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Perforated Cover Plates for Steel Columns: Summary of
Compressive Properties

By Ambrose H. Stang and Martin Greenspan

Eighty-eight steel perforated cover plate columns have been tested in the elastic range.
The experimental axial rigidity under compressive load of the uniformally perforated lengths

has been compared with theoretical values.

The agreement in general was very good.

The distribution of stress on the edge of the perforation of these columns was also meas-

ured.

pared with theoretical values obtained for a single hole in a large plate.

The maximum values of stress concentration found experimentally have been com-

These experimental

values also in general agreed with the theoretical values.

The values of the average stress on the net area for the compressive tests to destruction

of 28 perforated plate columns were in nearly all cases greater than the maximum stress at

failure for columns of the same size having solid plates.

I. Introduction

This paper summarizes the results of compres-
sive tests of steel colums having perforated cover
plates. Tests have been made of perforated
plate columns with perforations of the following
shapes: Circular, ovaloid with the load parallel
to the long axis, ovaloid with the load parallel
to the short axis, elliptical with the load parallel
to the major axis, “square” with the load parallel
to two sides, and “square’” with the load parallel
to a diagonal.

In this paper, the ovaloid perforations were
those having the shape of a square with a semi-
circle erected on two opposite sides; the “square”
perforations were squares with rounded corners,
the radius of the fillets being about 0.086 times
the length of the side of the square. The expres-
sion “perforated plate” is used here for a plate
having a series of similar perforations uniformly
distributed along its length.

Tests in. the elastic range have been made on 88
columns with perforated plates and on 17 columns
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with solid plates. Maximum compressive-load
tests have been made on 28 columns with perfo-
rated plates and on 4 with solid plates.

The Research Paper [1]! containing the original
program outlined the need for the tests and des-
scribed the columns and the testing procedure.
The results of these tests are given in four Re-
search Papers [2]. The results of additional tests
are given in two other Research Papers [3, 4].
The details of the columns have been given in
those Research Papers. The essential data de-
scribing them are given in table 1.

Two papers dealing with the theoretical axial
rigidity of perforated cover plate columns have
been written by Martin Greenspan [5, 6]. He
has also written a paper [7] on the theoretical
stress distribution in a plate with a small hole.
In the present paper the results of the tests in
the elastic range will be compared with the
theoretical values, and the results of the maximum-
load tests will be discussed.

1 Figures in brackets indicate the literature references at the end of this
paper.
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TasrLe 1. Description of columns

[Nominal dimensions: Plate thickness, 3§ in. Perforations equally spaced
about midheight of column]

Col- Perforation i i |
umn .. | Plate
dsie-| Number L par | widt,
na- g Num- Shane Breadth,| Spac- | °© w
tions ber D | b ing, s
COLUMNS 14 FT. 9 IN. LONG; ANGLES 8 BY 4 BY 14 IN.
in. m.
ClA.| 4and 2. 4 | Circle___ 9.00 | 21.0 | Diameter__| 20.0
C1B.| 4 and 2. 4| __do____ 9.00 [ 33.0 [____. do____.| 20.0
C1C_| 4 and 2. 4 |___do.___ R R R 1 R (B do_____ 20.0
C2A_| 4and 2 3 | Ovaloid. 6.75 | 25.5 | Longaxis__.| 15.0
C2B._| 4and 2. 3 |...do__.. 6.75 | 37.5 |--__. do_.___ 15.0
C2C_| 4 and 2. 3|2 2=dol==s 6.75 | 49.5 |_____ do____ 15.0
C3A_| 4and 2. 3 |---do-__. 9.00 | 30.0 |-.__. do____ 20.0
C3B_| 4 and 2. 3 [ (Y ¢ S 9.00 | 42.0 |____. () 20.0
C3C_! 4and 2. SP|EEEdo=an 9.00 | 54.0 |_____ do_____| 20.0
C4A_| 4 and 2. 3 |._.do____ 11.50 | 35.0 |____. do_____| 25.5
C4B_| 4 and 2. 8 |---do____ 11.50 | 47.0 |.--_- do._.__| 25.5
C4C_| 4and 2. 3 [eiidoa2F 11.50 | 9.0 |_.____ do.____| 25.5
C4E_| 2.______ 3| _.do____ 6.50 | 37.0 |_____ do-____| 25.5
C4F_y 2______. 3|...do_ ___ 16.50 | 57.0 |.____ do___ 25.5
(4GRS 3 | Ellipse._ 11.50 | 47.0 | Major axis.| 25.5
C4H | 2.______ 3 | Ovaloid. 11.50 | 29.75 | Short axis__.| 25.5
(871 808 N USRS 3 | Square.__ 11.50 | 35.5 Side________ 25.5
C4J__| 2._____ 3|...do____ 11.67 | 36.0 Diagonal___| 25.5
COLUMNS 10 FT. 0 IN. LONG; ANGLES 6 BY 4 BY 1% IN.

Cé.__| 4._____. 3 | Circle.__ 10.00 | 30.0 Diameter _| 30.0
(O 70 | N4 2 | Ovaloid. 10.00 | 44.0 Long axis___ ‘ 30.0

| |

! |

II. Axial Rigidity

The axial rigidity is described by a factor, K,
defined as the ratio of the axial rigidity of a column
having a perforated plate to the axial rigidity of
an unperforated, but otherwise similar, column.
The axial rigidity factor K is then defined so that
KA, is the rigidity that should be used in place
of EA, in the ordinary formula for computation
of the extension (or shortening) of the member.
Here [ is the modulus and A, the gross area of
the member.

For a column having angles and a perforated
plate, the experimental axial rigidity factor is

_E, (1)

e,
where £, is the effective modulus (based on gross
area) for a perforated cover plate column, and
E’; is the modulus for a solid plate column of the

same gross cross-sectional area and of the same
material.
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The experimental axial rigidity factor K for the
perforated plate by itself may be calculated from
the results of the column test, as shown on p.
680 of reference [1], by the formula

LB, AN Aa
K—E—,s<1+ P) A 2)

where A, is the cross-sectional area of the angles
and A, the gross cross-sectional area of the per-
forated plate.

The theoretical axial rigidity factor K for a
plate or column is given by the equation [5, 6]

1 S L )

K 1*0(71) V, 3)
where
f=a constant depending on the shape of
the perforation and the direction of the
applied load.
1

O(n) o _27;2 (4)

n=A,/(A,—A,), A, being the gross and

A, the net cross-sectional area of the
member (column or plate)
V,=the volume of the perforation
V,=the gross volume of one bay of the
member.
Values of the constant f of eq 3 for various cases
are given in table 2.

TasLe 2. Values of f in equations 3 and 5
il
Perforation Load parallel to—
eq 3 eqd
@irelel s T, Diameter_ . ______ 3.000 4.713
. . " ; 14-2b/a
Ellipse, semiaxes, « and b_____ Major axis, a______ 14(2b/a) | 1.571 ———
bla
D) O e Minor axis, b______ 1+ (2a/b) | 1. 571 lﬂ
alb
Ovaloid. - .. ______ Long axis_ ________ 2.048 7as13
B SN SO P PO 3 Y Short axis. .. ______ 4. 968 4.435
Square_ - ... . Side_. ... 2.989 5. 940
1 B0 Y RNALIE Ba Wl Coe DL, Diagonal ... _____. 3. 596 3. 962

The theoretical axial rigidity factor K for a per-
forated plate of uniform thickness (by itself and
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without angles) may be derived from eq 3 and put Values of the constant f of eq 5 for various cases

o
o
|
o
&)

N .90

§ : 95

in the form. are given in table 2.
1 1= _ (bjw)* (5) Nomographic charts for the solution of eq 5 are
K /s 2—(b/w)? shown in figure 1 for plates having ovaloid per-
where forations, in figure 2 for plates having elliptical
b=perforation width ‘ perforations and in figure 3 for plates having
w="plate width square perforations, for limited ranges of the
s=perforation spacing. ratios b/w and w/s.
b/N K w/5
OO 0.35 =
. 050 o
o5 40 075 =
: - 515 =
] 45 70—
.60 60 =
| 5 50 .65
‘ : 55 i :
55— : i .60—-: .
- .60 ; o
= 65 5 85 —:
i A ke S gt -
45— o 80 S
| | s @"* e - —
| . et | 0B o s "
40— 85 ]
Tt — W —> n — W —> w .45 —
= .80 i
=] _L :
95 — E R i, 2 alN _( ::)__ o & 40—
- pa .85 90 S

)
i

&Y

©

.95

20— 25—
Freure 1. Axial rigidity factor K of a plate of uniform thickness, having equally spaced ovaloid perforations (eq 5).

The K-scale at the left is for plates in which the long axis of the perforation is parallel to the direction of the load; the K-scale at the right for plates in
which the short axis is parallel to the load. Gross area basis.
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K
0.70 — 8— . A L 03—
- 3 03 0.75 — i
.65 — = - 40— O‘ o = i
= s : 704 ]
7 7—_ .45 — 0 |
E 4 503 ET e RO .65 — ]
_— I 553 Sl 0 o
] g 60— @— ot 60— ]
- _ _:_ B L : _
.50 —| . 65— _ _
- ] _ A 55 — ]
7 - .70 3 4 53
- = ] -
— 5_, — - |
+45 — 1 753 N\ 50— O
i I .80 -4 6
. 40— . _ _‘ =]
. - . " .45 =
7 ] 85 1 73
35 ] = ] i S
. i E B l@_:. ?lL 40 — -8—:
- &= 90— _ -
| = | _\/\_ o=
30— = — — N\ 35._— 1.0—
- i i G e 1
. = .95 — = i
25— = 7 oo fw @ 30— -
— | —] B — |
i 5 - b . 1 3
| 3 < | 205
— ~T =
.20_J 0_- - S 25 _| 3,03

3

Ficure 2. Axial rigidity factor K of a plate of wuniform thickness, having equally spaced elliptical perforations (eq

B

Note the key near the lower left corner. Gross area basis.
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FiGure 3. Axial rigidity factor K of a plate of uniform thickness, having equally spaced square perforations (eq 5).

The K-scale at the left is for plates in which two sides of the square are parallel to the direction of the load; the K-scale at the right, for plates in which diag-
onal of the square is parallel to the load.

Perforated Cover Plates 351



TaBrLe 3. Comparison of experimental and theoretical axial rigidity factors, K, for the columns and plates

Axial rigidity factor, K, for column Axial rigidity factor, K, for plate
Number T
Column designation of See NBS Research Paper | Theoret-
angles Experimental | Theoret- Experimental ical (eq
(eq 1) ‘l ical (eq3) (eq 2) 3, 5)
PERFORATIONS, CIRCULAR
Cl1A 2 53 2 ey R e 0.853 0. 857 0. 857 0.846 0.63 0.64 0. 64 0. 66
- e C B S A OZ NI e . 908 .915 911 . 849 .62 .65 .65 .66
C1B 2 S 5 1o (o RTINS LR el . 887 . 887 . S87 . 896 it A ol =70
"""""""""""" 4 SIEL 8 {) PURSIl e M SN s .928 .928 .925 .933 o L D .70 .76
c1c P doitotante il e o .912 BOLD .912 .922 .78 T ST .81
"""""""""""""" 4 NP ¢ T S P o . 942 . 939 942 . 950 .78 .76 LT .81
(€ 4 RPAGAO = se s oS el .922 L0909 | o192 .80 S76R [N .78
PERFORATIONS, OVALOID, LOAD PARALLEL TO LONG AXIS
C2A 2 RPI47d s e i i 0. 866 0. 874 0.877 0.874 0. 60 0.62 0.62 0.67
""""""""""""" 4 SRR O ST S S I R .921 . 928 .928 .921 262 .65 .64 .67
9B D S O e N e .918 .918 .928 .910 <75 .75 .78 .75
"""""""""""""" 4 SR (] S CR A . 946 . 942 . 946 . 945 i .71 .13 .75
020 DI 5 [ R S .931 . 935 . 938 .931 .79 .80 & .81 .80
St it ieb s i i z: S IR OB R . 962 . 952 . 962 . 958 .81 ol .81 .80
C3A 2 RIS S . 847 . 840 .843 . 834 .61 .60 . 60 .65
"""""""""""""" 4 e o o R e . 908 . 905 . 908 et .64 NG2 .64 .65
03B 20 e doSrEtus e . 867 . 867 874 . 876 .67 67 .68 72
R e e e i N R (6 {1 IR e DR e, .918 .918 .918 . 920 .68 .67 .68 2
030 2 S | (s (25 S S RO . 880 877 . 880 . 901 .70 .69 .69 i
S s mrR o nT e st g e (0 BTSN R .918 . 925 .925 . 936 .67 .70 .69 Sl
C4A n R B O e .826 . 826 . 826 .799 .62 .62 .62 .62
""""""""""""" 4 . 888 . 892 . 888 . 862 .61 .63 .61 .62
C4B o et (3 {1 PO R P . 840 .837 837 842 .65 .64 .64 .69
"""""""""""""" 4 Ol e n i L . 895 . 888 . 892 . 893 .64 .62 .63 .69
c40 27 . 864 . 860 . 857 870 iU .69 .69 .74
""""""""""""" 4 te e edona e e . 905 . 902 .902 .913 67 . 66 . 66 .74
C4E____- 2 RPI8GI -1 % S i L .923 L0917 .924 .931 .83 .82 .83 .86
C4F . DA d oSNNI L722 . 726 727 .755 .39 .40 .40 .54
(& AR R B e 4 RP 1540 T NE T R . 906 SIS0 N . 907 .75 Al e e 77
PERFORATIONS, ELLIPTICAL, LOAD PARALLEL TO MAJOR AXIS
(61 ¢ ANNPRIIE NSNS Il 2 R 1R61 SR s S 0.838 0. 836 0.836 0. 861 0.64 0. 64 0. 64 ‘ 0872
PERFORATIONS, OVALOID, LOAD PARALLEL TO SHORT AXIS
(8745 TR SIS R 2 IRH AL S e R T o (ACSIUERE e Se e 0. 848 065 - et e s [ 0.70
PERFORATIONS, SQUARE, LOAD PARALLEL TO SIDE
A TR S S e 2 REI861 - e 0828 PR R A s 0.833 DEGI AT T SR ’ 0. 68
PERFORATIONS, SQUARE, LOAD PARALLEL TO DIAGONAL
(67} e S CE RN e 2 RPI8BITE s e o SR 0SR6oERE ST E TR b g ey I 0. 880 QSO SRS | ‘ 0.75
i i i
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The values of the experimental and the theoreti-
cal axial rigidity factors for the columns and for
the plates are given in table 3. The experimental
values have been plotted against the theoretical
values in figure 4 for the columns and in figure 5
for the plates. In figures 4 and 5 the shape of the
perforation is indicated by the shape of the
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THEORETICAL AXIAL RIGIDITY FACTOR, K

Relation between experimental and theoretical
axial rigidity factors for the columns.

Ficure 4.

Based on gross area.

09

N
@
|
o

|ooo |

Q
p,
BEE
]
| |
l
|
2N |
%
&=
-

EXPERIMENTAL AXIAL RIGIDITY FACTOR, K
AS) AS) < <
o o

|

ol

‘

|

T

|

|
oty
s &

L e

03 PLATE
03 04 05 06 o7 o8 09

THEORETICAL AXIAL RIGIDITY FACTOR, K

Ficure 5. Relation belween experimental and theoreticol
azial rigidity factors for the perforated plates.
Based on gross area
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plotted symbol, and the direction of the load
was parallel to the ordinates.

The experimental and theoretical values of K
for the columns, figure 4 and table 3, differed by
not more than +0.02, except for a few scattered
values. Only one set of data is available for K
less than 0.76.

When the perforated plates are considered, as
shown in figure 5 and table 3, the agreement
between experimental and theoretical values is
also good, although not as good as for the complete
columns. The general tendency is for the experi-
mental values to be less than the theoretical.
The difference is considerable for theoretical values
of K for the plate less than about 0.55. It is
probable that perforations relatively as large as
these (columns C4F, reference [4]) will seldom be
used in practice. The limitations of eq 3 have
been discussed by Greenspan in reference [5, p.
319]. The results of these tests then show that
the axial rigidity factor of columns and ol per-
forated plates can be closely approximated by
calculations according to eq 3 or 5.

III. Stresses on the Edge of the Perforation

Many theoretical studies of the influence of a
perforation on the stresses in a plate loaded, say
in the direction of its length, are based on the
assumption that the plate width is large in com-
parison to the perforation width. Stresses o at a
point near the perforation are then compared with
the uniform stress, S, at a large distance from the
hole, generally by evaluating the ratio ¢/S. In
other similar studies but for a plate having a
finite width and gross area A, subjected to a load
P, it has been found [6, 8] that instead of using
the average stress based on gross area, /A4, for
comparison with values derived from considera-
tion of an infinite plate, the correction factor C(n)
of eq 4 should be used for the stress ratios, as
aC(n)/(P]A,). The value of (On)is unity for an
infinite plate and is always less than one for a
plate or column of finite cross-sectional area.

If experimental stress ratios determined for a
column having a finite cross-sectional area are to
be compared with theoretical values derived for
an infinite plate, the observed stressratioo,,/(£/A,)
should be reduced in value by multiplying it by
the ('(n) correction factor for the column, where o,
is the maximum principal stress and ¢, the mini-
mum principal stress.
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Conversely, if the theoretical stress ratios,
derived for an infinite plate, are to be compared
to experimental values for a column of finite
cross-sectional area, the former values should be
increased by dividing them by the C(n) correction
factor to obtain theoretical value for a column of
finite cross-sectional area, defined by C(n).

The distributions of stresses on the edge of the
middle perforation, averaged for all columns
having perforations of the same shape and loaded
in the same direction, are shown by the solid lines
in figures 6, 7, 8, 9, 10, and 11. These values are
based on gross area. The rectified lengths of one
quadrant of the perforation boundaries were re-
duced to a standard length AC. Before averag-
ing, the experimental stress ratio values were
multiplied by the C(n) value for the column, as
given in table 4.

A
— /
: Vi
ol-4 /7
&+C ///
i 4
7/ /
v
7
///
oV
P ,/
/
£
76
/)
( 4 o
i -2 -/ o +/ 2
dv C (n) Ou C(n)
FlAg PlA,

Ficgure 6. Circular perforations; distribution of stress on
the edge of the perforation.

The solid line is the average of the experimental values multiplied by
C (n) for 19 columns. The dashed line represents the theoretical distribution.
Based on gross area.

The dashed lines of figures 6 to 11 represent the
theoretical stress distribution at the boundary of a
single perforation in an infinite plate, according to
the formulas of reference [7].

As the experimental stress ratios have been
multiplied by the C(n) correction factor, they are
in effect representative of stress ratios in an
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H/Ag an

Ficure 7. Ovaloid perforations; load parallel to long axis;
distribution of stress on the edge of the perforation.

The solid line is the average of the experimental values multiplied by C (n)
for 61 columns. The dashed line represents the theoretical distribution.
Based on gross area.

4
P
0 Nz
y -
O /|
O /
7
J,
!/
/ ]
&
=5 =2 =/ o +/ +2
O Cth) T Clw)
/Ag F/Ag

Ficure 8  Elliptical perforations; load parallelto major azis;
distribution of stress on the edge of the perforaticn.

The solid line shows the experimental values multiplied by C (n) for column
C4G-2. The dashed line represents the theoretical distribution. Based on
gross arca.

Journal of Research



= |
|
& |
&le I
(=) },
|
/
"’/;,//
/7
1
’/
/7~
c
-4 o =2 =] o +1
Ov C(n) T C(n)
AAg FAg

Frcure 9. Ovaloid perforations; load parallel to short axis;
distribution of stress on the edge of the perforation.
The solid line shows the experimental values multiplied by € (n) for column

C4H. The dashed line represents the theoretical distribution. Based on
£ross area.
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Frcure 10. Square perforations; load parallel to two sides;
distribution of stress on the edge of the verforation.

The solid line shows the experimental values multiplied by C (n) for column
(C4I. The dashed line represents the theoretical distribution. Based on

£ross area.
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Frcure 11. Square perforations, load parallel to diagonal;
distribution of stress on the edge of the perforation.

The solid line shows the experimental values multiplied by C(n) for col-
umn C4J. The dashed line represents the theoretical distribution. Based

on gross area.

infinite plate and may be compared with the
theoretical values, the derivation of which was
based on the conditions in an infinite plate.

The agreement between the theoretical and
experimental stress distributions on the edge of the
perforation is good in all cases.

It should be noted that the theoretical stress
distribution was derived by considering a plate
having a single hole, and the observed stress
ratios were obtained for plates having a series of
equally spaced similar perforations.

It was decided to tabulate the values of the
maximum stress for the perforated cover plates
since they are of basic importance for structural
design.  The maximum stress is expressed by a
“maximum stress ratio”, maximum stress/(P/A4,).
Values of maximum stress ratio are given in
references [2, 3, 4] and in table 4 of this paper.
The values based on gross area may be compared
with the theoretical maximum stress ratios to be
evaluated from the equations given in reference
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TABLE 4.

Mazximum stress conceniration in the boundary of the perforation

. . Maximum stress -
Ratio: ST based on gross area
. . Maximum stress
Number Ratio: T e
Column designation of C(n) Theoretical g
angles based on net area of experimentally
Experimentally tested column tested column
Infinite Tested
plate column
PERFORATIONS—CIRCLES
CIACIB CIC -1 4 0.994 3.00 3.02 2.50 1 2.91 3.06 2.22 2.59 2.72
A5 O WS 2 . 984 3.00 3.05 2.77 3.24 3.43 2.28 2.67 2.82
(Gl S i 4 . 992 3.00 3.02 A T S L SRR 2526 ML | S SR TR | S
PERFORATIONS—OVALOIDS, LOAD PARALLEL TO LONG AXIS
G2A R OB 26 S 4 0. 996 1. 96 1.97 2.03 2.20 2.20 1.85 2.01 2.01
1B 10 RES LIRS A~ 2 . 989 1. 96 1.98 2.15 2.43 2.52 1.83 2.07 2.15
C3A,C3B,C3C.__..____ 4 . 994 1. 96 1.97 1.97 2.28 2.39 1.75 2.03 2.13
i Doyt TR AT T 2 . 984 1. 96 1599 2.16 2.37 2. 55 1.78 1.95 2.10
C4A,C4B,C4C_________. 4 .991 1. 96 1.98 1.98 2.27 2.43 1292 1.97 2.11
110 Jo el am i R ) 2 <979 1. 96 2.00 2.24 2.63 2.48 1.78 2.09 1.97
1671 R e S TS 2 . 993 1.96 1297 PECL RO P S P QUOL- o te E Rt DT O e
(67§ R I R 2 . 957 1.96 2.05 20305 Rielcs L E Sl L S § R LI S AN OB Kb ISR D
(7 8 o TN ST S 4 . 992 1. 96 1.98 7 - A (e S Sl [ S ) I el bl PR ST [--m-m e
PERFORATIONS—OVALOIDS, LOAD PARALLEL TO SHORT AXIS
CAE e ST e 2 0.979 3.57 3.65 RIS U B ST s B | LUOTE Ll % o 31 e e e e e M e
PERFORATIONS—ELLIPSES, LOAD PARALLEL TO MAJOR AXIS
EACE "1 & o S 3 E s S e 2 0.979 2.00 2.04 P75 S ot anll GRS o et e Y D 35 VR e e LTS, Pl e R
PERFORATIONS—SQUARES, LOAD PARALLEL TO SIDE
(€71 SRR PN S A 2 0.979 3.28 3.35 RO WS T e Yo e e SH02: i SRS Sy T e s A
PERFORATIONS—SQUARES, LOAD PARALLEL TO DIAGONAL
CAY .o 2 0.978 6. 45 6. 60 OF< ()| SR T e TR 74 3 IR e R ) [ e R
[7]. The theoretical maximum stress ratios are It is also interesting to compare the theoretical

given for the columns in table 4, for both an
infinite plate and for the actual column.

The three experimental maximum stress ratios
given in the same line of table 4 are tor columns
having perforations of the same size but for in-
creasing perforation spacings, as given in table 1.
There seems to be a tendency in many cases for
the experimental maximum stress ratio to increase
as the perforation spacing increases.

The experimental values based on gross area are
in many cases greater than the theoretical maxi-
mum stress ratios for the tested columns.
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maximum stress ratios with the experimental
values that are based on net area, even though
such a comparison runs counter to some of the
assumptions involved in the theoretical deriva-
tions. The values are also given in table 4.
Very few of the experimental maximum stress
ratios based on net area are greater than the
theoretical values for the tested columns. The
spread between the gross and net areas in nearly
all commercial structural columns would be less_
than for these columns that have beea tested. It
would seem then that the theoretical maximum

Journal of Research



stress ratios, determined as described above, can
be safely used for designing perforated plate
columns.

IV. Tests to Failure to Determine Maximum
Compressive Loads

The steel columns subjected to compressive test
to destruction consisted of a plate and two angles
except for columns C6 and C7 [3], which had four
angles. Unfortunately the C6 and C7 column
series did not contain any columns with solid
plates for comparison with the strengths of those
perforated plate columns.

The other columns had cross-sectional shapes
as shown in figure 12. The distance y, from the
the back of the plate to the center of area of the
section, in the perforated portion of a column is
always greater than the similar distance, y,, for
the solid portion of a perforated plate column.
There is therefore a local eccentricity, i,— s, tend-
ing to induce increased compression in the plate
and to make the column fail by bending away
from the plate side during a compressive load test.
Tests of columns of this shape would thus be ex-
pected to give lower compressive strength values
than would tests of columns of the same quality
in which the perforated plates were not eccen-
trically loaded, as would be the case for four
angle columns.

Of the four columns having two angles and a
solid plate, two failed by primary buckling, bend-
ing toward the plate side as would be expected

s

N
N

N

Ficure 12.

Cross sections of columns having two angles.

Top, the section representing a column having a solid plate or a section
through the solid portion of a perforated plate column. Bottom, a section
through the perforation, Eccentricity =v,—s.

Perforated Cover Plates

from the double modulus column theory. The
other two columns began to deflect toward the
plate side but finally failed by secondary buckling
of the plate and deflected away from the plate side.

Of the 24 columns having two angles and a per-
forated plate, 22 failed by bending away from the
plate side as would be expected from the consid-
eration that, in the neighborhood of a perforation,
the gravity axis of the columns is displaced away
from the plate side. The other two columns
showed practically no deflection until the maxi-
mum. load was very nearly reached and then
failed by bending toward the plate side.

The four columns, each having four angles and
a perforated plate, all failed by buckling of the
plates near one of the perforations.

The final failure of all of the columns was
accompanied by local buckling of the outstanding
legs of the angles, and by buckling of the plate
near a perforation for the perforated plate columns
as well as the general bending of the columns as a
whole.

Figure 13 shows the perforated plate column
(C4J in the testing machine for the maximum load
test.

The slenderness ratio for the solid plate columns

ras 70 for column C2, 71 for columns C1 and C3,
and 72.5 for columns (4.

The effective arca factor €' of a perforated plate
is a measure of the effectiveness of the plate with
regard to compressive strength. It can be cal-
culated, as shown on p. 685 of reference [1] by the
formula

Osz_,; S (6)

where P is the total compressive load at failure
for the perforated plate column, oy, is the av-
erage stress obtained by dividing the maximum
compressive load on a similar solid plate column
by the gross cross-sectional area, A, the cross-
sectional area of the angles and A, the cross-
sectional area of the plate. (€ may be taken on a
gross- or on a net-area basis, depending on which
value of A, is used.

When based on net area, the value of ¢ would
be unity if the average compressive stress at fail-
ure for the perforated plate column was equal to
that of a similar column having a solid plate.

Values of the effective area factor, €, for the
two-angle columns are given in table 5.
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Frcure 13.

Column C4J in the testing machine during the
maximum compressive load test.

The effective area factor € based on net area
was for all but three columns greater than unity.
For these C2 columns, the compressive stress at
failure, based on net area, was 32.7 kips/in.? for
C2A; 32.3 kips/in.? for C2B; and 33.3 kips/in.? for
C2C. The compressive stress at failure for the
similar column C2D having a solid plate was 33.8
kips/in®.  The effective area factor €' for columns
of the size tested is evidently very sensitive to
relatively small differences of compressive stress
at failure.

From a consideration of these effects and of the
local eccentricities present in perforated plate
columns having but two angles, it seems that the
net area of perforated steel plates may safely be
used for design purposes. The values of table 5
show this is true for perforations of all of the shapes
tested, even those having relatively great values
of the maximum stress ratios.
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TaBLE 5. Effective area factor, C, with respect to compressive

strength for the columns

[Each column had a perforated plate and two angles]

| 1
| Effective area factor, C |

Column designation e ‘
Based on |

net area

| |
| Based on |
| gross area

(A S O 0.68
B e .68 [
C1C I 4|

PERFORATIONS—OVALOIDS, LOAD PARALLEL TO
LONG AXIS

O o mcm i mmom mim e i e e | 0.47 0.85
44 .79 ;
.52 .93 |
.59 1.06 |
.57 1.03 |
.64 1.16
.62 .12 |
.65 118
.7 1.28
.93 1.25
o] 1.13
.91 1.23
.48 1.35 }
. 52 1.45 |
46 1.31 |

PERFORATIONS—ELLIPTICAL, LOAD PARALLEL TO
MAJOR AXIS

0.76 1.38

.72 1.31 k
|

.75 | 1.36

PERFORATIONS—OVALOID, LOAD PARALLEL TO [
[
|

SHORT AXIS

(67 0: RT RN LI v ) 0. 64 ‘ 1,18

PERFORATIONS—SQUARE, LOAD PARALLEL TO SIDE

i
‘ (07 ) PR 0.73 | 1.33
[ [

; PERFORATIONS—SQUARE, LOAD PARALLEL
1 TO DIAGONAL

0.75 | 1.39

V. Summary and Conclusions

Tests in the elastic range have been made on
88 steel columns with perforated plates and on 17
steel columns with solid plates. Maximum com-
pressive load tests have been made on 28 columns
with perforated plates and on 4 with solid plates.

Theories have been derived dealing with the
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axial rigidity of perforated plate columns and with
the stress distribution in the neighborhood of a
perforation.

Comparisons between the test results and the
theoretical values lead to the conclusions that the
axial rigidity is correctly defined by the theoretical
eq 3 of this paper; and that the distribution of
stress on the boundary of a perforation is ade-
quately expressed by the equations of reference |7].

The results of the maximum compressive-load
tests show that the net area of perforated plate
columns may safely be used for estimating the
strength of columns with perforated cover plates.

The tests of perforated cover plates for steel
columns have been made in cooperation with the
American Institute of Steel Construction, which
furnished the specimens. The program was
prepared by the National Bureau of Standards
and by the Institute’s Committee on Technical
Research, which at the start of the program
consisted of Comfort A. Adams, the late Otis
E. Hovey, H. D. Hussey, Jonathan Jones, the
late J. R. Lambert, the late L. S. Moisseiff,
Walter Weiskopf, and F. H. Frankland, chairman.
The committee was assisted by Shortridge Har-
desty, Frank M. Masters, and Henry C. Tam-

Perforated Cover Plates

men. The work was done in the Engineering
Mechanics Section of the National Bureau of
Standards.

The Institute has expressed no disapproval
because the final tests were delayed for 4 years
because of the Second World War. This for-
bearance has been much appreciated by the
members of the staff to whom this work was
assigned.
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