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Electric Quadrupole Coupling of 
"'lith the Rotation of a Polar 
in an External Electric Field 1 

the Nuclear Spin 
Diatomic Molecule 

By U. Fano 

. Formulas are given that serve to de termine the hyperfine spectrum of a roLatilig molecule 

111 various cases, depend ing on the external field strength and on the rotational quantum 

number. A complete calculation is carried out for a ca e in which only one of the nuclei 

has. a quadrupole moment, the molecule is in a rotational state (1: ± 1 or 0), and the inter

action between the field and the molecular dipole is comparab le to t hat between the dipole 

and th e nuclear spin. 

1. Introduction 

The rotation of a polar diatomic molecule in an 
ele~tric field has been discussed theoretically by 
vanous authors, particularly by Brouwer [IV 
Experimentally, this problem is being inve~ tigated 

at Columbia Univer ity u ing a modification of 
the standard molecular beam radio-freq uency reso
nance method [2], in which the beam is subjected to 
electric instead of magnetic field [3]. The method 
permit3 the energy differences beLween rotaLional 
state, of the molecule to be measured. Various 
spin-dependent interactions between the nuclei 
and the rest of the moleCllle may give rise to a 
hyperfine structure of the rotational spectrum. 
The electric quadrupole interaction between the 
nuclei and the molecular electrons, if present at 
all, ie likely to be the major factor in this connec
tion and is the subjcct of the present theoretical 
investigation. 

JJ;[olecular rotation.- The qualitative aspects of 
molecular rotation in an electric field will be 
r~viewed here, disregarding the effects that give 
rise to a hyperfine spectrum. The electronic 
system of the molecule is assumed to be in a l~ 
state, 0 that it has no net angular momentum. 
The rotation of the molecule is then similar to 
that of a dumbbell whose two spheres (the two 

I ]'an of . this work w as performcd at the Pupin Physics Labora tory , 
Columbia U ni versity, during the tenure of a Researcb Assoeiateship of the 
Carnegie Tnst it ution of Washin gton in 1946. 

2 l"igures in Lrackets indicate th e lit erature references a t the end of th is 
paper. 
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atoms) cany charges of opposite sign. Several 
cases may be considered: 

(a ) The electric field is so trong that the poten
tial energy of the molecule, when oriented along 
the field , is much greater than its rotational kinetic 
energy. Then the molecule remains oriented 
along the field, except for minor oscillations about 
this position. This case is umealistic, however, 
as no sufficicntly strong field is currently available. 

(b ) The field i vanishingly ,veak, so that the 
molecule rotates freely about its center of mass 
with a constant, quantized, angular momentum. 
The component of this angular momentum along 
the field is then alEO con tant and quantized. 
The posi tively charged part of the molecule points 
in the direction of the field aboll t as frequen tly as 
ill t be opposite direction . Thus the molecular 
electric moment averages out, and the presence 
of the field has no efl'ect on the rotational energy 
levels. 

(c) The field is moderately weak. The rotation 
is now appreciably perturbed by the field, and the 
molecular electric moment LlO longer averages out; 
an electric polarization is thus induced and each 
rotational energy level is accordingly lowered by 
an amount equal to a polarization coefficient times 
the square of the electric field. When the rotation 
has primarily the character of a precession (clock
wis e or counterclockwise) around the direction of 
the field, the effect of the field is to force the 
posi tively charged part of the molecule to lean in 
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the direction of the field, and so induces a positive 
polarization. An opposite effect occurs, however, 
when the rotation brings the positively charged 
part alternately close to the direction of the field 
(downhill), and then away from it in the opposite 
direction (uphill); the positive charge moves 
rapidly while it is downhill and spends little time 
there, but it lags in the uphill position, and on the 
average it will spend more time uphill, giving rise 
to a negative polarization. 

(d) The field is intermediate or moderately 
strong. The rotation is perturbed by the field to 
a greater and greater extent. As the field in
creases, the positively charged part of the molecule 
is forced to lean in th e direction of the field, 
whatever the type of rotation may be, and the 
polarization is always positive. 

The quantitative treatment of cases (a), (b), 
and (c) is simple, but in case (d), which obtains 
most frequently, the energy levels cannot be 
given in general as analytic functions of the electric 
field. In work as yet unpublished, W. E. Lamb, 
Jr., has developed a convenient method for th e 
numerical computation of the terms for any value 
of the field strength. The rotational wave 
equation is 

where the electric field, E, is taken as a polar axis, 
(l'1-R' <PR) are polar coordinates of a vector R joining 
the nuclei, l is the dipole moment, of the molecule 
A its moment of inertia, D. the two-dimensional 
Laplace operator (in the coordinates ?JR, <PR)' and 
W th e energy eigenvalue. The first term in 
brackets represents the kinetic energy of rotation; 
the second represents th e potential energy of the 
dipole in the electric field. A dimensionless form 
is obtained by dividing the equation by (-ti,2f2A) : 

(Ia) 

where 0'. = lE/ (ifl /2A) is a numerical index of the 
field strength and W = W / (jj?j2A). The eigenfunc
tions can be labeled by means of two quantum 
numbers nand m; m is the magnetic quantum 
number, which indicates the rate and th e direction 
of the precession of the molecule around the 
electric field; n - Im l is the number of nodal lines, 
which characterizes the component of the motion 
along the meridians of the polar coordinates. The 
eigenvalues are functions of 0'.. For all values of 
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0'., we have W n . m= W n .- m, as the energy docs not 
depend on the direction of the precession. For 
0'. = 0, the results are familiar, namely, '/l' n, m= 
n (n + 1), >/In, m is a spherical harmonic, and n is an 
azimuthal quantum number that measures the 
total angular momentum. For 0'.« 1, case (c), a 
perturbation calculation gives W n7l, '"Vn(n + 1) + 
0'.2 [(n + m) (n - m )/2n (2n - 1) (2n + 1) - (n + 1 + m ) 
(n + I - m) /2(n+ 1) (2n + 1) (2n + 3)); as expected, 
the coefficient of 0'.2 is positive for [m/n l '"V 1 (fast 
precession), negative for Im/n l« l. 

quadrupole interaction.- The electrical charge 
distribution of a nucleus having a quadrupole 
moment resembles an ellipsoid of rotation rather 
t han a sph ere (the direction of the nuclear spin 
being the axis of symmetry of the ellipsoid). The 
value and sign of the quadrupole moment indicate 
the elongation of the ellipsoid. As the charge 
distribution of a diatomic molecule is not spheri
cally symmetrical about any of its nuclei, the 
electrostatic energy of the nucleus within the 
molecule will depend upon the orientation of th e 
nuclear spin with respect to th e axis of symmetry 
of the molecule (i. e., the line joining t he nuclei). 
If the spin be directed along the axis and then 
swung into the opposite direction and back into 
th e initial one, the interaction energy will go 
through two maxima and tu'O minima. 

In the absence of this quadrupole interaction 
and of magnetic interaction, the nuclEar spins 
would maintain a constant orientation in space 
while the polar molecule rotates in an electric 
field, and the orientation of each nuclear gpin 
with respect to the axis of the rotating molecule 
would undergo periodic variations. In the pres
ence of a quadrupole moment there will then be 
periodic variations of the interaction, and hence 
torques that affect both the rotation of the mole
cule and the orien tation of the nuclear spins. This 
effect will be particularly conspicuous in case (b ) 
described above, as th e orientation of th e angular 
momentum of the molecular rotation can then be 
shifted by a torque without pel'fOlming any work. 
This angular momentum will then precess freely 
together with the nuclear spins, and only the total 
angular momentum, i . e., th e vector sum of the 
molecular momentum and of the nuclear spins, 
will remain cons tan t. When, on the other hand, 
considerable work must be performed to upset 
the molecular rotation, the quadrupole interaction 
will have no significant effect on the motion of the 
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molecular constituenLs; Llle energy of the sys tem 
will then simply includ e a contribution from the 
quadrupole interactions avcraged over the varying 
orientation of the spins with respect to the mole
cular axis. This contribution will depend on the 
state of rotational motion of the molecule and on 
the (constant) orientation of the nuclear spins 
with respect to the electric field. This situation 
prevails generally in cases (a ) and (d) described 
above, i. e., for moderately to very strong fields; 
from this standpoint, case (c) Tepresents an 
intermediate situation. 

It should still be considered that no work is 
ever r equired for the simple operation of reversing 
the direction of the preces ion of the molecule 
around the electric fi eld, provided the speed of 
precession is unchanged . Owina to the quadrupole 
interaction, and for any electri c field strength, the 
uniform precession might therefore conceivably 
be turned into a precession whose direction is 
periodically reversed; the con ervation of angular 
momentum would be preserved by corre ponding 
variations of the precession of the nuclear spins. 
Quantum mechanically, there would thus be 
"standing waves of precession," the number · of 
nodes of the standing wave depending on the 
speed of precession. However, it will be shown 
further below that only the standing wave with 
two nodes actually arises in th is way. This is a 

1- direct consequen ce of the particular dependence 
of the quadrupole interaction upon the mutual 
orientation of the molecule and of t he nuclear 
spin; as already stated this ·inter action goes 
through two maxima and minima when a cyclic 
chang-e of orientation is performed. 

The quantitative treatment of our problem 
will accordingly proceed as follows. As shown by 
Casimir, [4), the interaction energy between a 
nuclear quadrupole moment and the electronic 
charge of an atom or molecule is of the order of 
e2qQ/4 (q and Q are the usual ymbols for a 
molecular and a nudea,I" constant whose product 
is < 1 em-I). H en ce, taking into account the 

\ pos~ble values of the pertinent constants, it 
seems safe to assume for the dimensionless 
parameter characterizing this interaction: 

L 

(2) 

This value must be related to the fact that, in gen
eral, the separation of different unperturbed rota-
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tional levels of the molecule i 3 IWn'm' -Wnml? l. 
Therefore, in general, the quadrupole interaeLion 
can be treated as a small perturbation of each 
rotational term, and each term will preserve iLs 
quantum numbers n, m. This procedure will not 
be adequate in the eases discussed above, in which 
the quadrupole interaction has a great effect on 
the rotation of the molecule, namely, for states 
(n, m) which are directly coupled by the quad
rupole interaction to other states (n', m') such 
that IWn'm,-wnml< IfJ l. Direct quadrupole cou
pling means that t~ quadrupole interaction energy 
Flo has a matrix element (n'm'IHo lnm)~O; this 
occurs only when Im-m' I:::: 2, as it will be shown 
in the next section. These two conditions can be 
fulfill ed simultaneo usly in two, cases only: 

(1) n = n' > O, m=-m'=±l (all values of a) , 
in which the molecule precesses back and forth , 
i. e., cloek- and counterclockwi e; 

(2) n = n' > O, a2<1 i31 (Im- m' I:::: 2) , in which the 
fi eld is weak and th~rotation is strongly perturbed. 

The latter case becomes simpler when a 2«1 .s1 or 
even a 2 = O. In fact, the zero-field case involves 
a simple vector cOllpling of the rotational angular 
momentum J (J = n) with the nuclear spins I I 
and 12 , In the case of near-zero-fi eld, this vector 
coupling is preserved and the e£1'ect of the electric 
field can be treated as a small perturbation, some
what analogous to the anomalous Zeeman effect 
produced by a weak magnetic fi eld. 

The general expression for the quadrupole 
interaction matrix is given in the next section; the 
application to the different ca es will then follow. 

II. Matrix Elements of Quadrupole Inter
action Between Molecular Rotation and 
a Spinning Nucleus 

(a) The electrostatic interaction -e2/l r- pl, 
between a nuclear proton at a position p with 
respect to the center of the nucleus and a molecular 
electron at a position r with respect to the same 
center, can be expanded into a series of Legendre 
spherical functions of the angle "(rp between the 
vectors r and p . The first term of this series 

3 'rhe magnetic spin-spin interaction between the nuclei and the inter
action between the nuclcar magnetic moments and the rotation-induced 
magnetic moment of tbe molecule are generally weaker than the electric 
qu adrupole interaction; in our scale they may be characterized by a parameter 
~ -:; 1O-'. Tbese interactions will be disregarded in the following therefore 
we must assume 
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represents the Coulomb attraction of the electron 
toward the center of the nucleus, the second term 
has no average effect, and the third, namely: 

H Q = -e2(p2/r3) P 2(COS 'Ypr) = 

_e2(p 2/r3) (~ cos2 'Ypr - ~} (3) 

is called the quadrupole component of the inter
action. This component must be integrated over 
the density of protons throughout the nucleus 
and the density of electrons tlU'oughout the 
molecule. The integration over the electron 
density is carried out in polar coordinates having 
as axis a vector R from the center of the molecule 
to the center of the nucleus. Using the addition 
theorcm of spherical harmonics and taking into 
account the fact that the ~-type electronic state 
has axial symmetry, we find : 

«(1 /r3) P 2 (cos 'Ypr) r= 

«(1/r3)P 2(cos 'YRr) rP2( COS 'YRp), 

where the symbol Or indicates integration 
with respect to the electron density. The first 
factor on the right-hand side is a molecular char
acteristic which is indicated [4J by qj2. Using 
again the addition theorem of spherical harmonics, 

P 2 (cos 'YRp ) = 

(47f'/5) ~p. ( - 1)p. Y2._p.(tJp, cpp) Y 2. p. (tJR, CPR), 

we havE', 

(HQ)r= 

(-e2q/2 ) ~p. ( -1) p. [p2(47r/5)1/2Y 2. _p. (tJp, cpp)] 

X [(47f'/5)1/2Y2. p. (tJR, CPR)J. (3a) 

(The normalization of the spherical harmonics is 
such thatf f l Y l , p. 12sin tJdtJdcp= 1,Yz; p. = (- l )p. y z, _ p. . 

(b) All th e matrix elements of the fir st factor in 
square brackets, i. c., the integrals of this factor 
ovcr the proton density, associated with pairs of 
nuclear states with the sam e spin I and magnetic 
quantum numbers mI, m/, can be given in terms 
of just one such matrix element. Thus: 

(m/ lp 2(h j5)1/2Y2, _p.(tJp, cpp) ImI) = 

(Jlp 2(47f'/5)1/2y Z. (,(tJp, cpp)I I)(D5"%.:/D~~) o mr'. mr p. . 

Thc first factor on th e right-hand side is a nuclear 
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characteristic which is indicated [4] as Q/2 (i. e. , 
half of the quadrupole moment). In the formula 
Oi. k= l or 0, depcnding on whether i = 1c or i ~lc . 
The coefficients D::nm' may bc found by means of 
group theorY,4 and are given in table 1. As 
D51=-I(2I- l) j(2I- l) (2I+ 3) we take : 

d (j )n;,: = - (2j - l ) (2j+ 3)D ;:;:'; 

the coefficients d arc given in table 2. Thus: 

(mI - ll lp2(47r j5) 1/2 Y z. p. (tJp, cpp) 1m,) = 

Qd(J) r;:.~- P. j2I (2I- l) . (4 ) 

T A BLE I. - Coefficients Dr::' JOT: j' -j=O, ± 2 ; 
m'- m = O. ± 1, ± 2. a 

D }::::= -[3m'-j(Hl )]/(2j- l ) (2H3) 

D }:::+1 = (2m+l )[(3/2) (Hm+ I) (j- m ) 1' ., 

D; ::::+'= -[ (3/2) (j+m+2) (j+m+ I) (j- m )(j-1It -1' 1'/'/(2j- l ) (2H3) 

D;~~· m = (3/2)[(j+m+2) U+m+ 1) (j- m+ 2) (j-m+ 1)/(2j+ 1) (~i+3)' 

(2H5)]l/' 

D:~~' ,,+1 = [(3/2) (Hm+3) (j+m+2) (Hm+ 1) (:-m+ 1)/(2j+ 1) (2j+3)' 

(2H 5)]l/' 

J);~~.mt'=[(3/8)(j+m+4)(j+m+3)(j+m+2)(Hm+ l)/(2H I )(2H3)' 

(2j+5)]"' 

• All ot her coeffi cients arc obtained by means of the fo rmulas 

'fA BLE 2.-CoeJlicients d(j);::' = - (2j - 1) (2j + 3) D;:;:' 

<1;::+2= [(3/2) U+m+2)(j+71l + J) ()- rn)()- rn -1l1,!2 

<1 :::+1 = - (2rn+ I) [(3/21 (j+rn+ I ) (j-ml)'" 

d:;:-I= (2m- I) [(3/2)(j-m+ I)U+m)]'''=<C:::+' 

(c) The matrix elements of the factor in the 
second bracket of eq 3a, pertaining to the rotational 
states of the molecule (n , rn ) and (n' , m' ) is the 
average of this factor over the probability distri
bution l/; ~,. m, l/;". m and can be indicated as 

• These coefficient.s are closely related to those indicated by E. W iguer , 

Gruppentheorie (Vieweg. Braunschweig 1931), p. 206, as Sj~j~". For j and j' 
i'm' 

integer D ;m = (47r/5)'/' f f Y*;· .-m·('J.p) y, . m'-m('?, "') Y ;'m(.?")sin.?d.? d,,. The 

formula given means essentially that the ratio of ma trix elements for 
different values of (mI. mI') is t he same as though the angular distribu· 
t ion of the proton density in each nuclear state (T, m[) were described by 
the spherical har mon ic Y I. mI (suitably generali zed for ha lf- integer 1). 
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' n' , m' I(47r/5 )1/2 Yt~(On , IP n)l n, m) =(47r/5)1i2f J 1/;;',m' (O I'IP_l)Y2 ~(0 1l , IPJI) 1/;n,,,,(OU, 1P 1l ) in OndOl/dlP : (5) 
=Rn~: ::'oml, m tJ&. 

Expanding the ro tational wave functions 1/;n. m 

into spherical harmoni cs: 

1/;n, m(O, IP) = 1:J C:; ' mY J , m(O, IP), 

where the coeffi cirnts C]m depend on the parameter 
a, we have: 

(5a) 

For n=n', m = m' (which is the only case 
involved in a first -order per turbation ), we have: 

There is also a simpler form for 

The coeffi cients R must b e obtained by numeri 
cal computa tion except when a is v ery large or 
very small. For a« l : 

where j is a fun ction of nand n ± 1; h ence eq 5a 
glVl'S 

For ex» l , l1/;n.ml "-'0, excep t for t?R « l (i, e., the 
molecule points approximately in th e direction of 
the field ). H en ce, according to eq 5, lim B::::'= 

a= m 

On,n,Om .m" However, th e convergence to this limit 
is slow. For example, B (n, m) can be expanded 
in powers of a - I / 2 as follows: 

R (n , m )= 
1- 3(2n- m + 1)(2a)-1/2+ terms in a-I, etc. 

(d) Combining eq 3a, 4 , and 5, the matrix 
clement of H Q , pertaining to states with th e same 
total magnetic quantum number 1\1= mz+ m = 
m'l+ m', is found to b e 

(n', m' IHQln, m)= 

- (ti} /2A) ( - 1) m-m/ (3' R~:::' d (1) ~~ ::;:' " (6) 

E lectric Quadrupole Coupling 

where 

{3' = (3/I (2 I - 1) = [e2qQ/4I(2I - 1) ]/( fl?j2A). 

III. The General Case: a 2 »\ {J\, Im\ ~ l 

H ere it is sufficient to treat the quadrupole 
coupling as a first order perturbation of each 
rotational term. 

Only one of the nuclei has a Quadrupole moment.
Each term of the complete system is characterized 
by the three quantum numbers n, m, and 
mJ= M - m. The term en ergy is then given, to 
the first order in {3, by the sum of th e rotational 
term and of the ma trix element (6) with n =n' 
and m = m' : 

(TI}/2A) {wn,m- (3'[31n;- I(1 + l )]R (n,m)}= 

(7) 

Each rotational energy level of energy WIt,lml splits 
thus, in this approximation , in to I +! levels if I 
is a half-integer, into 1+ 1 levels jf I is an integer. 
The absolu te valu es of the intervals between the 
levels of such a multiplet arc functions, of ' t he 
electric fi eld (through R ), but their ratios rul'e 
independen t of it.. 

Both nuclei have a Quadrupole moment.- Each 
term is now characterized by four quantum num
bers n, m, mIl , mn. The term energy is , again to 
the first order in {3: 

(1l.2/2A) {wn,m- {3; [3m 71 - I I (11 + l )]R (n,m)-

/3;[3m;2- I 2(1z+ 1)]R (n,m)} (8) 

IV. The Special Case : a 2» \{J\,,\m\ = 1 

Only one oj the nnclei has a qnadrupole moment.
The energy of terms with m = l , m;= (1 - 1) or I , 
M = I or (1 + 1), or with m=-.1 , mJ=- (1 - 1) 
or - 1, M =-l or - (1 + 1), is still given by eq 7. 

219 



For other terms, with IM I< 1, m is no longer a 
good quantum number, but Iml is . The term 
energy ~(1i,2f2A) is then obtained, to the first order 
in (3, by solving the secular equation, 

I
Wnl+ (n,l IHQln, l)- ~ (n ,l iHQ in,- l ) I 

= 0, 
(n,-l IH Q ln,1) Wn .-l+ (n,- l )IHQln,-l)-~ 

with R (n, l )=R(n,-l), Wn .l=Wn .+ Its solution is 

f= Wn ,1 ,M/ (iF/2A)= W n,l ,_M/(fl,2/2A) = wnl- I1'R(n,1){3(AP + 1) - 1 (1+1) ± 

[(3 /2) (l +~i\d) (l +..i:lf + 1) (1 - M) (I - M + 1)S(n)2/R(n,1)2+36M2]l /2} . (9) 

The original Wnl rotational level is thus split into 
21 + 1 different levels, if 1 a half integer, and into 
2(1 + 1), if J is an integer. 

Both nuclei have a Quadrupole moment.- This 
case is similar to the preceding one, but more com
plicated. There are three levels with total mag
netic quantum number IM I=11 + 12 or 11+ 12+ 1, 
for which the energy can be calculated by means 
of eq 8. These energies are indicated by the 
following symbols: 

W n ,I.II .l2-1 = TVn,_1 , - II ' - '2+1 ; 

W n,1 ,zl-I "2= If!n,- I ,- I1+ 1 ,-'l' 

For each group of terms with IM I< I I+ 12 one 
must solve two secular equations that in general 
will have more than two rows and columns. The 
rows and columns correspond to zero-order states 
characterized by particular values of (m, mIl, m/2) 
with Iml = l, m+mIl+ m/2= M. The zero-order 
states belonging to each secular equation can be 
arranged in a succession, which (for M > O, 12> 11) 
can be of either type : 

(1,ft, M - 11-I), (-1,11, M - 11+1), 

(1,11- 2, M - 11+1), (-1,11- 2, M - 11+3).,. 

or 

(1,11 - 1, M-11 )' (- 1,11-1, M - 11 + 2 ), 

(1,11- 3, M - 11+ 2), (- 1,11- 3, lV1-11 + 4) ... 

The diagonal elements of the secular equation are 
of the type: 

the elements next to the diagonal are of the type: 

- Sen )11' Id(IJ:~:+2 or - 8(n)I1' 2d(l2):~:-2 

as the case may be; all other elements vanish. 

V. The Special Case: a«l[ n > 0 5 

Only one nucleus has a quadrupole moment,
For a«l, or, more accurately, for: 

a2/2n (n+ 1) '" [a/ ('1On+1 ,m-wn,rn)J2::::; 1111«1 

the difference R~'::.' - D~,::: '" a2 can be disregarded , -; 
since R is multiplied by 11 in the expression of the 
matrix elements of quadrupole interaction. 

Replacing then R with D and using the approxi
mate expression for Wn,m valid for small a 6, the 
matrix element of the complete energy operator 
pertaining to states with the same values of n, I , 
and M = m + m, is 

(m'I H lm) = (f/?j2A) {n(n+ 1)om,m'-

11( - l ) mt -mD~'::.' [d(l)~}:'::.' /1(21- 1) - om.m,a 2/2n(n+ 1) I1J + 
terms in a4, a211, or 112, etc . 

The term energy ~ChN2A) is then obtained, to the 
first order in 11, by solving the secular equation: 

The number of rows and columns in the determi
nant, and hence the degree of the equation, is 

'For a«I. 11=0 we ha\'e ~=a'; hence tbe quadrupole interaction can 
be disregarded . 

, Tbis expression can be given in terms of tbe coefficient n::::. provided n>O. 
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:::::(2n+ 1) or ::::=::(21 + 1), whichever is the smaller, 
since m and m' take all the values that. do not 
exceed either (M + 1) or n and are not less than 
either (M - I) or -no The term energy can also 
be indicated as: 

(tf2/2A) [(n(n+ 1) + {3" y)], (10) 

where 11" = I1/ (2n-1)(2n + 3)1(21-1) and y is a 
solution of the secular equation 
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i (_ 1) m-m' d(n );::'(d(1 );::=:::' + Om' .mX) - Om' ,mY I = 0 
(lOa) 

H ere x=- [1(21 - 1)/2n (n + 1)](O'2/ iJ). The coeffi
cients d are given in table 2, hence the further 
s teps in calcul ati ng y for any given value of x 
( i. c. , of th c fi eld s trength) are' straigh tforward , 
even though th ey may be laboriou. The particu-
lar case for n = 1 is worked out in the appendix, 

which also contains some comments about the 
mC'thocls of solving the secular cq uation. 

Both nuclei have quadrupole moments .- The cal
culation is similar to that of the prececl ing case 
bu t is more complicated. The energy of each 
term can be expressed as: 

(n?/2A)[n (n + 1) + y"§/ (2n - 1) (2n + 3)]. (11 ) 

Where y is a solution of the secular equation: 

I (_ l )m'-md (n ):::' [b1dl (ll);::;~J Om'12,m12+ bzd (12) :::;:' Om 'WmIl + I = 0. 

XOm 'll,lnIlOm' I2,m12]- yOm'Il,mIlOm'I2.ml2 

(lla) 

Here x=- O'2/"§2n(n+ 1) and ,,§, bl and b2 are so 
chosen that : 

73b l = iJd I I (211- 1) , 73b2= 132/12 (212 - 1), bl '" b2 '" 1. 

Finally, Iml,lm' l:::::::n; Imfl l,lm'n l:::::::I I; ImI 21,lm'121 :::::::1z; 
m + mn+ mI2 = m' + m'n + m'12=M . 

VI. The Special Case: a 2«1 .B1 
Z ero field. Only one nucleus has a quadrupole 

moment.- In th is case the total angular momen
tum F= J + I (J = n) , i. e. , the sum of the rota
tional angular momentum and of the pin of the 
nucleus hav ing a quadrupol e moment, is a con
stant of the motion of tIl e system. J and I are 
not constant but precess freely around F on 
accoun t of the quadrupole interaction. All t be 
s tates having tbe same value of F ancl different 
values of the total magnetic quantum number 
M = m + m, have the same energy. As sho wn by 
Casimir [4] 7 th e energy of each term j propor
tional to an eigenvalue of the quadrupole coupling 
operator : 

3 3 1 2. (J .I ) (J'] )+'4 (J .I ) -'j (J .J ) (1·1). 

The proportionality factor can be determined by 
comparison with the solution obtained in section V 
for the ca e 1I!/.= F = n + I , aZ= O, which is trivial. 

The energy levels for n + l :::::F::::: ln - I I are 

(1i2/2A {n (n + 1) + 13[30(0 + 1) - 4n (n + 1)1 (1+ 1)] 
/2(2n - 1)(2n+ 3)I (2I - 1) }, (12) 

with 

0 = 2 (J·I ) = F (F + 1) - 11 (n + 1) - 1 (1+ 1) . 

N ear-zero field. 011ly one nucleus has a quad
rupole moment.- The weak electric field has the 
effect of splittino- th e levels wi th equal F and 
different M . The energy is calculated by con
sidering th e term proportional to 0'2 in eq 10, 
that is, 

as a small perturbation. This means simply 
averaging the value of this term over the partici
pation of each ro tational state (n, m) in the com
plete state (n, F, M ). Tb e following term must 
therefore he added to eq 12: 

(iI?/2A)[O'2j2n(n + 1)]L m (O;~~. M-nYD~:::= - a2 (1f2 /2A)[311d2- F (F + l )J[3D(D- l ) - 4P(F + l )n (n + 1)]/ 
2n (n + 1) (211 - 1) (2n+ 3)2F(F+ 1) (2F- 1) (2F'+ 3) , (I 3) 

where CJ;:~.M- .. is the coefficient of the eigenfun c
t ion (n , m; I , M-m) in the linear combination 
which constitutes the eigenfunction (n , F , M ) [5], 
and 

D = 2(J.F) = F (F+ 1) + n (n + 1)-1 (1 + 1) . 
' ll . n. O. Casimir, Arch ives du Mus'c T eyler [III] VlIl, 2()1 (1936) . The 

application to a molecule in zero·fleld has bee n made by R. 'I'. Fcld and 
W. E. Lam b, J r. (Phys. Rev. 67, 15 (1945)). ' I' he defi n ition of q by Feld and 
Lam b is, however, d ifferent from tbat introduced in th is papcr: this entails 
a difference in t be mult iplicative lactor of some formulas. 

Electric Quadrupole Coupling 

In the theory of the anomalous Zeeman effect 
[6] for a case of (LS) coupling, which is somewh at 
analagous to the present calculation, one has to 
calculate the average value of the quantum 
numbers mL and rns, namely, ~mL( og:~t M_mJ2mL, 

etc. It is shown by direct methods, however, 
that the results are lvI(L- J )jJ(J + 1) and 
M(S·J) /J (J + 1). In our case the quantity D~::: 

is a matrix element of quadrupole interaction, 
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while mL is a matrix element of dipole interaction . 
It might therefore he expected that eq 13 could 
be expressed directly by means of quadrupole 
matrix elements. In fact eq 13 involves the 
expreSSIOn D:~~ and the matrix element of the 
operator: 

3 3 I "2 (J ·F) (J ·F) - 4 (J .F )--'j (J .J )(F·F), 

but the latter differs from the usual quadrupole 
coupling operator by the sign of the second term . 

B oth nuclei have quadrupole moments.- This case 
is again similar to the preceding ones but more 
complicated. Equation 13 should be extend ed to 
include two terms, one involving the coupling of 
J and I I, and the other that of J and 12 , However , 
neither J + / t nor J + I 2 is a constant of the 
motion, but only the sum F = J + / t + / 2• In gen
eral , there will b e more than one term with the 
same values of nand F. The characterization of 
each term and the evaluation of (J·/ t ) and (J.J2) , 

and hence of the energy levels, depend upon the 
ratio fJl /fJ2 and require the application of methods 
similar to those used in the theory of complex 
atomic spectra involving a number of terms with 
the same angular momentum [6, p . 233] . The 
same holds for the extension of equation 13 . 

The au thor is indebted to Prof. 1. 1. R abi and 
his associates for suggesting this work, for friendly 
discussions, and for hospi tality in the Pupin 
Physics Laboratory. 
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VIII. Appendix 

The solu tion of t he secula r cquation l Oa for n = l is 
obtained as follows. The total azimut hal quantum 
number Ai assum es all t he values 1M 1::::: 1 + 1. For 
IM I= I + I t he secular ef)uation has on ly one row and 
column ; its trivial solul ion is: 
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y = I (21 - I )+ x, for IM I= ] + 1. (14a) 

For IM I= I , t he equat ion is quadratic : 

1

[(l - 3)(21 - 1) + x] - Y 3(21 - 1)11/ 21= 0, 

3(21 - 1) ]1 /2 - Z[I (21 - 1) +x]- y , 

a nd its solu tion is 

y = -~{ (l + 3) (21 - 1) + x± 

3([(1 - 1)(2l - 1)+xF + 4[] (21 - I)lZ) I/z}, for IM I= I. (14b) 

For IM I< I , the eq uation is cubic, having three rows and 
columns. Its solution can be indicated as 

where p = O, I , 2, cos a=- K 3/K 23/2 . K 1, K 2, K3 are 
polynom ials of first, second, and t hird degree in the 
elements of the determinan t form of t he secular eq uat ion , 
which can be given in te rms of I , M an d x: 

K z= [412(l + 1)2+ ] (l + 1) + 1] + 2[3ML ] (l + 1) + 1]x+x2 

K 3= [813(1 + 1)2- 24]2([ + 1)2+ (3/ 2)1(l + 1)]-

313M2 [21([ + 1) - 7/ 2] - V([ + ])[41 ([ + 1) + 1]+ l lx + 

3[3ML I U + l )+ l]x2+x3. (15 ) 

Figure 1 shows t he plot of y as a function of x for 1= 7/2, 
corresponding to the Cs n ucleus in the CsF molecule 
(F has no quadrupole mom ent) , and for all values of M . 
The position of t he energy levels fo r x greater than two or 
three times 1 (21 - 1) is already given with good accuracy 
by eq 7 and 9, which were calculated on the assumpt ion 
of a2~IB ! . 

The derivation of t hc eq 15 is a purely algebraic but 
rath er tediou s and laborious process. Thi s is p robably 
true in general of the process of solvin g secular ef)uat.ion s 
in which the mat rix clement are st ill function s of vario lls 
pertincn t pa ra me ter:". It is no t jus t the sollltion of the 
equation that is t ediou s, uu t cspecially t he preli minary 
process of transforming th e equation from its de te rminant 
form to a polynomial fo rm. The labo r involved increasE's 
rapidly with the degree of the ef)uat ioll. ThE'refore, wh en
ever it is necessa ry t o obtain a solu tion only for a few 
values of the pa rameters 1 and !VI and x, it is advisable t o 
introduce these val ues in t h e mat rix elements themselves, 
and to carry ou t t he rE's t of the work numerically. Other
wise it may be advisable to consider other ways of reducin g 
t he equatioll to a polyn omial form. For example, the 
coefficients of an algebraic equation can be expressed in 
terms of t. he sums of powers of its unkn own solu t ion s y;. 
In th e eXll,mple above, IC = S d 3, K 2=(S2-- SV 3)/6, 
K 3=((Sa- S I S 2) /6)- SV 27, where Sn= ~ iyi. The quan
t ity S n is the t race of t he m a trix of t hc n-th power of the 
energy operator ; i t mll,y well be simpler and safer from 
mistakes to calculate thc necessary S n t ha,n to expand t he 
determinant form of th e secular equation. 
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FIGUR E I. - Plol of lhe energy levels W n versus the sqllare oj the electric fi eld, E 2, Jor n= ], [ = 7/ 2, ;MI:S 1+ 1= ':1/ 2 ; coor

dinales are in dimensionless uni ts: 

1'= -·- 2] (1E)2/e2qQ (h2/2A) , y = 420 H'/e2qQ. 

--, M =±1/2: ••• , M =±3/2; ___ . M =±!i/2: _ • _ • _ ., M =±7/?: ++++, M =±9/2. 

'WAS HIN GTON, March 31, 1947. 
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