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NOTE ON THE THEORY OF HEAT CONDUCTION

By M. S. Van Dusen

ABSTRACT

A simple transformation of the general equation for heat flow is given, which
does not appear to be generally known. By means of this transformation most
problems in steady heat flow with conductivity depending on temperature can
be derived directly from the solutions of the same problems where the conductivity
is assumed constant, The paper is entirely mathematical.

The general equation of heat flow by conduction is

div(*V*)-cg£ (1)

where 6 is the temperature at any point at the time t, and k and c are,

respectively, the thermal conductivity and the heat capacity per unit

volume of the medium at the temperature 6 and at the point in question.

If k is assumed to be independent of temperature, then for an
isotropic medium, equation (1) reduces to the ordinary form, viz:

The various treatises dealing wholly or in part with the mathe-
matical theory of heat conduction invariably assume that both k
and c are independent of temperature, and imply that otherwise
the mathematical difficulties become very great. Carslaw 1 states

that in some mathematical investigations the conductivity, k, is

assumed to be a linear function of temperature, but does not give

specific references.

It will be shown, however, that in the majority of instances the
variation of k with temperature offers less difficulty than the varia-

tion of c with temperature. If the conductivity k is a known function
of temperature, given by

t-/W (3)

and if we introduce a new variable, u, defined as

"I/ G8) dfi (4)

then, by using the relations:

and
V^ = kvO

Fourier's Series and Integrals, MacMillan & Co., p. 193; 1906.
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derived from (4), the general equation (1) reduces to

c
Vu=di (5)

Vu is the (negative) heat flux, and in equation (4) the lower limit
of the integral is arbitrary. It might be conveniently taken as zero,
-for then when = 0, u = Q.

If in equation (5) the quantity -i termed the dirTusivity, or the
c

thermometric conductivity, is independent of temperature, equation
(5) is identical in form with equation (2). This quantity, however,
is not, in general, constant; but it may be remarked that for non-
crystalline poorly conducting solids the difTusivity is more nearly
independent of temperature than either k or c individually, which
is assumed in the classical solutions of problems in heat flow. For

In

such materials, therefore, equation (5) with - constant is a better
c

approximation than the classical form equation (2). At any rate
the physical properties of the medium in question have been com-
bined into one variable coefficient without loss of generality.

In all problems of steady heat flow, however, the time rates of
change of both and u vanish, the dirTusivity consequently disappears,
and equation (5) becomes

V2u = (6)

which is identical in form with the classical equation for steady
heat flow^ It follows, therefore, that if the boundary conditions are
expressed in terms of u instead of 0, by means of equation (4), problems
of steady heat flow with variable conductivity can be attacked by the
same general methods that are used in the solution of problemsVith
constant conductivity. In fact, in all cases where the boundary
conditions are originally given in terms of temperature, normal heat
flux, or a combination of both, solutions for variable conductivity are
immediately derivable from the solutions of the same problems with
constant conductivity. The general nature of this principle has
apparently been overlooked, or at least not generally recognized.

m

If the boundary conditions are given in terms of differential equa-
tions, as in the case of heat transfer between a boundary surface and
a fluid medium according to some experimental law of heat transfer,
such as Newton's law, the solutions for u do not follow directly from
the solutions for 0, for then the differential equations in terms of u
become different in form from those in terms of 0. For example,
it may be possible to find a solution of the equation: v2 = 0, satisfying
certain boundary conditions, among which is included:

k^+ hd= (10)

over some portion of the boundary.
In terms of u, we must satisfy

Y2u = in the solid
and

d
£+hF(u) = (11)
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over the same portion of the boundary, the function F (u) = being

derived from equation (4). .

It is evident that equations (11) and (10) are different inform, and

the solution in u can not be derived directly from the solution m 0.

As an example of the use of equation (6), let us consider the solu-

tion of a problem which was useful in connection with the design of

apparatus for measuring the thermal conductivity of metals^

One end (2 = 0) of a cylinder of length c and radius a is maintained

at zero temperature, the other end (s = c) being insulated Heat is

added at a constant rate to a portion of the convex surface of length b

adjacent to the end z = c, the rest of the convex surface being insu-

lated. Kequired: The temperature distribution in the cylinder when

the steady state has been attained.

Case I.

—

Constant thermal conductivity

We have to solve: v20=O, or in cylindrical coordinates:

subject to the boundary conditions:

When
2 = 0, =

de

r = a) d#=0
0<z<c-6j 6V

c-b<Cz<c]' dr Jc

where h is the inward heat flux per unit area normal to the convex

surface, and k the thermal conductivity of the material

By considering the image of the cylinder extending from the end

2 = c t0 z = 2c, maintaining the imaginary end at zero temperature,

and adding heat to the portion of the convex surface extending from

z = c to z = b + c, it is evident from symmetry that no heat will flow

across the surface s= c, and conditions in the actual cylinder will be

unchanged. By this device the solution is readily built up from

known particular solutions of equation (7), and the final result is as

follows

:

n-+™ . ?i7r . nwb

,-g*gV- S111T

7^^T4^) w
2c J

where i is the usual symbol for V^7!, and J and Jx are, respectively,

Bessel's functions of orders and 1.
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Case II.

—

Variable thermal conductivity

Let k = k (1 -f ad) ; therefore u = k ( + %d2 V We have to solve

:

V2u =

the boundary conditions in u being:
When

2 = 0, ^ =

du A
' 62

o<2<c-6j' dr

C — 2><2<CJ 6V~

The solution for u is evidently the same as equation (8) except

that 6 is replaced by it, and -rhj h alone. Substituting for u its value

in terms of 0, we have finally

rc^ 00
. nj . mrb

g+ggS^V Sm
2 ™ ^ sh^/i") (9)

n=i V 2c /

This equation can, of course, be solved explicitly for 0, or numerical
calculations can be made by successive approximations, since the
value of the cofficient a is ordinarily rather small. Evidently, if

a = 0, equation (9) must reduce to equation (8), for then the con-
ductivity is constant and equal to kQ .

Washington, February 5, 1930.


