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Electric Quadrupole Coupling of the Nuclear Spin
With the Rotation of a Polar Diatomic Molecule
in an External Electric Field’

By U. Fano

Formulas are given that serve to determine the hyperfine spectrum of a rotating molecule

in various cases, depending on the external field strength and on the rotational quantum

number.

A complete calculation is carried out for a case in which only one of the nuclei

has a quadrupole moment, the molecule is in a rotational state (1:+1 or 0), and the inter-

action between the field and the molecular dipole is comparable to that between the dipole

and the nuclear spin.

I. Introduction

The rotation of a polar diatomic molecule in an
electric field has been discussed theoretically by
various authors, particularly by Brouwer [1].2
Experimentally, this problem is being investigated
at Columbia University using a modification of
the standard molecular beam radio-frequency reso-
nance method [2], in which the beam is subjected to
electric instead of magnetic fields [3]. The method
permits the energy differences between rotational
states of the molecule to be measured. Various
spin-dependent interactions between the nuclei
and the rest of the molecule may give rise to a
hyperfine structure of the rotational spectrum.
The electric quadrupole interaction between the
nuelei and the molecular electrons, if present at
all, is likely to be the major factor in this connec-
tion and is the subject of the present theoretical
investigation.

Molecular rotation.—The qualitative aspects of
molecular rotation in an electric field will be
reviewed here, disregarding the effects that give
rise to a hyperfine spectrum. The -electronic
system of the molecule is assumed to be in a '=
state, so that it has no net angular momentum.
The rotation of the molecule is then similar to
that of a dumbbell whose two spheres (the two
_—im work was performed at the Pupin Physics Laboratory,
Columbia University, during the tenure of a Research Associateship of the
Carnegie Institution of Washington in 1946.

? Figures in brackets indicate the literature references at the end of this
paper.

Electric Quadrupole Coupling
774908—48—4

atoms) carry charges of opposite sign. Several
cases may be considered:

(a) The electric field is so strong that the poten-
tial energy of the molecule, when oriented along
the field, is much greater than its rotational kinetic
energy. Then the molecule remains oriented
along the field, except for minor oscillations about
this position. This case is unrealistic, however,
as no sufficiently strong field is currently available.

(b) The field is vanishingly weak, so that the
molecule rotates freely about its center of mass
with a constant, quantized, angular momentum.
The component of this angular momentum along
the field is then also constant and quantized.
The positively charged part of the molecule points
in the direction of the field about as frequently as
in the opposite direction. Thus the molecular
electric moment averages out, and the presence
of the field has no effect on the rotational energy
levels.

(¢) The field is moderately weak. The rotation
is now appreciably perturbed by the field, and the
molecular electric moment no longer averages out;
an electric polarization is thus induced and each
rotational energy level is accordingly lowered by
an amount equal to a polarization coefficient times
the square of the electric field. When the rotation
has primarily the character of a precession (clock-
wise or counterclockwise) around the direction of
the field, the effect of the field is to force the
positively charged part of the molecule to lean in
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the direction of the field, and so induces a positive
polarization. An opposite effect occurs, however,
when the rotation brings the positively charged
part alternately close to the direction of the field
(downhill), and then away from it in the opposite
direction (uphill); the positive charge moves
rapidly while it is downhill and spends little time
there, but it lags in the uphill position, and on the
average it will spend more time uphill, giving rise
to a negative polarization.

(d) The field is intermediate or moderately
strong. The rotation is perturbed by the field to
a greater and greater extent. As the field in-
creases, the positively charged part of the molecule
is forced to lean in the direction of the field,
whatever the type of rotation may be, and the
polarization is always positive.

The quantitative treatment of cases (a), (b),
and (c) is simple, but in case (d), which obtains
most frequently, the energy levels cannot be
given in general as analytic functions of the electric
field. In work as yet unpublished, W. E. Lamb,
Jr., has developed a convenient method for the
numerical computation of the terms for any value
of the field strength. The rotational wave
equation is

[— (2/24) A—LE cos 3 ,— WY (g, 0g)=0, (1)

where the electric field, E, is taken as a polar axis,
(#g, ep) are polar coordinates of a vector R joining
the nuclei, [ is the dipole moment of the molecule
A its moment of inertia, A the two-dimensional
Laplace operator (in the coordinates ¥, ¢), and
W the energy eigenvalue. The first term in
brackets represents the kinetic energy of rotation;
the second represents the potential energy of the
dipole in the electric field. A dimensionless form
is obtained by dividing the equation by (—%?/2.A4):

(A+a cos dp+w)Y=0, (1a)

where a=IFE/(#?/2A) is a numerical index of the
field strength and w=W/(#*/2A4). The eigenfunc-
tions can be labeled by means of two quantum
numbers n and m; m is the magnetic quantum
number, which indicates the rate and the direction
of the precession of the molecule around the
electric field; n—|m| is the number of nodal lines,
which characterizes the component of the motion
along the meridians of the polar coordinates. The
eigenvalues are functions of «. For all values of
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a, we have w, ,=w, ., as the energy does not
depend on the direction of the precession. For
a=0, the results are familiar, namely, w, ,=
n(n-+1), ¥, » i1s a spherical harmonic, and 7 is an
azimuthal quantum number that measures the
total angular momentum. For o<1, case (¢), a
perturbation calculation gives w,,~n(n-+1)+
&[(n+m) (n—m)/2n 2n—1) Cn+1) — (n+1+m)
(n+1—m)/2(n+1) 2n-+1) (2n+3)]; as expected,
the coefficient of &* is positive for |m/n| ~1 (fast
precession), negative for |m/n|<1.

Quadrupole interaction.—The electrical charge
distribution of a nucleus having a quadrupole
moment resembles an ellipsoid of rotation rather
than a sphere (the direction of the nuclear spin
being the axis of symmetry of the ellipsoid). The
value and sign of the quadrupole moment indicate
the elongation of the ellipsoid. As the charge
distribution of a diatomic molecule is not spheri-
cally symmetrical about any of its nuclei, the
electrostatic energy of the nucleus within the
molecule will depend upon the orientation of the
nuclear spin with respect to the axis of symmetry
of the molecule (i. e., the line joining the nuclei).
If the spin be directed along the axis and then
swung into the opposite direction and back into
the initial one, the interaction energy will go
through fwo maxima and fwo minima.

In the absence of this quadrupole interaction
and of magnetic interaction, the nuclear spins
would maintain a constant orientation in space
while the polar molecule rotates in an electric
field, and the orientation of each nuclear spin
with respect to the axis of the rotating molecule
would undergo periodic variations. In the pres-
ence of a quadrupole moment there will then be
periodic variations of the interaction, and hence
torques that affect both the rotation of the mole-
cule and the orientation of the nuclear spins. This
effect will be particularly conspicuous in case (b)
described above, as the orientation of the angular
momentum of the molecular rotation can then be
shifted by a torque without performing any work.
This angular momentum will then precess freely
together with the nuclear spins, and only the total
angular momentum, i. e., the vector sum of the
molecular momentum and of the nuclear spins,
will remain constant. When, on the other hand,
considerable work must be performed to upset
the molecular rotation, the quadrupole interaction
will have no significant effect on the motion of the
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molecular constituents; the energy of the system
will then simply include a contribution from the
quadrupole interactions averaged over the varying
orientation of the spins with respect to the mole-
cular axis. This contribution will depend on the
state of rotational motion of the molecule and on
the (constant) orientation of the nuclear spins
with respect to the electric field. This situation
prevails generally in cases (a) and (d) described
above, 1. e., for moderately to very strong fields;
from this standpoint, case (¢) represents an
intermediate situation.

It should still be considered that no work is
ever required for the simple operation of reversing
the direction of the precession of the molecule
around the electric field, provided the speed of
precession is unchanged. Owing to the quadrupole
interaction, and for any electric field strength, the
uniform precession might therefore conceivably
be turned into a precession whose direction is
periodically reversed; the conservation of angular
momentum would be preserved by corresponding
variations of the precession of the nuclear spins.
Quantum mechanically, there would thus be
“standing waves of precession,” the number of
nodes of the standing wave depending on the
speed of precession. However, it will be shown
further below that only the standing wave with
two nodes actually arises in this way. This is a
direct consequence of the particular dependence
of the quadrupole interaction upon the mutual
orientation of the molecule and of the nuclear
spin; as already stated this interaction goes
through fwo maxima and minima when a cyclic
change of orientation is performed.

The quantitative treatment of our problem
will accordingly proceed as follows. As shown by
Casimir, [4], the interaction energy between a
nuclear quadrupole moment and the electronic
charge of an atom or molecule is of the order of
qQ/4 (¢ and @ are the usual symbols for a
molecular and a nuclear constant whose product
1s <1 em™). Hence, taking into account the
])()s:iblc values of the pertinent constants, it
seems to assume for the dimensionless
parameter characterizing this interaction:

1B1=eq@/4224) | <1072, (2)

This value must be related to the fact that, in gen-
eral, the separation of different unperturbed rota-

safe
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tional levels of the molecule is® |w,, —w,,|>1.
Therefore, in general, the quadrupole interaction
can be treated as a small perturbation of each
rotational term, and each term will preserve its
quantum numbers 7, m. This procedure will not
be adequate in the cases discussed above, in which
the quadrupole interaction has a great effect on
the rotation of the molecule, namely, for states
(n, m) which are directly coupled by the quad-
rupole interaction to other states (n’, m’) such
that {wn/mr—wnmISIB{. Direct quadrupole cou-
pling means that the quadrupole interaction energy
I, has a matrix element (n'm’|Hy|nm)0; this
occurs only when [m—m’|=2, as it will be shown
in the next section. These two conditions can be
fulfilled simultaneously in two cases only:

(1) n=n'>0, m=—m’=+1 (all values of a),
in which the molecule precesses back and forth,
1. e., clock- and counterclockwise;

(2) n=n">0, <|B| (|Jm—m’|=<2), in which the
field is weak and the rotation is strongly perturbed.

The latter case becomes simpler when o*<|g| or
even o’=0. In fact, the zero-field case involves
a simple vector coupling of the rotational angular
momentum J (J=mn) with the nuclear spins I,
and I,. In the case of near-zero-field, this vector
coupling is preserved and the effect of the electric
field can be treated as a small perturbation, some-
what analogous to the anomalous Zeeman effect
produced by a weak magnetic field.

The general expression for the quadrupole
interaction matrix is given in the next section; the
application to the different cases will then follow.

II. Matrix Elements of Quadrupole Inter-
action Between Molecular Rotation and
a Spinning Nucleus

(a) The electrostatic interaction —e?/|r—pl|,
between a nuclear proton at a position p with
respeet to the center of the nucleus and & molecular
electron at a position r with respect to the same
center, can be expanded into a series of Legendre
spherical functions of the angle v,, between the
vectors r and p. The first term of this series

3The magnetic spin-spin interaction between the nuclei and the inter-
action between the nuclear magnetic moments and the rotation-induced
magnetic moment of the molecule are generally weaker than the electric
quadrupole interaction; in our scale they may be characterized by a parameter
nglU-ﬁ. These interactions will be disregarded in the following therefore

we must assume
Inl < |81 <162, B2~0.
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represents the Coulomb attraction of the electron
toward the center of the nucleus, the second term
has no average effect, and the third, namely:

Ho=—e*(p*/r*) Py(cos vpr) =
—e2(p?r®) (% c0s® Ypr— %) 3)

is called the quadrupole component of the inter-
action. This component must be integrated over
the density of protons throughout the nucleus
and the density of electrons throughout the
molecule. The integration over the -electron
density is carried out in polar coordinates having
as axis a vector R from the center of the molecule
to the center of the nuecleus. Using the addition
theorem of spherical harmonies and taking into
account the fact that the =-type electronic state
has axial symmetry, we find:

<(1/T3)P2(COS 'Ypr)>r=
((1/r*) Py(cos yrr) )r P2(cos vrp),

where the symbol (), indicates integration
with respect to the electron density. The first
factor on the right-hand side is a molecular char-
acteristic which is indicated [4] by ¢/2. Using
again the addition theorem of spherical harmonics,

P;(cos yrp) =

(47"/5)2;4(_ 1)“Y2.—#(0ll7 ‘Pp) YZ. u(ﬂR, ‘PR);

we have,

<HQ>r=
(—€°q/2)Zu(— 1) [p*(47/5)' 2 Y2, _u(3p, ¢p)]
X[(4x/5)'2Y,, u(3r, er)]- (3a)

(The normalization of the spherical harmonics is
such that /.f| Y7, . |’sindddde=1,Y,= (—1)*Y;, _,.

(b) All the matrix elements of the first factor in
square brackets, i. e., the integrals of this factor
over the proton density, associated with pairs of
nuclear states with the same spin 7 and magnetic
quantum numbers m;, m,”, can be given in terms
of just one such matrix element. Thus:

(m,|p*(47/5)' Y2, _u(Ip, ¢p)|ms) =
(1|p*4m/5) Y2, o(Ip, @) |I) (Dt [D D0y’ , my—u

The first factor on the right-hand side is a nuclear
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characteristic which is indicated [4] as @/2 (i. ¢,
half of the quadrupole moment). In the formula
6;, r=1 or 0, depending on whether 1=k or i#k.
The coefficients D™ may be found by means of
group theory,* and are given in table 1. As
H—=—T(02I—1)/(2I—1)(21+3) we take:

d(j)m=—2j—1)2j+3D’;
the coefficients d are given in table 2.  Thus:
(my—p|p*(An[5)' 2 Y2, u(3p, ¢p)lms) =
Qd(I)m—»[21(21—1). (4)

TasLe 1.—Coeflicients D}, for: j'—j=0, +£2;
m'—m=0, £1, +2.2

Di:m=—[3m2—j(+1]/(2j—1) (2j+3)
Dint=(2m+1)[(3/2) +m+1) (j—m)]' 2
DI = —[(3/2) G+m~+2) (j+m-+1) G—m) (j—m— D]/ (2j—1) (2j+3)

DIt =32 [(+m+2) (Hm+1) (—m+2) G—m+1)/ (241 (243)?
@j+5)2

DL =[(3/2) (j+m+3) (j+m—+2) (j+m+1) G—m—+1)/ (2j41) (24-3)?
(2j4-5))12

DI [(318) (- m-4) (jHmA-3) (i m+-2) GHm+1)/ (2j+1) (2432
@2j+5)]12

a All other coefficients are obtained by means of the formulas

D= (=1)m/-m DI’ pitm’ = pirm’

im 45 om im

2

TasLe 2.—Coefficients d(j)7 = — (2j —1) (2j+3)Din

A7 =[(3/2) (j+m+2) (j+m+1) (j—m) (j—m—D]"*
A = —(2m+1)[(3/2) (G4m+1) (j—m)]'?

an =3m2—j(j+1)

A7 =@m—1)[(3/2) G—m+1) (G+m)] =d= 7!

A2 =1(3/2) j—m~+2) (j—m~+1) (j+m) (+m—D]"*=d_ 7"

(¢) The matrix elements of the factor in the
second bracket of eq 3a, pertaining to the rotational
states of the molecule (n, m) and (#’, m’) is the
average of this factor over the probability distri-
bution ¥* ... . and can be indicated as

4 These coefficients are closely related to those indicated by E. Wigner,
Gruppentheorie (Vieweg, Braunschweig 1931), p. 206, as Si(,’f,,’,‘.
integer D) = @x/5)12S S Y*1 -m/(9¢) Y2, m-n(®, ) Y m(3)sindddde. The

formula given means essentially that the ratio of matrix clements for
different values of (mr, mr’) is the same as though the angular distribu-
tion of the proton density in each nuclear state (7, mr) were described by
the spherical harmonic Y7, m, (suitably generalized for half-integer ).

For j and j’
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', m’|(4x/5)2Y, ,(Or, or)|n, m)= (47/5)12 ) [ ..

=R Wom, min
Expanding the rotational wave functions ¢, »
into spherical harmonies:

Kbn. m(ey ‘P):ZJCS'MYJ. m(g) ﬂo);

where the coefficients (3™ depend on the parameter

a, we have:

By % =2,(D§ 3O+ Din0y™ +

SO e b (50)

For n=n’, m=m’ (which is the only case
)

involved in a first-order perturbation), we have:

Rrr=R(n, m)=(3/2){(cos’0)g—1/2.

There is also a simpler form for
Ry1'=8(n)=(3/8)""*(sin*} k).

The coefficients £ must be obtained by numeri-
cal computation except when « is very large or
very small. For a<1:

Crm=8, -+ ad,.1,/(n, n4+1)+terms in o, ete., [1]

where f is a function of n and n41; hence eq Ha

gives
Rrm =D+ terms in o, ete.
For a1, |¢, .| ~0, except for dg<l (i. e., the

molecule points approximately in the direction of
the field). Henece, according to eq 5, lim Rm™=
a=®

On.n0m m. However, the convergence to this limit
is slow. For example, R(n, m) can be expanded
in powers of a«='/? as follows:

B o) =
1—3@2n—m+1) (2a) 2+ terms in o %, ete.

(d) Combining eq 3a, 4, and 5, the matrix
element of H,, pertaining to states with the same
total magnetic quantum number M=m;+m=
m’;+m’, 1s found to be

(n/, m’|Hg|n, m)=
— (@qQ/4) (— )™ "Ry d(DY=x 1@ —1)=

— (72/2A) (— )™ g'Rewd(D)y=w, (6)

n.m
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w Ore2) Yo u(0r, ©2)¥n,n(Or, or) Sin 0pdigdy . (5)

where

B =B/1(2]1—1)=[e2qQ/41(21—1)]/ (F*/2A).

IIl. The General Case: o*>|8], |m|=1

Here it is sufficient to treat the quadrupole
coupling as a first order perturbation of each
rotational term.

Only one of the nuclei has a quadrupole moment.—
Each term of the complete system is characterized
by the three quantum numbers 7, m, and
my=M—m. The term energy is then given, to
the first order in @8, by the sum of the rotational
term and of the matrix element (6) with n=n’
and m=m’:

LVn Jm,mp=— (ﬁz/21‘1) [U7n ,mT Bld(l);ZR:::] -
@2A) {wy, m— B'[3m2—I(I+1)]R(n,m)}=
l‘]n,.m,—m[: I/rn \—m . ,mp— M"n ,—m,—mpe (7)

Kach rotational energy level of energy w, . splits
thus, in this approximation, into /4% levels if 7
is a half-integer, into /41 levels if I is an integer.
The absolute values of the intervals between the
levels of such a multiplet are functions of the
electric field (through R), but their ratios are
independent of it.

Both nuelei have a quadrupole moment. —E(wh
term is now characterized by four quantum num-
bers n, m, my, mp. The term energy is, again to
the first order in B:

H/n,* m, = mpy = mpy =

(h2/2[1> {wn S ﬁ; [3m‘f1_11 (11+ 1)]R(n:m) -

Bs [3miy— I, (I +1)1R (n,m) } (8
IV. The Special Case: o*>|8|, |m|=

Only one of the nuclei has a quadrupole moment.—
The energy of terms with m=1, m;=(—1) or I,
M=T or (I+1), or with m=—1, m;=—(I—1)
or —1, M=—1 or —(I+1), is still given by eq 7.
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For other terms, with |M|<I, m is no longer a
good quantum number, but |[m| is. The term
energy e(7?/2A) is then obtained, to the first order
in 3, by solving the secular equation,

w111+(n;1|Han)1)_e (n'yliHQIn;_l) 0
=Y,

(n,—l[HQ]n,l) wn.-l+<n;_1)iH0In)_l)_‘e

with R(n,1)=R(n,—1), w, ;=w, _;. Itssolution is

€= W1 e (B2[24) = Wi 1 _suf (52/2.4) =10, — R, {3(M*+1)—II+1)+
(B2)I+M)I+M+1)(I—M)(I—M+1)S(n)*/B(n,1)*+36M°]'/}. (9)

The original w,, rotational level is thus split into
21+1 different levels, if 7 a half integer, and into
2(1-+1), if ] is an integer.

Both nuclei have a quadrupole moment.—This
case is similar to the preceding one, but more com-
plicated. There are three levels with total mag-
netic quantum number |M|=1,+1, or I,+ 1,41,
for which the energy can be calculated by means
of eq 8. These energies are indicated by the
following symbols:

’ r K
W n,1,Iy,Ig= 14 n,—1,-Iy,~Ig)

Waa Il Wa s I, —Tot1)

I’Vn,l,ll—l Toir 12 n,—1,—I+1,~I,*

For each group of terms with |[M|<[,+1, one
must solve two secular equations that in general
will have more than two rows and columns. The
rows and columns correspond to zero-order states
characterized by particular values of (m, m;, m;,)
with |[m|=1, m+my+mp=M. The zero-order
states belonging to each secular equation can be
arranged in a succession, which (for M >0, I, >1,)
can be of either type:

(I)Ih M—Il—l)y (—1,11, M_Il_+'l);
7 B RS T e

or
(1,[1_1, M—‘Il), (_‘l,]l_l, L11—11+2),
(1,]1_3, M_Il+2), (—1, II——3y ]‘1~11+4) D)

The diagonal elements of the secular equation are
of the type:

W —R(n,1)[8d(L)mp+ B d (L)l —¢;
the elements next to the diagonal are of the type:

—8m)B (L) or —S(n)B'2d(L) ™

mrz

as the case may be; all other elements vanish.
V. The Special Case: axl1, n>>0°

Only one nucleus has a quadrupole moment.—
For a<1, or, more accurately, for:

&*[2n(n+ 1) ~ [af (Wnt1,m—Wn m) T | Bl<1

the difference Ri2'—Dim ~a* can be disregarded,
since R is multiplied by g8 in the expression of the
matrix elements of quadrupole interaction.

Replacing then R with D and using the approxi-
mate expression for w, , valid for small «° the
matrix element of the complete energy operator
pertaining to states with the same values of n, I,
and M=m-+m; is

(m' [H|m) = h*/2A) {n(n-+1)8, s —
B(—=1)™ "D ld(Du=w 121 —1)—bp ma*/2n(n+1) B]+

terms in o, o*8, or £ cte.

The term energy e(72/2A) is then obtained, to the
first order in B, by solving the secular equation:

| (m’|H|m) — e(#3/2.A)8 , m| =0.

The number of rows and columns in the determi-
nant, and hence the degree of the equation, is
§ For a<& 1, n=0 we have R}~ a?; hence the quadrupole interaction can

be disregarded.
6 This expression can be given in terms of the coefficient D}, provided n>>0.
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=(2n-+1) or =<(21-+1), whichever is the smaller,
since m and m’ take all the values that do not
exceed either (M+1) or n and are not less than
either (M —1) or —n. The term energy can also
be indicated as:

(#@/24)[(n(n+1)+8"y)], (10)

where 8”=pg/(2n—1)(2n+3)I(21—1) and y is a
solution of the secular equation
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[(=Dm™d ) (dI)N=m +bm ,mE) —8m ,mYy| =0
(10a)
Here 2=—[121—1)/2n(n-+1)](«?/B). The coeffi-
cients d are given in table 2, hence the further
steps in calculating » for any given value of z
(i. e., of the field strength) are straightforward,
even though they may be laborious. The particu-
lar case for n=1 is worked out in the appendix,

which also contains some comments about the
methods of solving the secular equation.

Both nuclei have quadrupole moments.—The cal-
culation is similar to that of the preceding case
but is more complicated. The energy of each
term can be expressed as:

(##/24)[n(n+1) +yB/@2n—1)2n+3)].  (11)

Where 3 is a solution of the secular equation:

(—1)™-md (n)z [bydy (L)' dmrsymn+bed(Lo) s’ dmrpyyme+

|
=

(11a)

xa’m'n ,7ﬂ1157ﬂ’12 ,7!112] o, '!/Bm’“ .7"115711’12 M1z

Here 2=—a?/g2n(n+1) and B, b, and b, are so
chosen that:

bezﬁl/ll(gll”‘l), 362252/12(212_”; b1~b2~1-

Finally, |m|,|m’|<n; |mn|,|m’ n|=<1;; |m5
m-t+mp+mp=m’'+m’n+m’' =M.

,1771112\5]2;

VI. The Special Case: o’</g|

Zero field.  Only one nucleus has a quadrupole
moment.—In this case the total angular momen-
tum F=J-+1I (J=mn), 1. e., the sum of the rota-
tional angular momentum and of the spin of the
nucleus having a quadrupole moment, is a con-
stant of the motion of the system. J and I are
not constant but precess freely around F on
account of the quadrupole interaction. All the
states having the same value of /' and different
values of the total magnetic quantum number
M=m-+m; have the same energy. As shown by
Casimir [4] 7 the energy of each term is propor-
tional to an eigenvalue of the quadrupole coupling
operator:

SUDUD+5ID— 3 (DED),

The proportionality factor can be determined by
comparison with the solution obtained in section V
for the case M=F=n-+1, a*=0, which is trivial.

The energy levels for n+I=F=|n—1| are

(#)2A {n(n+1)+BBC(C+1)—4n(n+1)I(1+1)]
/22n—1)(2n+3)I(21—1)}, (12)

with
C=2J-I)=F(F+1)—n(n+1)—I(1+1).

Near-zero field.  Only one nucleus has a quad-
rupole moment.—The weak electric field has the
effect of splitting the levels with equal # and
different M. The energy is calculated by con-
sidering the term proportional to o’ in eq 10,
that is,

o’ Dyz/2n(n+1),
as a small perturbation. This means simply
averaging the value of this term over the partici-
pation of each rotational state (n, m) in the com-
plete state (n, £, M). The following term must
therefore be added to eq 12:

(2/24)[02/20 (04 D]Z n(C82 ) Dim= — a2(12/24) [3M?— F(F+ D]BD(D— 1) —4F (F+ Dn(n+ 1))/
2n(n-+1)@n—1) 2n+3)2F(F+1) (2F—1) (2F+3), (13)

where C¢) 5, .. is the coeflicient of the eigenfunc-

tion (n, m; I, M—m) in the linear combination
which constitutes the eigenfunction (n, ¥, M) [5],
and

D=2J.F)=FF+1)+n(n+1)—I(I+1).

7 H. B. G. Casimir, Archives du Mus‘e Teyler [ITI] VIIL, 201 (1936). The
application to a molecule in zero-field has been made by B. T. Feld and
W. E. Lamb, Jr. (Phys. Rev. 67, 15 (1945)). The definition of ¢ by Feld and
Lamb is, however, different from that introduced in this paper; this entails
a difference in the multiplicative factor of some formulas.

Electric Quadrupole Coupling

In the theory of the anomalous Zeeman effect
[6] for a case of (LS) coupling, which is somewhat
analagous to the present calculation, one has to
calculate the average value of the quantum
numbers m,, and mg, namely, 2., (O35, v m.) M,
ete. It is shown by direct methods, however,
that the vresults are M(L-J)/J(J+1) and
M(S-J)/J(J+1). In our case the quantity D).

is a matrix element of quadrupole interaction,
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while m,, is a matrix element of dipole interaction.
It might therefore be expected that eq 13 could
be expressed directly by means of quadrupole
matrix elements. In fact eq 13 involves the
expression [j4 and the matrix element of the
operator:

«

(J-F)(J-F)-% (J-F)—‘% (J-J)(F-F),

no| oo

but the latter differs from the usual quadrupole
coupling operator by the sign of the second term.

Both nucler have quadrupole moments.—This case
is again similar to the preceding ones but more
complicated. Equation 13 should be extended to
include two terms, one involving the coupling of
J and I, and the other that of J and I,. However,
neither J-+I, nor J+1I, is a constant of the
motion, but only the sum F=J-+I,+I. In gen-
eral, there will be more than one term with the
same values of n and F. The characterization of
each term and the evaluation of (J-I;) and (J-I,),
and hence of the energy levels, depend upon the
ratio 8,/B8, and require the application of methods
similar to those used in the theory of complex
atomic spectra involving a number of terms with
the same angular momentum [6, p. 233]. The
same holds for the extension of equation 13.

The author is indebted to Prof. 1. I. Rabi and
his associates for suggesting this work, for friendly
discussions, and for hospitality in the Pupin
Physics Laboratory.
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VIII. Appendix

The solution of the secular equation 10a for n=1 is
obtained as follows. The total azimuthal quantum
number M assumes all the values |[M|=<I+1. For
|[M|=TI+1 the secular equation has only oné row and
column; its trivial solution is:
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y=I1@2I—1)+z, for |M|=I+1. (14a)

For |[M|=1, the equation is quadratic:
‘[(1—3) 2I—1)+2a]—y 3QRI—1)I'2

| 3@2I—1)nn

—2[1(2I—1)+x]—yi

and its solution is

y=—5{T+3 @I~ 1)+
3([(1—1)(2I~1)+x]2+4[1(21—1)]2)1/2}, for |M|=1. (14b)

For |M|<I, the equation is cubie, having three rows and
columns. Its solution can be indicated as

y=K;+2K;1” cos [(a+2pm)/3], for |M|<I, (14c)

where p=0, 1, 2, cos «=—K;/K:»2. K, K, K; are
polynomials of first, second, and third degree in the
elements of the determinant form of the secular equation,
which can be given in terms of I, M and z:

I{1=2

Ky=[PI+ 12+ 1+ 1)+ 1]+ 2BM2— T+ 1)+ 1z 422

Ky=[8I*(I+1)*— 2412(1 + 1)+ (3/2) I (I + 1)]—
3{8M[2I(T+1)=7/2] =3 1T+ D[4 (I+ 1)+ 1]+ 1}z +
3[8M2—I(I+1)+ 1] +as. (15)

Figure 1 shows the plot of y as a function of x for I=7/2,
corresponding to the Cs nuecleus in the CsF molecule
(F has no quadrupole moment), and for all values of M.
The position of the energy levels for x greater than two or
three times 1(2/—1) is already given with good accuracy
by eq 7 and 9, which were calculated on the assumption

of a2>>|8l.

The derivation of the eq 15 is a purely algebraic but
rather tedious and laborious process. This is probably
true in general of the process of solving secular equations
in which the matrix element are still functions of various
pertinent parameters. It is not just the solution of the
equation that is tedious, but especially the preliminary
process of transforming the equation from its determinant
form to a polynomial form. The labor involved increases
rapidly with the degree of the equation. Therefore, when-
ever it is necessary to obtain a solution only for a few
values of the parameters / and M and z, it is advisable to
introduce these values in the matrix elements themselves,
and to carry out the rest of the work numerically. Other-
wise it may be advisable to consider other ways of reducing
the equation to a polynomial form. For example, the
coefficients of an algebraic equation can be expressed in
terms of the sums of powers of its unknown solutions ;.
In the example above, K;=8;/3, K,=(S.—S5%/3)/6,
K= ((S3—8:8,)/6) — S3/27, where S,=Z4"% The quan-
tity S, is the trace of the matrix of the n-th power of the
energy operator; it may well be simipler and safer from
mistakes to calculate the necessary S, than to expand the
determinant form of the secular equation.
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Ficure 1.—Plot of the energy levels W, versus the square of the electric field, E2, for n=1, I=7/2, |M|< I+ 1=9/2; coor-
dinates are in dimensionless units:

r=—21(E)*eqQ(h/2A4), y=420W/e2qQ.

— M==21/2 ¢ s o y M=3[2; o= e ey M=£5/20 o ¢ oo 0 ey M=2£7/2; +4-+4+, M=29/2,

WasHiNGTON, March 31, 1947.
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