
U . S. Department of Commerce 
National Bureau of Standards 

Research Paper RP1954 
Volume 42, February 1949 

Part of the Journal of Research of the National Bureau of Standards 
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Curvature of a Plated Strip 
By Abner Brenner and Seymour Senderoff 

Formulas are derived for the calculation of stress in electrodeposits from the curvature 

developed in a plated strip. All the formulas are ·derived from the fundamentals of the 

theory of elasticity and the relationships among the various formulas are showll. Simplified 

formulas are derived and their limits of applicability demonstrated. Correction factors 

for a number of variables and specific formulas for diffeJ'ent experimental p rocedures are 

presen ted. 

1. Introduction 

The methods of determining the stress in an 
electro deposit by the curvature of a strip that is 
plated on only one side ha been described in a 
preceding paper [1).1 

The calculation of stress in electrodeposits was 
first worked out by Stoney [2]. He derived two 
equations, but only the first one has been used by 
later investigators, apparently because the second 
one was written down without making clear either 
its derivation or meanmg. His first equation, 

Et2 

S = 6rd' 

where S is stress in the coating, E is Young's 
modulus of elasticity of the basis metal, t is the 
thickness of the basis metal, d is the thickness of 
the coating, r is the radius of curvature of the 
bent strip, is really a differential expression in 
which the thickness of the coating is considered 
to be infinitesimal compared to the thickness of 
the basis metal. The equation is therefore ap
proximate, but it can be used without much error 
in those cases in which the thickness of the coating 
docs not amount to more than a few percent of 
the thickness of t.he basis meLal. The errol' in
volved in using the Stoney equation for thin coat
ings is usually less than the experimental error, 
which is ordinarily about 5 to 10 percent. 

1 Figures in brackets indicate the literature references at the end of this 
pa per. 
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There are occasions however , when it is desirable 
to measure the stress in thick deposits, which are 
to be used for electroforming, or to study the varia
tion of stress with thickness. Such a situation 
could be met by plating on a basis metal of such 
thickness that the deposit would still contribute 
only a small proportion of the total thiclmc s. 
It would nevertheless be an advantage to make 
measurements of stress, particularly of deposits 
of low stress, by plating a thick coating on a 
relatively thin strip of basis metal, because the 
sensitivity of the measurement is thereby in
creased. The error involved in using the Stoney 
equation begins to exceed the experimental error 
when the thickness of the coating is 5 percent or 
more of the thielmess of the basis metal. For 
example, in Soderberg'S [3] work, in which the 
thickness of the coatings amounted to as much as 
25 percent of the thickness of the basis metal, 
the errol' involved in using the Stoney equation 
would have been more than 50 percent. This 
was recognized by Soderberg who then made a 
more satisfactory analysis of the calculations 
involved than had been made previously. 

Although on the practical side, the Stoney equa
tion is sufficiently accurate for most calculations 
of the stress in electl'odeposited coatings, the 
theoretical side is not so satisfactory. There 
exists a lack of elarity in the definition of what is 
meant by the stress in the deposit, and a lack of 
recognition that the same formula cannot be used 
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for data obtained by sligh tly differen t method s of 
apply ing the simple ben t strip technique. 

Barklie's [4] derivation of the Stoney equation is 
very similar to that given by Stoney. According 
to his derivation, his formula yields the approxi
mate stress in the coa ting on the eurved beam. 
This stress will be referred to as the equilibrium 
stress. It is smaller than the true stress, because 
some of the force has been relieved by the b end ing 
of the coating . A minor situation that has caused 
confusion is that Stoney and BarkIie both con
sidered that the neutral axis of the ben t strip was 
distant from the surface by about one-third the 
thickness of t he strip , instead of at the center of 
the strip as would ordinarily be expected . Actually, 
th is confusion does not affect their derivations. 
The neutral axis is usually defined as that longitu
dinal axis of a beam, which undergoes no additional 
strain (no change in length) wh en th e beam is bent. 
According to this definit ion the neutral axis lies 
at the cen ter of a simple beam . Barklie and Stoney 
considered the neutral axis to b e that axis along 
which the stress was zero after bending. It will 
be shown later that this axis is not the same as 
the neutral axis as above defined. Stoney and 
Barldie did not consider the effect of the differ
ence in Young's modulus of the coating and of the 
basis metal on the calculation of stress, apparen tly 
because for thin coatings this effect is negligible. 
Soderberg took account of these moduli in his 
derivation. 

Because of the rather confused situation re
garding the calculation of stress in clectrodeposits 
from th e data ob tained by the deflection of a strip , 
it was considered worth while to give a more 
rigorous derivation of the involved formulas than 
has been done previously. An added advantage 
in h aving the exact formulas is that in a given case 
one can determine whether or no t the Stoney 
formula is a sufficiently accurate approximation. 
The need for clarifying the situat ion was further 
shown by the recen t appearance of ano ther paper 
on stress, by H eussner , Balden , and Morse [5], in 
which ano ther set of formulas, differing sligh tly 
from those given by Soderberg, was proposed. 

It has no t been recognized previously that sligh t 
variations in the procedure of measuring stress by 
the curved-strip method require differen t methods 
of calculation. There are t hree methods of 
measuring the stress of electrodeposits by the 
curvature of a strip . 
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~1ethod I. The deposit is plated on a basis 
metal, which is so rigidly held that neither con
traction nor bending of th e plated strip can occur. 
The constraints are th en released and the flat 
plated strip is allowed to ass ume its equilibrium 
curvature. This is t he method used by Soderberg, 
who developed a sui table formula for the calcula
t ion. 

~fethod II. The deposit is plated on a strip that 
is constrained from bending but not from under
going contraction . The constraints are th en re
leased, and the flat plated strip is allowed to 
ass'ume its equilibr ium curvature. Experimen
tally, this method is more easily realized than 
method I , because bending can be more readily 
prevented than can th e rather minute longitudinal 
changes. 

M ethod III. The deposi t is plated on a strip 
that is allowed to b end con tinuously during plat
ing. This is the method tha t is most commonly 
used, bu t there has b een no satisfactory discussion 
in the literature of the calculations involved for 
either this method or for method II . 

In the following discussion, the formulas for th e 
differen t methods of measurement will be derived. 
Fo~' thin coatings, all formulas reduee to Stoney's 
formula. In the summary, the errol' involved in 
using Stoney's formula for thick coatings will b e 
considered in more detail, and examples will b e 
gIven. 

1. Symbols 

Ab = coefficien t of thermal expansion of basis 
metal. 

A c= coefficient of thermal expansion of coating. 
b = width of strip. 
C= diaweter of helix. 
c= distance of n eu tral axis to ou tside surface 

of coating in a plated beam whose basis 
metal and coating have different moduli 
of elas ticity. 

d = thickn ess 0 f co a ting. 
D = angular deflection of torque rod in radians. 

D' = angular deflection of torque rod in degrees. 
D = angular deflec tion of geared poin ter in 

degrees. 
E = Young's modulus of elasticity. 

E b= Young's modulus of elasticity of basis 
metal. 

Ec= Young's modulus of elasticity of coating. 
F = force. 
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G= gear ratio. 
h= height of plated (or active) portion of helix. 
I = momen t of inertia . 

K = calibration constan t of helix with deflection 
of geared pointer measured in degrees. 

IC = calibration constant of helix with deflection 
of torque rod measured in degrees. 

L= projected length of helix. 
L' = true length of helix. 
Al = bending moment. 

]vI b= bending moment of basis metal. 
1\1c= bending moment of coating. 

p = pi tch of helix:. 
R = E c/E b= l'atio of modulus of coating to 

modulus of basis metal. 
T= raclius of curvature. 

fl(l /T)= chall ge in curvature. 
S b= stress in basis metal. 

S bm = maximum stress i.n basis metal. 
S c=stress in coating. 

S. q= stress at eq uilibrium. 
S ,=stress as calculated by Loney's formula. 

a = generalized stress. 
S = tru e tress. 

flT= temperatu['e chan O'e. 
t = thickness of basis me tal. 
y= distancc of fib ers from neutral axis. 

II. Derivation of Equations for the Stress 
in an Electrodeposit 

In deriving equations for stress, only elementary 
considerations of beam theory are involved. This 
presentation is more detailed than would be re
quired for presentation to a specialist in the theory 
of elasticity. Before beginning the derivations, it 
is necessary to clearly define what is meant by the 
stress in a coating. When a coating is plated upon 
a thin strip of metal that is restrained from bend
ing, the strip is compressed by the tension in the 
coating, and the latter is thereby also ;;hortened 
and loses some of its stress . If the constraints arc 
now released and the strip is allowed to curve, the 
stress in the coating is still further relieved. These 
losses in stress depend on the dimensions of the 
basis metal, and hence the final equilibrium stress 
in thc coating is not a constant quantity but de
pends upon the experimental conditions. To be 
independent of the mode of measurement, the 
stress in a coating is defined as the stress that 
exists in the coating when it is deposited upon a . 
Calculation of Stress in Electrodeposits 

rigi.d, incompres ible surface, or for practical pur
poses, upon a bas is metal thick enough to undergo 
no appreciable deformation. This will be referred 
to as the "true stress." 

There are two basic condi tions that must be 
satisfied by the internal, longi tudinal fiber stresses 
of a beam in equilibrium. 

F = f crclA= O, (1) 
and 

1\11= f cryclA= O, (2) 

taken over any cross section of the beam. The 
first equation states that the sum, F , of the longi
tudinal forces within the beam is zero, i . e., that 
the internal compressive forces arc equal to the 
internal tensile forces. The second equation states 
that at equilibrium the internal bending moment, 
M, of the beam is zero about any axis. The 
variable, y , is the distance of the fibers, of stress cr, 
from the chosen axis, and d 1 is the elemen t of 
area of the cross section. 

Before considering the application of these 
general equa tions to the curvature of a plated 
strip , i t will be helpful to examine first the Ll'esses 
that exist in a plated strip that has been allowed 
to assume its equilibrium curvature. In figure 1 
is shown the system of stresses that exists in a 
strip that has been plated according to method 1. 
The distribution of the longitudinal sLresses is the 
same over any cross section, ABOD, of Lhe beam . 
The stresses vary n,long the direction of the radius 
of curvature, tha t is from AB to DO. The stresses 
do not vary in the direction of the width, b, of the 
beam, that is from AD to B O, and therefore the 
system of stresses normal to the cross secLion can 
be represenLed by a two-dimensional graph, DL, 
as shown in the figure. The magnitude of the 
tensions in the coating are represented by the 
length of the vectors directed to the right and the 
magnitude of the compressive stresses by the 
vectors directed toward the left. It will be noted 
that the outer fibers of the basis metal, as well as 
the coating, are under tension, but that most of 
the basis metal is under a compressive stress. The 
neutral axis of the beam is at the midpoint and is 
the curved surface represented by the dotted line 
P FU. The method of constructing the stress dia
gram will be considered laLer. 

The tensile force in the coating is the summation 
of the stresses, represen ted by Ef{LD over the 
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FIG U RE 1. Stresses in a plated strip. 

The cross-hatched area is t he coating. 

area of the cross section, DEJC, of the coating. 
The stress can be considered constant over the 
elemental s trips of area, bdy. Tensile force in 

coating= b J :eldy= b (area EKLD). Similarly, the 

internal forces in the basis metal consists of a 
compressive force represented by b(area EHG) and 
a tensile force represented by b(area GAM). The 
first condition of equilibrium as applied to this 
beam is: 

Force= b(area EKLD+ area ./JAJ.1£)

b(area EHG) = 0. (3) 

T ensile forces- compressive forces = 0 ; or, area 
area EKLD+area GAM= area EHG. 

In figure 1, the internal bending moment of a 
fiber is represented by the product of a stress, 
and its distance from the neutral axis , for example, 
KE X EF. The internal bending moment of the 
coating is the aggregate of the products of each 
fib er stress by its level' arm, summed over th e area 
of the cross section of the coating DEJC. 
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IE 
Bending moment of coating= b J D elydy. (4) 

The integral represents the moment of the urea 
EKLD with respect to the neutral axis. When 
the stress, el, is tensile (arrows to the right in fig . 1), 
it is considered positive. When the stress is 
compressive (arrows to the left), it is considered 
negative. y is positive or negative, depending 
upon whether the area under consideration is 
above or below the reference axis . In later sum
ming up these moments, each must be given its 
proper sign. 

Bending moment of the coating= 
b(moment of area EKLD). (5) 

The bending moment of the basis metal strip is 
represented similarly by the moments of areas 
EHG and GAM with respect to the neutral axis. 
The second condition of equilibrium can now be 
represented graphically as, b(moment of area 
EKLD) + b(moment of area FEHF' )+b(moment 
of area FF'G)+ b(moment of area GAM)= O. 
Or by using the absolute values of the moments 

Moment of area EKLD= moment of area GAM+ 
moment of area FEHF' - moment of area FF'G. 

(6) 
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The moments of the areas were considered with 
respect to the neutral axis for illustrative purposes. 
However , the sum of the moments, with proper 
regard to sign, is zero wiLh respect to any axis, for 
example with respect to an edge, A B, of the beam. 
If the beam is not at its equilibrium curvature, 
the net bending moment is not zero and tends to 
make the beam assume the equilibrium curvature. 

Qualitatively, the effect of the stresses in the 
beam is to give th e cross section, ABOD, the ap
pearance of having rotated around ZZ' as axis 
with respeet to another cross section, QVTW. 

The stress in a coating may be calculated from 
the equilibrium curvature of the beam by different 
methods. The two general conditions of equili
brium may be applied to the curved beam to 
determine the equilibrium stress, which is then 
correc ted for the stresses that have been relieved 
by contraction and curvature. Stoney and Baddie 
applied this method par tially, but this procedure 
is not very easy to use, beeause the distribution of 
stresses in the beam is rather complicated, par
ticularly for methods II and III . A simpler ap
proach is to consider that the plated beam reaches 
its final equilibrium in stages and to caleula te for 
each stage the relation between the stress in the 
coating and the geometrical changes of shape that 
occur. This method will be illustrated graphically 
for method I by constructing the diagrams of the 
stresses that exist in the coating and basis metal 
strip at eaeh stage. Only two-dimensional graphs 
are necessary to show the stresses, as they are to 
be in terpreted in the sense of the plane graph 
DLKI-lMA of figure 1. 

1. Equations for Method I 

The formulas for method I will now be dis
cussed for the simple case in which the moduli of 
the basis metal and coating are the same. 

In figure 2, A, is shown the stress, S , in the 
coating. There is no resultant stress in the basis 
metal, because it has been held rigid and has not 
been allowed to deform. The stress, S, is thus 
the true stress in the coating. In figure 2, B , the 
stresses are shown in the coating and basis metal 
after the constrain ts have been partially removed 
and the beam has been allowed to shorten, but 
not to curve. As the coating also contracts 
slightly, its stress is omewhat reduced. It can 
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be shown that Lhe compressive stress in the basis 
metal is 

S(t~d} (7a) 

The stress in the coating is diminished by this 
same amount to the new value 

(7b) 

The first condi t ion of equilibrium is illu trated 
here by the equality of th e area MNPR and the 
area Ll'vIGI-l, that is, by the equality of the tensile 
forces and the compressive forces. 

The internal bending moment in the straigh t 
beam (see fig . 2, B), which tends to make it curve 
is equal to the sum of the bending moments of th e 
basis m etal and the coating. This is represented 
by the moments of areas MNPR and L MGI-l with 
respect to the neutral axis. Since the forces in th e 
basis metal and coating are equal and opposite, 
the internal bending moment, ltd, is equivalent to 
a couple with the forces applied at the een ter of 
the basis metal and of the coating, that is with a 
distance of (t+d) /2 between the lines of applica
tion of the two forces, F2, 

M = F2 C~d) 

F2 = b (area MNPR)=S (t~d) db 

or 

F2= b (area LMGI-l ) =S (t~d) tb . 

Therefore, 

M = Stdb. 
2 

(7c) 

This same result eould have been obtained directly 
from th e str~sses in the beam as shown in figure 
2, A. The initial tensile force of the coating is 
equal to the s tress times the area of the cross 
section or, FI = Sdb. The force may be considered 
to act at the midpoint of the coating at a distance 
of t/2 from the neutral axis. The product of the 
foree and the distance gives the same result as 
before, Stdb/2. 

When the straight beam is now allowed to bend, 
a new distribution of the internal stresses occur. 
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FIGURE 2. _ Stresses in a strip held rigid during plating and then released. 

A. Stresses in rigidly held plated strip; B. stresses after contraction only had -occurred; C, system of forces superimposed on forces of B as a result of 
curvature; D, stresses in the free strip at equilibrium; combiLlation of stresses in Band C. 

110 Journal of Research 



Regardless of what system of stresses may have 
existed previously in a beam, an additional system 
of stresses shown in figure 2, C, is produced and 
superimposed on the initial tres es. Bending of 
the beam continues until the bending moment of 
the stresses shown in figure 2 , C, is equal and op
posite to the bending moment calculated for the 
stresses in figure 2, B. The algebraic addition of 
this new system of fiber stresses to those shown 
in figure 2, B, gives the final system of stresses 
shown in figure 2, D . It can be shown graphi
cally that boLh conditions of equilibrium are 
satisfied by stresses in figure 2, D . In figure 2, 
C, the tensile force is equal to the compressive 
force, and thus if the first condition of equilibrium 
were satisfied by fig ure 2, B, it ,vill still be satis
fied on adding the stresses in 2, B , to those of 
figure 2, C. The bending moment of the stresses 
in figure 2, C, is eq nal and opposite to the bend
ing moment of the stresse calculated for figure 
2 , B, and Lhus the sum of the two ystem of stresses 
gives a resultant b ending moment of zero for 
figure 2, D . 

Th e equality between the initial bending mo
ment of the flat plated strip, as typified in figure 
2, A, or 2, B, and the bending moment of the new 
stresses produced by curvature typified in fi gure 
2, C, forms the basis for the calculation of the 
stress in the coating. The bending moment of 
the stresses of figure 2, C, depends upon the cur
vature and the dimensions of the beam) and is 
readily calculated from measurement made 
directly on the beam. 

(8) 

where r is the radius of curvature of the neutral 
axis. 

H ere E is taken to be the modulus of both the 
coating and the basis metal. I is the moment of 
inertia of the cross section, ABOD (fig . 1), of the 
beam with respect to the trace, FP, of the neu
tral axis in the plane of the cross section. In the 
previous discussion it was shown that the initial 
bending moment of the beam (fig . 2, B) was 
numerically equal to the bending moment im
pressed by curvature (fig. 2, C). Thus, the bend
ing moment in eq 7 can be equated to the bending 
moment in eq 8: 
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Nl= Stdb 
2 

E (t+d)3 
S 6tdr 

This is the equation derived by Soderberg. 

(9) 

Some other useful relationships may be made 
clear by use of the diagrams in figure 2. The 
stresses in figure 2, C, are proportional to their 
distance, y , from the neut.ral axis, and are given 
by the expression, 

Ey cr=- , 
r 

(1 0) 

which is the basic relation of imple beam theory. 
The slope of the stress line, AB, with re pect to 
the y axis is 

E 
r 

(11 ) 

As the beam bends, the line AB can be visualized 
as rotating further from the y axis. It will be 
noted that the compressive stress along the neutral 
axis, denoted by JK, is the same before bending 
(fig. 2, B) as after bending (fig. 2, D ) . This is 
because there is no strain (or change of length) 
a t the neu tral axis as a resu] t of th e bending. 
Certain other features of the tresses in the beam 
have already been pointed out in the discussion of 
figure 1. 

Figure 2, D , shows that the point of zero stress 
in the beam occurs not at the neutral axis, but 
at a point, Z , which is di tant from the surface 
of the basis metal by about one-third the thick
ness of the basis metal when the coating i thin. 
Th e point of zero stress can be determined readily 
with the aid of the diagram. 

By eq 11 

(12) 

JK is equal to the initial compressive stress in 
the basis metal (fig. 2, B). 

( d) E (t+ d)3 ( d ) 
JK= S t+ d .'.= 6rtd t+d 

by substituting for S, using eq 9. 
Substituting for JK, as given by eq 13, into eq 

12, 

KZ=(t+ d)2 
6t (14) 
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When d is small, NZ is approximately equal to 
t13. Z is the point that Stoney and Barklie 
called th e neutral axis. 

It is of interest to calculate the average equilib
rium stress in the coating, that is, the stress at 
the midpoint of th e coating after bending has 
taken place. The eq uilibrium stress, S eq, illustrat
ed by figure 2, D , differs from the stress in fLgure 
2 B , by the stress AC, which results from curva
ture. 

(16) 

The relative difference between the equilibrium 
stress and the true stress (relative difference= 
S eq- S )IS can be shown to be - (4dlt)+ 10 (dlt)2, 
which is fairly large. If dlt is about 5 percent, 
whi ch is the value in som e experiments, the equilib
rium stress is abou t 18 percent small er than the 
true stress. 

In the measurement of stress it is necessary that 
the elastic limit of the basis metal be not exceeded. 
From figure 2, D , it is apparen t that the maximum 
stress in the basis is a compressive stress occurring 
at the interface with the coating. For method I , 
this stress can be shown to be given by the formula 

Srl ( 4t2 - td+ d2) 

(t+ d)3 
(17 ) 

If the coating is thinner than the basis metal, this 
stress is always less than the stress in the coating. 
By differentiation of eq 17, it can b e shown to 
attain a maximum. value of 5S19 when the thick
ness of the coating is one-half the thickness of the 
basis metal. This simple relation serves as a 
convenien t means of determining whether the 
elastic limit of the basis metal is likely to be 
exceeded. 

2, Equation for Method II 

The stress in the coating will now be calculated 
for method II, in which it is assumed that the 
ba is metal is prevented from bending but not 
from con tracting during plating, and is allowed to 
bend subsequently. The stress distribution in 
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this beam differs from that in method I because, 
although bending is prevented, contraction of the 
basis metal can take place progressively as the 
coating becomes thicker. The calculation is com
plicated by the situation that the earlier layers of 
coating are compressed by the tension in the 
succeeding layers in the same way that the basis 
metal is compressed. Before bending occurs 
there thus exists a stress distribution in the coating, 
as show11 in figure 3, B , with the greatest tension 
in the layer of coating last deposited. It is of 
interest to make this calculation for method II 
because it approximates practice more closely than 
the conditions laid down for method J , inasmuch 
as it is difficult to prevent the contraction of a thin 
strip during plating, even if it is bolted down. If 
it turns out that the calculated value for method 
II differs from that for method I by less than the 
experimental error, then the simpler calculation 
can be used. 

Stress S b in the basis metal produced as a 
result of the successive addi tions of coating to a 
total thickness of d will be calculated first. It has 
already been noted (eq 7b) that the compressive 
stress produced in the basis metal of thickness t, 
by the addition of a coating of thickness d with 
a tensile stress S , is Sb = S(d) /(t+ d). If the coat
ing is added in increments dx, the equation b e
comes dSb=S(dx) / (t+ x) , where x is th e thickness 
of the coating that has been previously laid down. 
The total compres ive stress in the basis metal is 

J' d dx (t + d) (d) Sb=S 0 t+x=S ln - t- = Sln 1+"[ , 

(18) 

It will be noted that when d is small , this equation 
approaches that for method I (eq 7b), since 
Sin (t+d) /t= S(d) / (t+d)+ 1/2(d)/ (t+d)2+ .. ,., 
and the second and higher term may be neglected 
for thin coatings. An expression for the tension 
in the coating as a function of the distance, x, 
from the surface of the basis metal is now re
quired for the purpose of calculating the bending 
moment of the beam . Qualitatively, it may be 
observed (fig. 3, B) that the coating has the mini
mum stress at the interface with the basis metal 
and that the stress at the outer surface of the 
coating has the initial value, S. 

Consider now th e stress in an incremen t of 
coating dx, at the distance x from the basis metal , 
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before any subsequent metal is deposited . The 
stress in this last increment is S, because the 
increment does not produce any finite contraction 
of the base metal. However, its stress is de
creased by the effect of th e layers of thickness 
dx, subsequently deposited upon it. The de
crease in tress undergone by this increment of 
coating will be the same as the increase of stress 
undergone by the basis metal , namely 

S In (t~d)_S In C~x)=S In Gt~) · (l9a) 
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TENSILE 

)-1- +- --- s ----' 

B 

FIGURE 3. StTesses in a stTip allowed to contmct dU1·ing 
plating, but not bend, and then allowed to CUTve af ter the 
plating was completed. 

A, Diagram of di mensions involved in com putation; B, stresses in s trip 
before bendin g took place; C, strcsses in s trip after it curved. 

The stress at any poin L x, in the coating is 

(19b) 

The momen t of the coating wi Lh respect to the 
neutral axis is (sec fig. 3, A) 

( d [ (t+ x) ] (t - d ) . 1\II c= bSJo 1+ 1n t+ d - 2- + x dx, (20) 

since the variable lever arm of the fib er stresses 
is (t-d) /(2 )+x. 

Integration by parts gLYes the following ex
preSSlOn 

The amount of the basis metal abo ut the neutral 
axis is 

(22) 

because only the area FCDG (which equals d X Sln 
(t + d)/t contributes to the moment. The moments 
of areas HLMK and CHKD are equal and op
posite, and hence cancel. 
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Equating the initial internal bending moment of 
the beam to the bending moment imposed by the 
curvature, as given in eq 8 

s- E (t+ d)3 

- 6rtd (1 +#t) 

E(t+d) 3 
3rd (2t+ d) 

(23) 

On comparing this formula for stress with the 
one for method I , it will be seen that the relative 
difference between the two values of S is 
1/2 X dlt. Since d/t usually is not over 10 percent, 
the difference between the two methods of calcula
tion of 8 would be about 5 percent, or within the 
experimental errol'. This difference cannot be 
determined experimentally, because the frequently 
observed variation of stress with thickness de
tracts too much from the reproducibility. 

The stresses in the coating before and after 
bending are shown in figure 3, B , and C. It will 
be noted that the stress in the outer fibers of the 
coating are higher than in the inner fibers even 
after bending, in contrast to the coating shown in 
figure 2, D , for method I. The equilibrium stresses 
in the coating, represented by area MTUV in 
figure 3, C, are obtained by subtracting area Q 
from area lvlNPR in figure 3,B. 

3. Equations for Method III 

Method III deals with the bending of the strip 
as plating proceeds and is the most common 
method of m easurem ent employed for deter
mining stress in coatings. Before deriving the 
expression for method III it will be advantageous 
to consider, qualitatively, the mechanical differ
ences between method I , which is the simplest to 
visualize, and method III. In method I the 
mean length of the lever arm of the fiber stresses 
in the coating is t12. In method III, the length 
of the lever arm varies from tl2 for the first incre
ment of coating laid down to (t+ d)/2 for the 
final increment. The longer average lever arm 
causes the bending moment to be greater in 
method III. In method I the curvature of the 
beam is determined by the final thiclmess of the 
beam, t+ d. In method III, the thickness of the 
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beam varies from t to t + d as the plating proceeds, 
and on the average is less than in method 1. 
This smaller average cross section of beam also 
leads to a greater bending of the beam in method 
III. From both causes, a given thickness of 
coating will produce more curvature by method 
HI than by method I. 

To derive the formula for calculating stress by 
method III, consider a beam that has been plated 
with a thickness of coating x, so that the total 
thickness of the beam is t + x. The deposition of 
an increment of coating of thickness dx produces 
an increment of internal bending moment, elm, 
about the neutral axis, which is situated at the 
center of the beam at a distance, (t + x) /2, from the 
strip dx. The strip increases in curvature from 
radius rl to rad ius r2 by the amount (1/r2 - 1 Irl = 
d(l /r). The internal bending moment of the 
incremen t dx is represented by a couple that is 
given by eq 7C, except tha t t must be replaced by 
t + x and d is replaced by the increment dx 

dm = S C~X) belx. (24) 

It may be noted that this is the same as the 
bending moment of a fib er of stress S, and cross 
section, bdx, with a lever arm of length (t + x)/2, 
extending to the center of the beam. The bending 
moment impressed by curvature of the beam is 
given by eq 8, except that l /r is replaced by d (l /r) 
and lVf by elM. 

dlll= Eb(t+ x)3el (l). (25) 
12 r 

Eq uating eq 24 to eq 25 

On separating variables and integrating: 

S - --- d - --l d dx _Ej'}'i (l)}<i_E 
o (t + X)2 6 0 r 6r 

S = Et (t + d) 
6rel 

(27) 

This formula is the simplest of those for the thrce 
methods and, it is closer to the simple Stoney 
formula than the formulas of methods I and II. 
The relative difference from Stoney's approxima
tion is dlt, which was usually less than 5 percen t 
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for Lhe experiments done with the spiral contract
ometer [1] . In reviewing the li terature, it was 
found th at eq 27 was first wriLten down by Stoney, 
in the form 

(28) 

which is the same as eq 27 with r r eplaced by V /87. 
This latter expression is the formula that Stoney 
used for calcula ting r; L is the length of the plated 
strip , and 7 i the camber of the curved strip 
(see eq 50A). This formula will be discussed in 
more detail later. Equation 28 seems to have been 
entirely ignored by later investigators, probably 
because Stoney did not give its derivation or 
indica te its application. It was also passed over 
by the auLhors un til the above derivat ion had 
bren arrived at and the similarity of eq 27 wiLh 
eq 28 was discovered. The diagram for the 
stresses involved in method III is shown in figure 
4. The distinguishing feature is that the stress 
in the outer fiber of tbe coating is considerably 
higher than in the inner flb ers . . The stress is 
equal to 8, the inltial stress, ince the last incre
m ent of coating does not undergo bending 01' 

con traction. 

c l 
. _ INITIAL ~l!.IR~L...i\XI8 t 

_ ~~ NEUI£lA.!o..~8_ 

R P J __ 
I----~~ ~ d' 

---~~~~~~~~-~--~-~~ 
M I" 8 -------I N 

1---- 8 "I 

t 
2 t +d 

-2-

FICURE 4. Stress in a plated strip allowed to continuously 
curve during plating. 

The='stresses in the coating are not as r eadily 
calculated as in m ethods I and II, because each 
increment of coating is deposited in a curved con
dition, and the stress relief resulting from the 
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subsequent curvaLure is no t given by Lhe simple 
relation, Ey/r (eq 10). In addition, the com
pression of the first incremen ts of coating by the 
tension in th e la t tel' incr emen ts prod uccs a s tres 
relief, given by eq 19A. The stress in the coat ing 
at a distance x from the interface with the basis 
metal is given by the equation 

8 = 8 [1 + 1 t+X_3(t - d+ 2X)(d-x )] (29 ) 
x n t+ d (t+ d) (t+x) . 

In figure 4, area UHF represents the comprrss i ve 
force that is generated ill the coating as a result 
of the bending of the beam and the tension of the 
outer layers of the coating . This area is sub
tracted from the init ial tensile force of the coating 
(area FMN P ) to give the :final stresses FlvINR 
in the coating. Area GHF may be considered to 
have been swep t out by the end of the line ODO 
when it star ts from its initial position FDB and 
goes through the intermediate position O'DO', as 
the coating increases in tbickness. 

III. Calculation of Stress When the 
Young's Moduli of the Coating and 
Basis Metal are Different 

The treatment up to thi point has dealt with 
measurements in which the moduli of the basis 
metal and coating were th e same. The moduli of 
the common metals range from 2.4 X 106 Ib/in2. 

for lead to 30 X 106 1b/in. 2 for steel. However, by 
suitable choice of basis m etal , the modulus of the 
coating need not differ from that of the basis 
metal by more than a factor of 2. The effect of 
differences in moduli is negligible when the thick
ness of the coating amounts to only a few percent 
of the thickness of the basis metal , bu t may be 
significant with thicker coatings. 

When th e basis metal and the coating have 
different moduli, the neutral axis no longer passes 
through the center of mass of the cross section, 
at (t+d)/2, and the moment of inertia of tbe cross 
section does not enter s imply into eq 8. For 
method I , Soderberg has derived an expression for 
the stress of a coating plated on a basis metal of 
different modulus, but it is too lengthy to be con
venient for calculation. In the following deriva
tion, which is similar to that given previously for 
method I , a simpler expression than that given 
by Soderberg will be obtained. Also, a simple 
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empirical formula can be given that will simplify 
calculations still further. 

In the following discussion the ratio of the 
modulus of the coating to that of the basis metal 
will be denoted by R(R= Ec/E b) ' When the moduli 
of the coating and basis metal differ, the initial 
streso:es (fig. 2,0) in the coating and basis metal 
are given by the expressions S(t) / (t + Rd) and 
S(d) /(t+ Rd), instead of by eq 7a and 7b. The 
bending moment of the coating is equivalent to a 
couple and is calculated in the same manner as 
"vas done for eq 7c, except that the equal and 
opposite forces in the coating and basis metal are 
now given by the expression F= S(t) / (t+ Rd)db or 
F= S(cl) /t+ Rd)tb. The distance between the points 
of application of the forces is (t + cl) /2, as before. 
The initial bending moment of the coating is 

M=( Stdb ) (t+ cl) . 
t+ Rd 2 

(30) 

The expression for the opposing bending moment 
impressed by curvature is similar to that in eq 8, 
except that the moment of inertia, I , of the cross 
section must be replaced by a more complicated 
expression. For purposes of calculation, the beam 
consisting of materials of two different moduli is 
replaced by an equivalent T-beam, in which the 
widths of the basis metal and the coating are pro
pOI'tional to their moduli. Thus, the basis metal 
strip is considered to have a width b, and the 
coating a width equal to Rb. The neutral axis of 
this equivalent beam (and also the neutral axis of 
the original beam) is located in the basis metal at 
a distance, c, from the outside surface of the coat
mg. This distance is given by the expression 

t2+ 2tcl+ Rcl2 
c= 2(t+ Rd . (3 1) 

The moment of inertia of the cross section of the 
T-beam with respect to the neutral axis is given 
by the expression 

I b[R (t+ d)4_t4-Rd4) (R - 1). 
12 (t+ Rd) 

(32) 

To simplify later calculations, the Rd4 quantity in 
the (t4 - Rel4) term in eq 32 will be considered 
negligible and dropped. That this may be done is 
shown by the fact that in the extreme case when 
the thickness of the coating is one-half that of th e 
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basis metal, and the ratio of their moduli is 2, the 
error thus introduced is less than 1 percent. On 
substituting I from eq 32 into eq 8, replacing E 
with Eb, and setting this equal to the right-hand 
side of eq 30, an expr ession for S is obtained 

or 

S - Ec(t+ cl)3 
- 6rdt 

(E,-Eb)t3 
6rd(t+ cl) , 

S = Eb[R (t + cl)4- (R- IW1. 
6rdt (t+ d) 

(33) 

It will be noticed that the first member of the 
formula is of the same form as eq 9. The second 
member of the formula is of a similar form except 
that t and (t+d) are interchanged, and the expres
sion is multiplied by the difference Ec-Eb, of the 
moduli. The following semi-'empirical formula was 
found to agree within a few percent with eq 33. 

(34) 

and is much simpler to use. 

The derivation of the expression for the stress 
in an electrodeposited coating, measured by 
method III is somewhat more involved than that 
given for method I , but fortunately a simple 
semi-empirical formula will serve for most pur
poses. The derivat ion follows along the same 
lines as that given for eq 27. The increment of 
bending moment elm, which is added to the beam 
by each increment of coating of thickness dx, is 
given by an expression similar to eq 24 except 
that the distance of the increment of coating 
from the neutral axis is not equal to (t+x)/2 as 
in the case of equal moduli, but is given by eq 
31. The equation for the change of internal 
bending moment with deposition of coating is 

[ t2+ 2tx+ R X2] 
dm = S 2(t+ Rx) bdx. (35) 

The increment of the opposed bending moment 
that is developed by the bending of the beam is 
given by an expression similar to eq 8, except 
that M and l /r are replaced by the corresponding 
differentials and I is given by eq 32. 
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Equatio ns 35 and 36 yield the following equa
tion for Lhe stress 

(37) 

By making the change of variable to Z= (t+ x)/t, 
breaking the fraction into partial fractions and 
integrating, the following exprcssion is obtained 
for the tress 

[ ( I+ H 2) - I (H-Q) (I - H 2) - I S 2H tanh 1- HQ + 2H tan 

( H-Q)_ 2 - I (H2_ Q2) J _ Ebt 
I+ HQ H tanh I - H 2Q2 - 6"r' (38) 

where H 4= (Ec-Eb)/Ec, and Q= Ht/ (t+ d). 
It is of interest to note that eq 3 can be con

siderably simplifi ed . When the absolute value 
of x is lcss than 1, the tan- I x and tanh- I x may be 
representcd by a seri es of the form , x+ ax3+ bx5 • ••• 

The first term approximation is accurate enou gh 
for present pUl·poses. On replacing the arc tan
gents by their arguments and simplifying, the 
following equa tion is obtained 

(Ec- EbW 
6rd (t+ d) . (39) 

This equation parallels eq 33, because the first 
term is the same as the expression for materials 
of the same modulus (eq 27), and the second 
term is the same as that of eq 33. 

Over a range of thickness of coating of d= O 
to t/2, good agrcemcnt with eq 38 is obtained by 
the simple semiempirical formula 

Ebt(t+ R5/4d 
6rd . (40) S 

However, over a more limited range the formula 

(41) 

is quite satisfactory . 

IV. Calculation of the Effect of Tempera
ture Changes on the Measurement of 
Stress 

The plated trip of metal constitutes a bimetalli c 
element, uch as is used in thermoregulators, and 
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will curve as a result of temperature changc if the 
two metals differ in coefficient of expan ion, w"h ich 
is usually the case. The measurement made 
with the spiral contractometer are made at the 
temperature of the plating solution, and the only 
interest in the effect of temperature change is Lo 
determine the precision of temperature r egulation 
required to keep the error from this cause below 
1 percent. After the contractometer i removed 
from a warm plating solution, an appreciable 
movement of the pointer occurs, thus showing 
that the effect of Lhe tempcl'aLure is not negligible. 
The effect of temperature change may be serious 
if the curvature of the pla ted strip is measured 
after it is removed from a warm pIa Ling soluLion, 
as is usually done in applying methods I and II . 

In the following d iscussion of thermal effecLs, a 
d ifferent approach is employed Lhan tha t used by 
Soderberg, and Lhe equations developed are not 
the same. AILeI' a strip ha come to an eq uilib
rium curvature under the tension of the coating, 
the effect of a ubsequent tempera ture change i 
to alter the curvature. In order to calculate the 
stress in the deposit, it is first necessary to correct 
the final observed curvature, l /r" for the incre
ment of curvature, t::,. (l /r), resul ting from Lhe tem
perature change. This is readily done a follows: 
The equ ations for stress, as developed for the 
three different methods may be written in the 
form, S = Q( I/r), where l /r is the curvature result
ing from the stress in the coaLing alone. The 
equation is corrccted by sub tracting the eurvaLure 
superimposed upon it by thermal stresses and 
takes the form 

(42) 

The value of t::,. (I /r) is calculated in the manner 
used for method I , from the known therma1 
stresses sct up in the beam. The additional in
ternal bending moment, produced in the curved 
beam by the thermal stresses alone, is equated to 
the opposing bending moment impressed by the 
corresponding increment of curvature. Since the 
longitudinal forces, F, set up by the thermal effect 
are equal and opposite in the coating and basis 
metal, their bending moment is equivalent to a 
couple with the distance, (t+d) /2, b etween their 
points of application. Equating the bending 
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moment of the couple to the bending moment 
impressed by curvature gives 

F (t+ d) = ElD. (1) 
(2) (r ) 

E (t+ d)3b ~ ill. 
12 ( r ) 

(43) 

(44) 

It is now necessary to have an expression for the 
force, F, in the coating or base metal. It should 
be remembered that F is the force which existed 
before the strip was allowed to undergo the addi
tional increment of curvature, ~ ( l jr) (just as in 
method I , where the bending moments were 
calculated from the forces in the uncurved beam). 
A condi tion of equilibrium for the bimetallic strip 
(assuming that it is held at constant curvature) is 
that the change in length, or the strain of each 
metal strip must be equal. 

A c and A b are the coefficients of expansion, and 
the temperature · change is ~T. The strains pro
duced by thermal expansion are A~ T. The 
other two terms represent the strains produced 
by the force F. 

From eq 45, F= [Etdb(Ab-Ac) ~T]j(t+ d), and 
substituting in eq 44, 

6td (Ab-Ac) ~T 
(t+ d)3 (46) 

Applying this correction for ~l jr to eq 42 , the 
following equations for stress are developed for 
methods I and III, respectively: 

S E (t+ d)3 - E~T(A - A ) 
6tdr be' (47) 

S = lit(t+ d) -E~T(A - A ) ( _ t_ ) 2. 
6dr b c t+ d (48) 

It will be noted that the formulae for stress 
are the same as the original formula except for 
the sub traction of a term involving the difference 
A b-A c, of the coefficients of expansion. The 
correction term in eq 47 agrees with the expres
sion given by Heussner [5] but not with the one 
given by Soderberg [3]. For metals that differ 
in coefficient of thermal expansion by ,5 x 10- 6, 

for example copper and steel, the correction 
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amounts to about, 150 lbjin.2;o C. When measur
ing low stresses, such as a few thousand pounds 
per square inch, it would be important to con trol 
the temperature of plating within 1 or 2 deg, but a ( 
control of 5 deg C would probably be sufficien t I 
when measuring stresses above 20,000 Ib jin2. 

If the moduli of the coating and the basis 
metal are different, the appropriate correction 
term is subtracted from the expressions previously 
given for the stress in eq 33, 34, or 38 to 41. The 
correction for method I can be shown to have the ~ 
same form as that given in eq 47, namely I 
Ec~T(Ab-Ac) (excep t that E is replaced by Eo). 
The correction term for method III can be eval
uated by the method given, but for practical I 
purposes the same correction term as that given J 
in eq 48 (except that E is replaced by E c) may be 
used. 

V. Stress Remaining in Coating After 
Removal of Basis Meta l 

Some obsorvers have attemp ted to no te the ~ 
trend of stress with thickness by observing the 
direction of bending of the deposit after the basis 
metal was dissolved. However, in order to draw 
any conclusions, it is first necessary to know, as a 
basis of reference, the direction of bending when 
th e stress is uniform throughout the deposit . The 
three diagrams (fig. 2, D , 3, C, and 4), show the 
stress existing in the coating after bending has 
taken place. In method I it is obvious that the 
coating would straighten out if th e basis metal 
were removed, since the coating was uniformly 
stressed throughout when it was in its initial 
straight position. When the basis metal is re- \ 
moved, the coating will simply contract slightly 
and return to its original straigh t condition. In 
method II, since the outer fibers of the coating 
are under slightly higher stress than in method I , 
the coating should not quite straighten out, but 
should remain slightly curved. This sligh t curVG 
ture would be difficult to demonstrate in practice, 
since the tendency for the stress in many coatings 
to decrease with thiclmess usually more than com
pensates for the excess outer stress. The stresses 
in the coating in m ethod III differ from the two 
preceding cases in that the outer fibers of the 
coating have a considerably higher stress than the 
inner fibers. This indicates that the curved coat-
ing should curve still further after the basis metal 
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is removed. The p ercentage d ifference in stress 
between the inner and outer fibers is approximately 
equal to 3(d/t), which amounts to about 15 per
cen t for d/t= 0.05 , and hence the additional cur·va
ture should be detectable if the coatings are moder
ately thiclc By comparison , the percentage 
diffrrence in stress between the inner and outer 
fibers in method I is 6(djt)2, which is mu ch smaller , 
but yet sufficient to bend the coating back nearly 
straigh t. 

The expected increase in curvature was not 
observed when the basis metal (copper) was dis
solved from a deposit obtained from a Watts 
nickel bath, probably because the stress in the 
outer layers. decreased as the coating became 
thicker. However , the curvature of a deposit 
from a chloride nickel bath increased considerably 
when the basis metal was dissolved . 

It has seemed paradoxical to some platers that 
a sheet of pla ted metal , which has been depo ited 
on a rigid backing, does not curl when it is stripped 
from the basi metal, whereas a thin plated sheet 
will develop con id crable curvature. The expla
nation of thie paradox is that curving will take place 
only when there are differences of stress between 
the two faces of a skip . If the stress in an electro
deposited coating is uniform , it is relieved only by 
contraction of the coating when it is stripped 
from the basis metal. 

VI. Comp arison of Formulas 

It is in teresting to compare the Stoney formula 
with the other formulas that have been derived 

ent method . This comparison will be made by 
expanding the formula and comparing only the 
approximations that involve the first two term. 

In the last column of table 1, the approximation 
formulas are expressed in terms of the S toney 
formula, S s. The first term of each formula con
sists of the Stoney formula, and the second term 
consis ts of a correction, involving the rat io, d/t, 
of the thickness of the coating to that of the bas is 
metal. The correction diminishes as the thickness 
of the coating decreases. 

A meaning can be attached to the two term of 
~he formulas for method I , (eq 9 and 34). The S . 
term is the approximate stress in the coating, 
calculated without regard for the thickness or 
physical properties of the coating. The second 
term, S .(3Rd)/(t)=EcT /2r, can be shown to be 
the average stress that the coaLing loses in bending 
from its initial straight position to a curvature of 
l /r. The midpoint of the coating is approximately 
at a distance t/2 from the neutral axis of the beam. 
The compressive stress that is set up as a resul t of 
curvature is EJ/2r (by eq 10), which is the second 
term of the formula. This compressive sLres 
diminishes the tensile stress of the coating by lhis 
amount. 

If carried fur Lher , the expansions of Lhe formu
las for methods I and II would yield terms con
taining higher powers of d/t, and therefore their 
contribu tion to the calculat ion would be small. 
The terms in (F(t2 represent the correction in
volved in the shift of the neutral axis from the 
center of the unplated beam to the cen ter of Lhe 
plated beam. 

I for computing stress measured by th e three differ- In table 2 are shown the errors involved in 
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TABLE 1. First two terms in the expansion of the formulas for stress 

, EI' 
Stoncy·s equatiOn .... ' .................... __ .. 8.= 6rd 

Method E quation 

,..... ...... .... ... ··1 
H ..... __ .... .. . __ ....... __ ... . 
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19237- 49- 3 

16 

34 

23 

27 

41 

E(I+d)' 
8-6iiiT 

E (t'-Id) 
8 .. -~+ . . . 

8= E.(t+Rd)' 
6rdl 

E(t+d)' 
8-3dr(2I+d) 

8_EI (l+d) 
6rd 

8~E.,t(I+Rd) 
6rd 

=8. 

E(t'+3t'd) ( d ) 
=.~+. .. =8. H37, + ... 

=8'(1-4)+· .. 
E.(t'+3Rt'd) (d) = 6rdt +. . =8. 1+3 R t +. . 

E(t'+31'd) ( 5 d) 
=3dr(at+ <I ) +. .. =8. H2 t +. ' . 

8.(HO+· . . 
8. (I + RO+· . ' 
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using the approximation formulas for coaLings of 
various relative thickness (compared with the 

TABLE. 2 Errors involved in using approximation f ormulas 
for calculating stress in coatings 

M ethod of measurement Formula 

Error in using approx
imation formu la for 
d/t equal to-

o. 05 1 O. I \ O. 2 \ O. 5 

Moduli of coatin g and basis metal are equal 

' Method I. Cathode com· E (t+ d)' 
pletely rigid. ~ 

Et2 
Stoney _____________ ________ 6rd 

Two-term approximation ___ Et'= (l+~) 
6rd t 

M ethod II. Cathode re- E (t+d) , 
strieted from bending. 3rd(21 + d) 

Et2 
Stoney ----- -- --- ----------- 6rd 

Two-term approximation ___ Et' (1 + 5 d) 6Td :i"t 

' M eth od III. Cath od e Et(t+d) 
bends during plating. 6rd 

Et2 
Stoney --------------------- 6rd 

Per- P er- Per- Per
cent cent cent cent 

-14 - 25 - 42 - 70 

- 1 - 2 -7 - 26 

- II - 21 - 36 -63 

o - I - 4 - 17 

-5 - 9 - 17 - 33 

E 
M oduli of coating and basis melal differ by E : =R =2 

Et' Stoney _____________________ 6rd - 26 - 43 - 62 - 84 

E ,(t+Rd)' 
'SemiempiricaL ______ ._.__ 6rdt - 2 - I + 5 +32 

. . Et' ( . d) 3 T wo-term approXlmat lOn __ _ 6rd 1+ 3Rt -5 - 9 - 16 - 4 

M ethod III. Exact formula _ Sec cQ 38 _______ _ 

Et2 
Stoney _____________________ 6rd - 11 - 19 -33 - 52 

Et(t+ Rd) 
' Two-term approx im ation__ ~ - 2 -3 -6 - 4 

EmpiricaL ______________ __ ~~ (t+ R " ' d) 0 - 1 + 4 

E ,t (t+ d) 
Brd 

Si mplified ________ . ________ . + 3 + 4 +5 12 
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T ABLE 2. Errors int'olved in using approxi mation formulas 
for calculating stress in coating- Contin ued 

Method of measurement F ormula 

Error in using approx
irnation formu la for 
d/t equal to-

O. 051 O. I I O. 21 O. 5 

Moduli of coating and basis metal cliffer by E~=R=4 
" 

Method III. Exact formula _ See eq 38 ___ ____ _ 

Et2 Stoney __ ________ ___________ 6rd 

Et EmpiricaL _________ _______ 6rd (t + R " 'd) 

(
E" 

Simplified _________ __ . ___ ._. 6rd U+ d) 

(E ,-E ,)t3 
6rdU+d) 

Per- Per- Per· Per
cent cent cent cent 

- 51 

- 12 

___ _ __ - 13 __ _ 

basis metal) . It will be noted tha t if the moduli 
of the basis metal and coating are the same, the 
Stoney formula does not cause a serious error if 
used for method III, provided that d/t is less than 
0.1, but that the error is appreciable for method I. 
However, if the moduli differ appreciably, the 
Stoney formula would not be a safe one to use for 
either method. The formulas that are the most 
convenient to use for calcula tion have been desig
nated by an asterisk. 

VII. Calculation of the Radius of Curvature 

The value for the curvature l /r of the strip '\ 
must be substituted into the formulas for the 
stress in the coating. The curvature of the bent 
strip is usually measured indirectly, although it 
could be determined directly by comparison with 
a set of curvature gages, as was done by Soderberg 
[3] . Several different methods of measuring and 
calculating the curvature have been used, and 
there is a chance of borne confusion. In at least 
one instance in the literature, an incorrect formula 
for calculating the curvature resulted through an 
errol' in selecting the proper deflection of the bent 
strip . Three methods of calculating the curva
ture, or change in curvature, of the plated strip 
have been used . These involve (a) measuring the 
camber of the curved strip , (b) measuring the 
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deflection of the end of the strip , and (c) measuring 
the angular defl ec tion of the end of a helix. 

In -figure 5, AOAJ repre ents the st rip that has 
been curved by plating. Initially the strip oc
cup ied thc position of the straight line ABC. 
The other lines in the -figure are auxiliary lines for 
aiding the d iscussion. The method of calculating 
the curvature that was used by Stoney, involves 
measuring the sagitta, Z , of the arc AOAJ. 
The curved strip is set on a fla t urfacc with the 
convex side up, and the camber of the arc meas
ured with a microscope or special micrometer. 

c 

At z' B 
~--------------------~ 

A 

FIGURE 5. Diagram showing the "elation between the radius 
of curvature of a plated strip and the deflection of lhe end 
or center. 

The CUl'vature 1/1' is calculated from the follow
ing formula: 

Another formula is 

1 2Z 
r:= B2+ Z 2' 

1 8Z 
r:= Q2' 

( 49) 

(50) 

The broken line Q= AOA' may be replaced by 
the arc length AOA' = L , which is the length of 
the curvcd strip , without making an error of more 
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than about 2 percent, providing that the agitta, 
Z, is not more than 10 percent of the lengLh of 
the strip. The formula then become 

(50a) 

In some experiments the strip is anchored at A, 
and the strip then curves away from iLs initial 
position ABC. The deflection Z' is measured 
and used to calculate the curvaLure of the strip. 
The formula for calculating the curvature i 

1 2Z' 
r:=W' (51 ) 

The arc length L, which is the length of the trip, 
may be substituted for the chord without much 
error 

(52) 

By comparing eq 52 with eq 50a, it will be noted 
that the deflecLion 7/ is approximately four 
times greater than the sagitLa A. The error in
volved in Lh e approximation of eq 52 is Ie s than 2 
percent if the deflection Z' is not greater than 20 
percent of the length of the strip . For equal 
curvatures, Lhe errol' of this approximation is 
about twice as large as that of eq 50a. 

The main appli cation of the spiral contracto
meter is for making meaS Ul'emcnts by method III, 
a the spiral continuously curves during the plat
ing. However , by anchoring the needle, and 
releasing it at the conclu ion of the plating, the 
experiment may be conducLed according to method 
II. 

Since the spiral is initially curved, the meas ure
ment consists not in determining the curvature 
1/1', as was done for an initially straight trip, but 
in determining the change in curvature of the 
spiral t,. (l /r) = (l /rz) - (l /rl)' This expression is to 
be substituted for I /r in the formulas that are ap
plied to measurements made with the spiral con
tractometer . The change in curvature is com
puted from the angular drfl ection D , of the spiral 
as follows. vVhen the curvature of an arc of fL,ed 
length is increased, the angle subtellded by the arc 
increases. The change in the angle sub tended by 
the arc is equivalent in the case of the helix of the 
contractometer to the angular deflection of the 
torque rod. The arc has an initial curvature of 
Lh radians and after further bending has a curv-
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ature L jrz radians. The angular deflection (or 
change in angle) D , (see fig. 6) is: 

D= FOB-COB=f_!::.=L ( l_l) =LD.(.!.) 
r2 rl rz rl r 

(1) D 7rD' 
D. r = y;= 180L' 

(53) 

The expression D' refers to the angular deflec
tion measured in degree!:' instead of in radians. 

L 

L 

c 
B , / / 

" / " A', / " / " ~ / / " / " / 

"" / ' r;. / // F 
" / 0 / "" // \,- // " / / " /,../ " / ...... / , / / " / // " /,/ 

v-
o 

FIGURE 6. Diagram showing the l'elation between the radius 
0/ Wl'vature and the angle sub tended by an arc of constant 
length. 

The two arcs in the fi gure are of equallcngth . 

In this discussion the arc has been considered 
to lie in one plane. However, the same relation 
holds for a helL'I: , if the curvature of the arc is 
considered with respect to the axis of the helix. 
This is equivalent to considering the length of the 
projection of the arc upon a plane normal to the 
axis of the helix. The projected length of the 
helix is approximately constant and is equal to 
7r C times the number of turns, where C is the 
diameter of the helix. The number of turns of 
the helix is found most readily by pushing the 
coils together until the helix forms a cylinder and 
then dividing the height of the cylinder h, by the 
pitch, p, of the helix. 

(54) 

The pitch is the width of the strip, from which 
the helix is made, measured in a direction parallel 
to the axis of the helix. It is related to the actual 
width b, of the strip by b=p cos a, where a i,; the 
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helix angle. The projected length of the strip is 
related to the true length of the strip L', by L= 
L' cos a. 

From eq 53 and 54, the expression for the 
change in curvature of the helix takes the form 

(55) 

The expression in parentheses is a constant for 
a given helix, and needs to be determined only 
once. 

No analysis was made of the precision of the 
relation (eq 55) between the change in curvature 
and the deflection, as was done in the discussion of 
the formulas applied to the flat strips. Slight 
errors may result from end effects, since the 
diameter of the helix will change slightly as its 
curvature changes, but the diameter of the ends 
is maintained constant by the fittings. Another 
possible source of error is the change in the helix 
angle as the helix coils or uncoils with the plating 
operation. A direct observation of the angle 
showed that the change in the angle in an experi
ment was not readily observable. It is believed 
that the angular deflection of the pointer is a more 
direct measure of the change in curvature than is 
the linear deflection measured on a flat strip. 
Therefore, the errors involved in computing the 
change in curvature are probably smaller than 
those involved in eq 50a and 52, or well under 1 
percent for measurements involving less than one 
complete turn of the pointer (which is equivalent 
to a 36° turn of the helix). 

One advantage of the spiral contractometer is 
that the unplated helix can be calibrated with 
known weights and thus make it unnecessary to 
know the modulus of the basis metal. An expres
sion will now be derived relating the calibration 
constant K' , of the helix to its Youngs modulus E , 
in order that K' can be substituted for E in the 
formulas that have already been developed. The 
deflection of the torque rod of the contractometer 
is proportional to the torque M, which is applied 
by a weight attached with a tlll'ead to the lever 
arm. 

M=K'D'. (56) 

The bending moment, M, transferred to the helix 
is given by an equation similar to eq 8 

(57) 
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It will be noted that the moment of inertia I, of 
the trip composing the helix, is taken for a cross 
section that is parallel to the axis of the helix, 
becau e the helix curves and uncurves with respect 
to the axis as a center. On substituting in eq 57 
for I:::. (l jr) , and for M, using eq 55 and 56, the 
expression for E is 0 btained 

E = 2160K'Ch. 
t3p 2 

(58) 

The Youngs modulus of the metal composing the 
helix has been calculated wi th the aid of this 
formula, and the agreement with the accepted 
value of the modulus was within 3 percent. 

In calculating the stress in a deposit, Stoney's 
equation and eq 27 are the ones most frequently 
used in conjunction w ith the sp iral contractometer. 
On subsLituLing for E from eq 58 and for I:::. (l jr ) 
from eq 55, SLoney 's equation takes the form 

2K'D' 
S s = -----,;per' (59) 

Equation 27 Lakes the form 

(60) 

In using Lhe piral contractometer, the angular 
deflection of the torque rod is no t read directly, 
but the deflection in degrees is read from a pointer 
that is geared to the torque rod . The pointer 
makes G revolutions for one revolution of the 
torque rod. Therefore, in using eq 55, in which 
the deflection D' relates to the torque rod, the 
observed reading 15, of the pointer must be divded 
by G or 

(1) 15 (p ) 
f1(rT= G (180Ch) (61) 
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Al 0 , the calibration constant of the h elix is usually 
determined with cl irect reference to the deflection 
of the pointer in degrees rather than of the torque 
rod. The relation between the constant K, of 
the readings referred to the pointer, and the con
sta,nt K' of those referred to the torque rod i : 

K' = KG. (62) 

This substitution must be made in calculating E 
from eq 58. Since 

K'D' = KD, (63 ) 

the forms of eq 59 and 60 are unchanged if the 
constant and the deflec tion of the pointer are sub
stituted for those of the torque rod. 

The authors express their appreCIatiOn to W. 
Ramberg and S. Levy of the Engineering Me
chanics SecLion of this Bureau for their assistance 
in matters relating to the theory of elasticiLy. 
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