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Formulas are derived for the calculation of stress in electrodeposits from the curvature

developed in a plated strip.

theory of elasticity and the relationships among the various formulas are shown.

formulas are derived and their limits of applicability demonstrated.

All the formulas are-derived from the fundamentals of the

Simplified
Correction factors

for a number of variables and specific formulas for different experimental procedures are

presented.

I. Introduction

The methods of determining the stress in an
electro deposit by the curvature of a strip that is
plated on only one side has been described in a
preceding paper [1].!

The calculation of stress in electrodeposits was
first worked out by Stoney [2]. He derived two
equations, but only the first one has been used by
later investigators, apparently because the second
one was written down without making clear either
its derivation or meaning.  His first equation,
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where S is stress in the coating, £ is Young’s
modulus of elasticity of the basis metal, ¢ is the
thickness of the basis metal, d is the thickness of
the coating, r is the radius of curvature of the
bent strip, is really a differential expression in
which the thickness of the coating is considered
to be infinitesimal compared to the thickness of
the basis metal. The equation is therefore ap-
proximate, but it can be used without much error
in those cases in which the thickness of the coating
does not amount to more than a few percent of
the thickness of the basis metal. The error in-
volved in using the Stoney equation for thin coat-
ings is usually less than the experimental error,
which is ordinarily about 5 to 10 percent.

1 Figures in brackets indicate the literature references at the end of this
paper.
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There are occasions however, when it is desirable
to measure the stress in thick deposits, which are
to be used for electroforming, or to study the varia-
tion of stress with thickness. Such a situation
could be met by plating on a basis metal of such
thickness that the deposit would still contribute
only a small proportion of the total thickness.
It would nevertheless be an advantage to make
measurements of stress, particularly of deposits
of low stress, by plating a thick coating on a
relatively thin strip of basis metal, because the
sensitivity of the measurement is thereby in-
creased. The error involved in using the Stoney
equation begins to exceed the experimental error
when the thickness of the coating is 5 percent or
more of the thickness of the basis metal. For
example, in Soderberg’s [3] work, in which the
thickness of the coatings amounted to as much as
25 percent of the thickness of the basis metal,
the error involved in using the Stoney equation
would have been more than 50 percent. This
was recognized by Soderberg who then made a
more satisfactory analysis of the ecalculations
involved than had been made previously.

Although on the practical side, the Stoney equa-
tion is sufficiently accurate for most calculations
of the stress in electrodeposited coatings, the
theoretical side is not so satisfactory. There
exists a lack of clarity in the definition of what is
meant by the stress in the deposit, and a lack of
recognition that the same formula cannot be used
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for data obtained by slightly different methods of
applying the simple bent strip technique.

Barklie’s [4] derivation of the Stoney equation is
very similar to that given by Stoney. According
to his derivation, his formula yields the approxi-
mate stress in the coating on the curved beam.
This stress will be referred to as the equilibrium
stress. It is smaller than the true stress, because
some of the force has been relieved by the bending
of the coating. A minor situation that has caused
confusion is that Stoney and Barklie both con-
sidered that the neutral axis of the bent strip was
distant from the surface by about one-third the
thickness of the strip, instead of at the center of
the strip as would ordinarily be expected. Actually,
this confusion does not affect their derivations.
The neutral axis is usually defined as that longitu-
dinal axis of a beam, which undergoes no additional
strain (no change in length) when the beam is bent.
According to this definition the neutral axis lies
at the center of a simple beam. Barklie and Stoney
considered the neutral axis to be that axis along
which the stress was zero after bending. It will
be shown later that this axis is not the same as
the neutral axis as above defined. Stoney and
Barklie did not consider the effect of the differ-
ence in Young’s modulus of the coating and of the
basis metal on the calculation of stress, apparently
because for thin coatings this effect is negligible.
Soderberg took account of these moduli in his
derivation.

Because of the rather confused situation re-
garding the calculation of stress in electrodeposits
from the data obtained by the deflection of a strip,
it was considered worth while to give a more
rigorous derivation of the involved formulas than
has been done previously. An added advantage
in having the exact formulas is that in a given case
one can determine whether or not the Stoney
formula is a sufficiently accurate approximation.
The need for clarifying the situation was further
shown by the recent appearance of another paper
on stress, by Heussner, Balden, and Morse [5], in
which another set of formulas, differing slightly
from those given by Soderberg, was proposed.

It has not been recognized previously that slight
variations in the procedure of measuring stress by
the curved-strip method require different methods
of calculation. There are three methods of
measuring the stress of electrodeposits by the
curvature of a strip.
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Method I. The deposit is plated on a basis
metal, which is so rigidly held that neither con-
traction nor bending of the plated strip can occur.
The constraints are then released and the flat
plated strip is allowed to assume its equilibrium
curvature. Thisis the method used by Soderberg,
who developed a suitable formula for the calcula-
tion.

Method II. The deposit is plated on a strip that
is constrained from bending but not from under-
going contraction. The constraints are then re-
leased, and the flat plated strip is allowed to
assume its equilibrium curvature. Experimen-
tally, this method is more easily realized than
method I, because bending can be more readily
prevented than can the rather minute longitudinal
changes.

Method III. The deposit is plated on a strip
that is allowed to bend continuously during plat-
ing. This is the method that is most commonly
used, but there has been no satisfactory discussion
in the literature of the calculations involved for
either this method or for method II.

In the following discussion, the formulas for the
different methods of measurement will be derived.
For thin coatings, all formulas reduce to Stoney’s
formula. In the summary, the error involved in
using Stoney’s formula for thick coatings will be
considered in more detail, and examples will be
given.

1. Symbols

A,=coefficient of thermal expansion of basis
metal.
A,=-coeflicient of thermal expansion of coating.
b=width of strip.
C=diameter of helix.
c=distance of neutral axis to outside surface
of coating in a plated beam whose basis
metal and coating have different moduli
of elasticity.
d=thickness of coating.
D=angular deflection of torquerod in radians.
D’ =angular deflection of torque rod in degrees.
D=angular deflection of geared pointer in
degrees.
I/=Young’s modulus of elasticity.
£,=Young’s modulus of elasticity of basis

metal.
F.=Young’s modulus of elasticity of coating.
F=force.
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G'=gear ratio.
h=height of plated (or active) portion of helix.
I=moment of inertia.
K=-calibration constant of helix with deflection
of geared pointer measured in degrees.
K’ =calibration constant of helix with deflection
of torque rod measured in degrees.
L=projected length of helix.
L’ =true length of helix.
M=bending moment.
M ,=bending moment of basis metal.
M . =bending moment of coating.
p=pitch of helix.
R=F /E,=ratio of modulus of coating to
modulus of basis metal.
, r=radius of curvature.
A(1/r)=change in curvature.
S,=stress in basis metal.
S, ,=maximum stress in basis metal.
S,=stress in coating.
S, ,=stress at equilibrium.
S =stress as calculated by Stoney’s formula.
o=generalized stress.
S=true stress.
AT=temperature change.
t=thickness of basis metal.
y=distance of fibers from neutral axis.

II. Derivation of Equations for the Stress
in an Electrodeposit

In deriving equations for stress, only elementary
considerations of beam theory are involved. This
presentation is more detailed than would be re-
quired for presentation to a specialist in the theory
of elasticity. Before beginning the derivations, it
is necessary to clearly define what is meant by the
stress in a coating. When a coating is plated upon
a thin strip of metal that is restrained from bend-
ing, the strip is compressed by the tension in the
coating, and the latter is thereby also shortened
and loses some of its stress. If the constraints are
now released and the strip is allowed to curve, the
stress in the coating is still further relieved. These
losses in stress depend on the dimensions of the
basis metal, and hence the final equilibrium stress
in the coating is not a constant quantity but de-
pends upon the experimental conditions. To be
independent of the mode of measurement, the
stress in a coating is defined as the stress that
exists in the coating when it is deposited upon a
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rigid, incompressible surface, or for practical pur-
poses, upon a basis metal thick enough to undergo
no appreciable deformation. This will be referred
to as the “true stress.”

There are two basic conditions that must be
satisfied by the internal, longitudinal fiber stresses
of a beam in equilibrium.

F= f¢dA=0, (1)
and

M= foydA=0, @)

taken over any cross section of the beam. The
first equation states that the sum, F, of the longi-
tudinal forces within the beam is zero, i. e., that
the internal compressive forces are equal to the
internal tensile forces. The second equation states
that at equilibrium the internal bending moment,
M, of the beam is zero about any axis. The
variable, 7, is the distance of the fibers, of stress o,
from the chosen axis, and dA is the element of
area of the cross section.

Before considering the application of these
general equations to the curvature of a plated
strip, it will be helpful to examine first the stresses
that exist in a plated strip that has been allowed
to assume its equilibrium curvature. In figure 1
is shown.the system of stresses that exists in a
strip that has been plated according to method I.
The distribution of the longitudinal stresses is the
same over any cross section, ABCD, of the beam.
The stresses vary along the direction of the radius
of curvature, that is from AB to DC. The stresses
do not vary in the direction of the width, b, of the
beam, that is from AD to BC, and therefore the
system of stresses normal to the cross section can
be represented.by a two-dimensional graph, DL,
as shown in the figure. The magnitude of the
tensions in the coating are represented by the
length of the vectors directed to the right and the
magnitude of the compressive stresses by the
vectors directed toward the left. It will be noted
that the outer fibers of the basis metal, as well as
the coating, are under tension, but that most of
the basis metal is under a compressive stress. The
neutral axis of the beam is at the midpoint and is
the curved surface represented by the dotted line
PFU. The method of constructing the stress dia-
gram will be considered later.

The tensile force in the coating is the summation
of the stresses, represented by EKLD over the
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Ficure 1.

Stresses in a plated strip.

The cross-hatched area is the coating.

area of the cross section, DEJC, of the coating.
The stress can be considered constant over the
elemental strips of area, bdy. 'Tensile force in
‘B

coating:bJD ody="b(area EKLD). Similarly, the
internal forces in the basis metal consists of a
compressive force represented by b(area KHG) and
a tensile force represented by b(area GAM). The
first condition of equilibrium as applied to this
beam is:

Force=b(area EKLD+ area GAM)—
b(area EHG)=0. (3)

Tensile forces—compressive forces=0; or, area
area KKLD+-area GAM—=area FHG@.

In figure 1, the internal bending moment of a
fiber is represented by the product of a stress,
and its distance from the neutral axis, for example,
KEXEF. The internal bending moment of the
coating is the aggregate of the products of each
fiber stress by its lever arm, summed over the area
of the cross section of the coating DEJC.

E
Bending moment of coating=b f : aydy. (4)

108

The integral represents the moment of the area
EKLD with respect to the neutral axis. When
the stress, ¢, is tensile (arrows to the right in fig. 1),
it is considered positive. When the stress is
compressive (arrows to the left), it is considered
negative. vy is positive or negative, depending
upon whether the area under consideration is
above or below the reference axis. In later sum-
ming up these moments, each must be given its
proper sign.

Bending moment of the coating=
b(moment of area KKLD). (&)

The bending moment of the basis metal strip is
represented similarly by the moments of areas
EHQ@ and GAM with respect to the neutral axis.
The second condition of equilibrium can now be
represented graphically as, b(moment of area
EKLD)-+b(moment of area FEHF’)-+b(moment
of area FF'G)-+b(moment of area GAM)=0.
Or by using the absolute values of the moments

Moment of area EK LD —=—moment of area GAM -+
moment of area FEHF’'—moment of area FF'Q.

(6)
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The moments of the areas were considered with
respect to the neutral axis for illustrative purposes.
However, the sum of the moments, with proper
regard to sign, is zero with respect to any axis, for
example with respect to an edge, AB, of the beam.
If the beam is not at its equilibrium curvature,
the net bending moment is not zero and tends to
make the beam assume the equilibrium curvature.

Qualitatively, the effect of the stresses in the
beam is to give the cross section, ABCD, the ap-
pearance of having rotated around ZZ’ as axis
with respect to another cross section, QV7T'W.

The stress in a coating may be calculated from
the equilibrium curvature of the beam by different
methods. The two general conditions of equili-
brium may be applied to the curved beam to
determine the equilibrium stress, which is then
corrected for the stresses that have been relieved
by contraction and curvature. Stoney and Barklie
applied this method partially, but this procedure
is not very easy to use, because the distribution of
stresses in the beam is rather complicated, par-
ticularly for methods IT and III. A simpler ap-
proach is to consider that the plated beam reaches
its final equilibrium in stages and to calculate for
each stage the relation between the stress in the
coating and the geometrical changes of shape that
occur. This method will be illustrated graphically
for method T by constructing the diagrams of the
stresses that exist in the coating and basis metal
strip at each stage. Only two-dimensional graphs
are necessary to show the stresses, as they are to
be interpreted in the sense of the plane graph
DLKHMA of figure 1.

1. Equations for Method I

The formulas for method I will now be dis-
cussed for the simple case in which the moduli of
the basis metal and coating are the same.

In figure 2, A, is shown the stress, S, in the
coating. There is no resultant stress in the basis
metal, because it has been held rigid and has not
been allowed to deform. The stress, S, is thus
the true stress in the coating. In figure 2, B, the
stresses are shown in the coating and basis metal
after the constraints have been partially removed
and the beam has been allowed to shorten, but
not to curve. As the coating also contracts
slightly, its stress is somewhat reduced. It can
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be shown that the compressive stress in the basis
metal is

o

The stress in the coating is diminished by this
same amount to the new value

sy

The first condition of equilibrium is illustrated
here by the equality of the area MNPR and the
area LMGH, that is, by the equality of the tensile
forces and the compressive forces.

The mternal bending moment in the straight
beam (see fig. 2, B), which tends to make it curve
is equal to the sum of the bending moments of the
basis metal and the coating. This is represented
by the moments of areas MNPR and LMGH with
respect to the neutral axis. Since the forces in the
basis metal and coating are equal and opposite,
the internal bending moment, M, is equivalent to
a couple with the forces applied at the center of
the basis metal and of the coating, that is with a
distance of (t+4d)/2 between the lines of applica-
tion of the two forces, I,

M=F, (’; d)

t
Fy=0b (area MNPR)=S <t—-+—7l> i

or

Fy—b (area LMGH)=S <t—%l> th.
Therefore,

p=St, (7¢)

This same result could have been obtained directly
from the stresses in the beam as shown in figure
2, A. The initial tensile force of the coating is
equal to the stress times the area of the cross
section or, Fy=_Sdb. The force may be considered
to act at the midpoint of the coating at a distance
of #/2 from the neutral axis. The product of the
force and the distance gives the same result as
before, Stdb/2.

When the straight beam is now allowed to bend,
a new distribution of the internal stresses occur.
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Fraure 2. _Stresses in a sitrip held rigid during plating and then released.

A, Stresses in rigidly held plated strip; B, stresses after contraction only had occurred; C, system of forces superimposed on forces of B as a result of
curvature; D, stresses in the free strip at equilibrium; combination of stresses in B and C.
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Regardless of what system of stresses may have
existed previously in a beam, an additional system
of stresses shown in figure 2, C, is produced and
superimposed on the initial stresses. Bending of
the beam continues until the bending moment of
the stresses shown in figure 2, C, is equal and op-
posite to the bending moment calculated for the
stresses in figure 2, B. The algebraic addition of
this new system of fiber stresses to those shown
in figure 2, B, gives the final system of stresses
shown in figure 2, D. It can be shown graphi-
cally that both conditions of equilibrium are
satisfied by stresses in figure 2, D. In figure 2,
C, the tensile force is equal to the compressive
force, and thus if the first condition of equilibrium
were satisfied by figure 2, B, it will still be satis-
fied on adding the stresses in 2, B, to those of
figure 2, C. The bending moment of the stresses
in figure 2, C, is equal and opposite to the bend-
ing moment of the stresses calculated for figure
2, B, and thus the sum of the two system of stresses
gives a resultant bending moment of zero for
figure 2, D.

The equality between the initial bending mo-
ment of the flat plated strip, as typified in figure
2, A, or 2, B, and the bending moment of the new
stresses produced by curvature typified in figure
2, C, forms the basis for the calculation of the
stress in the coating. The bending moment of
the stresses of figure 2, C, depends upon the cur-
vature and the dimensions of the beam, and is

readily calculated from measurements made
directly on the beam.
_EI E@{+d)%
STl ®

where 7 is the radius of curvature of the neutral
axis.

Here E is taken to be the modulus of both the
coating and the basis metal. 7 is the moment of
inertia of the cross section, ABCD (fig. 1), of the
beam with respect to the trace, FP, of the neu-
tral axis in the plane of the cross section. In the
previous discussion it was shown that the initial
bending moment of the beam (fig. 2, B) was
numerically equal to the bending moment im-
pressed by curvature (fig. 2, C). Thus, the bend-
ing moment in eq 7 can be equated to the bending
moment in eq 8:
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_Stdb__ E(t+d)*

M DO
E(t+d)? 9
i

This is the equation derived by Soderberg.

Some other useful relationships may be made
clear by use of the diagrams in figure 2. The
stresses in figure 2, C, are proportional to their
distance, 7, from the neutral axis, and are given
by the expression,

g=—) (10)

which is the basic relation of simple beam theory.
The slope of the stress line, AB, with respect to
the ¥ axis is

E

e (11)
As the beam bends, the line AB can be visualized
as rotating further from the y axis. It will be
noted that the compressive stress along the neutral
axis, denoted by JK, is the same before bending
(fig. 2, B) as after bending (fig. 2, D). This is
because there is no strain (or change of length)
at the neutral axis as a result of the bending.
Certain other features of the stresses in the beam
have already been pointed out in the discussion of
figure 1.

Figure 2, D, shows that the point of zero stress
in the beam occurs not at the neutral axis, but
at a point, Z, which is distant from the surface
of the basis metal by about one-third the thick-
ness of the basis metal when the coating is thin.
The point of zero stress can be determined readily
with the aid of the diagram.

By eq 11

JK E
K27 2

JK is equal to the initial compressive stress in

the basis metal (fig. 2, B).

_ g4\ Et+d®( d \_E(+dy
JK_S<FJ}E>"‘ 6rtd (t—l—d ~ 6rt

by substituting for S, using eq 9.
Substituting for JK, as given by eq 13, into eq
12,

, (13)

_ (t+d)?
KZ="% (14)
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: ot Uhw) §.d 0
NZ=EKN—KZ="37—"F —ot2—5- (15)

When d is small, N7 is approximately equal to
t/3. Z is the point that Stoney and Barklie
called the neutral axis.

It is of interest to calculate the average equilib-
rium stress in the coating, that is, the stress at
the midpoint of the coating after bending has
taken place. The equilibrium stress, S,,, illustrat-
ed by figure 2, D, differs from the stress in figure
2 B, by the stress AC, which results from curva-
ture.

st _E@+ad)’ ,,L>_Eé
Seq_S(qu'd)_AO“ 6rtd <z‘—i—d 2r

o _E@—td+a)
R 6rd

(16)

The relative difference between the equilibrium
stress and the true stress (relative difference=
S,;—8S)/S can be shown to be — (4d/t)+10(d/t)?,
which is fairly large. If d/t is about 5 percent,
which is the value in some experiments, the equilib-
rium stress is about 18 percent smaller than the
true stress.

In the measurement of stress it is necessary that
the elastic limit of the basis metal be not exceeded.
From figure 2, D, it is apparent that the maximum
stress in the basis is a compressive stress occurring
at the interface with the coating. For method I,
this stress can be shown to be given by the formula

 Sd(4—td+d?)

= (17)

If the coating is thinner than the basis metal, this
stress is always less than the stress in the coating.
By differentiation of eq 17, it can be shown to
attain a maximum value of 55/9 when the thick-
ness of the coating is one-half the thickness of the
basis metal. This simple relation serves as a
convenient means of determining whether the
elastic limit of the basis metal is likely to be
exceeded.

2. Equation for Method II

The stress in the coating will now be calculated
for method II, in which it is assumed that the
basis metal is prevented from bending but not
from contracting during plating, and is allowed to
bend subsequently. The stress distribution in
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this beam differs from that in method I because,
although bending is prevented, contraction of the
basis metal can take place progressively as the
coating becomes thicker. The calculation is com-
plicated by the situation that the earlier layers of
coating are compressed by the tension in the
succeeding layers in the same way that the basis
metal is compressed. Before bending occurs
there thus exists a stress distribution in the coating,
as shown in figure 3, B, with the greatest tension
in the layer of coating last deposited. It is of
interest to make this calculation for method II
because it approximates practice more closely than
the conditions laid down for method I, inasmuch
as it is difficult to prevent the contraction of a thin
strip during plating, even if it is bolted down. If
it turns out that the calculated value for method
1T differs from that for method I by less than the
experimental error, then the simpler calculation
can be used.

Stress S, in the basis metal produced as a
result of the successive additions of coating to a
total thickness of & will be calculated first. It has
already been noted (eq 7b) that the compressive
stress produced in the basis metal of thickness ¢,
by the addition of a coating of thickness d with
a tensile stress S, is S,=S8(d)/(t+d). If the coat-
ing is added in increments dz, the equation be-
comes dS,=S(dx)/(t+xz), where z is the thickness
of the coating that has been previously laid down.
The total compressive stress in the basis metal is

si=8 [ =8 (2)=smm (1+9)-
: (18)

It will be noted that when d is small, this equation
approaches that for method I (eq 7b), since
S'In (¢+ad)/t=8d)/¢t+d)+1/2(d)/E+d)*+. . . .,
and the second and higher term may be neglected
for thin coatings. An expression for the tension
in the coating as a function of the distance, x,
from the surface of the basis metal is now re-
quired for the purpose of calculating the bending
moment of the beam. Qualitatively, it may be
observed (fig. 3, B) that the coating has the mini-
mum stress at the interface with the basis metal
and that the stress at the outer surface of the
coating has the initial value, S.

Consider now the stress in an inerement of
coating dz, at the distance z from the basis metal,
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before any subsequent metal is deposited. The
stress in this last increment is S, because the
increment does not produce any finite contraction
of the base metal. However, its stress is de-
creased by the effect of the layers of thickness
dz, subsequently deposited upon it. The de-
crease in stress undergone by this increment of
coating will be the same as the increase of stress
undergone by the basis metal, namely

St (t—“‘t‘—d)—s i (%—96):8 In (tiii

s (19a)
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Ficure 3. Stresses in a strip allowed to contract during
plating, but not bend, and then allowed to curve after the
plating was completed.

A, Diagram of dimensions involved in computation; B, stresses in strip
before bending took place; C, stresses in strip after it curved.

The stress at any point z, in the coating is

- t4d
S g s <t+x

S8 [1+1n (;{:{l)]

The moment of the coating with respect to the
neutral axis is (see fig. 3, A)

szbsf: I:l—Hn (;fij;)] (‘_Tdﬂ >dx, (20)

since the variable lever arm of the fiber stresses
is (t—d)/(2)+u.

Integration by parts gives the following ex-

pression
W Sotd t+d\ , d
iy & <1—1n (T>+§t>

The amount of the basis metal about the neutral
axis 1s

because only the area FODG (which equals d<.S'In
(t+d) [t contributes to the moment. The moments
of areas HLMK and CHKD are equal and op-
posite, and hence cancel.

(19b)

(21)

(22)
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Equating the initial internal bending moment of
the beam to the bending moment imposed by the
curvature, as given in eq 8

E(t+d)*

M0+Mb: 12’,,

Shtd d\_E(t-+d)*
2 (1'+ T (23)

E(+d}
6rtd (1 +2)

Et+d)?

e ~ 3rd(2t+d)

On comparing this formula for stress with the
one for method I, it will be seen that the relative
difference between the two values of S is
1/2Xd/t. Since d/t usually is not over 10 percent,
the difference between the two methods of calcula-
tion of S would be about 5 percent, or within the
experimental error. This difference cannot be
determined experimentally, because the frequently
observed variation of stress with thickuness de-
tracts too much from the reproducibility.

The stresses in the coating before and after
bending are shown in figure 3, B, and C. It will
be noted that the stress in the outer fibers of the
coating are higher than in the inner fibers even
after bending, in contrast to the coating shown in
figure 2, D, for method I. The equilibrium stresses
in the coating, represented by area MTUV in
figure 3, C, are obtained by subtracting area Q
from area MNPR in figure 3,B.

3. Equations for Method III

Method III deals with the bending of the strip
as plating proceeds and is the most common
method of measurement employed for deter-
mining stress in coatings. Before deriving the
expression for method III it will be advantageous
to consider, qualitatively, the mechanical differ-
ences between method I, which is the simplest to
visualize, and method III. In method I the
mean length of the lever arm of the fiber stresses
in the coating is ¢/2. In method III, the length
of the lever arm varies from ¢/2 for the first incre-
ment of coating laid down to (t+d)/2 for the
final increment. The longer average lever arm
causes the bending moment to be greater in
method III. In method I the curvature of the
beam is determined by the final thickness of the
beam, t+d. In method III, the thickness of the
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beam varies from ¢ to {+d as the plating proceeds,
and on the average is less than in method I.
This smaller average cross section of beam also
leads to a greater bending of the beam in method
ITI. From both causes, a given thickness of
coating will produce more curvature by method
JII than by method I.

To derive the formula for calculating stress by
method III, consider a beam that has been plated
with a thickness of coating z, so that the total
thickness of the beam is ¢t+z. The deposition of
an increment of coating of thickness dz produces
an increment of internal bending moment, dm,
about the neutral axis, which is situated at the
center of the beam at a distance, (t-+x)/2, from the
strip dx. 'The strip increases in curvature from
radius 7, to radius r, by the amount (1/r;—1/r;=
d(1/r). The internal bending moment of the
increment dx is represented by a couple that is
given by eq 7C, except that ¢ must be replaced by
t+x and d is replaced by the increment dx

t
dm=8 (%”) bt (24)

It may be noted that this is the same as the
bending moment of a fiber of stress S, and cross
section, bdx, with a lever arm of length (t-+z)/2,
extending to the center of the beam. The bending
moment impressed by curvature of the beam is
given by eq 8, except that 1/r is replaced by d(1/
and M by dM.

3
dM—Eb(H_x) d( ) (25)
Equating eq 24 to eq 25

S(t”) bda=220F ) d( ) (26)

On separating variables and integrating:

&= dr EJ <1 <

o tt+a)?

Et(t4-d)
6rd

S

27)
S=

This formula is the simplest of those for the three
methods and, it is closer to the simple Stoney
formula than the formulas of methods I and II.
The relative difference from Stoney’s approxima-
tion is d/t, which was usually less than 5 percent
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for the experiments done with the spiral contract-
ometer [1]. In reviewing the literature, it was
found that eq 27 was first written down by Stoney,
in the form

4B+ td)z

K il

(28)

which is the same as eq 27 with 7 replaced by L?/87.
This latter expression is the formula that Stoney
used for calculating r; L is the length of the plated
strip, and 7 is the camber of the curved strip
(see eq 50A). This formula will be discussed in
more detail later. Equation 28 seems to have been
entirely ignored by later investigators, probably
because Stoney did not give its derivation or
indicate its application. It was also passed over
by the authors until the above derivation had
been arrived at and the similarity of eq 27 with
eq 28 was discovered. The diagram for the
stresses involved in method IIT is shown in figure
4. The distinguishing feature is that the stress
in the outer fiber of the coating is considerably
higher than in the inner fibers. The stress is
equal to S, the initial stress, since the last incre-
ment of coating does not undergo bending or
contraction.
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Stress in a plated strip allowed to continuously
curve during plating.

Ficure 4.

The stresses in the coating are not as readily
calculated as in methods I and II, because each
increment of coating is deposited in a curved con-
dition, and the stress relief resulting from the

Calculation of Stress in Electrodeposits

subsequent curvature is not given by the simple
relation, Zy/r (eq 10). In addition, the com-
pression of the first increments of coating by the
tension in the latter increments produces a stress
relief, given by eq 19A. The stress in the coating
at a distance z from the interface with the basis
metal is given by the equation

H—x 3(t—d+2x) (d—

)
G e

In figure 4, area GHF represents the compressive
force that is generated in the coating as a result
of the bending of the beam and the tension of the
outer layers of the coating. This area is sub-
tracted from the initial tensile force of the coating
(area FMNP) to give the final stresses FMNR
in the coating. Area GIHIF may be considered to
have been swept out by the end of the line GDC
when it starts from its initial position FD5 and
goes through the intermediate position C"1G’, as
the coating increases in thickness.

= I:H—l

III. Calculation of Stress When the
Young’'s Moduli of the Coating and
Basis Metal are Different

The treatment up to this point has dealt with
measurements in which the moduli of the basis
metal and coating were the same. The moduli of
the common metals range from 2.410° 1b/in®
for lead to 30X 10°Ib/in.” for steel. However, by
suitable choice of basis metal, the modulus of the
coating need not differ from that of the basis
metal by more than a factor of 2. The effect of
differences in moduli is negligible when the thick-
ness of the coating amounts to only a few percent
of the thickness of the basis metal, but may be
significant with thicker coatings.

When the basis metal and the coating have
different moduli, the neutral axis no longer passes
through the center of mass of the cross section,
at (t+d)/2, and the moment of inertia of the cross
section does not enter simply into eq 8. For
method I, Soderberg has derived an expression for
the stress of a coating plated on a basis metal of
different modulus, but it is too lengthy to be con-
venient for calculation. In the following deriva-
tion, which is similar to that given previously for
method I, a simpler expression than that given
by Soderberg will be obtained. Also, a simple
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empirical formula can be given that will simplify
calculations still further.

In the following discussion the ratio of the
modulus of the coating to that of the basis metal
will be denoted by R(R=FE,/E,). When the moduli
of the coating and basis metal differ, the initial
stresses (fig. 2,C) in the coating and basis metal
are given by the expressions S(t)/(t+4 Rd) and
S(d)/(t+ Rd), instead of by eq 7a and 7b. The
bending moment of the coating is equivalent to a
couple and is calculated in the same manner as
was done for eq 7c¢, except that the equal and
opposite forces in the coating and basis metal are
now given by the expression F'=S(t)/(t+ Rd)db or
F=S8(d)/t+ Rd)th. The distance between the points
of application of the forces is (t4d)/2, as before.
The initial bending moment of the coating is

Stdb \ [t+d

M=(gyma) (5)
The expression for the opposing bending moment
impressed by curvature is similar to that in eq 8,
except that the moment of inertia, /, of the cross
section must be replaced by a more complicated
expression. For purposes of calculation, the beam
consisting of materials of two different moduli is
replaced by an equivalent T-beam, in which the
widths of the basis metal and the coating are pro-
portional to their moduli. Thus, the basis metal
strip is considered to have a width b, and the
coating a width equal to Rb. The neutral axis of
this equivalent beam (and also the neutral axis of
the original beam) is located in the basis metal at
a distance, ¢, from the outside surface of the coat-
ing. This distance is given by the expression

(30)

_4-2td+Rd*

2(t+ Rd

(31)

The moment of inertia of the cross section of the
T-beam with respect to the neutral axis is given
by the expression

b[R(t+d)*—t*—Rd*) (R—1)
- 12(t+ Rd) ed)
To simplify later calculations, the Rd* quantity in
the (#*—Rd* term in eq 32 will be considered
negligible and dropped. That this may be done is
shown by the fact that in the extreme case when
the thickness of the coating is one-half that of the
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basis metal, and the ratio of their moduli is 2, the
error thus introduced is less than 1 percent. On
substituting / from eq 32 into eq 8, replacing £
with F%,, and setting this equal to the right-hand
side of eq 30, an expression for S is obtained

(E.— Eb)#
6rd(t+d)’

_E.(t+d)°
&= 6rdt (33)

or
g LilB@+d)'— (B—1)t]
e 6rdt (t+d)

It will be noticed that the first member of the
formula is of the same form as eq 9. The second
member of the formula is of a similar form except
that t and (t+4d) are interchanged, and the expres-
sion is multiplied by the difference £,— FE,, of the
moduli. The following semi-empirical formula was
found to agree within a few percent with eq 33.

E,(t+Rd)?

B=—rll

: (34)

and is much simpler to use.

The derivation of the expression for the stress
in an electrodeposited coating, measured by
method II1 is somewhat more involved than that
given for method I, but fortunately a simple
semi-empirical formula will serve for most pur-
poses. The derivation follows along the same
lines as that given for eq 27. The increment of
bending moment dm, which is added to the beam
by each increment of coating of thickness dz, is
given by an expression similar to eq 24 except
that the distance of the increment of coating
from the neutral axis is not equal to (t+4x)/2 as
in the case of equal moduli, but is given by eq
31. The equation for the change of internal
bending moment with deposition of coating is

24 2tx+ Ru?
s = LS

(35)
The increment of the opposed bending moment
that is developed by the bending of the beam is
given by an expression similar to eq 8, except
that M and 1/r are replaced by the corresponding
differentials and 7 is given by eq 32.

Eb[R(t+2) —ER—1)] , (1
dn— 12G+ Rz) d(;)‘

(36)
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Equations 35 and 36 yield the following equa-
tion for the stress

2+ 21‘1—{— i sl
Sf Eero - (=10 o BV

By making the change of variable to z=(t4-x)/t,
breaking the fraction into partial fractions and
integrating, the following expression is obtained
for the stress

2 2
SI:(I_;_[III )tsmh"‘ ( H— >+< 2[? ) tan!

e H* O
’1’%1%) 2 i tdnh—1< F@) £, (39

where H*= (E,— E,) |E,, and @Q=Ht/(t-+d).

It is of interest to note that eq 38 can be con-
siderably simplified. When the absolute value
of z is less than 1, the tan™' z and tanh™' 2 may be
represented by aseries of the form, x4 az®+ba% . . .
The first term approximation is accurate enough
for present purposes. On replacing the arc tan-
gents by their arguments and simplifying, the
following equation is obtained

R o L (39)

S 1bt <t+ d)
67d 6rd (t-+ d:

This equation parallels eq 33, because the first
term is the same as the expression for materials
of the same modulus (eq 27), and the second
term is the same as that of eq 33.

Over a range of thickness of coating of d=0
to t/2, good agreement with eq 38 is obtained by
the simple semiempirical formula

Byt (t+ Ro!d.

S= 6rd

(40)

However, over a more limited range the formula

E\t(t+Rd)

8= 6rd

) (41)
is quite satisfactory.

IV. Calculation of the Effect of Tempera-
ture Changes on the Measurement of
Stress

The plated strip of metal constitutes a bimetallic
element, such as is used in thermoregulators, and
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will curve as a result of temperature changes if the
two metals differ in coefficient of expansion, which
is usually the case. The measurements made
with the spiral contractometer are made at the
temperature of the plating solution, and the only
interest in the effect of temperature changes is to
determine the precision of temperature regulation
required to keep the error from this cause below
1 percent. After the contractometer is removed
from a warm plating solution, an appreciable
movement of the pointer occurs, thus showing
that the effect of the temperature is not negligible.
The effect of temperature change may be serious
if the curvature of the plated strip is measured
after it is removed from a warm plating solution,
as is usually done in applying methods I and II.
In the following discussion of thermal effects, a
different approach is employed than that used by
Soderberg, and the equations developed are not
the same. After a strip has come to an equilib-
rium curvature under the tension of the coating,
the effect of a subsequent temperature change is
to alter the curvature. In order to calculate the
stress in the deposit, it is first necessary to correct
the final observed curvature, 1/r, for the incre-
ment of curvature, A(1/7), resulting from the tem-
perature change. This is readily done as follows:
The equations for stress, as developed for the
three different methods may be written in the
form, S=Q(1/r), where 1/r is the curvature result-
ing from the stress in the coating alone. The
equation is corrected by subtracting the curvature
superimposed upon it by thermal stresses and

takes the form
1
—Q(3) (42)

55066
S:Q[w—A

The value of A(1/r) is calculated in the manner
used for method I, from the known thermal
stresses set up in the beam. The additional in-
ternal bending moment, produced in the curved
beam by the thermal stresses alone, is equated to
the opposing bending moment impressed by the
corresponding increment of curvature. Since the
longitudinal forces, F, set up by the thermal effect
are equal and opposite in the coating and basis
metal, their bending moment is equivalent to a
couple with the distance, (t4d)/2, between their
points of application. Equating the bending
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moment of the couple to the bending moment
impressed by curvature gives

pEED _pp, () HQEa®, (1) 0

2) ) s12 (r)

e Al

@ Bt (44)

A

Tt is now necessary to have an expression for the
force, F, in the coating or base metal. It should
be remembered that F is the force which existed
before the strip was allowed to undergo the addi-
tional increment of curvature, A(1/r) (just as in
method I, where the bending moments were
calculated from the forces in the uncurved beam).
A condition of equilibrium for the bimetallic strip
(assuming that it is held at constant curvature) is
that the change in length, or the strain of each

metal strip must be equal.

. F
AAT—l—dbE AAT—7 (45)

A, and A, are the coefficients of expansion, and
the temperature change is A7. The strains pro-
duced by thermal expansion are AA7. The
other two terms represent the strains produced
by the force F.

From eq 45, F=[Etdb(A,—
substituting in eq 44,

sC=tt (46)

Applying this correction for Al/r to eq 42, the
following equations for stress are developed for
methods I and III, respectively:

A)AT)/(t+d), and

SEGE ey
§=" b~ EAT(4,—4). 47)
Et(t+-d)

s=PHED _parca,—ay (i) @®)

It will be noted that the formulae for stress
are the same as the original formula except for
the subtraction of a term involving the difference
A,—A,, of the coefficients of expansion. The
correction term in eq 47 agrees with the expres-
sion given by Heussner [5] but not with the one
given by Soderberg [3]. For metals that differ
in coefficient of thermal expansion by 5 x 107¢
for example copper and steel, the correction
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amounts to about 150 1Ib/in.2/° C.  When measur-
ing low stresses, such as a few thousand pounds
per square inch, it would be important to control
the temperature of plating within 1 or 2 deg, but a
control of 5 deg C would probably be sufficient
when measuring stresses above 20,000 1b/in?

If the moduli of the coating and the basis
metal are different, the appropriate correction
term is subtracted from the expressions previously
given for the stress in eq 33, 34, or 38 to 41. The
correction for method I can be shown to have the
same form as that given in eq 47, namely
EAT(A,—A,) (except that £ is replaced by E.).
The correction term for method III can be eval-
uated by the method given, but for practical
purposes the same correction term as that given
in eq 48 (except that /£ is replaced by £,) may be
used.

V. Stress Remaining in Coating After
Removal of Basis Metal

Some observers have attempted to note the
trend of stress with thickness by observing the
direction of bending of the deposit after the basis
metal was dissolved. However, in order to draw
any conclusions, it is first necessary to know, as a
basis of reference, the direction of bending when
the stress is uniform throughout the deposit. The
three diagrams (fig. 2, D, 3, C, and 4), show the
stress existing in the coating after bending has
taken place. In method I it is obvious that the
coating would straighten out if the basis metal
were removed, since the coating was uniformly
stressed throughout when it was in its initial
straight position. When the basis metal is re-
moved, the coating will simply contract slightly
and return to its original straight condition. In
method II, since the outer fibers of the coating
are under slightly higher stress than in method I,
the coating should not quite straighten out, but
should remain slichtly curved. This slight curvas.
ture would be difficult to demonstrate in practice,
since the tendency for the stress in many coatings
to decrease with thickness usually more than com-
pensates for the excess outer stress. The stresses
in the coating in method III differ from the two
preceding cases in that the outer fibers of the
coating have a considerably higher stress than the
inner fibers. This indicates that the curved coat-
ing should curve still further after the basis metal
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is removed. The percentage difference in stress
between the inner and outer fibers is approximately
equal to 3(d/t), which amounts to about 15 per-
cent for d/t=0.05, and hence the additional curva-
ture should be detectable if the coatings are moder-
ately thick. By comparison, the percentage
difference in stress between the inner and outer
fibers in method I is 6(d/t)?, which is much smaller,
but yet sufficient to bend the coating back nearly
straight.

The expected increase in curvature was not
observed when the basis metal (copper) was dis-
solved from a deposit obtained from a Watts
nickel bath, probably because the stress in the
outer layers decreased as the coating became
thicker. However, the curvature of a deposit
from a chloride nickel bath increased considerably
when the basis metal was dissolved.

It has seemed paradoxical to some platers that
a sheet of plated metal, which has been deposited
on a rigid backing, does not curl when it is stripped
from the basis metal, whereas a thin plated sheet
will develop considerable curvature. The expla-
nation of this paradox is that curving will take place
only when there are differences of stress between
the two faces of a strip. If the stress in an electro-
deposited coating is uniform, it is relieved only by
contraction of the coating when it is stripped
from the basis metal.

VI. Comparison of Formulas

I is interesting to compare the Stoney formula
with the other formulas that have been derived
for computing stress measured by the three differ-

TABLE 1.

ent methods. This comparison will be made by
expanding the formulas and comparing only the
approximations that involve the first two terms.

In the last column of table 1, the approximation
formulas are expressed in terms of the Stoney
formula, S;. The first term of each formula con-
sists of the Stoney formula, and the second term
consists of a correction, involving the ratio, d/t,
of the thickness of the coating to that of the basis
metal. The correction diminishes as the thickness
of the coating decreases.

A meaning can be attached to the two terms of
the formulas for method I, (eq 9 and 34). The S,
term is the approximate stress in the coating,
calculated without regard for the thickness or
physical properties of the coating. The second
term, S;(3Rd)/({t)=E.T/2r, can be shown to be
the average stress that the coating loses in bending
from its initial straight position to a curvature of
1/r. The midpoint of the coating is approximately
at a distance 7/2 from the neutral axis of the beam.
The compressive stress that is set up as a result of
curvature is //¢#/2r (by eq 10), which is the second
term of the formula. This compressive stress
diminishes the tensile stress of the coating by this
amount.

If carried further, the expansions of the formu-
las for methods I and I1 would yield terms con-
taining higher powers of d/t, and therefore their
contribution to the calculation would be small.
The terms in d?/t* represent the correction in-
volved in the shift of the neutral axis from the
center of the unplated beam to the center of the
plated beam.

In table 2 are shown the errors involved in

First two terms in the expansion of the formulas for stress
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using the approximation formulas for coatings of
various relative thickness (compared with the

TABLE. 2 Errors involved in using approximation formulas
Jfor calculating stress in coatings

Error in using approx-
imation formula for
d/t equal to—

0.05{ 0.1 | 0<2‘ 0.5

Method of measurement Formula

Moduli of coating and basis metal are equal

Per- | Per-| Per-| Per-

*Method I. Cathode com- | E(t+d)? Q|| G| || G
pletely rigid. brdt & i et
Ly 25 |—42 |70
Bloney sl s giat oy od =14 [—25 |—42 (-
4 Et? 3d
Two-term approximation.___ #d=(1+7) —1| =2| -7 |—26
Method II. Cathode re- | E(t+d)?
stricted from bending. 3rd(2t+-d) e Byl Tl
Et? 7
Stoney ria) e X ar S st ord —11 |—21 |—36 |[—63
Et2

+‘) il it i

ol
~ia

Two-term approximation. __ rd

*Method III. Cathode | Et(t+d)
bends during plating. brd Sbged U0 DI

Eg

Bloney sl cd: St g rd

E,
Moduli of coating and basis metal differ by E—.:=R=2

E.(t+ad)3
6rdt
Method I. Exact formula _ £e
_(Ec—Eb)ﬂ
6rd(t+d)
Et?
= —2 |—43 |—62 |—
Bloney et I 0n e e ord 26 6! 84
: i Ey(t+Ra)? 2
*Semiempirical-ct et toet =2 ordi 2 1| +5 |+32
i f Et? d .
Two-term approximation.__ ord 1+3RZ -5 | —9 |—16 |—34

Method I1I. Exact formula_| See eq 38________

Et?
6rd

SUGHeyosiart e tinl Sl —11'=191—33 |62
Et(t+Rd
*Two-term approximation.__ %)—

Et
Empipieal toims dos R ioty oL (t+Ro/4d) 1] 0| —1| 44

Ed
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TABLE 2. Errors involved tn using approximation formulas
for calculating stress in coating—Continued

Error in using approx-
imation formula for
d/t equal to—

0.05(0.1]0.2]| 0.5

Method of measurement, Formula

E.

Moduli of coating and basis metal differ by Eb=R=4
Per-| Per-| Per-| Per-
cent | cent | cent | cent
Method ITI. Exact formula.| Seeeq38._______ 2ol e L £ey
Et?
(2170} (A O B S B vt brd s =B
m : : Et(i+Rd)
T'wo-term approximation.__ erdir o e o D) <
Empirical 12 (¢4 R¥4d) +4
"""""""""" 6rd
Ed
od (t+a)
Simpliffedidas” St e ITer S AL T E ) %
_(E—Eyt
brd(t+d)

basis metal). It will be noted that if the moduli
of the basis metal and coating are the same, the
Stoney formula does not cause a serious error if
used for method I11, provided that d/t is less than
0.1, but that the error is appreciable for method I.
However, if the moduli differ appreciably, the
Stoney formula would not be a safe one to use for
either method. The formulas that are the most
convenient to use for calculation have been desig-
nated by an asterisk.

VII. Calculation of the Radius of Curvature

The value for the curvature 1/r of the strip
must be substituted into the formulas for the
stress in the coating. The curvature of the bent
strip is usually measured indirectly, although it
could be determined directly by comparison with
a set of curvature gages, as was done by Soderberg
[3]. Several different methods of measuring and
calculating the curvature have been used, and
there is a chance of some confusion. In at least
one instance in the literature, an incorrect formula
for calculating the curvature resulted through an
error in selecting the proper deflection of the bent
strip. Three methods of calculating the curva-
ture, or change in curvature, of the plated strip
have been used. These involve (a) measuring the
camber of the curved strip, (b) measuring the
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deflection of the end of the strip, and (¢) measuring
the angular deflection of the end of a helix.

In figure 5, AOA’ represents the strip that has
been curved by plating. Initially the strip oc-
cupied the position of the straight line ABC.
The other lines in the figure are auxiliary lines for
aiding the discussion. The method of calculating
the curvature that was used by Stoney, involves
measuring the sagitta, Z, of the arc AOA’.
The curved strip is set on a flat surface with the
convex side up, and the camber of the arc meas-
ured with a microscope or special micrometer.
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Fraure 5. Diagram showing the relation between the radius
of curvature of a plated strip and the deflection of the end
or center.

The curvature 1/71s calculated from the follow-
ing formula:

1 27
P (49)

Another formula is :
AR (50)

}f: Qz

The broken line @=A40A" may be replaced by
the arc length AOA’=L, which is the length of
the curved strip, without making an error of more
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than about 2 percent, providing that the sagitta,
Z, is not more than 10 percent of the length of
the strip. The formula then becomes

;; = SL% (50a)

In some experiments the strip is anchored at A,
and the strip then curves away from its initial
position ABC. The deflection Z’ is measured
and used to calculate the curvature of the strip.
The formula for calculating the curvature is

1 27/ 3
}':Bz' (;)1)

The arc length L, which is the length of the strip,
may be substituted for the chord without much
error

97/

1
’r: L % (i).g

N

By comparing eq 52 with eq 50a, it will be noted
that the deflection 7’ is approximately four
times greater than the sagitta 4. The error in-
volved in the approximation of eq 52 is less than 2
percent if the deflection Z’ is not greater than 20
percent of the length of the strip. For equal
curvatures, the error of this approximation is
about twice as large as that of eq 50a.

The main application of the spiral contracto-
meter is for making measurements by method 111,
as the spiral continuously curves during the plat-
ing. However, by anchoring the needle, and
releasing it at the conclusion of the plating, the
experiment may be conducted according to method
I,

Since the spiral is initially curved, the measure-
ment consists not in determining the curvature
1/r, as was done for an initially straight strip, but
in determining the change in curvature of the
spiral A(1/r)=(1/r)— (1/r,). 'This expression is to
be substituted for 1/7 in the formulas that are ap-
plied to measurements made with the spiral con-
tractometer. The change in curvature is com-
puted from the angular deflection D, of the spiral
as follows.  When the curvature of an arc of fixed
length is increased, the angle subtended by the arc
increases.  The change in the angle subtended by
the arc is equivalent in the case of the helix of the
contractometer to the angular deflection of the
torque rod. The arc has an initial curvature of
L/ry radians and after further bending has a curv-
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ature L/r, radians. The angular deflection (or
change in angle) D, (see fig. 6) is:

D—FOB—00B=%_L

S
T Ty (T ”
A <l>_D_I£.
v/ L S0

The expression D’ refers to the angular deflec-
tion measured in degrees instead of in radians.

(53)

15

N 4 -
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N

FiGure 6. Diagram showing the relation between the radius
of curvature and the angle subtended by an arc of constant
length.

The two ares in the figure are of equal length.

In this discussion the arc has been considered
to lie in one plane. However, the same relation
holds for a helix, if the curvature of the arc is
considered with respect to the axis of the helix.
This is equivalent to considering the length of the
projection of the arc upon a plane normal to the
axis of the helix. The projected length of the
helix is approximately constant and is equal to
m C times the number of turns, where C is the
diameter of the helix. The number of turns of
the helix is found most readily by pushing the
coils together until the helix forms a cylinder and
then dividing the height of the cylinder A, by the
pitch, p, of the helix.

The pitch is the width of the strip, from which
the helix is made, measured in a direction parallel
to the axis of the helix. It is related to the actual
width b, of the strip by b=p cos @, where a is the
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helix angle. The projected length of the strip is
related to the true length of the strip L', by L=
L’ cos a.

From eq 53 and 54, the expression for the
change in curvature of the helix takes the form

AG>: D’ (ng%ﬁ) (55)

The expression in parentheses is a constant for
a given helix, and needs to be determined only
once.

No analysis was made of the precision of the
relation (eq 55) between the change in curvature
and the deflection, as was done in the discussion of
the formulas applied to the flat strips. Slight
errors may result from end effects, since the
diameter of the helix will change slightly as its
curvature changes, but the diameter of the ends
is maintained constant by the fittings. Another
possible source of error is the change in the helix
angle as the helix coils or uncoils with the plating
operation. A direct observation of the angle
showed that the change in the angle in an experi-
ment was not readily observable. It is believed
that the angular deflection of the pointer is a more
direct measure of the change in curvature than is
the linear deflection measured on a flat strip.
Therefore, the errors involved in computing the
change in curvature are probably smaller than
those involved in eq 50a and 52, or well under 1
percent for measurements involving less than one
complete turn of the pointer (which is equivalent
to a 36° turn of the helix).

One advantage of the spiral contractometer is
that the unplated helix can be calibrated with
known weights and thus make it unnecessary to
know the modulus of the basis metal. An expres-
sion will now be derived relating the calibration
constant K, of the helix to its Youngs modulus £,
in order that K’ can be substituted for £ in the
formulas that have already been developed. The
deflection of the torque rod of the contractometer
is proportional to the torque M, which is applied
by a weight attached with a thread to the lever
arm.

M=K'D'. (56)

The bending moment, M, transferred to the helix
is given by an equation similar to eq 8

IS pe e ]
M—=EIA (; SN (7) (57)
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It will be noted that the moment of inertia I, of
the strip composing the helix, is taken for a cross
section that is parallel to the axis of the helix,
because the helix curves and uncurves with respect
to the axis as a center. On substituting in eq 57
for A(1/r), and for M, using eq 55 and 56, the
expression for £ is obtained

2160K"Ch
E== tapi §

(58)

The Youngs modulus of the metal composing the
helix has been calculated with the aid of this
formula, and the agreement with the accepted
value of the modulus was within 3 percent.

In caleulating the stress in a deposit, Stoney’s
equation and eq 27 are the ones most frequently
used in conjunction with the spiral contractometer.
On substituting for # from eq 58 and for A(1/r)
from eq 55, Stoney’s equation takes the form

R E
So=—pd )
Equation 27 takes the form
v D) Ll>
S=2 = Ss(1+ t (60)

In using the spiral contractometer, the angular
deflection of the torque rod is not read directly,
but the deflection in degrees is read from a pointer
that i1s geared to the torque rod. The pointer
makes @ revolutions for one revolution of the
torque rod. Therefore, in using eq 55, in which
the deflection D)’ relates to the torque rod, the
observed reading D, of the pointer must be divded
by @ or

(hdo a2 A

AR~ @ (1800R)° e

Calculation of Stress in Electrodeposits

Also, the calibration constant of the helix is usually
determined with direct reference to the deflection
of the pointer in degrees rather than of the torque
rod. The relation between the constant K, of
the readings referred to the pointer, and the con-
stant K’ of those referred to the torque rod is:

K'=KaQ@. (62)

This substitution must be made in calculating £
from eq 58. Since

K'D'=KD, (63)

the forms of eq 59 and 60 are unchanged if the
constant and the deflection of the pointer are sub-
stituted for those of the torque rod.

The authors express their appreciation to W.
Ramberg and S. Levy of the Engineering Me-
chanics Section of this Bureau for their assistance
in matters relating to the theory of elasticity.
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