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Noise Spectrum of a Diode With a Retarding Field'

By Jacob J. Freeman

A general expression for the noise-power spectrum generated by the random emission
of electrons of arbitrary trajectories within a waveguide is obtained.
of the potential distribution within a plane diode is effected, and a family of curves from
which the potential distribution may be obtained is graphed. A graphical comparison be-
The above

A numerical solution

tween several actual potential distributions and Von Laue’s solution is given.
results are utilized to derive the equivalent mean-square fluctuation current due to the space
charge within a diode for two cases of potential distribution, namely, the linear distribution,
and that distribution which occurs at the neighborhood of the beginning of the retarding

field. TFor the case of the linear potential distribution, the equivalent noise temperature of

the diode conductance is shown to be equal to the cathode temperature.

I. Introduction

A considerable increase at high frequencies in
both the shot noise and conductance of a nega-
tively biased diode over the theoretical values
computed on the basis of zero transit angle has
been reported in the recent literature by several
investigators. C. N. Smyth [1]? observed ex-
cessive damping and noise from a negatively
biased diode at 3,300 Mc/s, and suggested it was
due to currents induced by space charge. A. Van
der Ziel [2] and A. Versnel [3] reported preliminary
measurements on the equivalent noise current,
and on the conductance of a negatively biased
diode at wavelengths of 5.8 and 7.25 m, over a
range of anode voltages.

In this paper the noise-power spectrum of a
diode with a retarding field * will be investigated
theoretically, taking into account only the noise
power generated by those electrons with insuffi-
cient energy to reach the plate, in order to be able
to evaluate the equivalent mean square current
fluctuations due to space charge alone.* Because

1 A dissertation submitted to the faculty of the Graduate School of Arts
and Sciences of the Catholic University of America in partial fulfillment of

the requirements for the degree of Doctor of Philosophy.

2 Figures in brackets indicate the literature references at the end of this
paper.

3 By a retarding field is meant ohe in which the slope of the potential curve
is always negative.

4 For brevity, the term “space charge” will henceforth be used to designate
the.aggr(‘gute of electrons that have insufficient energy to reach the plate.
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of the mathematical intractability of the potential
distribution, the analysis is carried out only for
the case of large saturation current, when the
slope of the potential curve at the anode is small,
and the case of small saturation current, when the
potential distribution is essentially linear. For
the latter case, the equivalent temperature of the
conductance is shown to be equal to the cathode
temperature.

Coincidentally, the noise power spectrum gen-
erated by electrons of prescribed trajectory within
a waveguide of arbitrary cross section is developed,
partly because the results can be immediately
applied to the specific problem of a diode across
a transmission line, and partly because the results
are necessary for intended investigations of noise
from transit-time devices within waveguides.

II. Noise Spectrum

In this section ® will be derived an expression
for the noise power generated by random emission
within a waveguide, or a transmission line. The
latter is to be regarded as a special case of the
former, in which the particular mode propagated
is the TEM mode, and the word “guide’ will be
used to designate both. Although in this paper
only the particular case of a retarding-field diode

§ MKS units are employed throughout this paper.
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connected to a transmission line will be consid-
ered in detail, the noise spectrum of a diode
inserted within a cylindrical guide of arbitrary
cross section will be treated, since the generaliza-
tion involves little further complication, and it
seems desirable to have an explicit treatment of the
problem for purposes of future reference (e. g.,
computation of the noise power generated by
electronic transit-time devices within waveguides).
It is assumed that the cathode and anode surfaces
of the diode coincide with parts of the guide sur-
face, so that there are no discontinuities due to
the electrode structure. In other words, elec-
trons emitted from a given portion of the guide
surface describe a trajectory that is presecribed
for electrons with given initial velocity by a given
direct-current potential and impinge on another
portion of the guide surface. It is assumed that
the given direct-current potential has no minimum,
so that the results of this section will apply either
to the case of a temperature-saturated diode, or
one with a retarding field, in which the anode
voltage is sufficiently below the cathode, so that
the slope of the potential curve at the anode is
negative. If no direct-current potential minimum
exists, the perturbations of the trajectory of elec-
trons with a given initial velocity due to small
fluctuations in the space-charge potential will be
small, and it is assumed that they can be neg-
lected. If a potential minimum exists (fig. 1),
there is a discontinuous change in trajectory for
electrons having just enough initial energy to
reach the potential minimum, so that a small
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Ficure 1. Voltage distribution of diode with minimum.
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fluctuation of potential may cause a large fluctua-
tion of trajectory for this class of electrons.

Accordingly, then, it may reasonably be assumed
that each electron with a given initial velocity
traverses a fixed trajectory independently of all
other electrons; thus, one may regard the result-
ing electromagnetic pulses generated by each
electron as random events.

The guide is considered to have its axis in
the z-direction, and to be terminated at either
end by a matched load, with the diode in the
center. The immediate problem is to compute
the average noise energy absorbed by each load,
due to electrons having an arbitrary trajectory.
Only the case where the range in frequency is such
that the guide supports only the dominant mode
will be considered.

Then if E=E, exp(jwt) represents the electric
field of the dominant mode generated by a current
density J=J; exp(jwt), it is shown in appendix 1
that

E~—" b(r)fJ(r’)-b(r’)exp(—jafz’—z[)dr’.
(1)

Here up is the magnetic permeability, and dr’” is an
element of volume occupied by the current density.
w=2xf is the angular frequency, « the phase con-
stant for the dominant mode, and b is the corre-
sponding normal mode [4]. Some properties of b
are briefly discussed in appendix 1. r(z,y,2) and
r’(z’,y’,2") are the coordinate vectors of the field
and source points, respectively. If the current
density J(r’) has negligible cross section, J(r’)
dr’=1(r")ds’, where I(r’) is the current flowing
at (2',y’,2"), and ds’ is the incremental displace-
ment along the path of current flow, s’, corre-

?
sponding to d=’. Equation 1 then becomes

w

Eo(r):—g—a b(r)fI(r’)ds’~b(r’)exp[ja(z’—z)],z>2’.
(2)

When the current /(z’,y’,2’) consists of an electron
of charge ¢ following the trajectory s’,

1r=ea(t—t'):2i7r f_lexp[jw(t—t’)]dw, (3)

where t” represents the time at which the electron
is at (¢, v/, 2/), and 6(t—t’)=0, for ¢>t’, and
Jo(t—t")dt=1. Accordingly, the field generated
by an electron is
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Eo=—*2 ("

ﬁov(t')-b exp [j(az’ —wt’)]dt’, (4)

g e\p [j(wt—az)] —

where the variable of integration is changed from
s’ to t', v(t')=ds’/dt’, and f, is the transit time of
the electron.

Let

s(w)=ﬁtuv(t’)-b exp [j(az’—wt")]dt’. (5)
Then,
ueb

E(t)——Tr 5 ~(‘\p [j(wt—az)]s(w)dw. (6)

Since H=j/uw curl E, one finds similarly that

_—_—%fwexp [7(wt—az)]s(w)de
[—jakXb—%—curl b,

@

@)

Since it is desired that E(f) be real, « is defined

as an odd function of w, so that the imaginary
parts of the integrals in eq. 6 and 7 vanish, since
they are odd functions of w.

The instantaneous power flow due to the pas-
sage of a single electron, is, by Poynting’s
Theorem, .

P(t)— J bE>< Hindi ®)

where n is a unit normal to the surface S”.

If one utilizes the orthogonality properties of the
normal modes, as stated in eq. 94 and 95 in
appendix 1, namely,

L/ bj = bh(la:ﬁjh,
and
[, 18, (abil-kda=o,

it is found on substituting eq 6 and 7 in eq 8, that

P()={5s fm

f :o exp [j(wt— a2)]s(w)do. 9)

exp (7(wt—az))s(w)dw

Since the pulses of energy are random, or statis-
tically independent, the average power flow, by
Campbell’s Theorem [5], is
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P=P@)= xJ T Pyt

where N is the average number of electrons emitted
per second, and Ne=1, the direct current.

5 N (= (= : ;
P:i—gﬁ J_m J_m 2 exp [j(wt—az)]s(w)dw
J_‘” s(w) exp [J(wt— az)]dwdt. (10)
By Parseval’s Theorem [6],
| senEod= " mnFeEng, an

where f; and f, are the Fourier transforms of #,
and .

Substituting eq 11 in eq 10,

I—)_)\ng, b

=8 J_mg 8(w)s(—w)dw.

Or, since s(—w)=s*(w) where s* is the complex
conjugate of s, and since s*s is even in w,

P,_‘”["J( “15(w)*de. (12)

4T )y «

If one defines wu/a=7, the wave impedance, then

l—,(I

ir |, Z@]s()Pde. (13)

We consider now a plane parallel transmission
line, with planes a distance @ apart, and of w1dth
d (fig. 2). For this case, b=i/+ad, and a= wwue,
where i is a unit vector in the z-direction, and e is
the specific inductive capacity of free space.
Hence,

PtV | lsto) o, (14)

where

st = | 2

If the trajectory is considered to be in the z,y,
plane, and the linear dimensions of the cathode
small compared to the wavelength corresponding
to any frequency in the range considered, then
one may take z/=0 and let the origin of coordi-
nates be at the cathode. Equation 15 becomes

(t")-1 exp j(w~/ue 2’ wt)dt’ (15)
\/O(l
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yo to v(t/)i exp (_]wt/)dt/
§(w) = J; Jad (16)

In order to compute the power spectrum from
a diode with a retarding field the trajectories must
be computed, and this requires that the potential
distribution for the case of a retarding field be
determined. This is indicated in the next section.

Ficure 2. Schematic of parallel-plane transmission line.

ITI. Potential Within a Plane Parallel
Diode Subject to a Retarding Field

1. Rigorous Solution

The potential distribution within a conducting
diode has been thoroughly investigated by Fry [7]
and Langmuir [8], among others. However, Fry
limited his investigations to the case where the
potential has a minimum. Von Laue [9] has
exhaustively treated the potential distribution of
a diode for the case of a retarding field, where it is
assumed that the plate curtent, 7,, makes a negli-
gible contribution to the potential in comparison
to the contribution made by those electrons that
never reach the anode. In other words, Von Laue
assumes that the electron gas between the two
electrodes is in statistical equilibrium, and that
the space-charge distribution is governed by the
familiar relation,

eV
p=po exp <_kT>’

where p is the space charge per unit volume.
Since the rigorous potential distribution for the
case of a retarding field has never been investi-
gated, it was believed desirable that this be done,
in order to check the accuracy and range of Von
Laue’s solution.

The separation, a, between cathode and anode
(fig. 3) is considered to be sufficiently small with
respect to the area of the electrodes so that edge
effects may be neglected, and the potential
distribution is governed by

18

v
o i L)

where V is the potential, p the charge density, and
e=1/367.107° farad per meter.

The anode is assumed to be at a voltage V;
sufficiently negative with respect to the cathode
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Ficure 3. Voltage distribution cf dicde with retarding field.

so that the slope of the potential V() is always
negative.

The following analysis follows Fry’s analysis
of the a-space precisely, and is outlined here for
completeness. The only difference, of course, is
that here the constant of integration is not zero,
as it is when one has a potential minimum. If
vy represents the initial velocity of an electron,
and ¢ is its velocity at position z,

Trasio i
5]\101—[— eV :§Z\/Iz>0, (18)

where e=—1.60 107" coulomb, is the charge of
the electron, and M=9.10"%, is the mass of the
electron in kilograms.

At a given position z, those electrons having
initial velocities such that 1/2Mvi<e¢V never
reach z; those having initial velocities such that
e V<1 2Mvy<eV, pass by x twice, going and
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returning. Those having initial velocitis such
that 1/2Mv; >V, are captured by the plate and
pass the point only once. Accordingly, the charge
density is given by

py=e [T BCga o0 [ 04y, 1g)
N !

VIV @)

where n(»)) is the number of electrons emitted
per second per square meter with initial velocities
between v, and vo-+dvy, and r=2¢/M. Substituting
eq 19 and 18 in eq 17,

di‘fv* _ﬂ[J n(%)dfo
dx* Vv \?)O—TV

Integrating eq 20 between the limits 2 and a, we get

(&) -(&)

2M ; il
T _ n(vg) Voi—rV, dvy—
€ 7
VvrVi

@«
f — n(wy) VeR—rV dvy—
J v
Vi e
2| n@)Vii—rVdy, I (21)

Vv

Vv n(g) dw,

20
NV \Z‘z—TV ( )

Since the initial velocities are distributed
according to the Maxwell-Boltzmann distribution,

NM - M}
n(vg) = o Yo eXPp (_ﬂ]’) (22)

in which AV is the total number of electrons emitted
per square meter per second, £ is Boltzmann’s
constant, £=1.38 1072, and 7" is the absolute
temperature.

Iy,=Ne, (23)
where [, is the saturation current density. If one
changes to reduced variables,

t=((@—a), (24)
and

e(V

= (25)
where
/2 4’
TR (25a)

e (kT)3/”

and 7, is the plate current, then eq 21 reduces,
when n(v) is replaced by its value, (eq 22), to the
following :
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) (‘[” +e1(14erf+n) —<1+2-5‘;E>. (26)
\r
Here erf 5 is the error function,
2 (* :
erf ZL’:*A’,—J exp(—t*)dt, (27)
VmJo

and (dq/dg); is the value of (dn/d§)? at £¢=0, that
is, at the anode, z=a.
For brevity, let

f<n>:<1+erfv’5)ev—(1+ 4\n> (28)

and
ik i

Accordingly, eq 26 may be written as

<Zz>2:m2-{— F(n). (30)

Since £ is always negative,

Pl K d'r] y
J 0 Vf(n)+m?* B

The value of m is determined by the boundary
condition at the cathode.

At the cathode,z=0, = —(L\/g“zg‘l,n:c\'l/k]': N1,
so that

285 ] "y ([77” : .
b=, e i

fixes the value of m?.

Since for large values of », f(n)—2¢7, the upper
limit of the integral in eq 32 may be replaced by
infinity, so that one has, approximately,

L dn
oy n) +m?)

Since & is proportional to ],,%, it may be inferred
from the above equation that a large value of
m?* implies a small value of plate current, and that
a small value of m? implies a relatively Ialge value
of plate current.

North’s paper [10] tabulates f(n) (his ¢.(5)), and

tabulates the solution of eq 14, for the case
m*=0, (his &). Using the computed values of
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f(n) from North’s paper, { was determined as a
function of n by numerical integration, for selected
values of m? and the results are tabulated in
table 1 for 0=#=20, and are graphed in figure 4
for 0=9=<10. To determine ¢ for n>9, one
observes that for the tabulated values of m?
f(n)+m2~2en, for n>9. Accordingly for 7>9,
eq 14 yields

E()=£(9)+ V2(e*2—e1), (33)

from which £(3) may be calculated for larger
values of » than are tabulated in table 1.

To determine the potential distribution of a
given tube, one first determines £ and 5, from the
given values of cathode temperature, plate cur-
rent, or saturation current, plate voltage, and
plate-cathode separation, a. Then, from the

family of &,  curves plotted in figure 4, one deter-
mines the particular curve of the family that
passes through the point &, 9. From this curve

7(£),(n<m,§ < &), the potential V (x) within
the diode may be determined from

V(@) m—n
Vs , (34)
13:51—‘5
5 *& s (35)

according to the definitions of ¢ and n (eq 24 and
25).

2. Approximate Analytic Expressions for the
Potential

In order to obtain an analytic approximation
for the potential, one must examine approxima-
tions to f () that will make the equation

n dx .
T —_— O Pt T
ABLE 1. Values of t= —————as a function of n, for selected values of m?
0 V[ (@) +m?
n m=0—§¢ |m?2=0.05—§&| m=0.1—¢ | m?=0.2—¢ | m?=0.3—£ | m?=0.5—¢ , mi=1—§ mi=3—§¢ | m=10—¢ | m?2=20—¢
0 0 0 0 0 0 0 0 0 0 0
Y014 0. 0426 0.0309 0. 0221 0.0181 QLT 1IN SRS | SO D
B RS, L0814 L0601 . 0437 0359 . 0280 0. 0199 0.015 | ... | ...
| L1171 . 0880 L0652 .0533 04181508 INSSIEER | TS SO | IS
S04 | e L1503 . 1147 L0858 L0704 . 0554 0396 #0230 S| NS
.05 0.4281 L1814 . 1402 L1057 L0873 20088 lim s s |G e Dl E e e e e
T8 | A e . 2108 . 1648 L1252 .1038 L0821 0590 F0344 50 RS | R
i (S A L2386 L1884 . 1443 1200 110 e S I R R
PO 3| Lt . 2650 L2111 L1628 L1360 .1082 L0782 (455 SR |
A0 e L2902 .2337 L1808 .1516 E1210% | S Tossaieas [ i s (e .
.10 5941 .3141 L2542 L1984 16.70 .1337 L0971 (57200 | RS | SRS
.20 L8170 L5171 .434 . 3565 3080 . 2528 1881 1130
.30 L9785 L6677 578 L4887 L4285 .3590 2730 1673
.40 1. 1081 L7918 . 697 . 6006 L5339 L4545 3521 2200
.50 1.2173 L9077 . 801 . 6985 .6277 . 5409 4258 2710
.60 1.3120 . 9903 . 891 L7866 L7116 L6195 4945 3203
.70 1.3956 1.072 972 . 8638 L7876 L6914 5586 . 367
.80 1. 4704 1.146 1.045 . 9348 L8568 .7574 6184 4133
.90 1. 5380 1.213 1. 111 . 9904 L9201 L8184 6744 4574
1.0 1. 5996 1.273 1.171 1.059 L9786 . 8756 7269 4995
2.0 2.0134 1.714 1. 610 1.488 1.402 1.302 1.120 . 8355
3.0 2. 2338 1.933 1.829 1.701 1.615 | 1520 1.331 1.040 7259 . 5654
4.0 2.3615 2.059 1.954 1.837 Tz T 1.456 1.164 8454 6762
5.0 2.4376 2.134 2,029 1.903 1.817 1.722 1.531 1.239 9206 7490
6.0 2. 4834 2,179 2.075 1,947 1.864 1.769 1.577 1,282 . 9669 . 7946
7.0 2.5112 2,206 2,103 1.976 1.891 1.795 1.€05 1.312 9951 8227
8 2. 5280 2,240 |5 2:119 1.992 1.907 1.812 1. 621 1.329 1.0122 8398
9 2, 5382 2.2 | 2129 2.002 1.918 1.822 1.631 1.339 1.0227 . 8502
10 2. 5444 2. 2402 2. 1352 2.0082 1.9242 1.8282 1. 6372 L3452 | 10289 8564
12 2. 5504 2. 2462 2.1412 . | 2.0142 1.9302 1.8342 1. 6432 1.3512 1. 0349 8624
14 2. 5526 2. 2484 2.1434 2.0164 1.9324 1. 8364 1. 6454 1. 3534 ! 1.0371 8646
[=ie 2. 5534 2. 2492 2. 1361 2.0172 1.9332 1.8372 1. 6462 1. 3542 1.0379 8654
18 2. 5537 2. 2495 2. 1445 2.0175 1.9335 1.8375 1. 6465 1.3545 1.0382 L8657
20 2. 5338 2. 2496 2. 1446 2.0176 | 1.9336 1.8376 1. 6466 L3346 | 1.0383 8658
| |
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integrable in terms of tabulated functions. For
7 large, f(n) ~2e", and as n—0, f(n)—n.

(7

For T=1,000° K, kT:11.7, and n=11.7(V,—V).

For negative plate voltages of one volt or more,
7 will be larger than, say 2, over most of the volt-
age range, so that the approximation f(n)~2
(en—1) will be fairly good over most of the range
of n. This is illustrated in table 2, where f(1)
and 2(en—1) are tabulated for 0<5<9. For

TaBLE 2. A comparison of f(n) and 2(en—1)
n fn) ‘ 2(en—1)
0 0 0
0.2 0.294 0.44
.4 716 .98
.6 1.27 1.64
.8 1.98 2.46
1 2.88 3.4
2 11.8 12.78
3 36.9 38.18
4 105.6 107
5 293 295
6 803 804
7 2,190 | 2,101
8 5,960 5, 960
9 16, 200 16, 204

Noise Spectrum of Retarding Field Diode

large values of n the approximation is quite good,
but becomes poor for 0<n<2. On the other
hand, the error in ¢ due to the approximation is
reduced by the addition of m* especially for
larger values of m?.  Accordingly, let

" dx 1 (" dx
—_— = —— — — 3(‘
Il STt e o | B
where
m?
2L o
A— D) 1 37)

Equation 36 is a solution of

dyn
zi%:gn, (38)
which is Von Laue’s expression [9], inferred from
the assumption that equilibrium exists. It is
equivalent to
2r M
eV
ev  IWTIT &% §
dxz S — - € ) (')9)

€

which 1in turn implies that the space charge
distribution is

eV
p=pee ", (40)
where
2a M
=1, \/ T (41)

If one integrates the rigorous expression for p in
eq 19, one gets

Vi—V)
L (1+erf\/6( . )
B I\/QmM kT Skl (42)

Since

erf\/ T(V1 V)=erf \n=1,

for n>2, it is seen that the approximate expres-
sion for p approaches the rigorous expression
fairly closely for »>2, and accordingly, the
approximate expression for the potential must
also approach the true potential in this region.

For —1=A42<0, (0=m?><2), the integral of
eq 36 is given by
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cos™ / 4 ] (43)

Hop A—080n—2).
E—f=/2(e712—e M), (44)
For A2>0, (m>>2),

(2 : Im2
—5277;;;; sinh™! \/ e

=
sinh™! (P e \/ >] (45)

The value of m? in the above equations 1is fixed

by the boundary conditions at the cathode,
namely, n=n when £=%. For large values of
m, eq 45 gives
m=—1, (46)
g

and the resulting potential distribution is, of
course, the same linear function of distance one
gets in the absence of space charge.

In order to compare eq 43, 44, and 45, which are
Von Laue’s solutions, with the rigorous solutions
of eq 32 obtained numerically, values of the two
solutions are tabulated in table 3, for n,=10, and
for m?=0, and m*=3. For m?=3, the agreement
between the two solutions is excellent, and even
for m>=0, the worst possible case for a given value
of 7, the agreement is fair.

Unfortunately, the expressions for the potential
obtained from eq 43 and 45 do not permit the time
of transit of an electron as a function of its position
to be calculated explicitly, which is necessary for
an evaluation of the noise power spectrum.

However, the potential distribution given by eq
44 approximates fairly well the shape of the po-
tential curve for small m? that is, 0<<m*<20
(large [;). In figure 5 graphs are plotted of the

true reduced potential distribution, V/V,=
(m—mn)/m as a function of the reduced distance
rla= (& —§)/&, for m*=0, m*=10, and m*>=20, for
m=10. Also, the relative potential dlstnbutwn

obtained from eq 44 is plotted and is seen to fall
about midway between the curves m*=0 and
m*=20. Accordingly, for the case of large plate
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REDUCED POTENTIAL,v/v;=(n,~n)/n,

ni=10

9 I B8 B 84 B B ¥ B D W
REDUCED DISTANGE, x/a=(&,-8)/6

Fraure 5. Comparison between approximate and rigorous
potential distributions.

A, m?=0; B, approximate formula; C, m?=10; D, m?=20; E, m=—ni/&.

currents, one may usc eq 44 for obtaining an ap-
proximate potential distribution and thence cal-
culating the noise spectrum.

TaLe 3. A comparison of the reduced potential,
VIVi=1—n/n, as a function of the reduced distance,
z/a=1—¢/Ey, oblained from the rigorous solution (eq 14),
and from Von Laue's apprcximation (eq 43, 45)

m>=0 i mi=3
o Approxi- : Approxi-
Rigorous S Rigorous Tiite
1—n/m 1—¢/% 1—£/¢ 1—¢/8 1—¢/%,
0 0 0 0 0
0.1 0.0025 0.0015 0. 0045 0. 0048
.2 . 0064 . 0061 . 0120 L0125
.3 . 0130 . 0138 . 0247 . 0254
.4 .0240 . 0264 . 0470 . 0466
O . 0420 . 0470 . 0789 . 0814
.6 0719 . 0814 L1356 . 139
Sl L1221 . 1385 . 227 . 233
.8 . 209 . 234 . 379 . 386
) .371 .412 . 629 . 630
.95 . 522 . 566 w799 . 798
.98 679 .T19 . 916 .915
1.0 1. 000 1. 000 1. 000 | 1. 000

For the case of small plate currents, and large
negative anode voltages, the reduced potential
distribution approaches a straight line of unit
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slope, also graphed in figure 5 under the label
m=—mn/&. Accordingly, the following section
proceeds with the calculation of the noise-power
spectrum for the two cases, large plate current
(m? small) and small plate current (m? large).

IV. Noise Power Spectrum for a Diode

1. Case 1: Noise Power Spectrum for Large Plate
Current (m? small)

If one substitutes the values of £ and » from eq 34
and 35 into eq 44, one gets for the potential
energy of an electron, U,

U=Ve=2kT In(1+bz), (47)
where
€ ;k:-l —1 (2 ‘kVT

In this paper only the contribution to the noise
spectrum made by those electrons that never
reach the plate, but which return to the cathode
will be considered, since the effect of those elec-
trons which constitute the plate current has been
treated by Rack [11].  Accordingly, one considers
only electrons whose initial kinetic energy, 77, is
less than eV.

For an electron emitted at t=0, the time at
which it has position z is given by

dx

0 V2IM VE—U(@)

(49)

If one substitutes for U(x) its value given by eq 47
and integrates

P 1rM exp(E/.?kT iof
o 2kT

erf\/ng_ In(1+ bx)]x (50)

for 0=t=t,/2, where {, is the transit time of the
electron.

27 exp (—‘73@) f

8<w)—7\fad
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E
wty erf \/ o T—ln (14 bx)

M P <A '1) (51)
t0: 111' b LIt»V )1‘ ,; s
so that
le\/ s ln(l+br)
t:% f 2k 5

,  (52)
erf\/ ohT

According to eq 14 and 16, the noise power,
Pz, absorbed by each load in the frequency range
Af, due to electrons with initial energy £, is

fOI' == 1‘0/2.

Po=Lo[E 50 (53)
where
to .
T J ztc\p‘(ad]wt)dt (54)

and where /7 is that portion of the saturation
current composed of electrons of energy £.

Since t(x) and #'(z), the first and second times
at which the electron passes the point x, respec-
tively, are related by

8 =t,—t,

v(t—t)=—u0(?), (55)

and since

( 1§ (2 4y
Sw)—?;;l%fo v(t)exp(—jwt)dt—

/2
f v(t)exp [Jw(t—t)] dt}- (56)
0
Letting

to/2 3 2T :
81 (w) :f v(t)exp(—jwt) dt:J exp(—jot)dx
0 0
(57)
where z,, is the maximum value of z,

o) = g [(6) —exp (= ol (—w)). 39

Substituting eq 52 in eq 57 and 58,

dr. (59)

2 erf \/QkT
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To simplify the above somewhat, the substitution

»y=‘/%—ln (1+b2), ' (60)

is made, and one obtains

- E t
e (i3 >f 5
b+ad
Let
‘ 2AT
- (\/2kT) ye—"2 o ‘”t: e\‘"/f y
2 er T
(62)
Then

s ="0 exp (E72") 22 (y/5t7) 69

where the value for b given by eq 48 has been sub-
stituted.

Since the energy distribution of the electrons is
Maxwellian,

T
Ie=pp

exp (—E/kT)dE, (64)
and since the resultant noise power due to un-
correlated noise sources is simply the sum of the
powers of the individual sources [5], the resultant
noise power spectrum due to all the electrons that
return to the cathode is

P, (Vaep) o2 @

where P represents the noise power absorbed by

ye ¥ sin

ol erfy 61)
2 erf \/2IcT

The diode shunted by two matched transmission
lines is now replaced by its equivalent circuit,
namely, a diode shunted by impedance Z,/2. The
equivalent mean square fluctuation current, i is
defined by

I (66)

where Z,=+/u/ea/d is the characteristic imped-
ance of the line. If the impedance of the diode is
large compared to Z,, which is assumed to be true,
i represents the equivalent mean square fluctua-
tion current that would flow through a diode short-
circuited at frequency f.

From eq 65 and 66,

?,5 261}:

2RV, 181, 67)
where
eVh A i
F(V,, )= f A(VERET)AE,  (68)

Since

wty

E—eV,
m—aw\ M |4k T exp ( ST 1)

from eq 48 and 51, letting

each matched load in the interval Af=Aw/27. c=awyrM/4kT, (69)
A(VE/2k T):f BT e sin ; ¢ exp (E;CETV‘> erf u } du. (70)
0

Integrating the above equation by parts,

ANERET) =

/
VT T 29
. E—eV, [f\EQkT cos % ¢ exp [EieVI:I erf u } du—
¢ exp (—gpp ) LJo 2kT

VE2kT cos {c exp I:E;kg, 1] erf \/'E72kT}:|- (71)
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One observes that A(yE/2kT)=0, for ¢=0 and
Since the expression within brackets is
always less than 2+/E/2kT in absolute value,

C= o,

ST T x/‘; \/E/Zk " (72)
CeXP| TopT
and
Fvig) = [ A(ERF T dE< e
( 1,f)* " £ (\‘ / ) 4<2c2exp(—eVl/kﬁT)’
(73)

which gives an upper limit to #(Vy,f) for very high
frequencies.

eI/l
s cexp<—~>~> _ 7
Z v

Since A%+ E/2kT) approaches zero as E/kT
for E/kT small, and increases exponentially as
exp(E/kT) for E/kT>>1, and since one is interested

eV
inf AZE for an upper limit £/k T=eV,/kT>10,
0

the contribution to the integral from large values
of the argument far overshadows the contribution
from small waluos of the axgumont Hon( e, we

asypmt()tlc value for large values of the argument,

4~1<\“1f/2/c7‘):2$ 70\(p<L2k€]§/f @

Physically, this means that despite their pre-
ponderance in numbers, the low-energy electrons,
because of their small excursions toward the plate
and consequent short transit times, contribute
practically nothing toward the low-frequency
noise spectrum.

Accordingly,
Ik @ s
0 8
_ TeZ,
QOZ']? (4/eV)? f E2 kT {
where

(a) Low-Frequency Approximation

For a cathode temperature of about 1,000°K,
and with @, the cathode-anode spacing expressed
in millimeters as a,, one has

c<H5X 10~ %a,,. (74)

Since £E=<¢V;, one may approximate the sine of the
argument in eq 71 by the argument for frequen-

cies such that ¢<{0.3.
E
eV‘:lf *T e erf u du.
0

AWER2ET)=c exp[

2%k T
(75)
Or, integrating by parts,
JEZET— m-f\@m]. (76)
and
P=elpaie? ’“M T AS. (78)

(The above formula holds only for
c=aw~TM/4kT<0.3).
2. Case 2: m*’ Large (I, Small)

For this case, the potential energy of the elec-
tron is
eV, iz

a

Ux)=

and the time, ¢, an clectron reaches a point r, is

given by
1~\/1 —”1‘”] 0=<t=ty/2.

Following the same procedure as in case 1, one
finds for the noise power absorbed by each load
in the frequency interval Af,

1— M2 3;’

c=w+2M aleV;.

The equivalent mean square fluctuation current through the diode is

P20 wevr [ e
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cos oyE _sin o\ E}
E. 79
oVE dEAf, (79)
|E 'EV?
i ‘j g S‘“U;’P} }dEAf. (80)
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For low enough frequencies, such that
a/eV,<0.3, the expression in brackets approxi-
mately equals ¢°/£/9. Since also,

eV -E
f BEierdE~6(kT)*, for eV /kT >10, (81)
0

5 mzzua wtels )

For large values of V), or for high frequencies,
the upper limit in eq 80 may be taken as infinity
with negligible error. Accordingly, eq 80 may be
rewritten as

= 21 'E_sin ¢/E
?="7 B )208.9% v } dEA 83
<€ Vl f { gy E L) f ( )

In appendix 2 it is shown that
—E
20T [E /E (kT)? w 3

fo Ee { . _Sﬂgé, } dE:-T{(1+2w)e 12 (5 2 u)——l}; (84)
where T=T, (88)

w=c’kT, (85)
and /" is Kummer’s function [12], also known as
the confluent hypergeometric function.

Accordingly, the expression for 7?
written,

may be

5 (16]0( §(1+(,w)e o <2 o,w) }A_f. (86)

V. Equivalent Temperature of the Con-
ductance Due to Space-Charge

The shunt conductance, g, of the space-charge
within a diode has recently been calculated by
Begovich [13], who finds®

ﬁsz%‘) %(1+~w)e "’F<2 z,w) } (87)

DO o

150 W) 18

D] =

where w is defined above (eq 85) and F (

the confluent hypergeometric function [12].

If the above value of g, and the value of 2
given by eq 86 are substituted in the Nyquist
formula [24],

=4k T, gA f,

where 7'y is the equivalent temperature of the
conductance, it is immediately found that

% The writer is indebted to N. Begovich for a personal communication
amplifying the material contained in reference [13].
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in agreement with the experimental results ob-
tained by Van der Ziel [3].

VI. Summary

1. A general expression for the noise power
spectrum generated by the random emission of
electrons of arbitrary trajectories within a wave-
guide is developed in section I.

A numerical solution of the potential dis-
tribution within a plane diode is effected in sec-
tion II, and a family of curves from which the
potential distribution may be obtained is graphed
in figure 4. A graphical comparison between
several actual potential distributions and their
approximate representation is given in figure 5.

3. The results of sections I and II are utilized
to derive the equivalent mean square fluctuation
current due to the space charge within a diode
for two types of a retarding potential distribu-
tion, namely, the linear distribution, and those
distributions whose slope at the plate is small.

4. Utilizing the results of section III, and a
recently computed value of the conductance due
to the space charge within a diode, the equivalent
noise temperature is shown to be equal to the
cathode temperature.

The author is greatly indebted to K. F. Herzfeld
for his many helpful discussions and generous
guidance during the course of this work. Also,
the writer is extremely grateful to H. Lyons, chief
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of the Microwave Standards Section, National
Bureau of Standards, for his wholehearted coopera-
tion and valuable criticisms.
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VIII. Appendix 1

Let 2,y be generalized coordinates suitable for
describing the guide surface S, and z the usual
cartesian coordinate which is parallel to the axis
of the guide. The normal modes, b; of electric
type for a cylindrical guide are a doubly infinite
set obtained by two independent processes [15,4].

b—~72U <k, (89)
where k is a unit vector in the z-direction, and

where
ViU (xy) +6;U,(xy) =0, (90)

and n-V U;=0 on S, the surface of the guide. n
is normal to S.

b;j=Bjv,(x.y) kFjav;(2y), (91)°

7 The »; should not be confused with the letter » used in section I to represent
velocity.
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where V%,;+ 70,=0, and 2,=0 on S, except for the
TEM case for which g,=0, and
nXvv,=0 on S. (92)
(The B; are, in general, different for the /; and
v;.)
If the U; and »; are normalized, that is,
S Uida= fsrida=1, (93)

where the integral is taken over the transverse
plane S” of the guide, then the following orthogonal
properties may be demonstrated [15,4]:

Jsb;byda=s;, (94)

where §,,=0, for j=h, and §;,=1, for j=h.
Js(b;<Xcurl b)) -kda=0 for all 7 and 4. (95)
The phase constant « corresponding to each b,

is given by
o’ = pew’— 7, (96)

and L;=b; exp (£ jaz) satisfies the vector wave
equation
curl curl L;= uew’L;. (97)

Utilizing the above properties of the normal
modes, the field within a guide excited by an
arbitrary current distribution will be determined
by a method due to Bethe [4].

Using Gauss’ Theorem, if A and D are two
arbitrary vectors,

f [A X curl D—D < curl A] - nda=
Js
fV(D~ VXVXA—A-TXVXD)dr, (98)

where n is the outward drawn normal to S, en-
closing the volume V whose element is dr. If one
lets A=E, the electric field which satisfies

curl curl E— pew’E= —jwud, (99)

where J is the current density, and lets D be a

solution of
VXV XD—uew’ D=0,

then eq 98 becomes

f (EXVXD—DXVXE) -nda:——ujwfVJ-DdT.
S
(100)
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Consider a current element within the guide at
z=2', and take matched loads at the two planes,
z=0 and z=z,. Expanding the field £ in terms
of the normal modes, let

E=>4,b; exp (—ja;2)z>2 }
J
E=30b; exp (+ja,2)z2<2’

Since E is continuous at z=2z’, and since the b,
are orthogonal,

(101)

A; exp (—ja,;z’)=0C; exp (jaz’). (102)

If one substitutes the value of E given by eq 101
in eq 100, and lets D=b, exp(—ja;,z), and inte-
grates the left side of eq 100 over the plane z=0,
one gets

Zoh [b:X VX (b; exp(—ja2))

z2=0
—b;X VX (byexp(+jas2)]- kda,
or,

_hE Ohf[bhx vV X bj—jajbhx (kX bj
g b,-><V>< bh_jahbjx (k>< bh)] -kda.

Because of the orthogonality relation (eq 96),
the above simplifies to

_Zh Ch [—jajfbh- b,-da—ja;,fbj- bhda:20ja]‘j.

The surface integral over the plane z=2z, vanishes,
and one has, from eq 100,

cj:_%’jfv.i. b, exp(—ja2)dr.  (103)

Substituting eq 103 and eq 102 in eq 101, one
finally gets

__72,, G e iiat et Ll

g

(104)
IX. Appendix 2
Let
i
R T S e sma\
I_LE { poak_oin o }dE (104)
{cosx smx% 22( 1)](235)2 “2(j—1) (105)
x @ B FD’
88

which may be verified by performing the square,
expressing the result in trigonometric functions of
2z, and then substituting for each trigonometric
function its corresponding infinite series and
combining.

If we substitute, eq 105 in eq 104, we obtain

G=Dr(+2),

=7y 2 (— 1y Ty UL D

(106)

where we have utilized the formula-for the gamma
function,

v(n)

mx""e’”’”a’x:
0 a

Using the duplication formula [16] for the y-
function,

ST’ ) s
@1=2j =" 1(i+ 1 (i+3)

(107)

eq 106 simplifies to
e /cT)S{ (3)2 ol

(i+3)

From MacRobert’s definition of the confluent
hypergeometric function, it follows that

(— ok T)?

2(i+3)

(108)

(BT

F(a,p’w)—lﬁfﬁ > w"y(a+mn)

v(a) &y (n+1)y(p+n) (109)

Accordingly, eq A 109 may be written

(lcT) { ( . w>+F<1g—u>= (110)

where w=g%T

However, since

v(p

F(ip—1,—w)=1-"2 D wrp—w), 1)
£ (’“T)S{(Hz )F< 5 )—1}- (112)
Finally since
F(ayp)w):ewF(p_a,-py—w)y (113)
(’“f>3§(1+2 )-wF( w>} (114)
WasuinaTon, October 6, 1948.
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