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Stress Distribution Near Reinforced Circular Hole
Loaded by Pin

' By Samuel Levy and Frank C. Smith

This paper presents a theoretical analysis for the stress distribution in a flat plate near a

reinforeed circular hole loaded by a pin, and a comparison of the theory with test results

for a plate of sandwich construction.

It is assumed that an auxiliary reinforcement at the

edge of the hole is so rigid that no distortion of the shape of the hole occurs due to the load.

The plate is reinforced in the vicinity of the hole by circular “doubler” plates.

The theory

and experiment are found to be in good agreement.

I. Introduction

This paper presents a theoretical analysis for
the stress distribution in a flat plate near a rein-
forced circular hole loaded by a pin, as shown in
figure 1, and a comparison of the theory with test
results for a plate of sandwich construction. It is
assumed that an auxiliary reinforcement at the
edge of the hole is so rigid that no distortion of
the shape of the hole occurs due to the load. The
plate is reinforced in the vicinity of the hole by
circular “doubler” plates, which increase the
thickness by a factor 8. The analysis proceeds
from the assumption that the reinforced sheet is
in a condition of plane stress. This requires the
reinforcement to be symmetrical on both sides of
the sheet to eliminate bending stresses, and it
requires the thickness to be small comrpared to
the other dimensions so that the stress can be
considered constant across the thickness. The
stress cannot be assumed constant for points a
distance less than one thickness from the boundary
between doubler plate and sheet.

Previous work on the problem of a plate with a
circular hole loaded by a pin includes a photo-
elastic investigation by Coker and an empirical
analysis by Bickley [1].? These investigations
were confined to unreinforced holes.

1 Presented before Seventh International Congress for Applied Mechanics,
London, Sept. 1948.

2 Figures in brackets indicate the literature references at the end of this
paper.

Hole Loaded by Pin

Closely allied with the problem of the stress
distribution in a flat plate near a reinforced cir-
cular hole loaded by a pin is that of an unloaded
reinforced circular hole in a plate under stress.
This problem has been solved approximately by
Timoshenko [2], who treated the reinforcement as
a curved beam of constant section. Other solu-
tions of the unloaded hole problem based on the
plane stress theory were obtained by Sezawa and
Kubo [3], by Gurney [4], and by Beskin [5].

Another related problem is that of the stress
distribution in a flat plate containing an elliptical
region filled with material having a greater stiff-
ness than the material in the rest of the plate. A
solution to this problem was obtained by Donnell
[6] by using a method that is a generalization of
Inglis” solution for the elliptical hole.

In the present paper, use is made of the general
plane stress solution in polar coordinates. The
solution given is approximate in that it does not
give zero stress on the free boundaries of the plate.
However, there is reason to believe that for plates
with moderately small holes, e. g., plates in which
the hole reduces the section of the plate 15 percent
or less, this solution gives a good approximation
of the stress distribution, particularly in the
neighborhood of the hole.

It was decided to check the theory by comparing
computed strains with values measured in tests
on a specimen of Metalite sandwich construction
under concentrated load acting in the plane of the
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plate. It was hoped that the comparison would
indicate that reinforcements in this type of con-
struction could be designed rationally on the basis
of the plane stress theory.

II. Boundary Conditions

The analysis proceeds in two steps. First, a
solution is obtained for the stresses and displace-
ments in a circular ring of constant thickness and
any inner and outer diameters. Then the solu-
tion for the reinforced specimen is obtained by
considering the reinforced parts as one such ring
and the rest of the sheet as another. Symbols
having the subscript “2” correspond to the rein-
forced sheet, whereas symbols having the subseript
“1”” correspond to the unreinforced sheet. Sym-
bols without a subseript are general and apply to
any ring of constant thickness.

The origin of coordinates, figure 1, is taken at
the center of the hole with =, y as rectangular
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Ficure 1. Problem to be analyzed, (q) plan view of plate,

(b) section at A—A.

coordinates for points in the sheet and »,0 as polar
coordinates. The positive direction-of z will be
taken in the direction of the applied load at the

hole. The relations between the coordinates are,
T—=rrcostiEa)
y=r sin 0
S M
f=tan~! y/x
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Normal and shearing stresses are denoted by the
conventional symbols ¢ and 7. Radial displace-
ments are denoted by u, and circumferential dis-
placements by ;.

Since the edge of the hole is assumed not to
deform, the boundary conditions for displacements
at the inner edge of the reinforcement can be taken

as,
r=a
} ®

r=a

urZZO;

’170220,

and for forces,

2m
Bhﬁ [o,2 COS 6— 7,05 SIN 6] =gy dO=— P

: 3)
ﬁhﬁ [o,0 SIN O+ 7,4 COS 0] ;—gya dO=0.

At the junction between the reinforced and un-
reinforced sheet, it is necessary that the displace-
ments be the same for both the reinforced and
unreinforced sheet, or,
r=aq
} 4)

r=caa.

Uy =Us,

Vo1 ="Vg2;

It is also necessary that, at the junction between
the reinforced and the unreinforced sheet, the
normal and shearing forces be the same, or

r=aa
}. (5)

r=aa

60'7'2: 01
BTr00="7161;

The solution of the actual problem, figure 2, a,
is the superposition of the solutions for the two
subproblems, figure 2, b, and 2, ¢. For the prob-
lem in figure 2, b, the stresses at r=a must
satisfy eq 3, and far from the hole, the stresses
must remain finite, i. e.;

071, 01, and 7, finite; r— o, (6)

For the problem in figure 2, ¢, the stresses at
r-a must satisfy the condition that the resultant
load on the hole is zero

27
f [o72 cOS 80— 7,45 SIN 6] (,_(yd6=0

0

o sri=h 1 (7))
f [0'72 Sin 0+ 7,60 COS 0](,=a)d(9:0

0
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Ficure 2. Solution for the actual problem (a) by the super-
position of the solutions for the subproblems (b) and (c).

and that, far from the hole, the stress is a uniform
tension in the z-direction of magnitude P/2wh,
where w is the width of the specimen:

o= (P/2wh) cos® 9

oo= (P/2wh) sin? § » ; r—o. )

7.0= — (P/4wh) sin? §

For both the problem in figure 2, b, and the
problem in figure 2, ¢, the stresses on the free
longitudinal edges of the plate should be zero.
Auxiliary stress functions of the type used by
Howland [7] might be used to satisfy this boundary
condition. This is not done, however, since for
moderately small values of the ratio a/w of hole
radius to plate width, the stress functions to be
used reduce the unbalanced stresses on the free
edges to a negligible amount.

III. Solution for Problem in Figure 2, b

By using the second line of the general stress
function eq 77 [8, p. 114],

1—» Mr . .
o= g Mr (log 7) cos G—g 6 sin 6+
A L
Ty ©08 fH—Z; cos 0 9)
where

v=Poisson’s ratio,
M, T, R=arbitrary constants to be determined
from boundary conditions,
it may be shown from eq 34 [8, p. 53] that the
equations of equilibrium and of compatibility for
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the stresses in a ring of constant thickness are
satisfied by

3+vMecosgh 1. Tcosd , 1 e
T="T4x T r 2r P +27r Er cos 0
1—vMcos®, 1 Tcosh , 3
G gy g Bn e d
= Man g1 Tein g -1 P i g
T s b Do gk ono LB

(10)

By using the relations between strains and stresses
given on pages 62 and 63 of [8], it may be shown
that the corresponding displacements are

N\

M T
“r:gE(VQ—%—ZS) (cosb) log r+4TirE772 (1+) cos

Rr? N
+4. 7 (1—3v) cos 0+ cos 0

?)9:‘%? (1+2v+?) sin 60—

X
4]7‘:[E (»*—2v—3) (sin 6) log r
+ﬁ]l:}’r2 (14-») sin 0-!-4%’;: (54») sin 6—
AN
oyt 0 )
(11)
where

F=Young’s modulus,
N=integration constant to be determined from
boundary conditions.

Applying the boundary conditions, eq 2, to eq 11
gives

Mi(#—20—3) log a+No+ 2 (145)+
Raa?(1—3%) =0 (12)

and,
M,(14+2v+%) +M;(3+2v—1%) log a— N+
B (140) + R 40 =0 13)
Applying eq 3 to eq 10 gives
M,=P/Bh. (14)
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Applying eq 4 to eq 11 gives

M, (»*—2v—3) log aa—l—NQ—I—a{—;Z (1+»)+ ]
Ryo’a*(1—3y) = T, (15)
M, (»*—2v—3) log aa—}—Nl-i—ag—az (1+»)+
Ro’a*(1—3v),
and

M,y(142v+?) +M;(3+2v—»?) log aa— N,

ar_,l;z (1+4»)+Rya’a*(5+v) =

> (16)
M,(1+4-2v+v®)+M,(3+2v—»?) log aa— N+

o% (1+v») +Ria%a*(5+v).

Applying eq 5 to eq 10 gives

ﬁ[_ (3 +V)M2—a22—a2 T2+2R2a2a2]:

— @M~ 2, Tt 2R, (17)

and,
2

B[(l '—V)Mz_‘ N T2+2R2a2a2] =

2
o?a?

(=) My= 2 Ty 2Ry, (18)

2a2
Applying eq 6 to eq 10 gives
R,=0 (19)

Equations 12 to 19 may be solved for the eight
constants M,, N,, T, R,, M, N,, T\, and R,.

IV. Solution for Problem in Figure 2, ¢

Reference [4] shows that the equations of
equilibrium and compatibility in a ring of constant
thickness are satisfied by the stresses

o, =1+ Ka*[r*+ (— A—3Ca*/r*—2Da?*/r*) cos 26
oy=1"—Ka*[r*+ (A+6Br*/a*+3Ca*/r*) cos 20

0= (A+3Br*/a*—3Ca*/r*— Da?*/r*) sin 20,
(20)

where I, K, A, B, (, D, are constants to be de-
termined from the boundary conditions. It also
shows that the corresponding displacements are
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w,= (r/ E){F(1—»)—K(1+v)a?*/r*+[—A(1+v)
—2uBr*/a*+ C(1+v)a*/r*+-2Da?/r?] cos 20}
ve=(r/E)[A(1+»)+B@B-+v)r*/a*+ C(1+v)a*/rt

—D(1—v)a?/r’] sin 26. J
(21)

Applying the boundary conditions of eq 2 to eq 21
gives

1=y F=01+») K, (22)
@ dsyds= 2Bk (1) Ci2D, - (28)
A+»A;=—B+»B,—(1+9)C+(1—»)D, (24)
Applying eq 4 to eq 21 gives
1—v)2F,— 1+ K= (1—v)2F— (1+v)K;, (25)
—(1+»)a*A;—2va®B;+ (1 +v) Co 202Dy =
— (A+r)atA;—2v0°B,+ (1+v) O +2a2D, (26)
(1+»)atd;+ (B+»)a®By+ (142) Oy— (1—v) 2Dy =

(1+V)a4A1+(3+V)a6B1+(1+V)01—(1_V)Q2D1.( 7)
: 2
Applying eq 5 to eq 20 gives

5“2F2+ .3K2:062F1+K1, (28)
Ba4A2+3602+2ﬁa2D2:a4A1—{—301—i—2a2Dl, (29)
ﬁa4A2—{—3ﬂa6 ‘2—3ﬂ02—,3a2D2=

a*A;43a°B,—30,— oD, (30)
Applying eq 8 to eq 20 gives
Fy,=P/4wh, (31)
A;=— P/4wh, (32)
B,=0. (33)

V. Solution for Problem in Figure 2, a

Combining eq 10 and 20, we obtain, for the
stresses in a ring of constant thickness,

o,=F+ Ka*/r*+ 3
[—B4+») M/Anr—T/27r*—Rr/27] cos -+
[—A—3Ca*/r*—2Da?[r*] cos 26,

o, =F—Ka*/r+

[A—»)M/47r+T27r*+3Rr/27]cos 0+
[A46Br?/a?+3Cat/rt] cos 26,

L (34)

T0=[(1—v) M/4nr—T/[2xr*4 Rr[2] sin 6+
[A+3Br*/a®?—3Ca*/r*— Da?r’] sin 20. )
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The values of the arbitrary constants, A, B, C,
D, K, M, R, T for the sheet 1 and the reinforce-
ment 2 can be determined as follows: M,, R, F},

Ay, Bi: From eq 14, 19, 31, 32, and 33
M,=P|/Bh
R,=0
= P/awh (35)
A,=—P/4wh
/5=l

M;: By combining eq 14, 17 and 18:
M,=Pl/h. (36)

T,, T, R,: By combining eq 12, 13, 15, 16, and
17, and making use of eq 35 and 36, three simul-
taneous equations are obtained:

2(149) Ty+2 (3—v)@*Ry=— (1+»)*a*P/Bh

2(14+0) To4+23 —») @' Ry—2(1+») Ty =
(1+4»)*a?a*(B—1) P/Bh

—2B8T,+2Bata*Ry+ 27T, =0.

K,, I, K,: By combining eq 22, 25, and 28 and
making use of eq 35

(1—=»)F—(1+»)K,=0
1—v)2Fo— (1+v) K+ (14v) Ky = (1 —») *P/4wh
Ba2ly 4 BK,— K, = o’ P[4wh.

(37)

(38)

01, Dl, Az, Bz, 02, Dg: From eq 23, 24, 26, 27, 29,
and 30, and making use of eq 35,

(14») A3+ 20B,— (1+v)C,— 2D, =0
(I4+») A+ B+») B+ (1+»)Co— (1 —») D=0
— (1+2) "4, —2va8By+ (14+) Cy+202D; —
(14»)Ci—2a2D, = (1+») o* P [4wh
(L+»)atdy+ (3+v)aBy+ (14) Co—
(1= 2Dy~ (14») 0+ (1—»)e?D; =
— (1+») AP /4wh
BatAy+38C,+2Ba2Ds—3C,— 222D, = — o* P/ 4wh
BotAy+3BetB,—3B8C,— Ba2Dy+3C,+
2D, = — o P [dwh

(39)

Hole Loaded by Pin

Combining eq 11 and 21, we obtain for the dis-
placements in a ring of constant thickness,

u,= (r/ E)[F(1—») —K(1+v)a*/r’]+
[(cos 6)/4r E[M(*—2v—3) log r+
T(1+»)/r*+RBr*(1—3»)+ NI+
[(r cos 20)/ E][— A(1+»)—2vBr?/a®+
O(1+v)a*/r*+2Da?/r?)

ro=(sin 6) /A= E)[M(1+»)*+ M3 +2v—v?) log r+
T(14) /r+Rr*(54v) — N+
[(r sin 26)/E][A(1+v) +B@+v)r’/a*+
C(1+v)a!/r*—D(1—v)a?/r¥]

(40)

The additional arbitrary constants, N,, N,, are
obtained by combining eq 12, 13, 15, and 16 with
eq 35 giving:

Ni=—2(1+») (®—1)aB,+[(1+») 8-+
28B—w) log aa—2(3—v») log «]

No=2(1+»)a*R;+[14+v+2(3—») log a]
(1+»)P/2Bh

VI. Comparison of Analysis With
Experiment

The specimen, figures 3 and 4, was furnished for
these tests by Chance-Vought Aircraft, Dallas,
Texas. It was of Metalite construction, consist-
ing of two sheets of 0.013-in. 245-T81 Alclad
aluminum alloy bonded to a 0.5-in core of balsa
wood, which had been cut with the grain normal
to the sheet. The edges of the specimen were
reinforced by pairs of %- by %- by ¥%-in. 24S-T
aluminum alloy angles bonded to the sheet.

The concentrated load was applied by a steel
pin, of 1.25-in. diameter, making a snug, but
turning, fit in a hole reamed in a steel bushing.
The Metalite was reinforced to a radius of 5 in.
from the center of the loading pin. A detail of
the reinforcement is shown at section A-A,
figure 3. The reinforcement to a radius of 2.5 in.
was considered heavy enough to prevent distortion
inside this circle.
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Ficure 3. Specimen tested, showing reinforcement near hole

The following constants were taken from the
specimen and were used in the analysis of the
experiment:

(—2r58ne
aa=>5 in.

h=0.026 in.
Bh=0.066 in.

==(0)53.

The effective width, w, of the panel was obtained
by dividing the gross cross section of the panel,
including edge angles, by the sheet thickness,
with the result

w=31.56 in.

The arbitrary constants were determined by solv-
ing the simultaneous equations in section V, with
the result:

A;=—0.3049P A;=—0.1295P
B,=0 B,=—0.001977P
Ci=1.194P C,=0.06584 P
D,=—0.7572P D,=—0.1275P
F=0.3049P F,=0.1425P
K,=0.426P K,=0.0768P
M,=38.46 P M,=15.15P
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: 5
Frcure 4.

Specimen in testing machine after failure.
N,=208.0P N,=63.01P
=0 R.,=0.09215P
T\=-—-321.7P T,=—69.04P

The stress in the unreinforced region 1 (r>>4)
was computed by substituting the constants with
subseript 1 into eq 34; whereas the stress in the
reinforced region 2 (2.5<7<(5) was similarly com-
puted using constants with subscript 2.

The radial and circumferential strains were
computed from the stresses by the well-known
formulas

e,:]li, (i
(42)

1
= (c9—va,)
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taking
7—10.610° 1b/in.2
v=0.3
Figure 5 shows the measured strains at a load of

10,000 1b, and figure 6 shows a comparison between
measured and computed longitudinal strains for

the longitudinal and transverse centerlines and
for a transverse section 12 in. below the center of
the hole. The computed maximum strain, just
outside the reinforcement, differed only about 2
percent from the measured strain. Larger differ-
ences were found elsewhere. The agreement is
as good as could be expected in view of the assump-

— | —1
=
Fv[
19"
5.58 5.22
3.41 5.34
| |
2%
|- S5
Gl F\-ﬁ
9.95 14.94 16.37 13.78 9.65
9.66 13.80 16.18 13.73 9,34
T e
Frcure 5. Strain distribution at load of 10,000 lb (strains X 10%).

Underlined strain values are based on measurements on front of specimen; other strain measured on back of specimen.

Hole Loaded by Pin
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Ficure 6.  Average longitudinal strain at 10,000-1b load.

X, Measured; calculated. (a) Transverse center line; (b) longitudinal
center line; (c¢) transverse line 12 in. below center of hole.

tions of the theory that a state of plane stress
existed, that the central area was rigid, and that
the hole and reinforcement were small compared
to the width of the specimen.

VII. Conclusions

It is concluded that:

1. The plane stress theory may be used to com-
pute the stress distribution in the neighborhood of
a reinforced circular hole loaded by a pin in a plate
of sandwich construction, in which practically all
the load is carried by sheets of metal bonded to
each other or to a light-weight core and in which a
relatively rigid central reinforcement is used.

2. For large values of the ratio of plate width to
hole diameter and with a nearly rigid central
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reinforcement for applying the load, the solution
can be expected to be accurate in all parts of the
plate.

3. For moderate values of plate width, the re-
sults for the stresses are not of very satisfactory
accuracy near the free edges of the plate, but are
reliable in the neighborhood of the hole near the
places of largest stress.

4. The presence of the reinforcement is likely to
move the point of highest stress from the edge of
the hole to a point in the plate just outside the
reinforcement.
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