 prescribed. The corresponding 7-matrix is

cos 0 7 sin 6
T(e) i .
cos 6

Jsin 6
The R-matrix (eq 6.37) corresponding to this
T-matrix is particularly simple. From the defini-
tions 6.6 (with v,,=1, since a normalized represen-
tation was assumed in section VI, 9) and from
the definitions following eq 6.37 one finds:

B ot i 1 45 )
[1 B —B1+A1 N fl] , VT‘J N _§2+ZZ
B,

=gl '}
l:flz]

where

(6.47)

~ (6.48)

1 1
Q= o
—1 1

The relations connecting Vi, 1, and Vi, I, are

Vi V,
Il IQ

Using eq 6.48 to eliminate the V’s and [I's,

[Bl] [FZ]
Q — Tyl )
A, A,

from which one obtains

B, B
[ :|:Q“T(0)Q|:_ ]
A, Ao

Therefore the matrix R(8) relating B;, A; and
Bz, [12 18
R(6)=0"1T(6).

For the particular 7'(9) considered, £(6) is readily

found to be
R 0
0 o0

R(6) obviously shares the properties 6.46 of 7'(9).
The transformation of the reflection factor (eq
6.41) defined by R(6) is very simple, viz.,

(6.49)

(6.50)

pun=e"""%,,
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Among the four-poles that can be characterized
by matrices of the form of R(8) (or 7'(f)) are in-
cluded all those consisting of a section of ideal
waveguide. This is seen by employing eq 6.49 to
write

By=Boe 40,
A=0 4 A (6.51)
and comparing these equations with eq 5.1. It
is evident that 6 is to be identified as L, where L
is the length of the section of ideal waveguide
considered, and B is the appropriate phase con-
stant.  (R(0) and 7'(8) were set up for 6 real, cor-
responding to the real values of g for any non-
attenuated mode.) The determination of 8 for a
given mode in a given waveguide is a matter of
experiment or of electromagnetic theory; g cannot
be determined in transducer theory. It is thus
logical to continue to use the electrical length 6, in
preference to writing L for the same quantity.

It was remarked on p. 517 that a translation
of a terminal surface of a waveguide transducer
1s equivalent to joining a transducer consisting of
a section of ideal waveguide at the terminal sur-
face in question. The corresponding mathematical
process 1s given by eq 6.43 for four-poles. Thus,
if a four-pole has a matrix 7" defined with respect
to given terminal surfaces, and if terminal surface
No. 1 is shifted an electrical distance 6;, the corre-
sponding new matrix is given by

T

If, also, terminal surface No. 2 is shifted by the
electrical distance 6,, the result is

T'=T'T)=TO)TTE:)  (6.52)

Consider next the joining of any two given four-
poles with matrices 7}, T, where the matrices are

II’III’II”’I”’I’ \\\““\\““\\““\\‘
7N

Ficure 5. Junction of two four-poles.
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defined with respect to terminal surfaces which
do not necessarily coincide when the physical
junction is made (fig. 5).

The matrix of the physically defined composite
four-pole is then given mathematically as a com-
posite of three four-poles,

T=T,7()T,, (6.53)

where 6 is the electrical distance between the
terminal surfaces imvolved (6 may be positive or
negative).

The results 6.52, 6.53 when expressed in terms
of R-matrices, are, of course, of exactly the
same form as eq 6.52 and eq 6.53 themselves.
The implied algebraic details, while simple for the
T-matrices, are exceedingly simple for the FR-
matrices. The simplicity of many calculations
for four-poles in an A, B-representation in fact
recommends the use of this representation of the
terminal fields in many problems. For example,
the transformation of the characteristics of a wave-
guide 2n-pole corresponding to translation of the
n terminal surfaces is readily obtained by working
directly with the scattering matrix of the 2n-pole
and applying the basic properties of the I-trans-
formation as expressed by eq 6.51.

VII. The reciprocity theorem

The determination of the characteristics of a
given 2n-pole is fundamentally a matter of ex-
periment. If the details of the structure of a
2n-pole are given, it is sometimes possible to re-
place direct experimental measurement by theo-
retical calculations based more or less directly
upon Maxwell’s equations. A circuit problem is
usually regarded as specified in detail when the
component capacitances, inductances, ete., and
their interconnections are given. With such data
given, the calculation of the characteristics of a
2n-pole is set up in accordance with Kirchhofl’s
laws for electric circuits, and the calculation is a
relatively simple algebraic problem. If, however,
instead of capacitances, inductances, etc., the
geometry and the electrical constants of the media
making up the capacitors, inductors, etc., are
given, the problem in general becomes more diffi-
cult, and the solution must be based more directly
on the field equations. Microwave problems are
characterized by the specification of geometry and
electrical constants and by the necessity of em-
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ploying the field equations. The solution of
microwave problems in detail is in general ex-
tremely difficult. Much of the difficulty arises
because of the vector nature of the field, and
because retardation cannot be neglected.

The difficulty of detailed calculation of the be-
havior of microwave components emphasizes the
importance of transducer theory in calculations
and measurements in microwave work. Condi-
tions of the type employed in section VI lead at
once to certain necessary characteristics of the
equations of any 2n-pole satisfying the various
conditions. Moreover, the applicability of one
or more of those conditions (such as linearity,
reciprocity, losslessness, symmetry) is in many
cases evident without explicit experimental verifi-
cation. Reciprocity, in particular, is a very gen-
eral and very important property and is perhaps
the least obvious of those mentioned. The pur-
pose of this section is to give a proof of a rather
general reciprocity theorem for 2zn-poles.

The reciprocity theorem is to be proved for a
class of 2n-poles satisfying the following condi-
tion: The media involved must be such - that
Maxwell’s equations become linear equations at
all interior points of the 2n-pole.’® No restriction
is imposed upon the geometry of the structure
admitted, other than that indirectly imposed by
the requirement that the structure shall actually
be a 2n-pole. The geometry may, for example, be
that of coils, capacitors, and wires or that of
cavity resonators and waveguides. It should be
noted that the hypothesis of linearity here em-
ployed is of a very different type from that em-
ployed in section VI. The important difference
is that here the hypothesis applies directly to all
points of the interior of a 2n-pole, whereas there
it applied only to externally observable behavior
at the terminals. Reciprocity for a 2n-pole com-
posed of circuit elements is usually regarded as a
consequence of Kirchhoft’s laws. Under the as-
sumption of passive, linear, bilateral circuit-ele-
ments, Kirchhofl’s laws yield the reciprocity
theorem almost at once. The basic assumption
employed in this section (viz., linear media) differs
very much in form and slightly in content, from
the circuit-hypotheses just mentioned. Under
the present hypothesis of linearity, Maxwell’s
equations are employed to deduce a reciprocity

16 A more complete statement of the hypotheses is given below.
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theorem holding for any kind of 2n-pole satisfying
the hypothesis. The theorem will therefore apply
to waveguide transducers, circuits, and to the
mixed type involving both circuit and waveguide
leads. Some further preliminaries are needed in
preparation for the proof of the theorem.

It is necessary to define precisely what is meant
by the interior of a 2n-pole. The region occupied
by the electromagnetic field of a 2n-pole is denoted
by I, and the boundary of R is denoted by S.
R and S are illustrated for a waveguide transducer

with two waveguide leads in figure 6. If the
\

// \‘
7 \
/ )
/ —— oo oo ] oo - !
TS tees /1 N\ L
: J ' | : ]
VoL Gl T H
- x - — —y— - - - /
\ T R s i
\ 5 5 : = /I
\51 S'/

Ficvre 6. Surface S for a waveguide transducer.

number of leads is 7, the surface S may be thought
of as consisting of 71 separate parts, viz., a large
spherical surface S” (with center at some mean
position in the region), plus n separate closed sur-
faces S, (m=1,2, ... .n). The surface S, ex-
tends transversely across the m™ waveguide (coin-
ciding with the terminal surface S, within the
waveguide), and encloses the two-pole source ter-
minating the m™ lead. The region R, the interior
of the 2n-pole, is thus bounded externally by the
surface 8" and internally by the surfaces S,.
The surfaces S, enclose and thereby exclude the
fields and currents belonging to the two-pole
sources.

A 2n-pole of the type suggested in figure 6 is
by no means completely shielded; its field extends
to infinity. The radius of the spherical surface S’
must be allowed to become infinite for any incom-
pletely shielded 27n-pole. Furthermore, in order
that all of the field of such a 2n-pole be included
in R, the surfaces S, must fit closely over the
surfaces of the two-pole sources, and these must
be assumed to be perfectly shielded. A region R
and surface S of the type just described serve for
any waveguide transducer. If a waveguide trans-
ducer is completely shielded, as illustrated in
figure 7, an alternative R and S may be drawn as
shown in the figure. The subsequent argument
will employ the notation of the preceding figure 6,
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Ficure 7. Surface S for an enclosed waveguide iransducer.

but no essential changes are required to adapt the
argument to the simpler but less general case
llustrated m figure 7.

The following proof will also apply to 2zn-poles
having one or more circuit terminals of the type
discussed in section V and illustrated in figure 4.
Thus any or all of the two-pole sources of the type
lustrated in figure 6 could be replaced by those
of the type illustrated in figure 4. If this replace-
ment is made for the m™ lead, say, the surface S,
(of fig. 6) becomes the terminal surface of the m™
two-pole source. No important changes in the
argument are involved.

The complete statement of the hypothesis im-
posed on the media in R is made as follows: Max-
well’s equations in a very general form are

o)
Clll‘l [= _ét B(H),
(7.1)
curl H= +§t D(E)+J(E).

The vectors B, D, J are respectively the magnetic
induction, the electric displacement, and the in-
duced current density. The functions B(H),
D(E), J(E) describe the media involved. It is
required that the media be such that these func-
tions are linear and homogeneous. The most
general homogeneous linear vector functions may
be written

B(H)=_/-H,

D(E)=¢& E, (7.2)

J(E)=9 -E, |

.
where the tensors _ 7, ¢, .9, (which may have both
real and imaginary parts) represent respectively
permeability, dielectrie constant, and conductivity.
These tensors depend upon the position coordi-
nates; they may depend upon the frequency w,
but not upon E, H, and the time. If as is as-
sumed, all sources of the field vary harmonically
with time at frequency w, the solution of eq 7.1
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subject to eq 7.2 may be obtained in the form
E=Ey“', H=H,/**, where E,, H, are functions
only of position. Inserting E, H of this form in
eq 7.1, the governing equations become

curl E=—jw_gm-H,
} (7.3)

curl H=-+j0& -E+.7 - E.

Equations 7.3 determine the position-dependence
of the complex amplitudes of a field which varies
harmonically with frequency w at every point of 2.
In accordance with the hypotheses introduced in
section IV, eq 7.3 must reduce to eq 4.1 in the
neighborhood of terminal surfaces.

The tensors . 7/, ,.% of course reduce to scalars
for isotropic media. If tensors are required to
express the properties of the media, it is essential
for the proof of reciprocity that the tensors be
symmetric tensors.  Symmetry of /& is some-
times deduced from energy considerations, at
least when 7, ¢ are real. It is here assumed
that 7, &, .7 are in fact symmetric.

Particular solutions of the eq 7.3 for a given
2n-pole are determined by the boundary condi-
tions, which may be expressed in terms of the
values of kXX E and k<X H on S, where k is the in-
ward unit normal vector on S. It is a theorem of
electromagnetic theory that the solution of Max-
well’s equations in £ is uniquely determined for
all times ¢ >0 by the values of E, H throughout
R at t=0 and the values of kX E or kXH on S.*7
(The values of k< E may be specified over part of
S, and the values of k><H, over the remaining part
of S.) If, asis assumed, the 2n-pole under consider-
ation is such that power is dissipated (however
slightly), the effects of the initial values of the
field throughout R will be transient, and the steady-
state field (the solution of eq 7.3) will be deter-
mined solely by the values of k<X E and k> H on S.

The terminal surfaces S,, form a part of S. On
the terminal surfaces, kX E and kX H are given
by E,, and H,, (sec. V). On the remaining parts of
the surfaces S, the field satisfies the homogeneous
boundary condition kX E=0. On 8’ the field is
to satisfy the so-called outward-radiating condi-
tion, which insures that there are no sources out-
side 87 (i. e., at infinity), and matters only for
nonshielded 2n-poles. It follows from the unique-
ness theorem and from these boundary conditions

17J. A, Stratton, Electromagnetic Theory, p. 486 (McGraw-Hill Book Co.,
New York, N. Y., 1941).
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that the solution of eq 7.3 is uniquely determined
by a set of n terminal fields such that either kX E
or kX H is specified on each of the n terminal sur-
faces. A set of such fields is illustrated in table 1.
No condition is placed upon the two-pole sources
responsible for the terminal fields, other than that
they produce fields of frequency w. The nature
of the ultimate sources that generate the fields is
of no importance. So far as the 2n-pole under
consideration is concerned, it matters only that
certain fields do appear at its terminals.

TaBLe 1. A set of terminal fields

T[T

kXE l E; oo
kXH [ ----- H,
[

It has been tacitly assumed that a solution
exists for arbitrary values of the terminal fields in
sets of the type shown in table 1. The unique-
ness theorem insures merely that if a solution
exists, it is unique. In order to carry through the
proof of the reciprocity theorem, it is assumed
that the set H,, H,, - - -, H, may be arbitrarily
preseribed.'®

The proof of the reciprocity theorem is made
to rest on two lemmas. The first of these is a very
general reciprocity relation first given by H. A.
Lorentz. Lt E’, H" and E’’, H'' be two fields
arising from independent and arbitrary sets of
sources with frequency . The fields satisfy eq
731 R,

curl E'=—jw_g-H’,

curl H'=+jw¢ -E'+.9 -E’,
curl E"'=—jw_g-H'",
curl H'=+jws -E"+.7-E".

Define the vector L=E"X H'’'—E'"XH’, and
form the vector identity

(7.4)

div L=H""-curl E’'—E’-curl H”'
—H'-curl E""+E''.curl H’.

18 The existence of a solution is of course to be expected in any problem with
a genuine physical pedigree. Eut in practice, certain idealizations are useful,
and the assumption made in the text is not always valid. For example, if
tke equations of a four-role are those of an ideal 1:1 transformer,

Vi=Vs,
~h=1,
neitker tke rair Vi, V2 nor the pair I, I; can te chosen arbitrarily. But
eitker of the pairs V3, I or V3, Ir can be chosen arbitrarily, and corresponding
solutions for the fields exist and are unique.
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Substituting the expressions 7.4 for the curls,
and making use of the symmetry of the tensor
parameters, one obtains

div L=0 (in R), (7.5)

which relation is the first lemma.

The second lemma asserts that the integral of
the normal component of L, taken over the
sperical surface S’, vanishes:

Ln.(E'xH"—E”xH')dS:o. (7.6)
This is most easily shown by considering the
asymptotic form of the fields on S’ for large values
of radius » (but the fact to be proved is independent
of the size and shape of 7). For sufficiently large
r, the field approaches that of a concentrated
source at r=0, viz.,

—jBur
E=t £,
H =Y nXE’,

. (4'./)
El/:tl/; /

H' = YonXE”,

where t is a transverse vector function (f-n=0)
of the direction of the vector r, By=w +ue, and
Yo=+e/u. (It is assumed that for large r the
medium is simply free space.) The fields described
by eq 7.7 are in general elliptically polarized
spherical waves. Upon substituting eq 7.7 into
eq 7.6 one finds that the integrand of eq 7.6
vanishes identically, since

VX @' Xn)=t"X(t'Xn).
Hence one may infer that

Iim

r:ool

fSIn-LdS:O: (7.8)

which is the statement of the second lemma.

After the foregoing preliminaries, the proof of
the reciprocity theorem is very direct. By the
divergence theorem,

f i J'k.LdS-
R S

(The minus sign appears because k was chosen
as the dmward normal.) By the first lemma,
div L=0 in R, so that
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| f k-LdS—0.
Js
Hence, by the definition of S,

n
>3 f k-LdS+ f k-LdS=0.  (7.9)
m=1.) Sy s
And by the second lemma, the integral over S’
vanishes, at least in the limit as 7—>o. But the
terms of the summation in eq 7.9 do not depend
upon 7, so that

n

> o k-LdS=0

m=1 m
(and the integral over S’ must in fact be inde-
pendent of 7). Replacing L by the quantity for
which it is an abbreviation,

n

k(B X H'—E" X H')dS=0.
1 'm
(7.10)

m=

The integral over S, reduces in all cases to the
integral over the terminal surface S,. (For
waveguide terminal surfaces, the integrand van-
ishes on those parts of S, that do not coincide
with S,..) Hence

22 | kn (B, XH,—E, X H,)dS=0.

m=1)Sn
The individual terms of this expression are of

the same form as the power relation 5.8 (or 5.23).

Therefore
n

2 (Vo I, — Vi1,)=0.

m~=1

(7.11)

Since this relation holds for arbitrary values of
the independent variables, it is precisely equiva-
lent to the reciprocity condition 6.26. This
completes the proof of the reciprocity theorem.

The algebraic consequences of the reciprocity
condition were examined in section VI, 6. It was
there shown that the equations of a 2n-pole
satisfying the reciprocity condition are expressible
by means of the homogeneous linear equations

"/rk:E kalm (162‘1, 2; Pudil

m=1

. n), (7.12)
where the matrix of coefficients Z,,, is symmetric.
The symmetry of the Z-matrix is the essential con-
tent of the reciprocity theorem; the linearity and
homogeneity of the equations of the 2n-pole can
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-electric power losses in the 2n-pole.

be inferred directly from the same properties of
Maxwell’s equations in R.

VIII. A reactance theorem

By an application of Poynting’s theorem, one
can obtain a fundamental formula relating the
impedance matrix of a 2n-pole to the fields in the
interior of the 2n-pole. Consider a 2n-pole that
satisfies the hypotheses used in section VII, assum-
ing now for simplicity that the media involved are
isotropic. Assume also that u and e are real; dielec-
tric losses, if present, are to be represented by an
equivalent conductivity included in ¢. Poynting’s
theorem (for the complex Poynting’s vector)
applied to the region R bounded by the surface S
states that

%f ExH*MS:f L oE-Evdr ¢
S R &

jwfR<§H.H*—§E.E*> ir,

where the notation is carried over from section VII.
As in section VII, the surface integral may be split
into the sum of integrals over the terminal surfaces
plus an integral over the spherical surface S”. The
sum of the integrals over the terminal surfaces

(8.1)

. 1. g
reduces to the matrix product 5 I'V,orto5 I'ZI,

where ZI replaces 1. Eq 8.1 becomes

1 nzyet f EX H*.ndS+ f L E.E*dr+
2 2)s Jr2

jwfR<f; H-H*— E-E*>dr, (8.2)

where n denotes the outward normal on S”.  For a
shielded 2n-pole, the S’-integral contributes
nothing, since the integrand vanishes. If the
2n-pole is not shielded, the radius 7 of the surface
S’ must be made to become infinite, and R becomes
a region of infinite extent. The contribution of
the S’-integral to the right-hand side of eq 8.2 is
then real (as may be seen by reference to the form
of the field for large », eq 7.7), and represents the
time-average of the power lost by radiation. (For
many circuit 2n-poles, even if unshielded, the
radiation loss is negligible.) The second term on
the right of eq 8.2 gives the Joulean and the di-
The last
term, which is pure imaginary, is 2j times the dif-

537



ference of the time-average magnetic and electric
energies of the field of the 2n-pole. Writing @
for the total power dissipation, and Uy, Uy for
the magnetic and the electric energies, eq 8.2
becomes for the special case of a two-pole,

Zu=Ru+iXu=1] 3 1Q+%eUs—Up). (83)

This equation throws some light on the physical
meaning of impedance: R, is determined by the
losses; Xj;, by the reactive energy unbalance.

It has already been remarked that the calcula-
tion of the field, particularly in microwave prob-
lems, is in general very difficult. On the other
hand, it is not difficult to derive a general property
of the reactance matrix of a lossless 2n-pole. The
property in question is a generalization of an
essential part of the content of Foster’s reactance
theorem for circuits, viz., the frequency-derivative
of the reactance of a lossless linear two-pole is
positive,

dXy,
g >0.

For 2n-poles, the corresponding statement is that
the frequency-derivative of the reactance matriz
is positive definite. A proof of this statement will
now be given for the generalized type of 2n-poles
considered in this paper.

The field of a lossless 2n-pole that satisfies the
hypotheses of the reciprocity theorem (sec. VII) is
subject to Maxwell’s equations in the form

curl E=—jowuH,
} (8.4a)

curl H=+jweE.

The parameters u, e must be real; for simplicity it
is assumed that y, e are scalars and that they are
independent of frequency in the frequency-range
considered. (It is sufficient that 0 /0w and
0./ |dw be positive definite or zero.) Moreover,
the 2n-pole must be completely shielded so that
radiation loss cannot occur. The domain of the
field E, H is a region R bounded by the surface S/
with inward normal k. Since the physical
boundaries of the field must be perfectly conduct-
ing, the boundary condition kX E=0 must be
satisfied everywhere on S”” except on the terminal
surfaces S,, (which form a part of §”’). Let the
fields on the terminal surfaces be specified in terms
of a set of magnetic field amplitudes (“currents”

538

in the circuit case) I, I,, » » -, I,. A solution
of eq 8.4a is thereby determined, and the corre-
sponding electric field amplitudes V7, are related
to the I,, by the matrix equation

=200

where Z(w) is the impedance matrix (at fre-
quency w) of the 2n-pole, and V|, I are one-column
matrices with elements V1, and I, respectively.
Since the reciprocity theorem applies, Z(w) is
symmetric; and since the 2n-pole is by hypothesis
lossless, Z(w) is pure imaginary (sec. VI, 7).
Hence, in place of V=2Z(w)I, one may write

V—iX ()], (8.52)

where X(w) is real and symmetric.
Let E’, H denote the 2n-pole field satisfying the
boundary conditions determined by 7, I, - - -,

I, at a new frequency o' =w-+dw. The field
equations corresponding to eq 8.4a are
curl E'=—jo' uH’,
(8.4b)
curl H' =+ jw'eE’,

and the matrix equation corresponding to eq 8.5a is
V'=5X (o)1 (8.5b)

The matrix 7 is arbitrary, but by hypothesis it is
the same for both eq 8.5a and eq 8.5b.

It should be noted that in a waveguide, the
terminal fields determined by [ are not neces-
sarily the same for the two frequencies " and w.
For, going back to eq 5.4, 5.2, one finds that //,
and H,, are given by

Hm:Im('YomYm)”zkm ><Fomy
H:n:Im(’Y:mY:n)ngm XF«'"L.-

where the primes denote quantities associated
with the frequency «’. The wave admittance 17,
depends on frequency for modes other than prin-
cipal modes; F,,, however, is a function of
geometry and does not depend upon frequency.
The subsequent calculation is appreciably sim-
plified by choosing ~,,(w)=[Y,(w)]*. The V,
I-representation to be used thus depends upon
frequency in a particular way, and this necessarily
affects the frequency-dependence of X (w). With
this choice of representation, the last two equa-
tions above are replaced by the single equation
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Hm:Im kaFum; (86)

which holds for both «» and «’.
ing equations for E, and E,, are

The correspond-

Em: VmFam;
} (8.7)

E?InZVI,nF07n)
as obtained from eq. 5.4, 5.2 with v,,= —I}— The

discussion leading to eq 8.6 and 8.7 pertains only
to waveguide terminal fields. For terminals of
circuit type the question of representation does
not arise. The special choice made above per-
mits the calculation to be carried through in one
formal manner for any kind of 2n-pole — wave-
guide, circuit, or mixed.

By forming the quantity E’ X H*—EXH'*,
integrating its inward normal component over S”/,
and applying the divergence theorem, one obtains

l}ﬁf (B' X H*—EX H'%) - k,dS—
m=1 Sm

5 f div (EXH*—E'XH*dr,  (8.8)
R
since E'Xk=EXk=0 on the conducting sur-
faces. Using eq. 8.6, 8.7, and the normalizing
condition 5.3, the left-hand side of eq. 8.8 is
reduced to

% IV —I'V),

where I is the transposed complex-conjugate of
I. From eq 8.5, this quantity may be written

LITX ()~ X @),

which is, to the first order in dw, equal to

i dX
é ] <IT ;lwil> ow,

Since X(w) is real and symmetric, dX/dw is also
real and symmetric, and the quantity 8.9 is there-
fore pure imaginary.

The right-hand side of eq 8.8 is transformed as
follows: The integrand is, by a vector identity,

(8.9)

div (EXH'*—E'" X H*)=H"* . curl E—
E.-curl H*—H*.curl E'+E’-curl H*.

Network Equations to Waveguide Problems

Maxwell’s equations 8.4 serve to eliminate the
curls:

div (EXH'*—E'" X H*)= —jow(uH - H' *+
eE' - E*)+4jo’ (uH'.H*+¢E.E'*).

Letting H'=H+6éH, E'=E+E, o —w+iw, and
expanding the right-hand side of the last equation,
one obtains the quantity

—20 Imag (eE-6E*+ uH*-0H) -+ jow(eE-E* -+ uH-H*),

correct to the first order. Hence, the right-hand
side of eq 8.8 may be written as

—w ImagL(eE‘ OE*+uH* - 6H)dr-+

joo | (5 B-B+5 H-BHY) dr. (.10)
Jr y

The first term of this expression must actually be
zero to the first order in 6w, since the term is real,
and the real part of the left-hand side of eq 8.8
is zero to the first order. This information,
however, is incidental; the desired result is ob-
tained from the equality of the imaginary terms
of eq 8.8. From eq 8.9 and 8.10, then,

%j([’ ((lif I) dw=70w [R ;EEE*+S HH*> dr.

Therefore

dX
' I=4(Ug+Uy),

(8.11)
where Uy, Uy represent magnetic and electric
energies, as in eq 8.3.  Since the quantity Uz /g
is positive for every nonzero I, eq 8.11 states that
the frequency derivative of the reactance matrix
is positive definite, as was to be shown. (FFor w
approaching a resonance frequency, Uy -+ Uy tends
to infinity, so that d X'/dw is not defined at such
exceptional frequencies.)

It is perhaps worthwhile to write down the
generalization of eq 8.11 holding for arbitrary
choice of the v,,. Let an arbitrary representa-
tion of the fields at waveguide terminal surfaces
be defined by the diagonal matrix v, with diagonal
elements vo1, Y02, - . -, Yon, and let Y, denote the
diagonal matrix of wave-admittances with diag-
onal elements Y, Y, . . ., Y,. (If some of the
terminals of the 2n-pole are circuit terminals, the
corresponding v,,, and Y, are to be understood to
be equal to unity.) Then the reactance matrix X

539



associated with the representation v, is such that *®
d R
I'vY, " (vo'Ys' X) I=4(Ugx+ Ug). (8.12)

In a normalized representation, y,=1, and eq
8.12 simplifies to

1'%, L (751 @) I=4(Uat Us),

where z is the normalized reactance matrix. The
equation is of the same form for any set of fre-
quency-indepdendent v,’s. If the v,, are chosen
so that the product v,Y, is independent of fre-
quency (as was done in the derivation of 8.11), eq
8.12 reduces to eq 8.11, as it should.

IX. Appendix

1. Multimode Interaction

The extension of the discussion of the text to include
multimode interaction, as defined in section 1V, is straight-
forward. An outline of this generalization will suffice.

Equations of the form of eq 5.1, 5.2, 5.3 hold for each
mode 7 in waveguide m. The amplitude coefficients
Vi, I7 of mode n in waveguide m are defined by

m*om?

H'=I7H?,

E"=V'E"

} (5.4)
(A multiplier v.,, which could be inserted, as in eq 5.4, is
here omitted for simplicity.) The tangential ecomponents
of E and H on the mt* terminal surface are

Nin Am
E,.=2> E)=> VE,
n=1 7=1

X § (A.1)
Hy =2 H1=> 1'H],
n=1 =1

where )\, denotes the number of nonattenuated modes
admitted in waveguide m. The complex power input at
the mt» terminal surface is given by

1 *
W,,,=§fsm (B X H) KendS.

Because of the orthogonality property of the waveguide
modes, W,, can be written as the sum of contributions from
the individual modes,

1 The X in eq 8.12 is related to the X in eq 8.11 by a transformation of the
type discussed in sec. VI, 4,
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Am
W 0
n=1
where

WZ:% [q (EIX H™) kndS=1/2V1IT. (5.8

This is the basic power expression. Turning to the joining
equations, and referring to the notation and the discussion
on p. 520, section V, it is clear that

E,=E,,
H=H,

express the joining condition. From the orthogonality
(or from the linear independence) of the waveguide
modes, it follows that the amplitudes must satisfy

Vi=va,
Pt } (5.12")

II’=—'I;'1

where n=1,2, . . . , \; (and M=\, of course).
Equations 5.8, 5.12’ are formally identical to the

corresponding -equations previously obtained. Thus a

multimode waveguide transducer can be ftreated as

a 2M-pole, where M= \,.. The transducer theory of
m=1

section VI can be adapted to the multimode case without
formal change in that theory by the expedient of numbering
the variables V), I7 serially in some order and denoting
them by V.., In., where m=1,2, ..., M. With this
notation the reciprocity theorem of section VII and the
reactance theorem of section VIII apply formally un-
changed.

For some purposes, however, it is convenient to retain
the superscript identification of mode and the subscript
identification of waveguide. The equations of a linear
source-free waveguide transducer, having n=2, \N=2,
\o=3, for example, may be written

Vi [ztzizszszsT o
vi| | snanananas || n
vi |=| aznznasas || &
vi|.| memenazzs || &
vid Latznzgona ] L

The coefficient Z7, may appropriately be called the open-
circuit transfer impedance from mode p in waveguide k to
mode n in waveguide m. If the reciprocity condition is
satisfied, the above impedance matrix is symmetric, i. e,
=l

WasHiNgToN, April 20, 1948.
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