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Theory and Design of a Cavity Attenuator 
By 1. J. Freeman 

The fields generated by an arbitrary current distribution exciting a piston-type or 
cavity attenuator are developed, and symmetri c distribution s exciting maximum amplitudes 
of the dominant mode and minimum ampli tudes of unwanted modes are investigated. The 
relative error in voltage measuremen t due to spurious modes is computed as a function of 
spacing between exciting and receiving coils for certain simple current dist ribut ions. The 
relative m erits of ci rcular and rectangular attenuator cross sections are discussed. 

I. Introduction 

The cavity attenu ator, also known as a piston 
or mutual inductance type attenu ator, was first 
designed by 'Wheeler, Harnett, and Case [1]1 for 
use in signal generators, and has since found wide 
application. It consists of a hollow tube excited 
below its cut-off frequency and a coil or capa,citor, 
which picks up th e attenu ated field . As the g(m­
era ted electromagnetic fi eld falls off exponentially 
with distance from the exciting source, and as the 
attenuation constant may be computed from the 
dimensions of the tube, the ratio of any two vol t­
ages is r edu ced to a measurement of length. 

Preparatory to the design and constru ction of 
such an attenuator, it was thought advisable to 
investigate the th eory to determine the kind of 
excitation r equired for optimum mode purity, and 
an evaluation of the amplitudes of the unwanted 
modfls, for different types of excitation. A rigorous 
solution of the problem is impossible, but an 
approximate solution that is useful consists in 
determining the field produced by an arbitrary­
current distribution within a waveguide closed at 
both ends. H ere the per turbation of the field by 
the receiving loop is neglected. It may also be 
assumed that th e exciting current distribution is 
maintained by a constant-current generator. 

Thus, given a distribution of current density, 
J (x' , y', z' )e-Jwt , the fi eld produced within a per­
fectly conducting cavity is sought. The scalar 
analogue, where J (x', y' , z' ) Is replaced by p, th e 
charge density, is well known, and has been treated 
elegantly by Sommerfeld [2]. The vector problem 

1 Figures in brackets indicate tbe literature references at the end of this 
paper . 
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is solved analogously, by expansion mto ortho­
gonal vector wave functions , and has been treated 
by H eitler [3], Condon [41, and others. For com­
pleteness, the methocl is outlined below. 

II. Expansion of the Field into Normal 
Vector Functions 

MKS units are used and the fields and source 
are assumed to vary as e-Jwt • Then, according to 
Maxwell's equations [5], one must find a solution 
for 

(1) 

subj ect to the boundary condition that n X E = O 
on the surface S of the cavity, where n is the 
normal on S. E is the electric field , J the impressed 
current density, and lc2= w2p.e . As any vector field 
may be shown to consist of two parts, one of 
zero curl, and the other of zero div ergence, let 
J = J 1+ J 2, where curl J 1= 0, and div. J 2= 0. 
Let E = E1+ E2, where curl EI= O, and div E2= 0. 
Then , if 

(2) 
and if 

E Jwp. J 1= - -p I, (3) 

then E = E I + E2 satisfies eq 1. 
If 1/;" is a solution of y 21/;" + P"1/;,, = 0, and 1/;,, = 0 

on S, the interior surface of the cavity, y1/;"Xn = O 
on S. If the 1/;" are normalized and orthogonal, 

th en L y 1/;" are normalized and orthogonal, because 

fy1/;,, ·y1/;~dT= f (y·[1/;~Y1/;,,] - 1/;~y2 1/;,,) dT= 

k,,2f1/;,, 1/;~dT. 
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Here dr is an element of volume, and the inte­
gration is performed"throughout the volume of 
the cavity. 

Then if we call the normalized LV f a= E a, an 

arbitrary irrotational vector function whose tan­
gential component vanishes on S may be devel­
oped in terms of the Re,. 

Thus, 

where 
lXa= fE I· Eadr 

J 1= L:fJI·EadTEa 
" 

Substituting the above expression for J I in eq 3, 

If one had a complete set of orthogonal vector 
wave functions Ell, and if div EIl=O, and n X EIl=O, 
an arbitrary solenoidal vector, whose tangential 
component vanished on S, in particular E2, could 
be expanded in terms of the Ell' Suppose the Ell 
are solutions of 

eurF EIl-k~EIl=O, 

where n X E{l= O, and div EIl=O. Then it may be 
shown that the Ell are orthogonal to each other, 
and to the Ea. 

Let E2=~eIlEIl' and let J2=~jIlEIl' Then 
j{J - fJ2·E lldT. Substituting the above values for 
E 2 and J 2 in eq 2, 

JW!J. d e~=p_k2 fJ2·EIl r 
B 

E -' "" fJ2 (r')·EIl (r') d ' E (,) 
2-JW!J.iT (k~-k2) T II r 

(5) 

Since the E" are orthogonal to the Ell, and the 
E,,, and Ell are assumed complete for expansions of 
electric fields of zero curl and zero divergence, 
respectively, fJ2,EadT= fJ I ·ElldT = 0. According­
ly, we may drop the subscripts in J I and J 2 in 
eq 4 and 5, and substitute the total current 
density, J . Thus 
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E1 (r)= k~!J. ~fJ(r') .E,,(r')dr'E,,(r) 
(6) 

E ( )-' ""fJ (r')·E~(r')dT' E () 
2 r -JW!J.L.; (k~-k2) II r 

III. Attenuators of Circular Cross Section 

The normal vector modes are now considered 
for the circular cylinder of radius a, and lenglh d, 
where iI, i2 and k are the unit vectors in the direc­
tions of increasing r, () and z. 

Orthogonal vector wave functions have been 
treated by Stratton [6], and the normal vector 
modes are most easily obtained by following his 
treatment, and satisfying the appropriate bound­
ary conditions. For the interior of a circular 
cylinder, 

Here, 

(8) 

and 

k2 k2 2 +(l7r)2 £1= 'nml= A nm d (9) 

J n is the nth order Bessel function. The normal­
izing factor, Fnm is 

(10) 

where 00 = 0, for n~O, and 00=1, for n=O 

The normal vector modes E,3, consist of two 
independent, mutually orthogonal sets, the trans­
verse electric type, which we designate as M il, 
.and the transverse magnetic type, which we 
designate as Ns. 

(11) 
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Here, The normalizing factor is 

(12) and 
2 

(12a)' 

F~," [l l ( . ) • 0 7r. 7rZ cos nfJ 'J" . n - sm nfJ J' . 
- T, - - -. - - SIn - . ,\ 1\ l' 1 - 1\ l' 10 •. a- /\ ., .", - >..~ . ZZ 2 d d 1 smnfJ) n( nm) l+ r ( cosnfJ n( nm) .+ 

c , ,,,, A2 +-~.J1 +0' 
nm d~ 0 

, l7rZ (COS no) ] A nm cos d J nC Anmr ) sin nfJ k . (13) 

When no ambiguity r esults, the subscripts l , m, 
n are omitted and Anm , is written , for instance, as 
>... The even, odd designations (~), are also 
omitted and one writes m~ as m , the even, odd 
designation being implied. 

Su bstituting eq 11 and 13 in eq 6, 

E - ' "" f J (r') .Mo(r' )dr 'Mo(r,+ 
2-JWJJ.~ 

n,m,t 02+C;)2_ k2 

jWJJ.:B f J (r ' ).No(r')dr'No(r). 

n.m,l · A2+( ~) 2_p (14) 

Call the first summation A, the second B, so 
tha t 

A . l7r z 
Let Mo = nmm~m SUl d 

nml Q 

where 

m' =!!: ( -sin nfJ) J (or) i _(C?S nfJ) oJ' (or) i 
~'" r cos nfJ n I SIn nfJ n 2 

Then 

In appendix I, it is shown that 

where 'Ynm= -vv~m- ki 
(i2 
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Substituting the above in eq 15, a.nd substituting 
the value of A nm given in eq 12a. 

. f J (r' ).m (r ' )m (r) sinh 'Yz'dr' 
Let 

• [ J '( )(cos no) . + nnm= - Anm n AT . ° I I o sin n 

( sin nfJ) '!!:.J (Ar)i ] 
-cos n fJ r n 2 

(17) 

and 

p~m=(C?S nfJ)' I n( Ar) k 
o SUl n fJ 

(I8) 

Substituting eq 17 and eq 18 in the second sum 
of eql14, we get 

l (l7r)2 . l7r z/ . l7r z 
., d SUl T SUl d 

n (l'/ ) n (r)~( l2 2) ( [2 2\ + 
l - J \ 2+~ A2_k2+~) 

1\ d2 d2 

dr' (19) 
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Similarly, if eq 17, 18, and 7 are subs ti tu ted in 
Bq 6, 

(20) 

With a little manipulation, El and B may be 
combined to give 

l7rZ' hz } cos7coS(j 
2 2 dT' (A2 _ k2+l;) (1 + oJ) 

(21) 

Thus the contribution to the field from El is 
exactly equal and opposite to part of the contri­
bution arising from B, so that the total field may 
now be divided into two parts (1 ) a transverse 
electric field, ETE , which corresponds at low fre­
quencies to inductive coupling, and (2) a transverse 
magnetic field, ETM, which corresponds at low 
frequencies to capacitative conpling. Thus 

ETE= A, 

ETM = E1+ B, and 

ETota t= ETE+ ETM ' 

The various infinite sums are evaluated in appendix 
I and II. When the values of these summations 
are substituted in eq 15 and eq~21 , we get for z> z', 

[nnm(r' )nnm (rh nm sinh 71omZ' - "~mPnm (r' )nnm (r) cosh 71nmz'] dT' + (1 + e - 2~nm (d-,)) f J (r' )· 

[ 2 ( ' ) ( ) • h " 4 ( ' ) ( ) cosh 71nmZ'ld 'J Anmnnm r P r SIn 71nmZ - "nmPnm r P r -- T , 
71nm (23) 

The field for z<z' is obtained by interchanging 
z and z' in eq 22 and 23. 

It is noticed first that the various modes are either 
in phase or 180 degrees out of phase, which is, of 
course necessary, since we have neither resistive 
nor radiation losses . Also, the field does not de­
crease exponentially with z, but contains a factor, 
(1 ± e-2-y (d-z» ) which is insignificant at small values 
of attentuation, but becomes appreciable as the 

receiving loop approaches the end of the cavity . 
If the attenuator were used in this way, its calibra­
tion in decibels would noL be linear with variation 
of z. This nonlinearity can be avoided if the 
attenuator is constructed as illustrated in figure 1. 
The exciting loop is fixed relative to a fixed end 
of the cavity, and the receiving loop is fixed to the 
other end which may slide within the cavity, vary­
ing its length, so that d- z is a constant. Since 

1 
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I • 

FIGU RE I .- Schematic drawing of attenuator. 

e- 21'd«1, the denominator is independ en t of d 
and the ratio of E TE for a given mode, for two 
positions of the receiving loop, Z1 and Z2, is 
e-1'(ZI- Z2>, and the nonlinearity is eliminated. 

In general, an infinite numb er of modes are 
excited, so that the best one can do to insure purity 
of mode is to use symmetry of excitation which 
will not excite those unwanted modes with the 
lowest attenuation factor, and to use large enough 
values of z, such that the umvanted mod es are 
sufficiently atten tuated. For 10* enough fre­
quency, 
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The first few values of Vnm and U nm are as follow 

U01 = 2.405 Vll = 1.841 
ull = 3.832 v21= 3.05 
uzI= 5.136 vo I = 3.832 
uoz= 5.520 VI2= 5.33 
·u1z= 7.0 16 v2o= 7 .016 

From the above valu es of U nm and Vnm it is at 
once apparent that maximum purity of mod e can 
be achieved by exciting the TEll mod e, and elim­
inating th e TEoI , TE2l , and TAiol modes through 
symmetry considerations. 

Consid er the exciting curren t distribution in a 
plane perpendi cular to the axis of the cylinder , 
figure 2. Assume that corresponding to every 

y 

x 

F IGU R E 2.- Curl'enl distribution in plane perpendicular to 
a:Lis of cylinder. 

current element,J I (ro, e, a ), wh ere ro is the distance 
of the element from the axis of th e cylind er , 8 is 
the angular displacement of its position vector 
with respect to the x-axis, and a is the angle 
betw een J , and the x-axis, there exist corresponding 
current elements, 

J 2 (rO, 7r - 8, - a), J3 (ro, 7r + 8, a ), J4 (ro, 27r - 8, -a). 

Then, it immediately follows that 

fJ·n~mdT=fJ ·m~mdT= O for n even. 
o 0 
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Further, if corresponding to a POSItIve z-com­
ponent of current at (ro, 27r - 1J) and (ro , IJ ), there 
exist eq ual negative z-components of current at 
(ro, 7r - IJ ) and (ro , 7r + IJ ), then JJ'P~mdT= O, for n 

even . 
In general, if the exciting current symmetry is 

such that the distribution for x< O is the negative 
mirror image of that for x> O, and if the distribu­
tion for y< O is the positive mirror image of that 
for y > 0, th en only those modes will be excited 
for which n is odd. 

A convenient index of attenuator performance is 
t he percentage error made in a measurement of 
voltage as a function of the distance between 
exciting and receiving coils. The computed value 
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FIGURE 4.-Schematic of exciting and receiving loops in 
circular guide . 

a, Unsymmetric loop; b, symmetric loop. 

of this error at 500 megacycles per second is shown 
by curves a and b in figure 3 for a.n attentuator 
with symmetrical and unsymmetrical receiving 
and exciting loops (fig. 4) . Figure 3 shows that a 
symmetrical exciting source permits a considerable 
decrease in the insertion loss for a given accuracy 
tolerance, over that of an unsymmetrically excited 
attenuator . 

IV. Attenuators of Rectangular Cross 
Section 

.00 
1.5 2 3 4 6 7 

Z IN CENTIMETERS Attenuators of rectangular cross section may 
FIGURE 3.-Relative error in measurement of voltage due to be trea ted similarly to those of circular C1"OSS-

the presence of unwanted modes. section. For a rectangular cavity, whose x, y , Z, 

a, Unsymmetric source in circular guide (fig. 5b); b, symmetric SOillce in dimensions are a, b, c, wi th the origin of coordinates 
circular guid e (fi g. 5a); c, symmetric source in rectaugular ~uide (fi g. Ga); taken at a corner, the normalized vector wave 
d, symmetric source in rectangular guide chosen to eliminate TE" modes 
{fig.6b). function of zero curl is 

~ 8 1 [ L l7rx. m7ry . n7rZ .+m . 17rx m7ry . n 7r z .+ 
E I mn = - b- ~l~ " 2 2 - cos - SIn - b- sm - - I -b sm - cos - b- sm -- J ac - m n a a cae 

~+V+C2 . 

~ sin l7rx sin m7ry cos n7rZ kJ 
cab c 

(24) 
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The two independent normalized vector wave Junctions of zero divergence are 

/8 l ' r m. m7ry l7rx . l. l71"x m71"y .l · n71"Z 
M I17",= -y abc / l2 m2 L-bsm - b- COSa l+asm a COS - b- J JS1n - c- ' 

" a2+ b2 (25) 
and 

in l71"x . m71"y . n71"z . 
- ac cos a sm - b- sm -c I 

mn . l71"X m71"y . n7rz . 
- bc sm a cos - b- sin - c- J 

+(12 +m2) . l71"X . m7ry n71"Z k Gl 7T sm a sm - b- cos - c-

Again, when we solve for the field excited by a distribu tion of current, J (r' ), part of the field 
developed into N 1mn functions exactly cancels that part of the field whose curl is zero , so that the 
resultant field, E, may be expressed as the sum of transverse electric and transverse magnetic 
components . 

h E _ 4jwllfJ ( 1).""Plm (r ' )Plm (r) sinh 7J Z1 [ e-~Z (1- -2 (C-Z») ] d 1 
a /m +m e wore TE - b r L...; (l2 2) 1- 2~c e ~ T 

7Jl m a2 7T 

r _ - 4j fJ ( ' ) "" e-~Z [ {s (rl )s(r)rJ sinh 7J Z1+ Q (. ') S() 1 '} (1 -2 (C -Z») 
w~a 1m -e ~ _+ m 1:.T.II -- - b- r ·L...; -1 - C (l2 2) 71" r r COS//' 7J Z -e ~ -

a2 b2 

P [ m. m71"y l71"x .+ t . l71"X m71"y 'J ~(71"l)2 (71"m)2 k2 I = - -- sin -- COS -- I - sm - cos -- J 7J I = - + - -
m b b a a a b ,m a b 

S [ l l71"x . m71"y. + m . l71"x m71"Y'J Q . l71"x . m7ry k 
lm = a cos a sm - b- 1 b sm a cos - b- J , Im=Sln a sin - b- , 

r' and r refer respectively to the position coordi­
nates of J , and the point at which the field is 
evaluated . 

It will be noticed that E TE and E TM have the 
same value of attentuation constant, for the same 
mode numbers , l , m. 

Also , in line with our previous discussion, we 
shall assume that the receiving coil is rigidly 
fixed to the movable end of the cavity, so that 
the factor (1 ±e-2~(C-z») is cancelled out in the 
measurement of the ratio of any two voltages. 
The magnitude of the error introduced by the 
factor ( l -e-2~C) is such, that if the smallest 
value of c used is always greater than 1.5 times the 
larger dimension of cross section, the factor will 
introduce an error of less than 1 part in 10,000 
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for the TEoI mode, and less for higher modes. 
One advantage of an attenuator tube with rec­

tangular cro s section over that with circular cross 
section is that for the former, there is no need to 
discriminate between TE and TM type modes, 
for the sam e index numbers, l , m, since for given 
values of land m, the voltage induced in the 

/7r2l2 1r2m2 

collecting coil will vary as e - -v "+b2-k2 
Z for TM 

and TE type modes, alike. Of course, for tubes 
of circular cross section this is not true, except 
for cases of accidental degeneracy. 

Furthermore, for tubes of rectangular cross 
section, it is possible to secure greater suppression 
of unwanted modes by a suitable choice of ratio 
of the two dimensions of cross section. The follow­
ing table enumerates the ratios of attenuation 
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constants for various modes to that of the lowest 
mode, for various ratios of rectangular cross sec­
tion dimensions and for circular cross section. 

It becomes apparrnt that the optimum prac­
tical ratio in the above table is bja= 3, and that 
this choice allows the unwanted modes to decay 
much fastrr than for circular cross srction. 

TABLE 1.- Ratio of attenuation constani of higher modes to 
that of the dominant mode 

Rectangular waveguide Circu]a.r waveguide 

-------------- - - ---- --- - ---

b b 
Q= /Y a= 0.9b a=- Q= -

2 ~ 

TEOI ______ -_ ... . J I T Ell 
TE02 ___ __ ._ .• -- - 2 I. 31 TMC! 
TEO! ----- --- --- .. 3 :1 I. 66 TE21 
1'1':10 __ _ . _______ _ 1.1 ., 2.08 TEol, 7'1>1" 
TE2C ___ _______ __ _ 2.2 6 2. 79 TM21 
TEll t 

TM lI ______ 1. 41 1.5 2. 2 3 1 2. gO 7'E" 
TE21, T J.'vl21 .. _ .. - 2.2 Z. <I 4 J 6. J 3.0 TM"2 

If the exciting current distribution is chosen , so 
that to each element of current corresponds its 
negative mirror image with respect to the plane 

x=%, and its positive mirror image with respect 

to th e plane y=~, then it is easily seen that 

f J (r')' P lm dT') 

f J (r' )·S lm dT' = 0, for l odd or m even. 

f J (r ' ) ·Q lmdT' j 

The advantages of employing this type of sym­
metrical source distribution becomes apparent 
when we consult table 1, and recognize that it 
eliminates four out of the first six spmious modes. 

Another advantage of rectangular attenuators 
over those of circular cross section is the ease with 
which cmrent distributions of slightly higher sym­
metry may be used to eliminate further spurious 
modes, by placing the current elements at the 
nodal points of the undesired modes. The relative 
voltage error for a rectangular attenuator with a 
simple symmetric loop source, and a double loop 
somce, (fig. 5) whose position is so chosen tha~ 
modes for which m = 3 are not excited, is graphed 
in figure 3. 
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FIGURE 5.-Schematic of exciting and receiving loo ps in 
rectangular guide. 

a, Symmetric loop ; b, symmetric double loop placed at nod es so that no 
modes are exciteJ , for which m= 3. 

V. Conclusion 

I t may be concluded, in general, that attenuators 
of rectangular cross section have two advantages 
over those of circular cross section: 

1. Greater symmetry with respect to the dom­
inant mode in the rectangular guide permit one to 
eliminate more spurious modes ; 2. a slight depar­
ture from symmetry in the rectangular guide is not 
so serious as in the circular guide , as the spurious 
modes decay more rapidly in the former. 

The author expresses his thanks to Dr. Harold 
Lyons for his interest and helpful discussions 
during the course of this investigation. 
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VII. Appendix I 

. 17rz' . 17rz 
'" 8111 d Slll d 

Let 81 = :L:: 127r2 

. 17rz' . l"z 
d2 '" Slll d SIll d 
2 :L:: d2 2 

1=1 'Y2+(i2 7r 1= 1 ---.l+12 
7r2 

d'Y 2. Let - = {J . 
7r 

7r (Z - z') 
4. Where "'=--d--' "" 

7r(Z+ z' ) 
d 

eiaz 
5. Consider f ez) ({J2+ z2) (e2r ;' - 1) ' 

let z = R (cos O+ j sin 0). 

Then lim I Zf(z) I = 0, and lim zJ(z) = 0, provided 
R~", R~ '" 

0 ::;",::;27r. 

Then, [7] t he lin e integra l of f ez) around an infini te circle 
enclos ing t he complex plane vanishes. 

6 lim ! f (z)dz= O. 
R~"' Y 
Sincef(z) has poles a t ±j{J, 0, ± 1, ± 2 . . ... 
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On substituting eq 8 in eq 3, with a li ttle algebra lYe get 
immediately, 

VIII. Appendix II 

1,,- 17rz'. 17rz 
'" d cos d sm d 

3. Let 83= :L:: (l7l")2 ' 
1=1 ,.2+ .d 

(h)2 h z 17l" z' 
'" d cos d cos d 

5. Let S4 =:L:: (171")2 ' 
o 1'2 + .. d 

WAS HIN GTON, September 23, 1946. 
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