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Effect of Concentration on the Viscosity 
of Dilute Solutions* 

By Robert Simha 

A theory of the higher coefficients of the viscosity-concentration curve of a suspension 

of nonspherical particles is presented. Starting with the simple model of a dumbbell, the 

flow around a single particle and its modification due to interaction with other particles are 

considered. It is sho\\"n that the coefficients ai in the equation 

are related to each other, namely, 

.. . , 
where the k's are independent of molecular size, in agreem ent with empirical equations. An 

explicit value for kl is obtained that applies also to models consisting of various arrays of 

spheres. The variation of kl with mo lecu lar shape is discussed, and various factors affecting 

the numerical values and the validity of the last-mentioned equation are pointed out. 

1. Introduction 

The dependence of the viscosity TJ of a dilute 
solution on the concentration c (expressed as 
volume fraction or as, weight by volume) can be 
represented as a power series ot the type 

TJ = TJo(l + alc+ a2c2+ aaca+ . ... ), (1) 

if the solute is a nonelectrolyte. TJo is the viscosity 
of the pure solvent. Considerable experimental 
and theoretical effort has been devoted to a 
determination of the coefficient ai, the so-called 
intrinsic viscosity, for susp'ensions of particles of 
various shapes since Einstein's [1] 1 original 
hydrodynamic treatment of sphcres. In these 
hydrodynamic theories, al is a measure of the 
disturbance of the flow of the solvent due to the 
presence of the solute particles at infinite dilution. 
The total effect under such conditions is the sum 
of the effects of the individual particles. For the 
range of higher concentrations, a number of 
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empirical equations have been proposcd. They 
can all be expressed as a power series of type given 
in eq 1. As one can readily see, the theoretical 
calculation of the higher coefficients a2, aa, etc., 
becomes increasingly complicated. It has been 
carried out explicitly first for the coefficient a2 of 
a spherical suspension by the author [2]. a2, a 
number independent of size for spheres, measures 
the disturbance of the flow around a particle by 
a second one at a finite distance from the fU'st. 
The method applied in the particular case is 
analogous to the procedure fu'st developed by 
Smoluchowski [3] to obtain the modification of 
Stokes' law for the resistance of a sphere caused 
by the presence of a second one. Smoluchowski's 
resul ts, of which we shall make use, are obtained 
by a perturbation in terms of inverse powers of the 
distance between the two spheres. 

Empirically it has been suggested [4, 5] that the 
coefficients al and a2 are related in polymer solu­
tions by the equation 

(2) 

where the factor k is independent of the dimensions 
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of the solute particle but may vary with the 
solute-solvent system. In several instances, 
although not always, this rule seems to apply 
satisfactorily. It is the purpose of this paper to 
examine the validity of the proportionality (eq 2), 
using fu"st the simplest model for a nonspherical 
particle, namely, that of a dumbbell considered 
originally by Kuhn in his treatment of intrinsic 
viscosity [6]. This model can be extended to 
that of a pearl string currently used by various 
authors in the description of hydrodynamic 
properties of chain molecules. 

In section II the velocity distribution around 
a single particle and the intrinsic viscosity at are 
obtained because the r esults are needed for what 
follows . In sections III and IV, interaction 
effects between solute molecules are considered . 
In section V attention is devoted to t he nature of 
the approximations used and to the effect of vari­
ous factors on the validity of eq 2 and the magni­
tude of the parameter k. 

II . Flow around an isolated particle. · 
Intrinsic viscosity 

Figure 1 illustrates the no tations and r eference 
axes used. 2L is the length of the dumbbell and 
a the radius. It will be assumed that a/L «1. 
Let th e flow of the pure solvent be represented by 
a simple shearing motion in the X t X 2-plane, 
namely, 

(3) 

where q is the velocity gradient and UIO the velocity 
compon ent parallel to the Xl-axis. If the dumbbell 
is held in a given orien tation relative to the refer­
ence system Xl, th e centers P and Q have the co­
ordinates Xk(P ) and Xk(Q) = -Xk(P ), respectively. 
Equation 3 then gives for the velocities at P and Q 

Ut(P ) = qX2(P ); ut(Q)= -ut(P ), (3a) 

where the Xk(P ) are fun ctions of the length Land 
the direction cosines of the particle axis. In the 
absence of rotatory Brownian motion, this flow 
will rotate the particle axis into preferred direc­
tions. If one superimposes upon the motion (eq 3) 
a second one r esulting from the spins of the par­
ticle and considers the resulting force and torques 
acting on the spheres P and Q, one arrives at a 
result corresponding in tlu"ee dimensionb to 
Kuhn's [6] and identical with Jeffery's [7] formulae 
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FIGURE 1. Dumbbell model and reference axes used and 
geometric relations involved. 

for the rate of change of the orientation specialized 
for a thin rod . H ere however we shall be con­
cm"ned only with the case of so-called complete 
Brownian motion , wher e any orientation tendency 
is absent. Following a previous procedure [8] we 
shall consider only the effects of the velocities 
(eq 3) and (eq 3a) on the particle. 

The change in the unperturbed flow (cq 3) due 
to a single dumbbell is obtained as a solution of the 
hydrodynamic equations of motion, which neglect­
ing inertia terms, assume in this case th e form 

au" - 0 
aXl1,- • 

(4) 

H ere, as in the following, summations from one 
to tlu"ee are performed over twice occuring indices 
m. p is the pressure. At infinite distance R, 
U l has to assume the form shown in eq 3. If 
the velocity Ul is transformed to a reference sys­
tem XI(P) parallel to the first but with its 06gin 
at P, such that X 2=X2(P)+X2(P), it is seen that 
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the velocities Ul consist of two parts if the mutual 
disturbance between the two spheres is neglected. 
The first satisfies the condition imposed by the 
X 2(P)-term. The required solution i of the 
type given by Einstein [1] . The second part, 
satisfying the constant velocity QX2(P ) is of the 
type given by Stokes [9] for translational flow. 
Now for the calculation of the dissipated energy 
of the system particle plus solvent, it is sufficient 
to consider the velocity and pressure distribution 
at large distances compared with the dimensions 
of the solute molecule, and therefore a fortiori 
large compared with the radii a of the spheres. 
As Einstein's solution contains terms of the order 
a 3j pp2 (multiplied by a velocity gradient) and 
higher, while in Stokes' solution terms of the order 
a j pp (multiplied by a velocity) are found , the 
former can be neglected for our immediate pur­
poses. Physically this amounts to concentrating 
the effect of each sphere on the solvent flow in its 
center P or Q. The calculation of the perturbing 
field of flow then bears a certain formal similarity 
to that of the field of a rigid dipole, and including 
hydrodynamic interaction, to the calculation of 
dipole-dipole interaction. It should be r emem­
bered, however, that at distances close to the 
particle the equations given below are invalid. 
For the disturbance due to sphere P , we find in 
this manner from Stokes' solution neglecting terms 
of the order a 3! pp3 : 

where 

1} l= 1 
011 = 0 l r" l. 

(5) 

The additional velocity UlQ around sphere Q 
is given by an analogous equation . From eq 
3a and 5 it will be seen that the total velocity 
obtained by superposition of Ul(P) and Ul(Q) 
will con tain terms 

1 1 

and 
Xl(P )Xl(P ) Xl(Q)Xl(Q) 

pp3 pQ3 
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At points in the field of flow for which not only 
pp, pQ»a, but also R "5P L , it is permissible to 
expand these quantities in terms of the ratio 
L jR (see fig. 1) and to discard the third and higher 
powers of L. Omitting details, one find 

Xl(P)X1(P) XltQ)X1(Q) 
pp3 pQ3 

(6) 

The velocity to be added to eq 3 is then given by 

_ 3 uJP)a {"X u 1- -2 -----w- L.J k X k( P )01l -

[X1Xl(P )+XlXl(P )]+ 3~!I~XkXk(P)} (Sa) 

P- t 3 Ul(P)a [3Xl~XkXk(P) (P) ] - cons .- YJo- W- R2 Xl ' 

Equation Sa is, of coul' e, a solution of the equa­
tions of motion (eq 4). It i useful to write it 
in the form of Lamb's [9] general solution in terms 
of spherical harmonics. It is easily found that 
eq Sa corresponds, using his notation, to: 

In order to obtain the dissipation of energy 
caused by the flow (eq Sa), one considers a large 

spherical volume V= ~ Ro3 around the particle. 

L et P Tx 10 and PTX 1 denote the components of the 
radial stresses exerted per uni t area on the surface 
of this sphere. Then one derives from eq 3 and 
the definition of the stresses: 

(3b) 

Equation 5', together with an expression cited in 
[9] yield 
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The rate of dissipation per unit volume is given by: 

where the integral is extended over the surface of 
the sphere Ro. The result is, omitting terms of 
the order l /Ro and using eq.'.'3, 31,1" 3b, 51,1" and 7: 

dW =- Z [1 +3611" axz(P)Z] 
dt 'T/oq 5 ' V ' (Sa) 

if the particle is held in a fixed orientation. If the 
solution consists of n particles dissolved in the 
volume V, such that N = n/V represents their 
average number per unit volume, one has 

~9) 

where c is the volume concentration. In the pres­
ent case all effects are additive, and hence the 
dissipation of the whole solution is obtained by 
combining eq. Sa and 9 to 

dW _ Z (1 +27 xz(P)Z ) 
dt -'1]oq 10 aZ c (Sb) 

In order to obtain the viscosity T/ of the solution 
we follow the method of reference [l] .z It will be 
assumed that the solute molecules are randomly 
distributed in the volume V. Let particle i have 
its center situated at a point ~k(i) in the Xk-system, 
k= l, 2, 3; i=l, 2, ... n. Its contribution uz(i) 
to the flow disturbance at a point X k is obtained 
from eq 51,1, if the coordinates X k are replaced by 
the relative coordinates Xk-~k(i). Hence we can 
write for the velocity distribution in the whole 
solution 

n 
UZ=OlZqXZ+ ~uz(i) . 

i=l 
(5b) 

The viscosity of the pure solvent can be defined by 
the relation 

In the same manner we regard the solution as a 
liquid with effective viscosity T/ subject to an 
effective gradient q. defined as 

dW -T/q 2_T/ [OUl + OUZ] 2 
dt - 8 - oXz oXl Xk=O 

-=T/J q+ :t[ou1(i) + OU2(i2 ] }2 (101,1,) 
{ j=] ()Xz oXj xk=o 
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where the left-hand side is given by eq Sb. As 
O/OXk=- O/O~k(i), the sum in eq lOa may be 
replaced by 

if an integral is substituted for the sum. The 
integration is to be carried out over the whole 
volume V. The expression can be transformed 
into an integral over the surface S, namely, 

Substitution from eq 51,1, then leads to the result: -

q = q(l -..! xz(P)Zc). 
s 10 aZ 

(11) 

Thus the viscosity T/ of the solution follows from 
eq lOa as 

- [1 + 27Xz(P) Z ] [1 -..! X2(P)2 ]~Z ( 12) 
T/ - T/o 10 aZ c 10 aZ c 

Equation 12 gives the correct viscosity up to linear 
terms in the concentration c. A veraging over-all 
(random) orientations, (XZ( P)2)= (D /3), we 
finally obtain 

(13) 

The intri.nsic viscosity for the model under con­
sideration is proportional to the ratio LZ/az in 
concordance with the familiar result obtained for 
infinitely thin ellipsoids or rods not subject to 
any orientation effects by the flow gradient. 

The quadratic and higher terms in c obtained 
from eq 12 have to be discarded as long as hydro­
dynamic interaction effects that give contributions 
of the same character and order of magnitude [2], 
are not taken into account. This has sometimes 
not been observed in the literature when Ein­
stein's results have been extended to higher con­
centrations. However, it can be seen that the 
higher terms in eq 12 will, after averaging the 
powers of Xz (P), contain successively higher powers 

, The procedure given in reference Ii] cau equally well be made use of when 
interaction effects are absent. 
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of the ratio D /a2, thus confirming the empirical 
relation Ceq 2) which may now be written as 

a2 = klaI2; a3=le2aI3 . .. . , (2a) 

' where the le's are, for the present model, pun 
numbers and independent of the dimensions of 
the molecule. 

Equation 13 could, of course, have been derived 
in a much more straight-forward manner by con­
sidering the frictional resistance to the flow 
offered by each of the two spheres. . The rate of 
dissipation arising in this way is given by the 
product of frictional force and relative velocity. 
If the latter quantity is taken from eq 3a, we have 
by application of Stokes' law 

dd~ = 7]oq2 + 61l"1)oaq2 [X2CP )2+X2CQ)2] N. 

Elimination of N by means of eq 9 leads at once 
to eq 13. 

. III. Interaction between two particles 

The influence of a second particle on the viscous 
flow around a first has been considered first by 
Smoluchowski [3] for spheres in translational mo­
tion, leading to a modification of Stokes' law. 
The effect so obtained is a function of the ratio 
between radii and mutual distance of the two 
spheres. More exact calculations are reviewed in 
Oseen's treatise [3]. Rotating spheres have also 
been treated [2] and calculations for nonspherical 
particles have been presented [3, 10] . The principle 
of Smoluchowski's method consists in seeking to 
fulfill by successive "reflections" the hydrody­
namic boundary conditions on the surfaces of all 
solid bodies involved. That is, additional flow 
distributions are superimposed on the previous 
flow, to compensate for the additional disturbance 
at the boundary between particle and fluid in­
duced by the neighbors of the former. Thus the 
boundary conditions are fulfilled to successively 
higher degrees of approximation. The first ap­
proximation that is sufficient for our present pur-

pose has been shown [3] to fulfill the boundary 
conditions not at each point of the surface, which 
would make it an exact solution, but on the 
average over the whole surface. The velocity 
distribution is in other words such that, if aver­
aged over the surface of the spher e, it gives no 
relative motion between the sphere and the liquid 
at their boundary. The solution previously em­
ployed by the author [2] in the viscosity treatment 
is of the same degree of accuracy. 

Smoluchowski's original equations refer to 
spheres moving in the same direction with equal 
speeds. His results are modified slightly if this 
equality does not hold. Let the position of the 
centers of two spheres be given by h(l) and h(2) in 
a coordinate system fixed in space, their mutual 
distance by R I2 and their respective velocities in 
the ~I-direction by UI (1), V I (2). At a point h 
(fig. 2) the vclocity and pressure distribution pro-

e3 

>---------------------------_e2 

t l 
FIGURE 2. Geometric relations in inlemclion of lwo spheres, 

equations 14 and 15. 

duced by sphere 1 at large distances RI has the 
following form: 3 

Uz(l) = VI (1) Vn (l)(h) - VI (2) Uml (I) (h(2») Vzm(l) Ch) 

p(l )=~1)a (~m-~m(I») [V (l) iJ -V(2)V (1)(~ (2 ) ] 2 0 R I3 I ml I ml .., 

where 
( 14) 

, The author is indebted to E . O. Knox (or checking eq 14. 
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UI/1)(~k(2») represents this function at the point 
~k(2). 

An analogous expression results for u/2) and p(2). 

It is seen that u/1) and pO ) each consist of two 
terms. The first is, of course, Stokes' expression. 
The second one is a function of the.mutual distance 
and represents the interaction. Equation 14 
leads to a frictional resistance 

Fl(l) = 67fTJoa [ U1(1)on-i ~2 Ul(2)Oll-

~ ~ (~l(2)_~l(l») (U2)-Ul ») Ul(2) ] (15) 
4 Rl2 

Thus the resultant resistance is no longer in the 
direction of motion. 

Let us now consider a second dumbbell (M, N) 
as shown in figure 3. Relative to its center the 
points M and N have the coordinates x,,(M) and 
-xk(111), which are functions of the orientation of 
the axis MN in respect to the X k-system. They 
determine Ul(M) and ul(N)=-Ul(M), the re­
spective velocities of the undisturbed solvent flow 
relative to the particle at points M and N. As in 
section II we shall be concerned with distances R, 
which are large in comparison with L. Consider­
ing furthermore only molecules that are far apmt, 
the modification of the Einstein-type of motion 
which gives rise to terms of the order a6 [2], will be 
omitted and only a2-terms retained. With these 
approximations one can make use of eq 14 and 
write the velocity around P to be superimposed 
on ut in eq 5 

with 

t:..ut=ul(M) UmlP(M, P) . U1mP(X,P)+ 

ul(N) Um1P(N,P) UlmP(X,P) 

UlkP(X,p)=i!; {Olk+ 

[XZ-XI(P) ] [Xk-Xk( P )] } . 
pp2 

(16) . 

UlkP(M, P) is obtained from the last equation by 
replacing pp by PPM and the coordinates X j by 
~i+xj(M) . The last term in eq 16 is obtained in a 
corresponding manner. An expression analogous 
to eq 16 results for t:..uF. "Ve define the inter­
action coefficients Pil and qil by means of the 
relations: 

(17) 

and obtain from eq 16 for the total velocity dis-' 
tribution around the molecule P, Q 

(16a) 

where the first term is given by eq 5a. The re­
mainder contains functions of the mutual dis­
tance and orientation of the two interacting ·mole­
cules. As stated previously, one sums over m 
from one to three. 

The quantities UlmP and UlmQ.in eq 16a are of the same type as Stokes' velocity distribution and can 
be transformed in the same manner for large distances R. One finds in this manner in analogy to eq 5a 

UI=UI(Stokes)+!au~~ (Pml-qml) {'k XkXk(P)ozm- [XmX I(P) +XIXm(p)]+3~f"' ~XkXk(P) } 

P= p(Stokes)+~TJO au~fF> (P >r.l-qml) {3~,,, .2: X kXk( P) -Xm( P ) }, 

In analogy to eq 7 this makes a contribu tion to the Xl - component of the radial stress 

(16b) 

(18) 

Application of eq 8 now yields for the total rate of dissipation per unit volume of the system consisting 
of solvent plus one particle (P, Q) acted upon by a second one (M, N): 

dW _ 2 { 1 + 36 tfa (}))2 6 7fa M) P P } (If-TJoq 5 V X2 -5 V X2( [3X2( )(Pu--qn)- 2Xl( ) (P21- Q21)] . ( 19) 
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FIG URE 3. Geometric relations in interaction between two 
molec1des, equation 16. 

The interaction coefficients P jl and q jl can be 
evaluated for pairs sufficiently far apart in terms 
of the mutual distance p ( ee fig. 3) . A series 
expansion in term of 1/ p gives, using eq 17 and 
discarding higher powers in L/ p: 

(PJl-q'l) == - 3~ { 1 ~ ~l~j~hxk(P)'~~kXk(M)-. p p 

3 ~l;j ~Xk(P)Xk(M)-~ [ ~lxJ(P)+~lxl(P)l. 
p p 

3 
~~kXk(M) - "2 [ ~lxiCM) + ~ ,xl(M)l~hxk(P) + p . 

xl(P )xiM )+xj (P )x1 (M) + Oll [32 ~~kXk(P) , . p 

~hXk(M)-~Xk(P)Xk(M)J }' (20 ) 

Equations 16b and 20 constitute the complete 
solution of the interaction problem for two 
particles . 

IV. Viscosity of Solution 

To obtain the quadratic concentration term in 
the viscosity one computes fir t from eq 19 the 
dissipation of the mixture. If we visualize again 
the centers of the solute molecules randomly dis­
tributed over the v olume V, then for the ith 
particle (P iQi) situated at a point h(i) and acted 
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upon by a fixed particle (M , N ), p jl(i)- qjl (i) 
becomes a function of the relative coordinates 
h- ~k(i). It is to be summed over all (P1Qi) 
species in terac ting with one (M , N) and then mul­
tiplied by the total number of particles. In this 
manner eq 19 yields 

ddv:' = (ddIf) Stokes -

290 rM2c ~~¥) { 3X2(P)~ [plI(i)-qll(i)]-

2Xl(P)~ [P21(i)- q2l(i)]}, (l9a) 
i 

where the first t erm is given by relation (eq 8b). 
The summations may be replaced by integrations 
over the volume V. The use of the expression 
eq 20 in the whole region amounts to neglecting 
the influence of particles close to a given one. 
The error so committed in creases, of course, a t 
illgher concen trations where the average distance 
between solute molecules become small. The two 
integrals can easily be transformed into surface 
integrals by means of Gauss' theorem . Omitting 
all terms tha t vanish on in tegration because of 
r easons of symmetry, one fin ds for instance, that 
the remainder in (P2l- q21) can be written as 

with a similar expression for PIl- qll' The final 
r esult for the dissipa tion du e to particles orimted 
in a given direction Xk(P ) in teracting with particles 
in another direction h(M) is 

dW _ 2 { 1 + 27 x2( P F _ 
dt - 'f/oq 10 a2 c 

27 
50a4 [ 4Xl(P )X2(P )x1(M )X2(M )+ (19b) 

6X2( P )X2(M ) (X2( P )X2(M )+ 
X3(P )X3(M »+Xl( P )2X2 (M )2] c2} . 

The nex t step consists in calculating the effec­
tive velocity gradient q. defined in eq lOa. The 
velocity distribution around molecule i in the 
presence of a perturbing molecule at an arbitrary 
point h is derived from eq 16b and 20 by re­
placing X k by X k-h(i) and h by h - h (i) . 
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The corresponding result for the whole mixture 
follows again from eq 5b. q. is then derived as in 
section II. The expression 

to be integrated over the sphere Ro now involves 

terms of the order A;~l and 1::· The integration 

requires the values of the following integrals over 
the surface of the spherical enclosure: 

47r R 8. f 2 2/: 2dS- 47r R 8 35 0, ~l ~2 '>3 - 105 o· 

The integrand written above depends upon the 
mutual orientation in each molecule pair. On 
averaging independently the Xk(P) and Xk(M) 
terms, there remains after a lengthy but straight 
forward calculation, omitting all terms which 
vanish for random orientation: 

Instead of eq 12, one finds now, using eq 19b, that 

(12a) 

where the denominator represents q/. Expand­
ing up to quadratic terms in the concentration 
and averaging over the direction cosines, we arrive 
at the following result for the viscosity of the 
solution: 

(13a) 

On the other hand, eq 12 would have given for 
the coefficient of the quadratic term the smaller 
value 81/100. 
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V. Discussion 

Equation 13a yields for the coefficient kl defined 
in 2a the value 

(21) 

Had interaction effects not been taken into 
consideration, eq 12 would have given 

(21a) 

These results refer so far to the model of a dumb­
bell. Let the molecule be represented next by a 
linear array of length 2L, consisting of a number 
of spheres with radii a, v per unit length, arranged 
evenly. The simple considerations at the con­
elusion of section II, which lead to eq 13, indicate 
that now the factor L 2 is replaced by an average 
value (D )<D. This is seen as follows: The 
contribution to the dissipated energy by a sphere 
located at a distance y from the center of the 
molecule is proportional to y2. This is to be 
summed over all groups in the molecule and 
multiplied by N, the number of molecules in unit 
volume. N is inversely proportional to 2vL. 
Thus the intrinsic viscosity al becomes propor­
tional to 

In the case of a randomly coiled chain one a ver­
ages over all internal configurations of the chain in 
addition to averaging over all orientations of the 
whole molecule. As long as coiling is not extensive 
the determining quantity has been shown re­
peatedly to be the mean square separation of 
chain ends. Reverting to the linear array, it can 
be seen from eq 19 and 20 that the interaction of 
parts of two molecules at distances Yl and Y2 from 
their respective centers will contribute terms pro­
portional to Y1 2Y22 to the dissipation rate. Con­
sequently, the coefficient az will be proportional to 
the square of <L2) as one could have surmised. 
A corresponding result obtains for a solution con­
sisting of moderately coiled chains. Thus the 
numerical values (eq 21 and 21a) should be vali.d 
also for a long extended molecule and a coil. 

The value (eq 21) is larger than those derived 
experimentally from suitable extrapolations of 
viscosity-concentration curves, the latter being 
usually of the order of 0.3-0.7 and more nearly 
comparable with the value (eq 21a). On the 
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other hand, the theory in its present form can 
reproduce only approximately the contribution of 
the hydrodynamic interaction to the kl coefficient 
or rather to its excess over 0.36. It has been 
stres ed previously that the evaluation of the 
interaction coefficients Pjl, qjl (eq 17) as a series 
(eq 20) and therefore eq 19b are valid only for 
large intermolecular distances. One could im­
prove the situation by dividing the volume V 
around the center of a molecule into three parts. 
The first comprises all particles with spherical 
groups so close to those of the center particle, that 
an expansion of the mutual disturbance in terms 
of the ratio a/R12 (fig. 2) becomes altogether 
meaningless. In other words, solute molecules are 
practically touching each other whatever their 
relative orientation. From a hydrodynamic point 
of view, these complexes would be treated as 
single molecules. Such conditions, frequen t a t 
higher concentrations for large molecules will be 
disregarded here (see al 0 below). In the second 
region intermolecular distances are large in com­
parison with the size of the individual group in the 
molecule, but are of the order of magnitude of the 
dimensions of the molecule. This would permi t 
the application of Smoluchowski's equation (eq 
14), but not of the expansion (eq 20). All 
further summations are to be performed in terms 
of individual group to group di tances without 
using expansions in terms of molecular center to 
center distances. In the third r egion the CUTl'ent 
approximations are valid. Of course, the sub­
division is somewhat arbitrary . The conditions 
in region two affect both the numerator and 
denominator in eq 12a . They should be more 
impor tan t in the calculation of the dissipated 
energy (see eq 19a) than in that of the effective 
velocity gradient qs (compare eq lOa), because of 
the direct summations over the (Pjl- qjl) occur­
r ing in the former. Also in this region a disturb­
ance of the random mutual orientation of particles 
merely because of geometric reasons is possible. 

The treatment in section II took no account of 
t he hydrodynamic interaction between groups 
in the same molecule. For the dumbbell a simple 
calculation based on the result (eq 15) leads in a 
first approximation to a correction factor in the 
expression (eq 13) foi' al equal to 

Viscosity of Dilute Solutions 

for a/L « l . Alsoasa fu's tapproximation ,a2 remain 
unaltered . Thus only a decrease of kl by a few 
percent results from this effect . In an array of 
spheres the interaction of neighboring spheres 
with velocities of the same sign r elative to the 
surrounding liquid will actually give a correction 
factor that is smaller than unity. Th e inter­
action between different groups within a s trongly 
coiled molecule changes the flow pa ttern pro­
nouncedly , as has been shown r ecen tly by several 
authors, and this influences also the total mutual 
disturbance between two differen t molecules. 

It is perhaps noteworthy tha t the calculation in 
section II already gives as large a value of kl as 
0.36. Effects other than purely hydrodynamic 
ones may contribute to the slope of the viscosity­
concentration curve even a t rela tively moderate 
concen trations. Experimen tally the reported ini­
tial slopes have sometimes been ob tained by extra­
pola tion at concentration at which the conditions 
inherent in our derivation are no longer fulfilled ; 
the solu te molecules of large molecular weights 
are no longer sufficien tly far apart on the average. 
There are indica tions in the literature that at 
concentrations roughly below 0.1 g/100 ml solu­
tions of chain polymers exhibit steeper slopes than 
the extrapola ted straigh t lines. Qualitatively 
similar effects have been observed in tobacco 
mosaic virus solutions [11] . In the latter ca e one 
is dealing with long rod-like par ticles and the 
possibility of aggregation is strongly increa cd at 
higher concentra tions. Orienta tion effects ar e then 
relatively more impor tan t and this reduce the 
viscosity a t higher concen trations. Systematic 
measuremen ts of the viscosity of very dilute 
polymer olutions as function of velocity gradien t 
and solven t character are desirable to decide the 
nature of the apparen t downward curvature, 
found on approaching the r egion of high dilution . 

It is obvious that the present considerations do 
not apply directly if the nature or the identity of 
the individual molecule changes with concentra­
tion . For instance if formation of aggrega tes 
occurs which can be expressed, say, by an equi­
librium constant K between double and single 
molecules it is seen that this makes an 
additional contribution to the coefficient a2, namely, 

+K (al(2)- al) 

where al(2)-al is the difference between the 
intrinsic viscosity of double and single molecules. 
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Thus the . higher coefficients in the expansion 
(eq 1) cannot be found solely by hydrodynamic 
considerations and therefore eq 2a is then not 
vali.d. This is particularly the case when the 
effect of velocity gradient in concentrated solutions 
is to be examined. However, even in dilute 
solution the interaction is more affected by 
orientati.on than the intrinsic viscosity. 

Finally the present results for asymmetric 
particles may be compared with those previously 
obtained for compact spheres. The author's 
method of calculation [2] leads to a value a2=14.1 
[10]. Einstein's results give a value of 4 for a2. 
Thus, for spherical particles, the corresponding 
values are kl = 2.26 and 0.64, respectively. It 
would be of interest to calculate the gradual 
increase in the k1-values with increasing sym­
metry by considering ellipsoidal particles of finite 
thickness. Such results would be of value in the 
case of protein solutions and also of chain poly­
mers. One should expect a parallelism between 
kl and other parameters characterizing shape 
such as the exponent in the modified Staudinger 
equation. Also branching and cross-linking 
should result in an increase of k1• Such changes 
have been reported. It appears from the fore­
going considerations that, leaving aside other fac­
tors, the parameter kl will remain independent of 
molecular weight as long as the degree of coiling 
does not change markedly. 

VI. Conclusions 

In treating the concentration dependence of 
7) sp , two effects may be considered at low concen­
trations. Aggregation, or entanglements, and 
hydrodynamic interaction of distinct molecular 
entities. The first makes a contribution to the 
viscosity of the solution, which depends on the 
frequency of the aggregates and can be described 
in terms of the intrinsic viscosity of an aggregate. 
The second one leads to results that are in agree­
ment with empirical relations proposed for dilute 
solutions. Without explicit calculation of the 
cubic and higher terms in c it cannot be seen 
whether 7) sp is represented by the binomial for­
mulas given by various authors. The present work 
indicates that they probably are not stri ctly valid. 
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The numerical value derived for kl (eq 2a and 21 ) 
is of the correct order of magnitude but somewhat 
larger than those encountered for solutions of chain 
molecules in good solvents, to which the model 
used is applicable under certain conditions. It 
seems to be more nearly in agreement with some 
numerical results for globular proteins. Possible 
experimental and theoretical reasons for this 
divergence have been outlined. 

The parameter kl depends in a characteristic 
manner on the shape, as determined for coiling 
molecules by their structure, the solvent environ­
ment, and also on the molecular weight. This 
conclusion can be reached on the basis of the 
results obtained for two extreme cases treated here 
and in previous work, respectively. In this con­
nection it is noteworthy that globular proteins 
appear to give larger values for kl than chain 
polymers. The region between the two extremes 
of an "open" coil, or dumbbell, and a sphere re­
mains to be treated. On the basis of such a 
treatment it may become possible to derive 
information about the properties of the solute 
similar to that presently obtained from intrinsic 
viscosities. 

It is of interest to examine the influence of the 
mutual disturbance on the viscosity at finite 
velocity gradients, when partial orientation in the 
field of flow occurs. Effects present at infinite 
dilution should be more pronounced. 
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