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Theory and Design of a Cavity Attenuator

By J. ]. Freeman

The fields generated by an arbitrary current distribution exciting a piston-type or
cavity attenuator are developed, and symmetric distributions exciting maximum amplitudes
of the dominant mode and minimum amplitudes of unwanted modes are investigated. The
relative error in voltage measurement due to spurious modes is computed as a function of
spacing between exciting and receiving coils for certain simple current distributions. The
relative merits of circular and rectangular attenuator cross sections are discussed.

I. Introduction

The cavity attenuator, also known as a piston
or mutual inductance type attenuator, was first
designed by Wheeler, Harnett, and Case [1]! for
use in signal generators, and has since found wide
application. It consists of a hollow tube excited
below its cut-off frequency and a coil or capacitor,
which picks up the attenuated field. As the gen-
erated electromagnetic field falls off exponentially
with distance from the exciting source, and as the
attenuation constant may be computed from the
dimensions of the tube, the ratio of any two volt-
ages 1s reduced to a measurement of length.

Preparatory to the design and construction of
such an attenuator, it was thought advisable to
investigate the theory to determine the kind of
excitation required for optimum mode purity, and
an evaluation of the amplitudes of the unwanted
modes, for different types of excitaticn. A rigorous
solution of the problem is impossible, but an
approximate solution that is useful consists in
determining the field produced by an arbitrary-
current distribution within a waveguide closed at
both ends. Here the perturbation of the field by
the receiving loop is neglected. It may also be
assumed that the exciting current distribution is
maintained by a constant-current generator.

Thus, given a distribution of current density,
J@', v, 2)e 7 the field produced within a per-
fectly conducting cavity is sought. The scalar
analogue, where J(2/, y’, 2’) is replaced by p, the
charge density, is well known, and has been treated
elegantly by Sommerfeld [2]. The vector problem

1 Figures in brackets indicate the literature references at the end of this
paper.
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is solved analogously, by expansion mto ortho-
gonal vector wave functions, and has been treated
by Heitler [3], Condon [4], and others. For com-
pleteness, the method is outlined below.

II. Expansion of the Field into Normal
Vector Functions

MKS units are used and the fields and source
are assumed to vary as ¢%* Then, according to
Maxwell’s equations [5], one must find a solution
for

VXV XE—E=juwu, (1)

subject to the boundary condition that n>}XE=0
on the surface S of the cavity, where n is the
normal on S. E is the electric field, J the impressed
current density, and k*=w’ue. As any vector field
may be shown to consist of two parts, one of
zero curl, and the other of zero divergence, let
J=1J,+1J;, where curl J;=0, and div. J,=0.
Let E=E,;+E,, where curl E;=0, and div E,=0.
Then, if

curl’ E,—kPE;—jwud, (2)
and if
E1: "“];:z#Jl, (‘3)

then E=E,+E, satisfies eq 1.

If Y. is a solution of v2¢,+k*.¢.=0, and ¢,=0
on S, the interior surface of the cavity, v¢.Xn=0
on S. If the ¢, are normalized and orthogonal,

then kLV Y. are normalized and orthogonal, because

SV V¥sdr= J (V-[¥sV¥a] — $5V¥a)dr=
k‘ffxﬁatﬁﬁdr.
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Here dr is an element of volume, and the inte-
gration is performed throughout the volume of
the cavity.

Then if we call the normalized %‘Vl//a:Ea, an

arbitrary irrotational vector function whose tan-
gential component vanishes on S may be devel-
oped in terms of the E,.

Thus,
Ex :ZaaEa,

where

aa:fEl'EadT
Jl :Z‘/‘Jl'EadTEa

Substituting the above expression for J; in eq 3,
E()=—1 S0 B ED. @

If one had a complete set of orthogonal vector
wave functions Eg, and if div Es=0, and n X E;=0,
an arbitrary solenoidal vector, whose tangential
component vanished on S, in particular E,, could
be expanded in terms of the Es. Suppose the E;g
are solutions of

curl? Eg—- k2E3= 0

where n XE;=0, and div Ez=0. Then it may be
shown that the Eg are orthogonal to each other,
and to the E,.

Let E,=Z¢Es;, and let J,=Z2j3E;.  Then
Js=J 3> Egdr. Substituting the above values for
E; and J; in eq 2,

]“’“ s S 3 Bydr
(5)

B—jou3 LRG0 armye)

Since the E, are orthogonal to the Egz and the
E. and E; are assumed complete for expansions of
electric fields of zero curl and zero divergence,
respectively, S JyE.dr= fJ-Esdr=0. According-
ly, we may drop the subscripts in J; and J, in
eq 4 and 5, and substitute the total current
density, J. Thus

—sin nf
cos nf

Mni i Menml e Aim [%(

236

) Jn (6n mr)il T 671 mJy: (611, mr)( =

E,(r)_Ji“ SO SIG)Ea () dr Ea(r)

(6)
r')-Es(r)dr’

(kz—k*)

By () —jans L L E:(r)

III. Attenuators of Circular Cross Section

The normal vector modes are now considered
for the circular cylinder of radius @, and length d,
where iy, i, and k are the unit vectors in the direc-
tions of increasing r, 6 and z.

Orthogonal vector wave functions have been
treated by Stratton [6], and the normal vector
modes are most easily obtained by following his
treatment, and satisfying the appropriate bound-
ary conditions. For the interior of a circular
cylinder,

ok
Eo=E =—--°

b Pr?
: \/ nm+ d2

Ume;(xmr)("-"s d) T

sin nf
(i ot
((Szlons :g)Jn(k,,mr)l—g cos l%zk] e
Here,
Mm=u—;’5’: where J,, (Upn,) =0 (8)
and
e=ktu=n+(5) )

o, is the nth order Bessel function. The normal-
izing factor, ', is

R T 95”) 1 10
o S P e LD

where 6;=0, for n0, and §;=1, for n=0

The normal vector modes Ez, consist of two
independent, mutually orthogonal sets, the trans-
verse electric type, which we designate as Mg,
and the transverse magnetic type, which we
designate as Ng.
cos nf\.
L,

(11)
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Here, o — Ud'””, J, Wpm) =0
2
and Hmzﬁf+(%ﬁ) (12)
g ; l1r .
‘-B:A"r]m:)\ B ——
o \/ xim+ d? m
A%, COS -

When no ambiguity results, the subscripts /, m,
n are omitted and X\,,, is written, for instance, as
N.  The even, odd designations (¢), are also
omitted and one writes m;, as m, the even, odd
designation being implied.

Substituting eq 11 and 13 in eq 6,

Eieruud JIC@).M(r")dr' My (r,+

n,m,l 6z+(17r> ,(2

jon3s SIC ') Na( ')dT'Ns(r)

TGO

Call the first summation A, the second B, so
that ;

. Awz
Let Mf) IZA"”Lm;m SIn ’T
1 o

nm

where
—sin nf . s nb , q
m; =;—’< . zo) J,L(Br)ll—<§i0r: ?w) 5. (5r)is
Then
l7r2' l1r2
o SIN —— sin ——
~quEAnm./' J').m(r ')m(')Z i
G
(15)
In appendix I, it is shown that
sin 77 sin 5
d (17517_81:
2
et ()
i ,f1—e v\
5 sinh yz klﬁ_ﬁT)e "
Wh(‘lb Yom ™ \/Dum
(12
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The normalizing factor is

()
A= TR Vo) (120)
cos nf , . . n/—sin nb .
(o) Mmoot 2 (73R g Oy +
T hun) (G 1) K | (13)

Substituting the above in eq 15, and substituting
the value of A4,,, given in eq 12a.

1 _e-Qy (@d@-z2)
2e¢~72 (17__6:2,;;*)

A=jon 2y o T By (1O

SI0) m@)m(r) sinh vyz'd7’
LC'L
mim =] —Mun s O (S5 20 ) 1+
‘sin nf
(im0 i | a7)
and
e (cosnf)
p;"' (sm na)Jn()‘r)k (18)

Substituting eq 17 and eq 18 in the second sum
of eqjl4, we get

F‘.m
B=jou s/ I’ Z :
(lw) lrz’ l1r2
sin - 'fsm T
n(»")n( r)E lz 5 lzr‘\+
e >(” )

d Sin d cos d
ll 2 +
) (')

l1r [1rz . /7r2
cos - sin ——

Np(r’ )n(r <>\2+l-2 2) ()\2 Icz—l—lz 2)

Np(r')p(r)

Nn(r ')p(r)2<

Iz’ l7r.2

cos *COS
AT () (o 5)

dr  (19)
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Similarly, if eq 17, 18, and 7 are substituted in
eq 6,

E=—"0 /10 2P

sin bre/ sin iz
¥ E T T ’
n(r )H(T)IZ—ZW—H(T p(r)
=i 5 T
N
L sin bret cos brz
®.d d v ,
; [ —p@’)n(r)
= e
d2
l—1r cos l_15§’ sin ll%
17) d d ,
Z B2 +p@”)p(r)
(=1 )\2_{___(11
2
Px? e Inz’ o lmz
L] fZ SDVETSE e
- : @l (20)

12=5
=1 )\2+%

With a little manipulation, E; and B may be
combined to give

E1+B=g; f 3

Ir . lez' _ lnz

P di S1n T coSs 7
n(r")p(r)>] 2 +
=0 xg_kz_*__dj
Ir w2’ . lxz
a f -COB T Sin 7
p(’)n(r)>] PED. o
S R TRt

pep0) 35 (117

COS d CcOS d

T dr’ (21)
(—k+75) (1+40)
Thus the contribution to the field from E; is
exactly equal and opposite to part of the contri-
bution arising from B, so that the total field may
now be divided into two parts (1) a transverse
electric field, E;zz which corresponds at low fre-
quencies to inductive coupling, and (2) a transverse
magnetic field, Ezy, which corresponds at low
frequencies to capacitative coupling. Thus

ETE:A)
ETM: E1+B, and
ETolal:ETE+ ETM-

. w2’ . lwz
(")n( )k2 —\ i e e The various infinite sums are evaluated in appendix
e A P~ N _*_@212 + I and II. When the values of these summations
d? aresubstituted in eq 15 and eq 21, we get for z > z’,
L nw 22 23_7nmz(1_e_27nm(d_2)) ’ ¢ ’ 8 o !+
Ers=A=jon 2 T 45 i W) T Gum vam L= ) o 37V (P2 (0) sink mp’d] - (22)
L s (2—85) e "un® o /
ETM_E1+B— we'r;]mX;l ’ﬂ'usznz—l(’U,nm)(l—e_hnmd) (1 . ﬂnm 3 )fJ (r )
[ () B (€) e SIDA 1y m2” — NonPrm (P ) B () COSh 1y m2"]d 7" + (146721, 472) S (') -
. ’ i T / cosh 1,2,
[knmnnm(r )P(r) sink 7,,2" — NP (r") p(7) e ]dr ]: 23)

where 7, =+ \2,,—k?

The field for z< 2z’ is obtained by interchanging
z and 2’ in eq 22 and 23.

Itisnoticed first that the various modes are either
in phase or 180 degrees out of phase, which is, of
course necessary, since we have neither resistive
nor radiation losses. Also, the field does not de-
crease exponentially with z, but contains a factor,
(I+£e*@=2) which is insignificant at small values
of attentuation, but becomes appreciable as the
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receiving loop approaches the end of the cavity.
If the attenuator were used in this way, its calibra-
tion in decibels would not be linear with variation
of z. This nonlinearity can be avoided if the
attenuator is constructed as illustrated in figure 1.
The exciting loop is fixed relative to a fixed end
of the cavity, and the receiving loop is fixed to the
other end which may slide within the cavity, vary-
ing its length, so that d—z is a constant. Since
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Ficure 1.—Schematic drawing of attenuator.

e i<, the denominator is independent of d
and the ratio of K for a given mode, for two
positions of the receiving loop, z; and z, is
e @72 and the nonlinearity is eliminated.

In general, an infinite number of modes are
excited, so that the best one can do to insure purity
of mode is to use symmetry of excitation which
will not excite those unwanted modes with the
lowest attenuation factor, and to use large enough
values of z, such that the unwanted modes are
sufficiently attentuated. For low enough fre-
quency,

\/L”‘_ILZNLM; Where J (lnm) 0)
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u2

nm

Nnm=— ‘\ (L“ “I“)E

U nm

= where J, (u,,,) =0

The first few values of »,,, and u,,, are as follows :

U =2.405 v1=1.841
u11:3.832 7,21;‘; 05
u_)1:5136 01—3 832
UO2:5520 7)1-3:{).33
'U12:7.016 ’1)20:7.016

From the above values of u,, and »,, it is at
once apparent that maximum purity of mode can
be achieved by exciting the 7FE;; mode, and elim-
inating the 7Ey,, TE,, and TM, modes through
symmetry considerations.

Consider the exciting current distribution in a
plane perpendicular to the axis of the cylinder,
figure 2. Assume that corresponding to every

F16ure 2.—Current distribution in plane perpendicular to
aais of cylinder.

current element, J, (70,6, «), where 7, is the distance
of the element from the axis of the cylinder, 6 is
the angular displacement of its position vector
with respect to the z-axis, and « is the angle
between J, and the z-axis, there exist corresponding
current elements,

Jo(ro, 7—0, —a), I3(ry, 746, @), Jy(ry, 27—0, —a).
Then, it immediately follows that

JSIn, dr= I m:, dr=0 for n even.
0 0
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Further, if corresponding to a positive z-com-
ponent of current at (ry, 2r—0) and (r,, 6), there
exist equal negative z-components of current at
(ro, m—0) and (ry, 7+86), then S J.p:,.dr=0, for n
even. 3

In general, if the exciting current symmetry is
such that the distribution for <0 is the negative
mirror image of that for >0, and if the distribu-
tion for y<0 is the positive mirror image of that
for >0, then only those modes will be excited
for which 7 is odd.

A convenient index of attenuator performance is
the percentage error made in a measurement of
voltage as a function of the distance between
exciting and receiving coils. The computed value

VOLTAGE ATTENUATION IN DECIBELS

T

1LY 'h
\
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2\

e [l | e\
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- EE =

.oo|5 d; 3\54— > 6 \7

Z IN CENTIMETERS

Ficure 3.—Relative error in measurement of voltage due to
the presence of unwanted modes.

a, Unsymmetric source in circular guide (fig. 5b); b, symmetric source in
circular guide (fig. 5a); ¢, symmetric source in rectangular guide (fig. 6a);
d, symmetric source in rectangular guide chosen to eliminate 7'E; modes
(fig. 6b).
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Ficure 4.—Schematic of exciting and receiving loops in
circular guide.

a, Unsymmetric loop; b, symmetric loop.

of this error at 500 megacycles per second is shown
by curves a and b in figure 3 for an attentuator
with symmetrical and unsymmetrical receiving
and exciting loops (fig. 4). Figure 3 shows that a
symmetrical exciting source permits a considerable
decrease in the insertion loss for a given accuracy
tolerance, over that of an unsymmetrically excited
attenuator.

IV. Attenuators of Rectangular Cross
Section

Attenuators of rectangular cross section may
be treated similarly to those of circular cross-
section. For a rectangular cavity, whose z, 7, 2,
dimensions are a, b, ¢, with the origin of coordinates
taken at a corner, the normalized vector wave
function of zero curl is

nwz

L ]+

b

l+ sin

Iz
e B
a

(24)
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The two independent normalized vector wave functions of zero divergence are

8 l— m . mwy l
Mlmu: (lbc ll b SN —3— €O
3|

and

mwy .

l . nwz
1+ sin— cos ——~ 3 J Isin e’

In lzz . mmy nwz
—— oS —- sin —~ sin — i
ac a b ¢

mn . lwrx Y nwz .

R -1
Nlmn—\/&bé lz == 3

a2+ o ‘*” \/a2+bz \/1+68

S COS R SR
be a b i

lwr . mwy os MTZ

2 72
== f?—i—zg#)sm ?sm b

Again, when we solve for the field excited by a distribution of current, J(»’), part of the field
developed into Ny,, functions exactly cancels that part of the field whose curl is zero, so that the

resultant field, E,
components.

may be expressed as the sum of transverse electric and transverse magnetic

E= ETE+ ETM,

where Epp= ]w#fJ( )

lm

Mm E

I-“TA’II i

EM’mesth[ RN _Mk%]w'

)

—e 1t

R— —p Sin g cos l+—- sin

mwy.

S [[ costm b H_b sml— cos~w—_|:| Q,,,,—sm% sin b

r’ and 7 refer respectively to the position coordi-
nates of J, and the point at which the field is
evaluated.

It will be noticed that E;z and E;, have the
same value of attentuation constant, for the same
mode numbers, [, m.

Also, in line with our previous discussion, we
shall assume that the receiving coil is rigidly
fixed to the movable end of the cavity, so that
the factor (14e°2) is cancelled out in the
measurement of the ratio of any two voltages.
The magnitude of the error introduced by the
factor (1—e *°) is such, that if the smallest
value of ¢ used is always greater than 1.5 times the
larger dimension of cross section, the factor will
introduce an error of less than 1 part in 10,000
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m . mmy lra l,:

bJ.J ) Z e [{S(r')S(r)n Sinh "zl-}-qu (r")S(r) cosh 1)2'}(1—6_2"“_‘2))—

ll
&)

JwS(r’)Q(r) sink 9z’ -2 ( —i—bZ )Q( ")

M}(] + e =) |d7’
n

TR

mwy. my k,

for the 7'E;, mode, and less for higher modes.

One advantage of an attenuator tube with rec-
tangular cross section over that with circular cross
section is that for the former, there is no need to
discriminate between 7'E and T'M type modes,
for the same index numbers, [, m, since for given
values of / and m, the voltage induced in the

w02 ,,zmz

collecting coil will vary as e_‘/ @t TR for TM
and TFE type modes, alike. Of course, for tubes
of circular cross section this is not true, except
for cases of accidental degeneracy.

Furthermore, for tubes of rectangular cross
section, it is possible to secure greater suppression
of unwanted modes by a suitable choice of ratio
of the two dimensions of cross section. The follow-
ing table enumerates the ratios of attenuation

241



constants for various modes to that of the lowest
mode, for various ratics of rectangular cross sec-
tion dimensions and for circular cross section.

It becomes apparent that the optimum prac-
tical ratio in the above table is b/a=3, and that
this choice allows the unwanted modes to decay
much faster than for circular cross section.

TABLE 1.—Ratio of attenuation constant of higher modes to
that of the dominant mode

Rectangular waveguide Circular waveguide
1 i Yod/ R n S bl
et Ty | "TEy | "TEy | "TEy | "TEy -
b b
a=t [ a=09b| a=- a=-
2 3
i 4 2 RS S P i H 1 1 TEu
YO0 R AR 2 2 2 2 1.31 | TMa
b o Sy NPt o 3 3 3 1.66 | TEn
J 41 O IS 1 1.1 2 2 2.08 | TEn, TM1
b OF 7 PRLEE R 2 2.2 4 6 2.7% | TM2x
Thir=TM- 1.41 1 2.2 3.1 2.90 | TEx.
TEyn, TMa ... 2.2 2.4 41 6.1 3.0 T'M:

If the exciting current distribution is chosen, so
that to each element of current corresponds its
negative mirror image with respect to the plane

@ . " : : .
x:§’ and its positive mirror image with respect

to the plane y:g; then it is easily seen that

JI0)-Pd+
JI@")-S,.d7" =0, for [ odd or m even.
JIC)-Qundr’,

The advantages of employing this type of sym-
metrical source distribution becomes apparent
when we consult table 1, and recognize that it
eliminates four out of the first six spurious modes.

Another advantage of rectangular attenuators
over those of circular cross section is the ease with
which current distributions of slightly higher sym-
metry may be used to eliminate further spurious
modes, by placing the current elements at the
nodal points of the undesired modes. The relative
voltage error for a rectangular attenuator with a
simple symmetric loop source, and a double loop
source, (fig. 5) whose position is so chosen that
modes for which m=3 are not excited, is graphed
in figure 3.
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F1cure 5.—Schematic of exciting and receiving loops in
rectangular guide.

wlo™>

Q

a, Symmetric loop; b, symmetric double loop placed at nodes so that no
modes are excited, for which m=3.

V. Conclusion

It may be concluded, in general, that attenuators
of rectangular cross section have two advantages
over those of circular crosssection:

1. Greater symmetry with respect to the dom-
inant mode in the rectangular guide permit one to
eliminate more spurious modes; 2. a slight depar-
ture from symmetry in the rectangular guide is not
so serious as in the circular guide, as the spurious
modes decay more rapidly in the former.

The author expresses his thanks to Dr. Harold
Lyons for his interest and helpful discussions
during the course of this investigation.
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VII. Appendix I - och"S“l [ o ol ]

= . dd K . On substituting eq 8 in eq 3, with a little algebra we get
1 Let Sl——?_:_,l 77”_[:122 == — dQ—er-P immediately,
G ™
d si (1 — e=2v(d—2)
d 9. S1=ngh 72] (—10—2“3741 U )e_"‘, for 2>2'.
2. Let —7=B.
VIII. Appendix II
P 08 d(z‘z’)—coq (z+z’) PP
3. SI:?E B+ 2 e . lx2 lrz
© —E sin 7 cos 'd
A <~ cos al—cos 'l 1. Let §=> ——7——-
RN & i (BY
L ’ _dSl_ d . ez e 2
4. Where a=7r4(zd zA)’ a’=?r(z"d+'ﬂ' R SZ——(E_E sinh vz’ e2rd—1 g 2vd—]
5. Consider f(z) et SO ) [{;r cos ZW(T" sin lldz—
P (Bsediict=ia=] ) 3. Let 83—27 =
let 2=R (cos 64 sin 6). = 72+(7>
Then 1?—1:; | Zf(2) | =0, and If’gli; 2f(z) =0, provided & Thenk ‘LS_J_ —d ot el Lo
0< a< 2. SIS e g COShY2 | T d
Then, [7] the line integral of f(z) around an infinite circle l_1r> Awz w2’
enclosing the complex plane vanishes, d) % q °® g
5. Let s_z‘,— ey
2ok

6 hm § f(2)dz=0.

Smcef(z) has poles at +jB, 0, =1, +2, ..., 6. Then S4‘(IS, —vd cosh vz’ [ g et ]

v e27d—1 e2vd_]
= eial e—ab eaB
e =Z=Z_mﬂz+12+ { —ZwB_i_éé%ﬁ_]}'

dz’ o

WasninaToN, September 23, 1946.
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