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A Standard of Small Capacitance

By Chester Snow

A formula is derived for computing the electrical capacitance of an absolute standard

that is a modification of the ordinary parallel-plate condenser with coplanar guard. The

modification consists in placing the circular face of the electrode at the bottom of a eylindrical

hole in the guard. The analogous two-dimensional arrangement is also considered. The

two cases are formulated as special cases of a more general one, in such a manner as to show

that certain approximate formulas have errors of the same order of magnitude in each case.

The magnitude of the error is then determined by comparison with an exact formula ob-

tained for the two-dimensional case by conformal transformation. With certain restrictions,

easily made in practice, this error seems to be less than one part in two thousand.

I. Introduction

To meet the demand for a standard of very
small electrical capacitance that may be computed
from its dimensions, the ordinary parallel-plate
type with coplanar guard has been modified by
placing one electrode at the bottom of a eylindrical
hole (or well) in the guard as shown in figure 1, a.
A formula is required for computing the coefficient
of capacitance (' between the conductor on the
left and the rod that snugly fits the cylindrical
hole.

For the mathematical formulation of the prob-
lem it has been idealized in two ways. Further
restrictions are made, but these are easy to meet
in practice.

If the radius of the disk on the left in figure 1, a,
is sufficiently large compared to its distance from
the guard, there will be a region between them
where the electrostatic field is nearly uniform. If
it were perfectly uniform, the distribution of
charge at the edge of the hole, in the cavity, and
on the piston would be the same as if the radius
of the left-hand conductor and guard were infinite.
This is the first simplification in passing from
figure 1, a, to the diagram in figure 1, b. In the
latter it is sufficient to show only the half of a
meridian section, since the potential has axial
symmetry. The most sensitive experimental tests
show that when the radius in figure 1, a (corre-
sponding to 4,4, in fig. 1, b) is five times the
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Ficure 1. The dielectric volume is generated by rolation
around the xz-axis of the plane region I+I11-+111.

A, Isometric drawing of capacitor; B, meridian section in the half-plane of
the cylindrical coordinates (X, p).
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separation, ¢, there is no detectable change in
capacitance by further increase in this ratio.

The second assumption, as shown in figure 1, b,
is that the clearance between the piston and its
guard may be ignored. The two are kept at the
same potential but insulated from each other.
Condensers of this type have been constructed in
which this insulation is several hundred megohms,
although the clearance is almost invisible to the
naked eye. If the hole were very shallow, the
edge A, being close to A,, a correction for clear-
ance would be more important, but if the depth
of the hole were of the order of magnitude of its
radius, both being large compared to the clear-
ance, such a correction appears to be unimportant.
With no clearance, the electric field vanishes at
the edge A;. There is another reason for making
the hole relatively deep, say greater than its
radius or one-half of its radius. This arises out
of purely mathematical difficulties.

After adopting these two simplifications and
formulating the potential, on the basis indicated
in figure 1, b, a formula for the capacitance '
was obtained in terms of known functions and an
infinite set of positive constants x; (s=1,2,3. . . .
), which are the solutions of an infinite system
of linear equations. The formulation as an
integral equation is given in the appendix. It
suggested the proof, which is given, that the
solution by the method of successive substitutions
would be convergent for all positive real values of
the depth-ratio, 8= (b—c¢)/a, and of the spacing-
ratio, y=c¢/a. The computation of the iterated
series, which give the constants z;, seems to be
very laborious in general. To obtain a simple,
explicit formula for each z; (and therefore for
capacitance O) it was assumed that 0=<y=1/5 and
1=B=< =, or roughly of this order. The shallow
hole is again excluded, and the restriction on v is
such as must be made in practice even for the
coplanar case.

These restrictions do not prevent the extension
of the range of standard capacitance down to the
lowest desirable values. Since there are three
adjustable lengths a, b, and ¢, it is also practicable
to make a capacitor to which our formula applies,
whose value (' is as large as that of a coplanar
type with smaller radius a. Each capacitance
could be computed and they could be compared
experimentally, so there is a possibility of ex-
perimental check on the restricted formula for ¢
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that is given here. (We have no practicable
formula of precision for the case of a relatively
shallow hole.)

It is not desirable to construct a set of standards
of very low values, whose capacitance must be
found experimentally by stepping down from the
parallel-plate type. Hence the estimate of the
order of magnitude of error in the restricted
formula for €' (eq 35) should be based on mathe-
matical considerations if possible. Such an esti-
mate is made here by what amounts to a mathe-
matical experiment.

To make this we consider the corresponding
two-dimensional arrangement, which may also be
represented by the half-plane of figure 1, b, view-
ing it as a cross section of endless conductors,
x and p now being rectangular coordinates instead
of the cylindrical coordinates used before when
the z axis was the axis of symmetry. On this
figure the two-dimensional potential has the same
boundary values as before, but instead of the
axially symmetric potential equation

(D041 D) V=0,

we now have

(D;+D3) V=0.

The formulation of this problem in every step is
analogous to that used before. A parallel treat-
ment of the two cases, which was first used, was
later abandoned in favor of the combined treat-
ment given here, the two potential equations now
being special cases of a more general one. The
analogue of C/a 1s formally #C’, where €’ is the
capacitance per unit length of slot (the analogue
of the cylindrical hole of diameter 2a, being the
endless slot of width 2a). The general formula
gives Cla (eq 25 below) as the same function of
B and v and the roots a, of Jy(a)=0, that =C” is
of g and v and the roots a of cos a=0. The same
is true of the restricted formulas 35 and 35a.
The combined formulation of the two cases makes
it evident that the error is of the same order of
magnitude in both cases for the restricted formulas
35 and 35a.

But it is known that the two-dimensional prob-
lem may be solved by conformal transformation
with integrals of elliptic functions, and this leads
to a formula by which #C” may be computed with
any desired precision. From this it appears that
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the restricted formula 35a (and hence eq 35) 1s in
error by not more than one part in two thousand

<whon 0<y=< %&Hd 1< °°>‘

Capacitors that approximate to each of the two
types here considered have been constructed by
C. Moon, and their coeflicients ¢ and € meas-
ured by comparison with the parallel-plate type.
The values agree with those computed by the
restricted formulas given here, the experimental
error being estimated as one part in a thousand.
The longish, two-dimensional type is more diffi-
cult to construct with precision.

II. Combined Formulation of the Two
Potential Problems

The potential V' (z, p) must satisfy the bound-
ary conditions

Vo, p)=0 for o=p=<o
Vb, p)=1 for o=p=a
Wi, @)=l for c=<x=<b
Wile, p)==il for a=p=o

D, V=0 when p=0, and V—z/c when p— .

In the dielectric region the axially symmetric
potential V satisfies the partial differential equa-
tion

(D4 D?) V+}) D,V=

The two-dimensional potential has the same
boundary conditions but satisfies the equation

(D2+-D2)V=0.

They may be considered as special cases, »=0 and
v=—1/2 of V(z, p), which has the same boundary
conditions and is a solution of

(D2+D§)V+V+QVDV 0.

As far as the formulation of the problem is con-
cerned, it is only necessary to assume that the
constant parameter » is real and greater than —1.

With this restriction let @, denote the s** posi-
tive root of JJ,(a)=0. It is known that for the
interval 0<¢<1, the set of normal functions
(with weighting factor £)

bs (E)—W/Z "778) (821:2;37 DA oo),
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form a closed set, and they are normalized, for
IOE¢S(£)¢7¢(£)(]£:6"S:1 1f n=8,—01if n=s.

Another independent closed set, associated with
the same constants is

v-{ l(a‘gg)

+1(C¥)

Ui (b)) =

We wuse J,(t) and F,(t) to denote Bessel’s
cylinder function of ¢ and the first kind of Hanlkel’s
function, and assume that the #-plane is cut along
its negative real axis. Between these two func-
tions and their derivatives, there is the identical
relation in ¢,

Ju(t) M) 2 . 1
J, 6 TH,@) " imtH, (0,0 (1)
There is also the identity in ¢,
u+n( 35)7774‘7;]V+7L(1E)
stla n— 1 ——t )JH—I( o tﬂe]y(t) ) (“)

which is valid for 0=¢=<1,if n=1,2, 3, ... and for

0=¢<1 in case n=0, which becomes

aei(af) () s
> M o s N SR
Letting t—0 in this gives
Solad) _, .
et ey C Pr Ol D)
VFor brevity let £=p/a
B= )=t and 752. (3)

In the appendix is a formulation by contour
integrals leading to an integral equation. The
much shorter discussion given here contains all
that is essential without reference to the appendix.

Consider the particular solutions Vi (z,p) (s=1,
2,3 . . .), which vanish on all the boundaries of
the dielectric and are continuous throughout, but
have discontinuities in 0V/oz at the plane z=c,
corresponding to a surface density o, at this plane,

where
e (B0 (D)
Ji0s ox z=e—0 or r=e+40"
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Assume in region I it is

sinh a;(b—2)/a £7J,(asf) .

Vi, p)= o, sinh Bag o1 (o) (42)
then in region IT it must be
Vs(x) p): Slnh asx/a : E_VJ"(asg) +7r’YE_V'

as sinh ya; o, (as)

S iy in (222) Grrl)Helineip) . Gneti)

() (vaw)]

(4b)
and in region III it must be
Vs(x! P) =my&”
i (—1)™*! sin <n7rz> Qnr/y)H (”“Tg/’Y)J (%nﬂ'/'y)

[(nm)*+ (va)?]

n=1

(4c)

By use of the identities (1) and (2a), each for
t= (inm/y), it may be verified that not only V,
but also 0V /0p is continuous at p=a. Also,
since V is continuous at x=cg¢, it is found that the
surface density o, is given by

4rag o,—= (coth ya,+cothBas ) Jo(asf)

v+1 (Ols)

8 A e (5)

where the positive real coeflicients are functions
of v defined by:

a W~ 2n7"2<7"n7r/’Y)Hv(Z.’fL7T/'y)J,,(inﬂ'/fy)-
N — st)—gl [(n7) 2 (yas) - [(n7) 2+ (yar) ] (6)

The required potential V, may be represented in
the form

Vi(z,p) =2—2 ; 2. Vi(z,p) in II and III—
1—2 3 2,Vi(z,p) in I (7)
s=1

where the real constants x; must be so chosen
that oV,/0x is continuous at z=¢, that is

xs (4raocy) =$ for 0=¢<1,

I:(coth yag+coth Bag)rs—vias ;Z} X0 xk:l__
=1
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%:(2/7) ; Jo(ast) /s s (as)]. by (2b)

If, for brevity, we place

= 1 __sinh Ba; sinh ya,
*~coth ya,+coth Bas sinh (B—I—’y)a

the system of linear equations that determine
the z; may be written

» (8)

r,=A, I:L-f-'yZas i Xg‘,zxk] fors=1,2,3,... .
Y& k=1 (9)

By “successive substitutions’ this system is found
to be equivalent to

A1 2 8
st B

.sk 41}» Z

k=1

2 oo )gm 1Ak+ 2(m—1) ZX<s/o1'k ; (10)

where m is any positive integer; in case m=1 this
reduces to eq 9.
The iterated coeflicients are positive reals, de-

fined by
XP=X""=3" 0,4, X0X®, (1)

r=1
where X is defined in eq 6.

If m— o, the second number of eq 10 becomes
an infinitive series that either converges or di-
verges to -+« (it cannot oscillate since all the
terms are positive). If the series converges it
gives the solution of the system (eq 9).

To examine this question let 2%, 22, . . . 2™
(s=1,2,3 . . . =) each denote an infinite set of
positive constants, each being derived from its
predecessor by the operation that is the second
member of eq 9.

x;m+“=5*‘§“ [}#vszxzw]- (120)
as

k=1

Starting from any bounded initial set 2, other-
wise arbitrary, say

O<I£‘1)$M(l)’
the repeated application of this operation gives

X‘, AL < X%Az

gD = “SA [ +
k=1

Sy
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(m —1)
2(m I)ZX Al |

2'"+‘ZwX<:z.’xL”]~ (12b)
=1

If we take the initial set, 2 =1, this becomes the
second member of eq. 10, but it is here assumed
merely that z{" is bounded.

If 0<am<M™ for every s,
we may then prove that

0<a" V< M™ —1 for every s, when M ™ >2 (13a)
and

0<a"*P <1 for every s, when M™ <2, (13b)
This proposition will be shown to hold for every
finite value of the positive constants g8 and ~, but
in the proof we exclude the case f=vy=0 in which
there is no problem, and also the limiting case,
v—0, 0<B< =, in which the solution of eq 10 is
obviously z,=1 for every s.

Before attempting a detailed proof, we may
notice that if eq 13a is true, it then follows that,
whatever the initial set (provided it i1s bounded),
we shall arrive at an integer m for which M =2.
Proceeding to larger values of m we find that if eq
13b is true then an integer m exists such that
for every larger integer m the set z{™*" remains
bounded and less than 1. Combining this with
the fact that 2™ continually increases with
increasing m, it is evident that the set z{"™V
approaches a limit and the second members of eq
12b and 10 become a convergent infinite series of
positive terms that is the solution of the set of eq
9 irrespective of the arbitrary initial set with
which we start. In fact, certain initial sets x,®
may be found, which make say z/* or 2’ a closer
approximation to the solution than would be
obtained by starting with the initial set suggested
by eq 10, namely,

AS .

z® =
Y&s

It would follow that this solution must lie in the
interval

;ls < ;<1 for every s. (14a)

This inequality shows that the remainder for a
given m, (the last series in eq 10), has an upper

bound
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,y‘.’m—H ,Z Xﬁ-l-")rk<72m+l IZ] AY.:»/';")- (14}))
From eq 8 and 11 it is evident that all tbe pos-
itive quantities X are functions of 8 and «,
except that X by its definition (eq 6) depends
on v only.

To prove the propositions of eq 13a and 13b
we start with the inequality

X£m+1)< gs{l_s [415_{_733[(;,1) i ‘Y'i’l’):lt
7 Qg k=1

-l-a AM™ Z‘,
. l:"'( >H (zrur) <1n7r>] i ,
T o (e & @t ()
by (6)
If, in the identity (eq 2), we take n==1, =1, and

t=1inw/y, it becomes

= v 1(7'”‘"-/7)
g +<n7r> (uurty)J(nnr)'y

Hence, for every s,

2t < ‘A

1, 2 ronne < (e y) Hy(inm fy) i (in fy)
[HM > (nm)*+ (vas)?

It will appear presently that

0 <1r(?"7’“—) . (“,;") I (m ’;) <1 (15)
for every finite positive integer n, this positive
real quantity being a monotone increasing
function of %75; which only reaches 1 in the limit
n— o,

Hence

"[(m} ©

min - asAy 2(ya)
RS ”f[ 2+ 00 24 (umy? +<yas>2]

or since

g . ,‘('Y“S,,),Q_

(7L1r)2%7—('ya3) =rya, coth ya;—1
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and A;=1/(coth ya;+coth Ba;) by eq 8, this be-
comes
1—}— 5 (yozs coth ya,—1)

m+1 (16)
Us o va; (coth ya,+coth Bay)

e S=1l, 2, &, o o « .

From this, the second part of the theorem to be
proved, eq 13b, follows directly, for if M™ =<2,
this becomes

447 1 <x(m+1)<

yas, yag (coth ya,+coth Bay)

coth yay
coth ya,+coth Bag

for every s.
To prove eq 13a, the four expressions

M
g — 1, M™ —2 ya,coth ya, and ya, coth ya,—1

are each positive when M > 2,
Hence

(m)
(M —1yacoth fa+( G —1 ) (reccothya—1)+

Mm

2>0.
. Mm™ : .
Adding =~ (ya coth ya—1) to both sides gives

(m)
1421

(yas coth ya,—1)

< (M™ —1)ya; (coth yas+coth Basy).

The inequality (eq 16) then becomes eq 13a, which
was to be proved.

Consequently the second member of eq 10 when
m—> = gives the solution z; of eq 9 as a convergent
infinite series of positive terms, which may be
written

et er [ xatrxaexat )
(7)

where A;, X$ and X may be computed by
eq 8, 6, and 11. The process is straightforward,
the series converges for every positive g and v
and is therefore the complete solution of the gen-
eral problem, but as such is practically useless in
all its generality. By good luck we may restrict
the problem so that only the first series of eq 17
iS necessary.
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Eq 2 with n=1, {=1 and t=1nn/y, becomes
(7//27r> (@mr) (mvr)
k=1 2+<mr>

Using this, the definition eq 6 of X[ leads to
the exact equation,

o o () EL (ina ) o (i y)
T2 Xi=2] a)tt (ya)?

To complete the proof it is necessary to show
that the inequality eq 15 is satisfied in both cases,
v=0, and »=—1/2.

In the case »=0, J, (e,)=0, the two positive
real quantities have the asymptotic expansions

() () (143 (1) o
() - ()

(19b)
If y=1/5 these are in error (in the most unfavor-
able case n=1) by less than one part in 10°.
From tables of H, (iz) and J; (iz) for >0, it
may be verified that the first member of eq 19a
is a monotone increasing function of (nw/v), so
the inequality (eq 15) is true.
In the two-dimensional potential (v—=—1/2)

(18)

H_y(t)—iH, (t)__< ) o

and
HE, (f)=—iH2 (1) :<3>% -
i
) ¥
J_1,(t) :<;i> cos t
and

DN
J%(t):<77t> sin ¢,

so the analogues of eq 19a and 19b are

o 5 . —2nw
inw inm s =
"( % >H‘%< v )J’%( v >_1+e
. S —onx
nm n inw =
W<7>H"%<v )J%<v >*1—e 2t}
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the latter being also a monotone increasing func-

tion of nr/y as in eq 15 with 41 as upper limit.

For small values of v we may place the second

X‘,“:z
sk

9 oo

4

e B LT )

member of eq 19a equal to 1, (as is very accurately
the second member of eq (20a), which gives by
eq 6 for both values of »,

B B [y
") [+ (2]

:] (21a)

_ 2 2 YO\ eq Y% |,
T (i —ad) ["‘k S< T > b < T )]

For k=s this is 0/0 but is determinate,

w3 [s (-2 (] e
™ ™ T ™

where S(u) and 7'(w) are defined below.

The expressions (eq 21a and 21b) are, for all
practical purposes, exact in the two-dimensional
case v=—1/2, but as shown by eq 19a they may
be in error for the case »=0 by a part in 2,000
when v is as large as 1/5. However this corre-
sponds to an error of 2 in 10° in capacitance so
that eq 21a and 21b are sufficient in either case.
To the same approximation, eq 18 becomes

1
Y Z.I Xillh)—'coth Yos— ’ya: (21(})
 2vay
e 1 1 - .
S(u) ZZ# P CTERT [0.577224 Ry(1+1u)]
(22a)
T(w)=—D2S@) =33 — (22b)

- n2+u2)2

where xp(z)=i log T' (2). From the asymptotic
dz Y

expansion of the psi-function it is found that when
wislarge S(u) vanishes with the asymptotic expan-
sion,

S~y B log (1-4-u%)+0.57722— m]

(23)

For value of v as small as 1 this formula is in error
by less than one percent.

We have to compute S(u) and 7'(w) for values
of u from u slightly greater than zero up to u=1
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or 2. For this purpose we may get more rapidly
converging series by use of the identity

4

1 1 w Tk w0
+

nmitu?) nd nd el a0 Al pll(niu?)
Since > —7—1—21“ is accurately known, we find
n=117
S(u)=1.20206—1.03693 u?-}-1.00835 u*—

1.00201 #°+1.00049 u8—u'° Z .

= n(n24u?) (29}

and

T(w)=1.03693—2.01670 u*+3.00602 u*—

a0 3 300 % s (@4b)

1 n'(n —1—u St = ni(n
III. Application to Capacitance

The surface density of charge on the bottom of
the hole or slot is a function of &(=p/a), given by

L . =2 xsE~ vJ, ( ‘E) .
27ra<7~§ DV )ser= ;smh Bagel, 11 (ats)

The charge on this circular face of radius a is

Q:27rf podp= aZ——

“—~ «, sinh Ba; Bocg

The charge on the bottom of the slot, (whose width
is 2a) and per em length of slot, is

Q= zﬁa odp=1 3%

T =1 a, sinh Bag

The coefficient of capacitance, C, between the
plane =0 and the bottom of the hole is given
(in em) by

i where J,(a) =0.  (25)

8

smh Ba
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In the two-dimensional case, the coeflicient O per
unit length of slot is given by

’

S & w —
7C —S_,‘l wa sinh B s where cos a, =0. (25a)

=(+-3)
a=(s—5)m

The coefficients, x;, are solutions of eq 9 given by
eq 17 and z. are similar functions of o..

The two infinite, parallel planes with separation
¢ (fig. 1), bring about a uniform electric field at
points between them, which are far from the edge
A of the hole. To approximate this with small
planes, they must be close together. Hence one
restriction which, in the nature of the case, must
always be made is that v, (=c¢/a) is small. A
second restriction that may be made, and which
further simplifies the computations, is that the
hole is not relatively shallow. There would be no
hardship in practice if these restrictions are,
roughly

0<y=c/a<1/5

1=B=(b—c)/a< .

(26a)
(26b)

By reason of the first, the constants @, z,, 23 are of
the order of magnitude of unity, but they are by
no means of equal importance in the formula for
capacitance. By reason of the second restriction,
the denominators in eq 25 and 25a are such pow-
erful convergence factors that the second term of
of the series is less than 2 percent of the first, and
any term is less than 4 percent of the term that
precedes it. Only two or three terms of these
series are required, and the accuracy depends
mainly upon the precision with which the first
constant x; is evaluated.

For this reason we retain in eq 17 only the first
approximation

A,
= for s>1. (27a)

For the important constant x; we retain also the
first series in eq 17

_ A -
e (14€)> (27b)
where
@ 1)
= (yey)? 3 ek
k=1 Oy
294

X
= (ya)* Z i ax(coth ya-tcoth Bay)
or by eq 21
2 (v zl: n :I
-2 (.7r ) > Pit-Bo |
where (28)
n+1 Z I) {

=n+1

SCR-CR)2(7) e

fars a;(coth va;+coth Bay)

For k>1

Py ! :
¥ ar(coth va,+coth Bay)

s(re)- 202 a%'S(Vi")] "

When =1 we may place coth Bay=1 for k>
1 since coth a,=1.000. ' If we take n just large
enough to make va,/7 as large as 1/2, then yor,
is of the order of 3/2, so that in the series defining
R,.; we may neglect variations of coth ya;. Also
the term in eq 30 with factor «i/(aj—af) will then
be negligible compared with the first terms so that

R v 2 S(yax/m)
Bt w(14coth ya,41) =+t (yeur/m)

We may estimate R,; by using eq 23 so

27r(1—|—coth'yan+1)Rn+1=’Yi f 1—@‘) (31)
k=n+1 ™

f(x)z%s I:log (1+x2)—|—1.1544~—H1_—x2 » (3la)

where f (z), defined by this equation, is a positive,
monotone function of z, which decreases slowly
with increasing z.
At this point it becomes necessary to distin-
guish between the two cases.
In the three-dimensional case (»=0)
il

Olk/ﬂ‘"\’k_zl'

very approximately, so

> 1
2T(1‘|‘Coth 'yan+1)Rn+1='y k%, _f ('y [k‘:z] ),
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in the case »=0.

=

1 .
Also ak/7r:/c—§ exactly, in the case y="—75 S0

that

2 (1F-coth yaru) Rup =7, 33 <7 [k~ %])

; 1
in the case =y

The numerical value of the sum of a conver-
gent series of positive terms which continually
decrease, say

©

A= 2 F@), .

k=n+1

represents the sum of the areas of the rectangles
each of unit width and height F(k).
The positive, monotone function of x,

represents a smooth curve that passes through the
mid-point of the top of each rectangle.

When, as in the present case, this function
decreases slowly with increasing z, the area under
this curve from z=n+1 to z=o is a good

approximation to the value A of the series, so
that

A= > F(k)

k=n+1

® v _7177 B . 5
'_f.r=n+111 (I 2) dl_J£=n+% I‘Q‘)dﬂ‘

Taking F(k)=vf <7: k> gives

¥ kz%j b (}f‘ /c)z f j(‘j,"+;) f(2)da

where
(32)

Qn

1 Il .
*ﬂ_ ‘1‘5'\’71/‘}‘:}:‘ if Jo(ozk):()
=n 1f cos a;=0,

provided f(z) is a positive, monotone decreasing

function of z for
o <ﬁ"+,1_>.
> T 2

Hence from the function f(z) in eq 31 we obtain
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0.1544+1 (log+a;

B N47r(] + coth YQni1) { T +
2 log (1 Tﬂ“)}y (33)
where
oy L .
Lp="Y £ ’+ :)> (’;4)
™ &

Equations 25 and 25a for capacitance become

C_1& (1+e)sinhya, .
&7 2 Zsmh(Bi)a, There Jola) =0 (35)

1&, (1+¢€) sinh ya! / .
e A= L 7 T s where cos e 35¢
wC' PR e ’y)a;Wh(l( cos a, =0 (35a)

€, €,=0 if s>1, y=cja and B=(b—c)/a
e, e, computed by eq 24, 28, 29, 30, and 33.

From an examination of the effects of retaining
all terms in the second members of eq 19a and
19b it is easy to ascertain that the error in eq 35,
whatever it is, must be of the same order of magni-
tude as that in eq 35’. The terms of eq 19a and
19b, which are neglected, are estimated to produce
an alteration less than 2 in 10° in capacitance.
The error in eq 35 and 35a increases with v, vanish-
ing with it, but is practically independent of g,
for 1=p< . The computed capacitance will be
lower than the correct value.

To estimate the error we apply eq 35a to
compute 7C’ for the case of a standard capacitor
constructed here, which approximates to the
two-dimensional type. Its dimensions are

a=—10.8540 ¢m ’
y=-=0.23419
¢=0.2000 cm » so a
b—c—1.8940 cm Eal s

By eq 28, taking n=4,
4
6—0.00873 [2 Pk+R5]
=1

P;=0.194;
Py;=0.101;
P3;=0.057,
P,=0.034
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This gives ¢=0.00423.
10
It was found that with n=10, the sum I:ZPk—I—
=1

R“:I gave a value of e so near this as to affect the

capacitance by less than two parts in a millon.
The result of computing =C” by eq 35a is to be

compared with that given by the exact equation

(eq 48) to be derived below. The constant &
appearing in eq 48 is given by eq 43a, which gives

~4] \

xC’
by eq 35a by eq 48
Ist term__________ 0. 027 795 0. 027 810 8
2d term__ ________ . 000 005 . 000 003 7
3d term_____ . 000 000 . 000 000 00
xC . . 027 800 . 027 814 5

Equation 35a here gives €’ too low by one in 2,000.

Another computation for a shallower slot, 3=1,
with the same v as above gives a coefficient of
capacitance (" about seven times as large.

xC’
by eq 35a by eq 48
|
Ist term_ ___________ 0. 192 142 0. 192 688
2d term_.___________ . 001 537 . 001 146
3d term_____________ . 000 026 . 000 000
aC . . 193 707 . 193 834

Hence we expect the pacitance in case of the
cylindrical hole computed by eq 35 will also be
lower than the correct value by about one in 2,000
(if y=0.2). This is probably less than the experi-
mental error of the comparison of such very small
capacitors.

If a precision greater than one in 2,000 were
required, this might be found by retaining one
more series in eq 17 for x;, that is,

A Xlk Aqu

EiE= I:l-}—('yal) 2 -+ 22
7‘1[1+el+61]
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where

= A,X® o
X oy e

d=n~*a?
k= (697 k=10gs

£ e A, XX,
=1

where X ¢ is given by eq 21a, A, by eq 8.

For y=1/5 eq 35 gives values of C that are too
small by one in 500 neglecting both ¢ andé;; and
too small by one in 2,000 neglecting 6, only. From
the computations given it appears that §, is about
1/8 of ¢,. The approximate evaluation of §, by this
double series would require an evaluation of each
remainder, as in the single series for ¢. It would
require much labor for small gain.

An alternative estimate would be given by mak-
ing a plot of the error in eq 35a as a function of
v from y=0.1 to 0.5 all with B=1. This could be
taken as an estimate of the error in eq 35.

1V. The Two-Dimensional Potential

Let ¢ (z, p) be the two-dimensional potential
that vanishes on the plane z=0 and has the con-
stant value 7= on the guard-conductor and on the
base of the slot. Its conjugate function ¢ (z, p) is
zero on the z-axis. Let ¢, and ¥, denote the value
of ¢, at the points A, and A, respectively. The
capacitance C” per unit length of slot is propor-
tional to ¢, for the surface density o of charge on
the base of the slot is given by

so the total charge " upon the base of the slot,
(of width 2@), per em length of slot is

:agp ‘/’(by p);

2, it a‘//(b) P) IP,
Q —f—a U(p)dp 27[' ap 27;

The coefficient of capacitance C’ per cm length of
slot between the plane =0 and the bottom of the

slot 1s C’:% (cm) or WO’:%_.

To find ¥, we first obtain the complex potential
w:d’_}'uby

which may be considered a function w (z) of the
complex variable z=xz-1p.

To do this, the dielectric region (D) of figure
2a is first represented conformally upon the
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p:m ___A_o___‘Ao
P
I
pa - Az (c,a)
o T
p:o !
X=0 X=C
A B
= 00 P ——————— e ———— -
A, A
IT
"
//»oAz (7, %)
,/,’ 'AI (ﬂ,vﬁ)
o /o1
W:O 1" B ¢
#=0 g=m
C
Ficure 2. Dielectric volume.

A, Plane of Z=X+ip; B, plane of t=rei?, eq 38; C, potential strip
w=¢+iyY (eq 47).

quarter-annulus of figure 2b defined by the plane
polar coordinates

1<r<% and O<(9<7§r

The conformance is indicated by similar letter-
ing in figures 2, a and 2, b. This region (1J) may
also be represented on the semi-infinite, potential-
strip as shown in figure 2, ¢ where

0<p<mand 0<y< .

The mapping equation we take is equivalent to
mz_4aif | o 3 (Sot§)Ba(SotE)
—==441 ,

(4 4 T log 1 (So—8)F2(o—¢) 87)
and the potential is equivalent to

s 31 (§o1¢) Pa($o—¢)
w=1108 5 (c05) 9a(cot©)

=1 log sl i) G a) (where u:%&u).

en (uy+w)sn(uy—w)
(37a)
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One is led to the equation of transformation by
well-known methods, but for convenience of
numerical computation, it is better to use the
series that are equivalent to eq 37 and 37a. By
this method the discussion of the equation of
transformation and of the potential may be made
without any reference to, or knowledge of, theta-
functions or elliptic functions.

Accordingly we take a complex variable,

— 10 — p2if — p inu/K
===,

and start with the equation of transformation,

T (s—b)=2 log (@)~ {ilog (- TE),

© 4An (t 2n ___ n) (38a)

q-
4> S —q") sin 2n00}

n=1
where the positive constants, 0< ¢<_1, and the
angle 6,, <0<00< 125>, are to be found in terms of

the given constants
¢ b—c
’y=a and B:j’ -
Since 1< |t| =r< -;—in figure 2b the logarithm in

eq 38a may be expanded in a series so that

= (2—b)=2 log (¢)—

¢ [(gt) " —(g1)*"]
1 ; 2n(1—q*")

(38b)

sin 2n6,,

which converges within and on the boundaries of
the region (D) of figure 2b. Its term-by-term de-
rivative converges within, but not on the are r=1.

. . dz
To obtain a series for 72 convergent on the bound-

aries, eq 38a may be differentiated, giving

dz__ 4t* sin 6, cos 6,
2a & 11| B =42 cost 6, T
@ 4" 2n 2n
Z (t —H ") sin ‘7n00] (39)

To establish the correspondence for the point A,
of ficure 2a and figure 2b, we place z=c-+ia and

T

and t=e¢2 in eq 38a. This gives

qg=e gilans ] (40a)
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Also, since the point A, is the only point where
angles are not preserved by this transformation, it
i1s necessary that dz/dt be either zero or infinite
there. Since z is continuous there, dz/dt must
vanish. Hence the second member of eq 39 must
vanish when t=¢72.  That is

gt sin 2n6, 1
T— q4n ;;' (40b)

can0+4z‘, ol

These two equations determine ¢ and 6, as func-
tions of B and 7.
If we write

T T
9 fozi_oo so 0< & <1 (a1)

and y=tan é

then, eliminating ¢ between eq 40a and 40b gives
the following equation to determine &,

e~2nm(B+y—%0) gin nw,

o =

cot - £0+42 —2711r(6+7 v£o) =cot 4. (42)

A very accurate solution of this for the case in

which the slot is not relatively shallow (8 not small)

may be obtained by using a few terms of this series.
Thus it is found that

. )
7‘;‘0”:7?260:54‘8 Sin®s cos 6 e [H(] r) ‘a"f’]-

(s T (2me] g el (2]
(43a)

where C;=1--4 sin? 5—783 sin® § cos 6-!~713Ei sin* 6.
Also |(5|<(32, so the term in C, is negligible
when =1 and 6 is small.
When 6, or & is computed by this formula, the
parameter ¢ is then computed by

q= e—TB+y—%0)/2,

Since t=re’ eq 38, gives z and p as functions
of 7 and 6 by series that converge in (D), and on
its boundaries

2012108 () —

© 2n —2n___ 2n
%;y g [(3’:.()1 q4,l()(]£)—l sin 2n6, cos 2nf (44a)
n=1 -
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sin 2nf, sin 2nf

(44b)

_ 20, 2y 3 ¢"l(gr) "+ (gn)*"]
a '+?nz=‘i n(l1—g¢*")

for 1=<r< %and 0<0=<m/2.

The complex potential is

i 2n 1[(qt) @n— ”—(qt)n_l]

w=1r—4n=1 Cn—T) (A= sin (2n—1)86,,
(45)
which resolves into the two real equations
B @ gin-l [(gr)~@r=b — (gr)1]
BT E ) (e
sin (2n—1)6, cos (2n—1)6 (46a)
s (g (g
¢'_4 ;21 (2n_1)(1_q4n—2)
sin (2n—1)6, sin (2n—1)4. (46b)

The constant ¢, (at A;) corresponds to r=
1

T

—q—; 0—§
The constant ¢, (at A,) corresponds to r=

1, 6=C

2

If these two positive constants are determined
thus, the equation that maps the region (D) of
the z-plane conformally upon the semi-infinite
strip of figure 2¢ is

/oos w " cosh ¢, 2

o J \ cos o'+ cosh ¢, it ]

To prove this we take the complementary mod-

ulus of the elliptic function of  in eq 37 as

tanh ‘lg—tanh ‘g‘

=
\1/2 Vi
tanh B +tanh )
and determine the constant u, by

SUCnUy
~ dnu,

L (banh Ilh"—t—tanh ¢1> where 0<u0< o

Details are omitted as we do not make use of the
relation (eq 47).

and 0:1r>

From eq 46b we obtain (placing r=é 5
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g2l (211—1)00
@n—1)(1—¢*"?)

Hence the coeflicient €7 of capacitance per unit
angth of slot is given by

Y4 (1

27!’ Tn=1

1)n+1 2n—1 qi]l (r)n_1>0“

(=
Z (27?/—1)(‘* 4117:2)

7" n=1

Or letting o/ = (2 s—l) T this may be written
’
= cos a &

AU =2 TR o (B &)

(48)

~ where & is the root of eq 42, which may be com-
puted by eq 43a. This equation gives C” with all
the precision that may be desired. This is the
equation which may be used to find the error in
eq 35a which would be of the same order as that
in the three-dimensional formula (eq 35).

The deeper the slot, the more rapid is the con-
vergence of the series (eq 48). Although this
series converges for any slot however shallow, it
becomes practically useless for computation when
B is small.

To obtain a formula of complementary nature
to eq 48, whose rate of convergence gets more
rapid as the slot gets more shallow we may make
use of a transformation, which introduces a pa-
rameter ¢, which is found to be equal to ¢’

In this case we transform the dielectric region
of figure 2, a, upon the semicircular annulus of af
plane, as shown in figure 3.

Frcure 3.

Semicircular annulus for eq 49.

As in the preceding
coordinates and

case 7 and 6 are polar

— pptl
t=re®,

but in figure 3 the range of » and 6 is

A Standard of Small Capacitance

@ <r<1 and 0<0<r.

The equation of transformation is now

iz b—c 2
,,C,,,;< ; >Iog H—log( 1[,t>+

o 1) (1) (
2 - (49)

n=1

The positive constants ¢, and 7, where 0<q,<
o<1 are determined by securing the correspon-
dence at A, and the vanishing of dZ/dt at A,
where angles are not preserved. These two
equations are

SO GED

g —d’n’ (50b)

and

1 .

Let u,=log ¢ or g;=e )

' (51)

1 — U,

Up=—10g" —OT Tgr—¢h 0:

Ty /
Then the two equations (eq 50a and 50b) may be
written

= sinh nu,

""" ] = B/’Y

(52a)
and

iy= . 52b)

0 'Y ( 7

Hence, eliminating u,, the equation that deter-
mines ; 18
sinh n(r—pBu)/y B

o = ")2 )
=i sinh nu, oY% (52¢)

The complex potential is

om0
AR L gliw(l'f"—r“ ( *'I_‘tn)
= U g Il‘c qi"(rg"—1p) (t_"*t?).
” +z< . >logt+212 e

(53)
Tz b i

P + "7(]5_7T,¢ ‘Pl;t—(llel"

At the point A, ~ = p

:_ql'

Equation 53 gives
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_ma, (b—c 2 e D H e
c+<c>logql~2n§ )

—1)"*" sinh nu,
n cosh nu,

_ma_ 22(

c n=1

(54)

From this we obtain the following equivalent of
eq 48:

" Bu, (—=D)"*'sinhn(r—Bu) [y
x0'= 20 2 [ +22 n cosh nu, 1 ]
(55)

where v, is a function of 8 and v determined by

eq 52¢. This may also be written
d B (—D"“ﬂ(n?"—@]
{0/ — l: log — —i—221 2+ )
(56)

where 7, and ¢, are determined by eq 50a and 50b.
For a relatively shallow slot in which g/ is small,
while /v is neither very small nor very large, we
find to the second order inclusive in 8 or ¢,

_B(,_B ™
q‘_2v<1 2700th7>1

6(1 2 cothT >]

4~ smh /|y _J

T
_:)T_gx (57&)

where

loo——

+<7 +Bcoth 7r/v> o

(57b)

This applies for a slot so shallow that formula (eq
48) would be impracticable.

V. Appendix
Formulation of the potential as Contour
Integrals.
The generalized potential equation (where
v=0 or v=—1/2),
D2+ Dy V+E2 py=o, M

has solutions of the form
V:((a cosh 40, sinh %)g—va(tg), @)
where ¢=p/a and O, is any cylinder function of

té with parameter ». The constant ¢ is arbitrary
and may be complex. The two fundamental equa-
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tions, which are satisfied by all cylinder functions,

will be needed for reference. They are
Co_1(t8) — C,41 (1) =2, (2£)
H%HQM@J(M&} ¥

which are equivalent to
D(&C,(t8) =t €, (t8) }
Di(C,(t8)) =170, 14 (t8).

The cylinder functions here used are Bessel’s

(3a)

function /,(f) and the two Hankel’'s fanctions

H® (@) and H?(t). However, the latter will only
be used in passing, so that since H ¢ occurs fre-
quently it may be denoted by H,(t).

From the identity in £,

H @) — H()J (0= 4)

we obtain from the fundamental equations (eq 3)
for the case t=ay,
where J,(as) =0,

J;(as):_Jy+1(as) and 7:7TOZSHV(O£S)
=—2/J,,+1(as) (4&) !
wtH, () 1

——— when t=q;.

20 Ji(a)

In all that follows it is understood that the é-plane
is cut along the negative real axis so that

— < arg t<.
There is the identical relation
2J,()=H,()-+H@®). (5)

The circuital relations around the branch-point
t=0 are

H®(te t")=—e?"H,(t) and J,(te*")=e*?7J,(1).
(6)
When |{t]| is large

5 i(“[”*%]%)

H,, (t) S E €
and @)

5 (-4
03 2 :
H(,)(t)'\-'\/ﬁe s
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In certain cases the cut in the #-plane may be
disregarded, for ¢*Jv(f) is an even integral func-
tion of . Since » is here considered real and
1, the zeros of ¢7Jv(t)=0 are real, at
t=+a,(s=1, 2, 3). If t—F,(t) were another even
integral function of ¢, where ¢>—1, the ratio
=7 F,(t)/(J,)(t) is an even function of £. Suppose

=
yiz—

f(t) is another analytic function that may possibly

have simple zeros at t=t,.

If

1+v—0o
LoD e en

J@®J: (@)

the integral around a cirele of radius [t|=r,

RN a0

271 J f(©)J, (1)
will approach zero when 7 increases without limit
and without passing through the points ¢=t, or

(8a)

t=+4+a,. By Cauchy’s theorem this gives (since
J:(“x) :_Jv+l(as)7
() s @i Fa() I_J ]
S R Tt L) T

(8a)

This would be a trivial identity 0=0, only in the
case where f(¢) is an even function of ¢.

Taking f(t) =t—t, gives the identity in ¢,
., o ., o 1+V UF( s)
1o Fy () =270, () 25 ————f_t Tta) (9)
if
s M0

AOR —0 when t—>®
where t=F, () is an even integral function of ¢.
Equation 9 applies when » and o are both real
and exceed —1. Replacing o by »+4 ¢ and taking
F,,(t)=dJ,.(;) gives

1~”Jr+a(as£)

SOy OV

oo (18) =21

for any ¢, when 0=<:<1 if —1<v and —1<v+o
and when =1 if —1<» and 6<o.

The case of this (§=1, ¢>0) is a special case

u=0 of the following, which is obtained by use
of the even function of ¢,

g . vto
e o (NE— ) [[(E—p?) 2 o (D)]

A Standard of Small Capacitance

tJV+rr7(\t2;/~‘ )

(\/1«2; MZ) vto

Jv v(\ s l-‘ )
=2J,(t + L 9b
D3 ey ST el

where — 1<y, 0<o, t and u arbitrary.

Another case of eq 9 with F,(t) =G, (1):
If 7@, (1) 1s an even integral function of ¢ (10a)
and G,(t)/J,(t)—0 when t— o (t3«y) (10b)
then by eq. 9
Gt =2, (nz IAACD) (10¢)
tZ)J,+1(as)

It will be found that the infinite set of functions,

us(t) = p L) (where S=1l,2, 8,

.), (l1a)
constitute an open set of normal functions for the
positive real interval 0<t< ». That is

[, (59 (35 )it th=s=0it kss.
' (11b)

Since the set is not closed, an arbitrary function
could not in general be developed in a series of
these functions, but eq 10¢ shows that such devel-
opments are possible for a function G,(¢) satisfying
the conditions of eq 10a and 10b.

A function @, (t) would satisfy eq 10a if defined
by a series

G0 =202 5 =2 2 w(t),  (12)

which would converge absolutely if |z,|<es” for
s >, where p<1. Letting t—>a, shows that
ry=a,G, () [, 11(as) as in (10c).

To prove the set u, is not closed it is sufficient to
find one function f(f) (not a null-function) for
which

fo tf () us(t)dt=0 for every s(=1,2,3, ...

A class of such functions will be found immediately ;
one of the simplest is J, (t§) where 1=¢, for it
will appear that

fo tJ, (tE)us(t)dt=0 for every s. (13)

When eq 13 and 11b are proved, the following
will be a consequence:
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If @ (t) is defined by a series (eq 12), or having
the character of eq 10a and 10b is developable in
a series like eq 12, then by eq 13

I;th,(t)J,(tE)dt:O when 1 << o, (l4a)

but when 0=¢<1

G (o), (asg)
Jia(as)

,(t)is the Hankel’s
which 1s zero

(14b)

fo “16 (), () dt =g, () = 235

These two equations show that &
transform of the function g¢,(¥),
for £ 1, where

1
G.(0= [ e O T (140

Conversely, if, with a given function g,(%€), its
transformation @, (t) were defined by this equa-
tion, the development (eq 14b) is the formula for
developing g,(¢) for 0=<£<1 in the series of normal
functions J,(a;é).

Equation 14a also follows from eq 14¢ by reason
of Hankel’s integral representation of ¢,(£).
Finally the identity in ¢ of eq 10c would then be
obtained by replacing J,(&) in the integral (eq
14¢) by the second member of eq 9a with ¢=0.

The equivalence of eq 10c and 14c¢ as to estab-
lishing eq 14a will be important to remember.

To derive eq 14b for the case 0=<&<1 we find
by eq 9a with ¢=0

J 1G, (1), (t)dt =2 ; o], (k) f“i{@ G, () dt—

»+1 (as)

Qi CACEY tus(t)G(t)df—

;+1 (C\fs)

asJ (OLSE)
2 2 Jv+1 (as

Z .2 (tus(t)uk(t)dt by eq (12)

The use of the orthogonal relations (eq 11b) leads

to eq 14b.
We require next some transformations of the

integral
1= {6,078 W)
Jo

assumed to be convergent. The function W (f)
has no singularities in the immediate neighborhood
of the real axis of ¢ and is an even function of ¢.
G,(1) is defined by a series (eq 12), so that it has
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the same cireuital relation around the branch-
point ¢=0 as J,(f), that is G (tet™)=¢et"*@,(2).

As a first step displace the path of 7 slightly
downward so that it goes from 0—i0 to o —i0
just below the positive real axis of {. After this
replace .J,(¢) by

% [H, (&) +H. ()] eq. 5.

1 * o0 —il)
gl j
2 Jo-io

1 0 —i( x 7
5ﬁ*m 6, () HP (5t W (8)dt.

Then

tG,(t) H, (g) W (t)dt

In the second integral let t=¢¢ = and take
account of the branch relations (eq 6). This
gives

-1 J tG.(t) H. (&) W () dt,
D

where the path p begins at t=—w-+4 0 and
continues above the cut (on negative real axis of
t), crosses the axis at t=-0 and thence to + o —
2 0 below the positive real axis.

For the next transformation leave J,(¢f) in the
integrand of 7 but break up G,(t). For this we
may use temporarily the abbreviation F(¢) for
the even function of ¢.

Fi)=>2 -2

= ozf—t2

so that -eq 12 is G,(t)=2F(t)J,(t)=F()[H(t)+
H® (@)].
Hence

= foi_)) tJ, (&) F(t) W (t) H, (t)dt+

L:U tJ,(EOF@)W () H,” (t)dt.

The substitution £=%"¢~7 in the second integral
works out as before, giving

sz tJ,(te) F(t) W (t) H,(t)dt.
p

On restoring G, (t) by F(t)=G,(t)/2.J(t) this gives

JO“ GO0 W) di=2 f,, 16, () EL (1) l]](@) W (t)dt
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:}2 f,, tG, () H, (&) W (b)df. (15)

+0-4i0 + 0 —i0
fdt: f dt+f dt.
P J — 40 +0—i0
If the first integral converges, the only other
assumption necessary for this transformation is

that tG,(t) W(t) be an even, analytic function
of ¢ in a region that includes the real axis.

where

Taking W(t)=1 and G,t)=u,t)=J,(t)/(a>—1?)
gives
| ae— [ oo
0 “JD

1 (il
RO i.fl, e A di

On the infinite semicirele above the real axis

limted, (t) H,(gt)|—0 if 1<t< o
—1if ¢=1.

Hence, closing the path gives
f tus(t),(£t)dt=0 if 1<¢{< o, which is eq 13.
0

Similarly,

J; taws (8) wi( t)(lt*J‘ [J(t :l I:J

1 intH,(t)J,(f)

~ 2mi p (&2 —17) (2 —17)

)]

di,

which gives the orthogonal relation (eq 11b).

The potential V(z,£), which satisfies eq 1, van-
ishes in the plane z=0 and has the value 1 on the
right hand boundary of figure 1, may be formu-
lated in terms of its (unknown) values on the

artificial boundary z=e¢, 0<¢ =£<1.

Let
V(C, E):l—jy(£>:1_£_”gy($) fOI' Osgsl
=1 for 1<{<o, (16)
where f, (1)=0=g, (1).

Consider g,(¢) the function represented by the
series (eq 14b) and @, (%), its transform defined by
eq 14c so that Hankel’s integral identity is

A Standard of Small Capacitance
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J;;Gv(t) J,(Et)dt=g¢,(¢) when 0=¢t=<1

=0 whenl<{<ow. (17
Also the series (eq 10¢) represents G.(1) for all
values of ¢ and ¢ @, (1) is an even integral function
of t. Since ¢,(¢¥) vanishes when =1, its repre-
sentation in eq 14b as a series of normal functions

¢s(£) = V2T, (k) | is valid for 0=¢=1.
alas)
The related set of normal functions,
/ng (erst)
S aNEYy L /
IIJS(E) Ly JV+1 (as)

are suitable for the development of the function

svf/(s>:g/<z>—g~gl<s>,

for it is known by the general theory of these
series of Dini’s type that a function that becomes
infinite when &1 may be so developed provided
its integral converges. The formula is

"—H(axg)

1
Ef (E "‘22 J%i—l( ) J; 51J7+1(asgl)glifl:(godgl-

That is, .
9. —F0.(6)=
v 1(0135) v
2 33 7D (Lt [ 80— 2 06 |t

By integration by parts the integral is found to
be

iy L [asglJ:+1(a8£1) ar (V+ 1)']v+1(asfl)] gl‘(gl)dgl-

By use of eq 3 and 3a this reduces to

— Qg J; Elgv(gl)']v(asgl)dglr

which is —a@,(a;), so that

:, d% 0, (O] =g.(5) —

aég (a

t gv(f)*_2 Z ( b; Jy+1(a3£), (18)

which is valid for 0$£<1. As £—1 this series
converges to values that increases without limit,
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as it must do to represent the function on the
left in which f,(¢) and ¢.(¢§) go to — . This
method of derivation of eq 18 proves that it is
permissible to make term-by-term application to

eq 14a of the differentiating operator £ 7 [E "g,¢],

for this gives eq 18.

To test the convergence of series and integrals
representing the potential, and to make certain
transformation of these integrals, a knowledge of
the principal term in the asymptotic expansion
of G,(t) is required. These may be derived from
the well-known fact that if the interior angle at
A, in figure 1 is 0, the potential in its neighbor-
hood must vanish like A (1—¢*)7/?. Since 0 is
3w/2 in this problem, consider the comparison-
funtion

g E) =87, ()= A& (1—£)*® where A,>0.

Its transform is

(19a)

G.(O)=A, L Lpri(1—gypsg, (e (19b)

Hence 7,(¢) is represented by a series like eq 14b
and also by eq 18

2 S5

7O 7O = Joibad)  (190)
In the actual potential in both cases »=0 and v=
—1/2 the potential must vanish at A, so that g,
vanishes like the comparison-function g, (¢§) when
£¢—>1. Consequently there must be a finite limit

L, such that when &1

%(E)—gv(f)= OOR A 00 :Lv.

This finite constant L, may be positive, negative,
orw=zero. Its value is not required, nor is that of
the positive constant A.

If we subtract from eq 10c the corresponding

identity,

s G, (as)
— ) J &

G.(t)=2J, (t)z(

we get, after multiplying the resulting lequation
by #2/J.(1),

2 al Gv(as) '_—Gv(as)
tl[Gv (t) S G,(t) ] AT > _Cs —‘"_‘*“‘;5”**
RS 1 e 2§Jsfr;|: 1-% ]
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Subtracting eq 19a from eq 18 we get in the limit
(since g,(§)—0 and ¢,(¢§)—0 when £¢—1)

limit
£ 1[gU) —giD)]= o — = =L,
Sy

[6(a) — G (a)],
which shows that the second member of the pre-
ceding equation approaches some of finite limit
L, when t— o without passing through any zero
a; of J,(1).

Consequently the principal term in the asymp-
totic expansion of G,(f) is contained in

Gt~ (t)+ P Ju(1). (20)

To see which of these two terms is the impor-
tant one, we may find G,(t) by application of
Sonin’s integral. If o and » are real jand o« > 0,
v>—1, while ¢ and u are arbitrary, Sonin’s inte-
gral is

/2 ‘
(iy)“"J; cos’ Mg sin ¢ J, (i sin ¢).J,(t cos ¢)de=

(i)' [ 6760 [ £ — )T T, sGiu 1= | =

ted, o (VE2—
LLeS ) @)

which becomes with p=0

[rera—prnea="2(3) 200, @)

Hence taking o=5/3, eq 19b gives

Ay 2 5/3
) (j) Jorsn(t).

When t is large this is the important term in eq 20
so the asymptotic expression for @,(f) may be
taken in the form

/3 G.(t)

T.(0) ~constant when t—w (t£«a;). (23)

G.(t)=

If the interior angle at A, of figure 1 were any
other than 6=3/2, say »<0<2n the factor #?
would be replaced by ¢/,

The formulation of the potential will be im-
plicitly in terms of ¢,(¢) but explicitly in terms of
its transforma @, (t).
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All that is assumed as to G,(¢) is that G, ()
is an even integral function of ¢ with asymptotic
expansion (eq 23).

If y=¢/a and B=(b—c¢)/a, the potential in
region I may be written as an integral over a
path p;, which encircles in positive direction the
positive real axis of ¢, (all the positive zeros
t—arolt/()=0)"

In region |

J,(t£) sinh (b—2)t/a

Vet J (6. H, () =R =2 g
(24a)
In the combined region IT and III
C TR . J,(t§) sinh at/a
Vi, =1 ijm,a)IL(r) e A g
(24D)

To show that this potential is everywhere con-
tinuous and satisfies the required boundary con-
ditions, consider the first integral in eq 24a.
This vanishes when z=6 and again when p=a,
(¢=1) since the denominator .J,(t) disappears, and
the path p; then encloses no singular points. At
the internal boundary z=¢ the integrands in
eq 24a and 24b become equal. Also, since the
denominators sinh B¢ and sinh ¢ disappear the
integrands have no singularity above the real axis
of t so the paths p and p, become equivalent.
Consequently the potential is continuous at
g—Cc(=Et=1%

The integral in eq 24b and the potential vanish
when z=0. To see that the integral (eq 24b)
also vanishes when £— = reference to eq 15 shows
that eq 24b is equivalent to two other integrals all
equally valid in the combined region II and IT1.

Vg, f)= - fp (6O, () R 4y (240
and
Ve, o=2—g [ "G00 B ar. (240)

By eq 23 the path p of eq 24¢ may be closed with
an'infinite semicircle above the real axis of ¢, when
¢=1. It encircles the poles at t=inw/y where
sinh y£=0, so that

in region Il (0=z=<c and a<p=<x)

()
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Vig, =247 32 (-

mr , (T oF
g, (2" ) 6, () (25)
In region Il where 0=¢<1 it is eq 24b whose
path may be closed with the same semicircle.
The path then encircles two sets of poles, the set
where sinh v=0 and the set {=a, on the positive
real axis of ¢.
and 0=p=a) eq 24b is equivalent to the series

7, (as)eJ,(as€) sinh ms/a_‘_
J,2(a;) sinh ya

V(I)z2i)

c

EEH —1)" sin <n1rx> (mw) I,

(mvr) (mr J,(inwé/y)

J,(inw)y)
Similarly in region 1 (where ¢=z=<b and
0=p=a) eq 24a is equivalent to

2 G‘f(l}a)J»(lef) sinh (bf,‘t)qs,/’g’.

V(z$g)=1— 25_"321 7 J?% 11 (as) sinh Ba

(26a)

(26b)

From the last two series, we get the series that
states the continuity of D,V
csy[(DzV)r=c+0_ (Dz‘v)x»-c—ﬂ]:

2 i ,77@75%)7,4 Yo (( Otll Y *‘( Ot,h Bav)J ( S)

8= Qg JV—H(a?) V+1(as)

nw\ oJ,(inrkly) (’L')I,‘rr) / <zn1r> <m1r>
Z il X7 G, (° s
( S (inwfy \ v Y v
£=0, (27)

which must be true only for 0=¢<1.
For this interval

Jv(gbg)

Ey:2.»r=1a_s_Jy+1(Ols)' (28)

Also by eq 9a with ¢=0 and t=inx/v

J(inwkly) 2 J(ok) 2 gy
T D el f+(n7r/7)2:| (29)

Placing these in eq 27 gives a series D CJy(as8) =0
1

so each coefficient C; must vanish.

Hence the continuity of 1),V at r=e¢ requires
that G,(t) be such a function as to satisfy the in-
finite system of linear equations, in which, for
brevity,

1 __sinh ya, sinh Ba; (30)
=coth yas+ cothBa;  sinh (B+7)as

{ X
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Hence in region 11 (where 0=z=¢



and
a.\va(as)
s = . Sil
Tra(r) =
The system of equations (s=1,2,3, ... =) for

continuity of D,V is

nwlr@nm v H, (%n‘/r/'y) mr\_ A
Asasnzzl (nm)?+ (va,)? < % }vas \324)

The additional condition, that V(e,&)=1 for
£>11is the equivalent of the identity in ¢ in eq 10c,
which becomes

o)== Errer O

There is an infinite class of functions G, (¢) that
satisfy eq 32a making D,V continuous. There is
another infinite class satisfying the identity (eq 10c)
(or eq 32b in particular). These make V(e,&) =1
when p>a. Thefunction common to both classes
will be uniquely determined. The second condi-
tion (eq 10c or 32b) could be replaced by the
statement that G,(f) is that solution of eq 32a
such that t= G,(t) is an even integral function of
t with asymptotic expansion (eq 23). For this
property is all that was required to show that the
potential of eq 24a and 24b satisfies all the exter-
nal boundary conditions and is continuous at
x=c for 0<t(=<1. Hence if eq 32b is true, the
potential is thereby determined and D,V is con-
tinuous. This potential is known to be unique.

Writing for brevity

Wiy Yy — s 20almiena [y) H (inx [y)d, (inw[v)]
Xsk (’Y)—st(')’)—gl [(nﬂ')e'i‘ (’Yas)z] [(nr)2—{— ('Yak)Z] ?

(33)

the result of eliminating G,(inx/y) between eq 32a
and 32b is

z—t sy 33X = % (34)

which was derived more briefly in the texu.

If the s eq 34 is multiplied by 2J,(a)/
awt,11(as) and summed, this gives, by reference to
eq 14b and 31

SES Jv(asg) Gr(ak)
PR 1) > =
.(]v(g) Y !.Zzl ; 2AsakX sk Jv+1 (as) Jy+1 (ak)

22\ A, (k)
VYs=10Q Ju+1(as)
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gral equation to determine g,(¢) for 0<¢{=<1.

2.3 ATl
2.0~ [ 6 0@ N ada=2 355 TG
where
o N ") M'
N ) =223 23 Al 52005 (an)
(35)

It is known that the solution of this integral
equation of Fredholm’s type is given by the
method of Neumann-Liouville, in a convergent
series of iterated integrals, provided that +°
less than |\;| where A, is the smallest characteristic
constant, or root of the Fredholm determinant
formed from N. The constants will of course be
functions of g and y. This suggested testing the
Neumann-Liouville method, which in effect is the
method of successive substitution that was proved
in the text to give the solution of the system (eq 34)
for all positive values of 8 and yv. Hence it may
be concluded that X\, is a function of g and v such
that |\;| is always greater than 4* (unless N is a
kind of nucleus with no eigen-constants). It may
be shown that this is not the case, and that N
has an infinite number of constants \, all real.

For computation the system (eq 34) is disap-
pointing, and, although it admits of a great
variety of interesting transformations, these will
probably all be unsatisfactory until someone dis-
covers the appropriate normal functions for N or
what amounts to an orthogonal transformation
reducing the double series in eq 35 to diagonal
terms only.

In view of the fact that the potential problem
for the two-dimensional potential (»r=-—1/2)
admits an exact (though implicit) solution by
conformal mapping with theta-functions it does
not seem improbable that someone might solve
the problem here formulated for general values of
v or at least for »=0.

With this in view we add a few remarks and
other integral equations, which so far have led |
nowhere.

In the series of eq 34 we may place

O‘kG (Olk) agfmtlJV(tl)Gv(tl) dt1
0

v+1 (a Ic) af b tf

k‘_
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LGyt L (1)
2 [4GLEG) 4,

)

Hence if we'multiply the s™ equation of the system
(eq 34) by 2J,(t)/(as—1t*) and sum s=1 to « this
gives

2y Z Z A}‘?‘,S,Xxk It ’;J,@

2J,() 3 A :
v e —1)

G.(t)—

Replacing z, by the first integral above gives

2 2L A,
6.0— [ uGwMena =203 4
where

A > A (1
Mt 1) =225 53 A, Xk [Zz —(ﬁ) :I 1[%;:_(23

(36)

This integral equation satisfied by G,(t) for
0<t = is formally similar to its transform, the
integral equation eq 35, which determines ¢,(£)
for 0<<¢<1. The nucleus M (t, ¢;) is formed from

(¢, &) by replacing the normal functions
J, (€)1 () in the double series by the normal
function a/, (t)/o?—1?).

This set of normal functions is not closed, but
this is compensated by the fact that the subsidiary
relation (eq 10c¢) requires that the solution @, (?)
be a function that is developable in terms of them.

The series in eq 32a may be put in the form of an
integral, for

lf t2 coth vt,[1,(t,) G, (t) (/tl - %xs coth ya,—
].

G

Hence the system of eq 32a is equivalent to

na[w (i [v) H, l”lﬂ'/’Y)]
S e e

2,42 t%h s

f 86 () (vhr) coth (vt) EL(t)
D

dlf, tanh Ba;
ol —-—t2 %

37)

Multiplying by 2 J,(t)/(a? —¢*) and summing gives

J,(t) vt H, () S\ 2a; tanh o,
vaO+730 [ 16.0) Gop B e
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e < l s .
d=2J0) 3y 7 et (38a)
which may also be put in the form

e y > = ant s
'yGy(tH—JO 4G, (1) K(t, t)dt,=2J,(t) Z (, 1!3:;)
(38b)
where
K(t) tl) =
'Ytl COth ’ytl Zw) Qas tanh 6“3 [7{ (t :l J (t )2
=i (&5 o —t
(38¢)

One method of avoiding the system (eq 34)
consists in assuming such an expansion in series
for G,(t) that the eq 10¢ becomes an identity in
¢t without placing any reductions upon the con-
stants or coefficients of the assumed series. In
that case the set of eq 32a would be the only
equations to be satisfied.

Such a form would be obtained for @,(f) if it
is the Hankel’s transformation of any suitable
function ¢,(£) as in eq 14c.

Sonin’s integral suggests a form for g,(e) that
contains an arbitrary constant u and arbitrary
parameters o.

It
am—l

g,(§) =(w)~ Z B.#(1—8) * J, 1(uV1—8)
(39a)
where ¢,=5/3

Then Sonin’s integral (eq 21) gives

o "+"m(Wt K )
G(t) ¢ ZB’” (\/t2 z) vtom

With this expression eq 10¢ would be an identity
in ¢t without placing restrictions upon the con-
stants B,, (other than required for convergence).
This may be verified directly by use of eq 9b in
eq l4c.

If G,(t) is defined by a convergent series (eq 39b),
then t7G,(t) is an even integral function of ¢. If
the smallest value of o, is 5/3, then G,(f) has the
asymptotic expansion of eq 23.

The set of equations (eq 32a) become the follow-
ing set to determine B,

(39b)

v+vm( 'V/;! :;) o
—x 2,

ZB AJVH(a)(\/a —2)rte. =1
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=1l 235 o s o

2
T,

(39¢)

Taking u=0 and o,=m/3 (m=5, 6, 7, . . .

S =B gT
g.(£)=2¢ Z_5WW

m=

G, @)= mz; Bt ™R, s (0)

308

(40a)

(40b)

Z”B Jv+m/3(as)

=ik VWL RO

nmwH, <%r> Jv+m/3(7:’n7r/')’)

il ni;] : Uty
(%) [+ (v

which might require less labor in computing B,
than is required to compute z; from eq 34.

WasHINGTON, January 23, 1948.
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