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REDUCTION OF DATA ON MIXTURE OF COLOR STIMULI

By Deane B. Judd

ABSTRACT

Proof is given that any set of distribution curves may be assigned luminosity
coefficients giving the same luminosity sum as any other set of distribution
curves embodying the same mixture data. Two methods of computing such
luminosity coefficients are described and these methods are applied to four specific
transformations of the O. S. A. "excitation" curves. By actual computation
(for four filters) of dominant wave length, colorimetric purity, and transmission
for sunlight it is demonstrated in a practical way that each of these transforma-
tions embodies the same mixture data and luminosity data as the O. S. A. "ex-
citation" curves. One of these transformations is proposed for routine computa-
tion because it has properties which permit the adoption of simpler methods of
computing than the curves now used permit.
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I. INTRODUCTION

Probably the most fundamental set of data relating to color vision

is that embodied in the three " excitation " * curves or " visual response
functions" by means of which the laws of mixture of color stimuli are
applied. This set of data is obtained experimentally by introducing
into one half of a photometric field light of known spectral composition,
and into the other half of the field light of a different known spectral

composition, so chosen that the two fields appear matched to the
observer. By making a large number of such matches, information is

amassed by which it is possible to tell whether any two fields of different

spectral composition will appear matched to that observer or not.

It was indicated by Newton 2 and subsequently verified by others 3

that this information, or mixture data, could be embodied in a finite

1 We say, in this instance, "excitation," because that term is a usual one. Hereafter it will be frequently
convenient to substitute the term "distribution" on account of the generality of the mathematical treat-

ment. (See footnote 36, p. 524.)
2 Isaac Newton, Opticks, London, Innys, pp. 134-137; 1730. We find here a statement of "Newton's

law of color mixture." Although this law makes no explicit mention of additive distribution curves, and
does not directly state that contributions from different sources to a given primary color process are to be
combined by addition, still these concepts are contained implicitly in the law. Our indebtedness to New-
ton in this respect was acknowledged by J. C. Maxwell (Sri. Papers, Cambridge, p. 149; 1890), who was
among the first to state explicitly and use these concepts. Probably Grassman (Pogg. Ann., 89, pp. 69-84;

1853) first stated them explicitly.
3 See, for example: A. Konig, Ueber Newton's Gesetz der Farbenmischung und darauf bezvigliche Ver-

suche des Hrn. Eugen Brodhun, Sitz. Akad. Wiss., Berlin, 31, pp. 311-317; 1887. Newton's law for normal
observers has been amply verified by experiment for field brightnesses which are too high to involve the
Purkinje effect. We restrict attention, as is usual, to the medium field brightnesses dealt with by the
technique of colorimetry for which Newton's law is valid.
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set of additive distribution curves. 4 From these curves directly can
be obtained the prediction whether two given stimuli of different

spectral composition will appear matched or not. 5 If p , 70, and ft,

give the distribution of three color processes 6 (say a red, a green, and
a blue process) for an equal energy spectrum, and E the spectral

energy distribution of the light source actually used,7 the condition
for a complete color match (hue, saturation, and brilliance) between
two stimuli is

:

/;P„s(r1-r2)dx=o

/°7o£'(2
,.-r2)rfx=o

/>£, (r1-r2)rfx=o

(i)

where Tx and T2 are functions of the wave length, X; Tx gives the
ratio of the spectral energy at a given wave length of the first

stimulus to the spectral energy of the source, E, at that same wave
length; T2 gives the same ratio for the second stimulus.8 If condition

(1) be not satisfied, then the stimuli specified by ETX and ET2 are
not a match.

It has long been recognized that if p lt y lt and fa give the distribution
of three primary color processes in the spectrum of energy distribu-

tion, E, we can define an infinite number of sets of distribution

curves (say, for example, p2 , y2 , and /32 ) representing the distribu-

4 Newton used seven primary colors, which necessitates seven distribution curves. We now know (and
Newton seems to have suspected, though he was not sure) that three independent distribution curves giving
the distribution of three primary color processes throughout the spectrum are sufficient and necessary to
embody the mixture data of a normal observer. More than three distribution curves may be used if desired,
but they will not all be independent. The fact that three distribution curves are sufficient was probably
first given its proper emphasis by Thomas Young (Lectures on Natural Philosophy, London, Savage, I,

p. 440; 1807), who made it the basis of his color theory now widely known because of the adoption and elabo-
ration of it by Helmholtz. Experimental evaluations of these distribution curves have been made by
Konig and Dieterici (Sitz. Akad. Wiss., Berlin, 29, pp. 805-829; 1886), Maxwell (Sci. Papers, Cambridge,
pp. 426-444; 1890), Abney (Phil. Trans. Roy. Soc; 1899), and others.

5 See Nikolaus Nyberg, Zum Aufbau des Farbenkorpers im Raume aller Lichtempfindungen, Zs. f.

Phys., 52, p. 407; 1928. He gives our relation (1) as (5).
9 "Color process" is here taken as a name for the activity, retinal and postretinal, which is in one-to-one

correspondence with the incidence of radiant energy of a certain range of frequency upon the retina. If

the radiant energy is specified by its distribution (E) with respect to frequency (hereafter the wave length
in vacuo will be used to specify frequency), then, with the visual mechanism in the "neutral state" (see

footnote 61, p. 642), there corresponds to this radiant energy a certain real color process. Ifi£ for some wave
lengths be negative (which is physically impossible) still it is possible to compute a specification for the
"color process " with which this imaginary stimulus is in one-to-one correspondence. Since it is convenient
and useful to do this, the term "color process" is taken to refer to such activity, whether that activity
actually be possible within the normal visual mechanism (as it very well may be, see footnote 61, p. 542)

or not. When any three-color processes, existent or nonexistent, corresponding to any three physical
stimuli, real or imaginary, are dignified by adoption, temporarily or permanently, as objects of a set of

distribution curves by which the responses of an observer may be predicted, we shall denote their dignity
by referring to them as "primary color processes." It is evident that this state of being "primary" either
may or may not coincide with the state of being psychologically primary (unitary) or physiologically
primary (invariable—independent of intensity, duration, or retinal region stimulated)

.

7 poE, yoE, and 0oE are the distribution curves of the three primary color processes in the spectrum of

the source whose spectral energy distribution is E; they are hereafter designated pi, 71, and /Si, respectively.
No restrictions as to relative size are placed on the units of po, 70, and /So; but, for convenience only, pi, 71,
and /3i, are customarily expressed in comparable units. (See footnote 29, p. 522.)

8 Note that if the two light stimuli are produced by filters (1 and 2) illuminated by the source whose
spectral energy is E, then Ti and Ti are merely the spectral transmissions of the filters. The significance

of relation (1) may be restated in experimental terms as follows:

Consider a symmetrically divided photometric field, both halves of which are illuminated by a source
for which energy as a function of the wave length, X, is given by E and let the two halves be of equal bright-

ness. Let a filter whose transmission as a function of X is T\ be inserted in the path of light which illumi-

nates one half of the field; and let a filter whose transmission as a function of X is T% be inserted in the path
of light which illuminates the other half of the field. If the conditions expressed by relation (1) be satisfied,

the two halves of the field will then be perfectly matched in quality and brightness (hue, saturation, and
brilliance) ; that is, they will be quite indistinguishable one from the other for the observer to whom po,

70, and /So refer.

The reason for introducing the ratios T\ and Ti applying to the same source of radiant energy, E, and
resulting in the energy distributions ET\ and ETi is that the routine use of the "excitation" curves in
computation usually involves such ratios (either spectral transmission or spectral reflection) . The prod-
ucts ET\ and ETi would otherwise have more naturally been designated simply as E\ and Ei without indi-

cation as to the manner of their physical realization.
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tions of different sets of primary color processes 9 which would equally
well represent the same body of mixture data. We need only to choose
at random nine finite constants (Ki to K9 subject to the condition:

Kt K2 Kz

K, Kh K,
K7 K8 K,

^O 1

then the expressions

p2 ssjKipi +K2yi 4- if3ft

72 ^KtP! +K5yi + KS\

(2)

define the new set of distribution curves for each wave length.

We say that p2 , y 2 , and ft represent the same body of mixture data
as do pi, 7i, and ft because, whenever T1 and T2 are so chosen that
relation (1) holds, it is also true that that relation holds when p2 , 72,

and ft are substituted for pu y 1} and ft, respectively. 11

9 The new set of primary color processes might be any three different color processes providing the stim-
ulus (real or imaginary) which evokes one of them can not be matched by a mixture of the stimuli which
evoke the other two. The new processes might be, for example, any violet, any yellow, and any crimson
process. This freedom of choice of primary color process may be stated in another way. If all color pro-
cesses are represented on a mixture diagram (such as figs. 2 to 5), each process by a point, then any two
points may be chosen at random for the first two primaries. The only restriction on the choice of the
third primary is that its point must not lie on the straight line connecting the points for the other primaries
which were chosen at random.

i° That this determinant be different from zero is the condition which ensures that p% 72, and ft will be
three independent functions provided pi, 71, and ft are. In other words, it ensures that the points repre-
senting on the mixture diagram the three new primary color processes do not lie on the same straight line

if the points representing the old primaries do not. In actual cases this condition is seldom tested because
the collapse of the tristimulus system into a monostimulus or distimulus system is usually prevented by
the nature of the problem.

11 Although the accuracy of this statement has been regarded as so evident that writers following Newton
(see footnote 12) who have made use of relation (2) have apparently never bothered to publish a proof of

it, still it is, perhaps, well to indicate the proof here for the sake of completeness. We wish to show that

P2 (Ti- T2)rfX=0. From (2) we may write:k
r°°P2 (Ti-T2)d\=

J
"(Km+Ziyi+K&i) (Ti-T2)d\=

Kif™Pi (T1-T2) d\+KiJ^yi(Tl-T2)d\+K3J^i {Ty-T2)d\.

But from (1) and footnote 7, page 516, each of the three integrals is zero; hence their sum I p2 {Ti—T2)d\

equals zero, which [is what we wanted to prove. By analogous argument, I yi(Ti— T2)d\=0, and

J
""ft (Ti—T2)d\=0; hence P2, 72, and ft satisfy (1) whenever pi, 71, and ft do.

This form of proof can also be extended to show that whenever relation (1) is not satisfied by pi, 71, and
ft then neither do p2, 73, and ft satisfy it. The argument is by reductio ad absurdum: Assume that p2,

72, and ft do satisfy (1) when pi, 71, and ft do not. Now it is possible to find constants (/ci to £9) such that:

Pi= fcip2+/l272+faft

71= &4P2+/C572+A:6ft

ft= /C7P2+/C872+/C8ft

fci ki fa\

ki kb M j^O
ki h h\

(This is relation (5) of Sec. II; the constants {k\ to h) of this relation may be computed from the constants
(Ki to K9) of relation (2) ; see relation (7) in Sec. III.) Hence, as just shown, pi, 71, and ft satisfy (1) which
is contrary to hypothesis.
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Hence, if p2 , 72, and j82 are used to predict whether the stimulus
specified by ETX matches that specified by ET2 , the same prediction
is obtained as by the use of p if 71, and 0i.

12

The choice of a particular set of distribution curves out of the
triple infinity of sets which can all equally well embody a given set

of mixture data is dictated purely by convenience. If, as in this

article, the aim is prediction of whether the observer will respond
"match" or "not a match" when confronted by two color stimuli

of different spectral composition, a set of curves should be chosen
that lends itself readily to the computation incident to this predic-

tion. 13
If, on the other hand, the aim is to simplify the basis for

speculation of a psychophysiological nature, many other quite
different sets of curves would be eligible, the choice depending on
the nature of the speculation. 14

When the technique of heterochromatic photometry was worked
out 15

it became convenient to use a method, long known, of specify-

ing a color stimulus. This method is to evaluate for that stimulus
three variables—dominant wave length, colorimetric purity, and
luminosity. 16 In order to convert specifications of color stimuli

from this system into those suggested by relation (1), namely, the

12 This has been recognized by nearly all writers following Newton, though they do not always give relation

(2) explicitly. It is convenient at this point to introduce a partial list of the publications which have dealt,
directly or indirectly, with transformations of this sort:

A. Konig and C. Dieterici, Die Grundempfindungen und ihre Intensitatsvertheilung im Spectrum,
Sitz. Akad. Wiss., Berlin, 29, pp. 805-829; 1886. (Or see A. Konig, Gesammelte Abhandlungen zur Phy-
siologischen Optik, Leipzig Barth, pp. 60-87; 1903.) Also Die Grundempfindungen in normalen und
anomalen Farbensystemen und ihre Intensitatsvertheilung im Spectrum, Zs. f. Psych, u. Physiol, der
Sinnesorgane, 4, pp. 241-347; 1892. (Or see A. Konig, Ges. Abh., Leipzig, Barth, pp. 214-321; 1903.)

H. v. Helmholtz. Zs. f. Psych, u. Physiol, der Sinnesorgane, 2, pp. 1-30; 3, pp. 1-20. (Or see H. v. Helm-
holtz, Handbuch der Physiologischen Optik, 2d ed., Leipzig, Voss, pp. 449-458; 1896.)

H. E. Ives, The Transformation of Color-Mixture Equations from One System to Another, J. Frank.
Inst., 180, pp. 673-701; 1915. Also, The Transformation of Color-Mixture Equations from One System
to Another. II. Graphical Aids, J. Frank. Inst., 195, pp. 23-44; 1923.

J. Guild, The Transformation of Trichromatic Mixture Data: Algebraic Method, Trans. Opt. Soc, 26,

pp. 95-108; 1924-25. Also, The Geometrical Solution of Colour Mixture Problems, Trans. Opt. Soc, 26,

pp. 139-174; 1924-25.

W. Dziobek, Ueber die Transformation von einem trichromatischen System auf ein anderes, Zs. fur
Instrumentenkunde, 46, pp. 81-84; 1926.

E. Schrodinger, Grundlinien einer Theorie der Farbenmetrik im Tagessehen, Ann. d. Physik (4), 63,

pp. 397-456; 1920.

E. Schrodinger, Ueber das Verhaltnis der Vierfarben- zur Dreifarbentheorie, Sitz. Akad. Wiss., Wien,
Abt. Ila, 134, pp. 471-490; 1925.

R. Luther, Aus dem Gebiet der Farbreizmetrik, Zs. f. Techn. Physik, 8, pp. 540-558; 1927.

I. Runge, Ueber die Ermittlung der Farbkoordinaten aus den Messungen am trichromatischen Kolori-
meter, Zs. f. Instrumentenkunde, 48, pp. 387-396; 1928.

Relation (2) of this paper is given as relation (9) by Helmholtz (Handbuch der Physiologischen Optik,
2d ed., Leipzig, Voss, p. 453; 1896) and as relation (1) by Ives (J. Franklin Inst., 180, p. 678; 1915). A
restricted form of the relation is given by Konig and Dieterici (Konig, Ges. Abh., pp. 82, 305), and also by
Guild as relation (4) (Trans. Opt. Soc, 26, p. 97; 1924-25), and again as relation (10) (ibid., p. 153).

Compare also relations (12) and (13) given by Schrodinger (Ann. d. Physik, (4), 63, p. 439; 1920).
13 The " Elementarempfindungskurven " of Konig and Dieterici (A. Konig, Ges. Abh., Leipzig, Barth,

pp. 286-288; 1903), the elementary "sensation" curves of Abney (W. de W. Abney, Researches in Colour
Vision, London, Longmans-Green, pp. 229-247; 1913), and the elementary "excitations" computed by
Weaver using data by Konig, Dieterici, and Abney (L. T. Troland, Report of the Committee on Colorim-
etry for 1920-21, J. Opt. Soc Am. and Rev. Sci. Inst., 6, p. 549; 1922) are examples of distribution curves
which are convenient for computation chiefly by reason of the fact that there are no negative ordinates.
The sort of computation for which these curves are used is treated by Troland (J. Opt. Soc Am. and Rev.
Sci. Inst., 6, pp. 573-592; 1922) and by Priest (J. Opt. Soc. Am. and Rev. Sci. Inst., 9, pp. 503-520; 1924).

14 Thus, we might try to choose distribution curves which suggest a simple theoretical account of the
facts of dichromasy just as Maxwell (On the Theory of Compound Colours, and the Relations of the Colours
of the Spectrum, Sci. Papers, Cambridge, pp. 441-444; 1890), and Konig and Dieterici (A. Konig, Ges. Abh.,
Leipzig-Barth, pp. 303-321; 1903) did. Or we might test the applicability of an extension of Fechner's law
for the prediction of sensibility to color differences as Helmholtz (Handb., d. Physiol. Optik, 2d ed.,

Leipzig-Voss, pp. 449-458; 1896) did. Or we might wish to show that the mixture data could suggest a
four-color theory of vision as well as a three-color theory as Schrodinger (Sitz. Akad. Wiss., Wien, Abt.
Ila, 134, pp. 471-490; 1925) did.

15 Due in large part to the research activity of Herbert E. Ives (Studies in the Photometry of Light of

Different Colors, Phil. Mag., 24, pp. 150-188, 352-370, 744-751, 845-863; 1912).
18 1. G. Priest, Apparatus for the Determination of Color in Terms of Dominant Wave-Length, Purity

and Brightness, J. Opt. Soc Am. and Rev. Sci. Inst., 8, pp. 173-200; 1924. (This paper gives references to

previous publications on the same subject.) W. v. Bezold, Ueber das Gestez der Farbenmischung und
die physiologischen Grundfarben, Pogg. Ann., 150, pp. 71-78; 1873. We find here (p. 78) probably the first

explicit definition|of the concept now termed "colorimetric purity," Bezold named it "objective Reinheit."
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Too Pco /»oo

evaluation for that stimulus of p ETd\, I yoETdX, and fi ETd\

(and vice versa), it became necessary to evaluate a set of " luminosity
coefficients" Ln , Lgv L bv such that for each wave length:

p 1Ln + yiL gi
-\- $iLH = Li (3)

where L x gives the distribution of luminosity of the source for which
Pi, yi, and & give the distribution of the primary color processes. 17

If we are to compute (for example) the colorimetric purity of a
stimulus from the tristimulus specification, we must be able to com-
pute from that specification L\ for the wave length equal to the
dominant wave length of the stimulus. The first set of distribution

curves to which luminosity coefficients were attached was compiled
from Konig's data by Dr. H. E. Ives. Ives noted that the Grundemp-
findungskurven of Konig failed to sum even approximately to the
average luminosity function when weighted by any set of positive

luminosity coefficients whatever. 18 Consequently, he chose a new
set of primary color processes yielding a new set of distribution curves
to represent the mixture data of Konig's observers. He found that
this new set of distribution curves summed within experimental
error to the average luminosity when weighted by a set of positive

luminosity coefficients.

In 1920 Exner 19 independently noted the difficulties which led

Ives to make the changes just described. Exner, however, proposed
to obtain by purely arbitrary changes a substantial agreement of the
mixture data with the luminosity data through the use of positive

coefficients. These arbitrary changes (not being a transformation
of coordinates) fail to satisfy (2). The resulting set of distribution

curves, therefore, does not embody the same set of mixture data as
the average Konig curves, and if used for computation does not give
the same numerical results that the Konig curves give. These
curves have attracted the well-deserved criticism of Schrodinger. 20

It has been shown by the author 21 that one set of distribution

curves (the O. S. A. " excitation" curves) 22
will sum, when properly

weighted, to a satisfactory approximation of the accepted luminosity
function of the source. Throughout the present paper these dis-

tribution curves will be used as a basis for computation because they
represent in the author's judgment the best reduction of mixture
data available. They are somewhat more congruent with the
luminosity function than the Konig-Ives curves, due partly to the

17 pi=poE, 7i=7o.E, and Pi^PoE. See footnote 7, p. 516.
18 J. Frank. Inst., 180, pp. 693-694; 1915. Ives noted that a negative luminosity coefficient for the "blue

"

curve would be required; but apparently he regarded a negative coefficient unacceptable because he re-

marks in italics that " * * * no positive luminosity values for the blue sensation will satisfy the condi-
tion" and later (p. 694) implies that the Konig curves fail to yield consistent luminosity values on this

account. Of course, to attach a negative coefficient to the blue curve involves a difficulty on the basis of

psychophysiological theory, namely, that the mechanism which is responsible for "blue" must also par-
tially inhibit the "brightness" response; this consideration was probably the reason for Ives's rejection of
negative coefficients.

18 F. Exner, Zur Kenntnis der Grundempnndungen im Helmholtz'schen Farbensystem, Sitz. Akad.
Wiss., Wien, Abt. Ha, 129, pp. 27-46; 1920.

\
20 E. Schrodinger, Ueber das Verhaltnis der Vierfarben- zur Dreifarbentheorie, Sitz. Akad. Wiss., Wien,

Abt. Ha, 134, p. 479; 1925. He remarks in a footnote, "Von der Korrektur der Konig'schen Grundempi
findungskurven, die Exner weiterhin vornimmt, konnte ich aus dem Grunde keinen Gebrauch machen,
weil sie Scbonheitsfehler (Konkavitaten nach aussen) der Spectralkurve in der Farbentafel nach sich
zieht."

21 D. B. Judd, Chromatic Visibility Coefficients by the Method of Least Squares, J. Opt. Soc. Am. and
Rev. Sci. Inst., 10, pp. 635-651; 1925.
« See footnote 35, p. 524.
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more refined method of computing luminosity coefficients but more
particularly to the different choice of mixture data they embody and
to the fact that more extensive luminsoity data have since become
available.

The purposes of the present paper are:

To show that any one of the infinite number of sets of distribution

curves representing a given body of mixture data will sum equally
well to the luminosity function. (Sec. II.)

To outline two short methods for computing the luminosity coeffi-

cients of any of these sets of distribution curves. (Sec. III.)

To present four examples of this problem solved by the methods
outlined in Section III. (Sec. IV.)

To present a demonstration that each of the four sets of distribu-

tion curves used embody the same mixture data (that of the O. S. A.
" excitation" curves) by showing that each of the four sets gives the
same results when used for the computation of the dominant wave
length, colorimetric purity, and luminosity of color stimuli. (Sec. V.)
To show that one of these sets of distribution curves embodies

greater computational convenience than any set heretofore proposed.
(Sec. VI.)

II. CHOICES OF DISTRIBUTION CURVES AND THE INDE-
PENDENCE OF THE LUMINOSITY FUNCTION

Theorem.—Any set of distribution curves may be assigned lumi-
nosity coefficients giving the same luminosity sum as any other set

of distribution curves embodying the same mixture data.

The theorem restated is: If px , yu ft and p 2 , y 2 , ft are sets of dis-

tribution curves which satisfy relation (2) for each wave length, and
L Tl , Lgi, and L bl are three numbers satisfying relation (3) for each
wave length, then three numbers, L r2 , L g2 , and L o2} exist such that,

for each wave length:

p2L r2 + y 2L g2 + fi2L b2 — piLn + y±Lg i + ft£&i —L : (4)

Proof.—Since these two sets are connected by relation (2) it is

possible to find constants (&i to k9 ) such that:

Pi = k 1p2 + k 2y 2 + k 3(32

yi = k ip2 + k 5y 2 + k 6l3 2

Pi*=k7p2 + ksy2 + h(3 2

k\ K 2 K\

/u4 /t5 fC(

k7 ks h
^0

(5)

by solving for p x , yu and ft from (2).

write

:

From (3) and (5) we may

Ln (kip2+k 2y 2+k 3 (3 2)+L gi
(k i p2+k 5y 2+k d l32)+L bl (k7p2+k8y2+k9(32)=L 1

23 The result of this solution is given as relation (7) in Sec. III. Compare relation (15) given by Schro-

dinger (Ann. d. Physik, (4), 63, p. 440; 1920). This solution is also given by Guild (Trans. Opt. Soe., 26,

p. 100; 1924-25) as relation (10), though he does not evaluate the determinant we abbreviate as A. (See rela-

tion (7).)
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or, rearranging terms:

p2 {Lnk l + Lgjd +L blk7 ) + y2 (Lnk2 +L gi
k5+L blk8) + p2(Lnkz +L gi

k 6

+L blkQ
) = L!

whence it is evident that numbers, L T2 , L ff2 , and L b2 , which satisfy (4)

do exist because they are:

Ld T2
=

-Li T\k,\ + Ld
gJc 4 + jL b-JCi

-LJ
g2
=L riK 2 -\-ljg1

fC5 + Ju blK8 (6)
s

It may easily be shown that the sum of the luminosity coefficients

applying to the second set of distribution curves is equal to the sum of

the luminosity coefficients applying to the first set of distribution

curves provided all distribution curves of both sets have equal areas.

It may be seen from relation (6) that if we wish to choose any set of

luminosity coefficients whatever which satisfies the restriction just

stated, it will be possible to derive a set of distribution curves to which
that set of luminosity coefficients apply".

25 It is further evident from
relation (6), since we have nine constants out of which to build

but three luminosity coefficients whose nature imposes but three

added restrictions,
26 that not only will it be possible to find a set

of distribution curves embodying the mixture data of the first set

of distribution curves to which the arbitrarily chosen set of lumi-
nosity coefficients apply, but that it will be possible to find many
such sets. We shall have occasion to make use of this possibility in

Sections V and VI. (See footnote 52, p. 533, and footnote 74, p. 544.)

It is of interest to indicate the steps in the actual discovery of the
truth of our theorem because the discovery involves a special case of

relation (2) which is in itself worthy of attention. Consider a set of

distribution curves p 3 , 73, and /33 , computed from p 1} y 1} and ft, by the
relations

:

P3
=

Pl

73 = 7i

Q DPl ,
Dyi

,
(3-3ZO0!+Z-DS-D 1 3-D

(2a)

where D is any finite constant except + 1 and + 3 27 independent of

wave length ; D may be thought of as fractional deficiency of primary
color process

;

28 here D refers to fractional deficiency of "blue"
process since it is attached to /3i, but it may, of course, be attached
equally well to p x or y lm It may be noted that relation (2a) is a special

case of relation (2); hence p3 , 73, and j83 represent the same body of

mixture data as p 1} y 1} and &.

24 1 am indebted to Dr. L. B. Tuckerman for this elegantly simple proof.
25 We have merely to choose the constants (ki to kg) which, according to (6) give the desired values of

-Era, L„2, and L&2. These constants (fei to kt) lead, according to (5), from the new distribution curves to the
old; hence, they may helpfully be called the "reverse " coefficients. But we can find the direct coefficients

(K\ to Zg) of relation (2) from the reverse coefficients in the same way that the reverse coefficients are found
from the direct coefficients. (See relation (7).)

26 The case of interest is that in which the luminosity coefficients refer to distribution curves of equal area.
This condition requires that: ki+ki+fa^ki+fa+k^h+fo+k^l.
w D=+3 makes ft infinite. It is ruled out because relation (2) applies to a choice of finite constants

only. D=+l is ruled out because the determinant of relation (2) then becomes zero.
28 Thus, for Z>=+1, we find no trace of the ft curve in the ft curve because ft is simply the sum of half of

each of the other two. This corresponds, of course, to the collapse of the tristimulus into a distimulus sys-
tem in which the orginal "blue" process is missing; hence, we may say that for D—-\-l, the system is

wholly "blue" deficient.
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It was known that the theorem held for this special case of relation

(2) because, by trial and error, the luminosity coefficients, L r2 , L g3y

and Z &3 , had been found to be:

L r3 =L rl-DLnMl-D),
)L gZ =L gl-DL hl/Z(l-D), (6a)

L b3 =L bl/(l-D)-DLbl/Z(l-D)\

Examination of (2a) and (6a) shows that p3 , y3 , and /53 have the
following properties: (1) They differ from pl9 yl9 and /3i in respect to
one variable only (here ft), (2) they yield curves of equal area pro-
vided pi, yi, and (3 1 do, and (3) they have luminosity coefficients which
sum to unity provided p l9 y l9 and /3i have such luminosity coefficients.

After we have made one such transformation with a given value
(positive or negative) of D applied to a particular distribution curve
(say ft), we may follow that transformation with another which
involves a different value of D applied to the pi or the y t curve; and
so on. But since for each of these transformations it is possible to
find luminosity coefficients which satisfy (3) merely by computation
according to (6a), and since apparently any set of distribution
curves embodying the same mixture data as pl9 yl9 and ft (and having
equal areas) 29 may be obtained by successive transformations of
this kind, it was supposed that the theorem held for all cases.30

III. TWO METHODS OF CALCULATING THE LUMINOSITY
COEFFICIENTS OF A SET OF DISTRIBUTION CURVES FROM
THE LUMINOSITY COEFFICIENTS OF ANOTHER SET OF
DISTRIBUTION CURVES EMBODYING THE SAME MIX-
TURE DATA

If a set of distribution curves is given and the luminosity curve of

the source is at hand which the sum of the distribution curves, properly
weighted by luminosity coefficients, ought to approximate, the lumi-
nosity coefficients which give the best approximation may be com-
puted by the method of least squares. 31 It was apparently assumed
by Ives 32 that a new choice of primary color processes giving a new
set of distribution curves embodying the same mixture data might
improve the goodness of fit of those data to the luminosity data, and
such an implication was accepted by the author until the present
work showed it to be untenable. The incorrectness of this view can
now be conveniently demonstrated by an important corollary of the
theorem proven in Section II, namely, that a new choice of distribu-

tion curves results in exactly the same agreement with the luminosity
data, no better and no worse. 33 For all sets of stimulus primaries,

29 It is customary to adjust the ordinates of the three distribution curves so that the areas under the curves
are equal. Such an adjustment is convenient because it causes the point representing the color of the light
stimulus from the source (whose energy distribution is E) to fall at r=l/3, g=l/3, 6=1/3. (See figs. 2 to 5,

also relation (9) et seq.)
30 Tnis argument, as given, does not amount to a proof, as does the one previously given, because it does

not show that every set of distribution curves satisfying (2) can be approximated by the successive appli-
cation of (6a) . It has merely shown that many such sets can be obtained.

3i See footnote 21, p. 519.
32 See footnote 18, p. 519.
33 The argument is by reductio ad absurdum: The theorem states that there exist luminosity coefficients

which give a new distribution curve sum identical with the old (relation 4). Thus, if a new choice of dis-

tribution curves (obtained by a new choice of stimulus primaries) gives a better fit than the best obtain-
able by the old choice, we can transfer back to the original primaries and find coefficients which give the
same sum, a sum which must agree better than the best obtainable, which is impossible.
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then, the least square solution results in exactly the same degree of
agreement; this method of solving for luminosity coefficients is, of
course, always applicable. There are shorter ways, however, of

obtaining the best luminosity coefficients (Lr2 , L g2 , L b2 ) for a set of

distribution curves (p2 , y 2 , (32 ) provided a least square solution for

Lri, L g i, and L bi has already been carried out on another set (p x , 7!,

ft ) representing the same mixture data. Two methods will be given;
the first method, which requires only that the theorem of Section II

be true, involves the following steps:

1. Compute piZ r i + YiZ<,i + /3iZ &1 for any three convenient values of

the wave length (such as 450, 550 and 650 m^u). 34

2. Set these numbers equal to p2L T2 + y 2L g2 + (32L b2 for the cor-

responding three wave lengths and solve for L r2 , L g2 , and L b2 .

By the theorem of Section II, the values thus found will be the
luminosity coefficients which give the same luminosity sum (p 2L r2 +
72^^2+ 02^62) as the original distribution curves gave (p 1L Tl + yiL g i +
0iZ 6 i), not only for the three wave lengths chosen for computation,
but for all wave lengths.

The second method is based on relation (6). If the constants k x

to h be expressed in terms of the constants Kx to KQ by the method
indicated in Section II (see relation (5) et seq.), there results:

fc,=

, 1

*3
=
A

K5 K8

K& Kg

KS K2

K,K3

K2 K5

K3 K,

k> =

&5=

*•-!

1

A
K7 K,
K9 K,

1

A
KX K,
KZ K9

*7=
1

A
K,K7

K,KS

1

A
K7 Kt

KS K2

where A is an abbreviation for:

From (6) we may write:

Zr2 == T L T \

"^2==
A ^ rl

L -M~Z

and compute L r2 , L g2 , and L b2 directly.

Kt Kt

K,K3 K2 Kh

K,K2

K7 K,

K3

KS K3 +L al

K7 Kt

K,K, +LM
K,K7

Kh K3

K3 K2

K,K3

+L sl

K,K7

K3 K,
+L bl

K7 K,
KS K2

K2 Kh

K3 K6

+ L sl

KtKi
K,KZ

+LM K2 K,

(7)

(8)

34 In actual cases, the errors of rejection become troublesome if the values of wave length taken differ only
slightly.

98046°—30-
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IV. CALCULATION OF LUMINOSITY COEFFICIENTS FOR
FOUR SETS OF DISTRIBUTION CURVES EMBODYING THE
SAME MIXTURE DATA AS THE O. S. A. " EXCITATION"
CURVES

The mixture data which are embodied in each of the four sets of

distribution curves for which luminosity coefficients are to be calcu-
lated are those of the O. S. A. " excitation" curves in the form (p ,

7o, jS ) extrapolated by Priest and Gibson. 35 Table 1 gives (columns
2, 3, and 4) the distribution curves 36

p lf yu and fa referring to Abbot-
Priest sunlight according to the mixture data embodied in the O. S. A.
"excitation" curves. The spectral energy distribution (E) of Abbot-
Priest sunlight 37

is given in column 1 . The distribution curves of

columns 2, 3, and 4 are computed from the O. S. A. "excitation"
curves (p , To, A)) as follows:

P! = 0.17547 PoE\

7i=0.17802 7o# (9)

0i-= 0.17482 &£]

3 » J. Opt. Soc. Am. and Rev. Sci. Inst., 10, p. 230; 1925.
36 The function of wave length, pi, gives the distribution of a certain sort of "redness" or "red process"

throughout the spectrum of Abbot-Priest sunlight; 71 gives the distribution of a certain "green process,"
and so on. There is no satisfactory proof that these processes have a separate physical existence; hence,
the distribution curves given probably do not even approximately characterize any retinal activity (photo-
chemical activity or decomposition of sensitive substance) nor any neural activity (either in the optic
nerve, the occipital lobe, or elsewhere) ; the processes are called primaries by virtue of their position in a
mathematical structure (see footnote 6, p. 516) whose present chief justification is that it makes colorimetric
computation possible. Although pi, 71, and /Si represent the distribution of certain processes throughout
the spectrum of Abbot-Priest sunlight whose claim to the term "primary" is purely mathematical, still

it is probable that the distribution of some aspect of the color processes which are really "primary" or
"fundamental" may be calculated from pi, 71, and /Si by relation (2). Our present ignorance concerning
color vision is such that we know neither the constants of relation (2) nor the aspect of the color processes
really "primary" to which these unknown constants refer.

The practice in this paper of referring to p, 7, and /S briefly as "distribution curves" rather than the
more widely used "excitation curves" is due primarily to the fact that the mathematical treatment is

general and need not be restricted to the distribution curves of real or imaginary color processes. It is

further true that the term "excitation curves" used thus briefly is objectionable to some who wish to
reserve that term to apply to processes which actually exist in a physically separated state. Ladd-Franklin
has already used "distribution curves" as a substitute term. (See, for example, Appendix to English
Edition of the Helmholtz Physiological Optics, 2, p. 461; 1924.)

37 1. G. Priest, A Precision Method for Producing Artificial Daylight, Phys. Rev. (2), 11, p. 502; 1918.

J. Opt. Soc. Am. and Rev. Sci. Inst., 12, p. 479; 1926. Standards Yearbook 1927, p. 204 and Figure 4.

Note.—The values of E introduced by Priest into the work of the colorimetry section, Bureau of

Standards, some years ago, now in current use, and reproduced in Table 1 of the present paper are not
exactly the same as proposed in his earliest publication cited above. Except for change of scale (100 at
wave length 590 mp instead of 100 at wave length 560 mp) the values given here are as shown in Figure
4 of the Standards Yearbook for 1927. They are given by:

Ecc E2m sin 2a/2

where £72848 is energy per unit wave length as a function of wave length for the Planckian radiator at
2,848° K. for a at 14,350 micron degrees, and a is the rotation of the plane of polarization of light, as a func-
tion of wave length, per millimeter in crystalline quartz.
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Table 1.—The distributions of the 0. S. A. "Excitations" throughout the spectrum
of Abbot-Priest sunlight

X
in
mjLt

E
(Abbot-
Priest

sunlight)

pi Tl ft
p\Lt\

<Xrl=0.45) (i,i=0.54) (£m=0.01)

Pl-krl+

1 2 3 4 5 6 7 8

380
90

400
10
20
30
40

450
60
70
80
90

500
10
20
30
40

550
60
70
80
90

600
10

20
30
40

650
60
70
80
90

700
10
20

50.60
56.05

61.42
66.65
71.54
76.18
80.56

84.46
88.03
91.08
93.93
96.29

98.22
99.77
100.90
101. 71
102. 08

102. 20
101. 81
101. 44
100.93
100.00

98.79
97.45
95.61
93.78
92.38

90.35
88.62
86.29
84.33
81.99

79.57
77.31
75.21

442
1,274

2,717
5,045
7, 679

12, 186

14, 351

14, 027
12, 958
11, 098
7,767
3,703

2,112
1,517
1,076
765
517

322
196
124
71

35

17

4.4
12.7

27.2
50.4
76.8
121.9
143.5

140.3
129.6
111.0
77.7
37.0

21.1
15.2
10.8
7.7
5.2

3.2
2.0
1.2
.7
.4

.2

4.4
12.7

27.2
50.4
83.8
144.0
197.5

269.9
457.7
848.8

1, 283. 3

1, 913. 2

3, 119. 4
4, 954. 8

6, 813. 4

8, 066.

1

8, 928. 9

9, 437. 4

9, 404. 7

9, 087. 6

8, 171. 4

7, 070. 3

5, 840.

4, 613. 4

3, 373. 2

2, 371. 9

1, 511.

867.9
484.2
272.7
146.7
84.2

47.2
24.3
14.8

13

41

100

240
595

1,313
2,040
2,897

4,546
6,944
9.160

10, 357
10, 958

11, 134

10, 475

9,336
7, 456
5,269

3,447
1,960
1,004
484
164

48
16

7.0
22.1
54.0

129. 8

321.3
709.0

1,101.6
1, 564.

4

2, 454. 8

3, 749. 8
4, 946. 4

5, 592. 8

5, 917. 3

6, 012. 4

5, 656. 5

5, 041. 4
4, 026. 2

2, 845. 3

1, 861. 4

1, 058. 4
542.2
261.4
88.6

25.9
8.6

15

64
231
693

1,430
2,644
4,125
5,479
6,681

7,604
8,325
8,989
9,210
9,388

8,841
7,900
6,291
4,690
3,161

1,871
1,057

606
326
187

105
54

33

6.8
28.8
104.0
311.8

643.5
1, 189. 8
1. 856. 2

2, 465. 6

3, 006. 4

3, 421. 8
3, 746. 2

4, 045.

4, 144. 5

4,224.6

3, 978. 4

3, 555.

2, 831.

2, 110. 5

1, 422. 4

842.0
475.6
272.7
146.7
84.2

47.2
24.3
14.8

The constants in relation (9) are chosen so that (except for errors of

rejection of about 5 parts in 100,000 which can not conveniently be
avoided): Sp 1AX = S7 1AX = 2j8

l
AX= 1,000,000, for AX = 10 m^. 38 Al-

though pi, 7i, and fii are specified only at intervals of 10 m/i, 39 other
values required may be found by interpolation and extrapolation. 40

L TY} L ij and L bl are taken as 0.45, 0.54, and 0.01, respectively;41

the products piLn , yiL gl , and (3iL b i, and the sum of the products
appear in columns 5, 6, 7, and 8. In order to show that the differ-

ences between this weighted distribution curve sum and standard
luminosity data are negligible, these sums 42 divided by the spectral

energy, E, of Abbot-Priest sunlight (column 1) are compared in

Figure 1 to visibility data taken from the work of Gibson and Tyn-
dall.

43 Visibility via the weighted distribution curve sums is shown
by circles with tags; the experimental average visibility reported by
Gibson and Tyndall from their data referring to 52 observers is

38 See footnote 29, p. 522.
39 This method of specification has thus far been found sufficient; perhaps intervals of 5 m^ (or less) will

be justified by subsequent advances in colorimetric technique.
40 Note that pi, y\, and £i are to be taken as zero for the 10m^ intervals for which no value is given in

Table 1; a similar remark applies to Tables 2 to 5.

« Least square computation shows these to be a reasonable choice for representing luminosity data.

(See footnote 21, p. 519.)
42 Multiplied by the constant, 0.010764, which makes the maximum ordinate approximately unity and,

on this account, all the ordinates comparable to the standard visibility data. (See footnote 43.)

« K. S. Gibson and E. P. T. Tyndall, The Visibility of Radiant Energy, B. S. Sci. Paper No. 475, pp.
156-159, 174; 1923.
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shown by small circles; their adopted or recommended visibility44

is shown by large circles. It is to be noted that at about half the
wave lengths at which this comparison is made, the visibility via the
distribution curve sum (small circles with tags) either falls between
the Gibson and Tyndall experimental mean (small circles) and the

1,000

400

J00

;tvv"

o o Weighted Sum of Distribution

Curves based on O. S.A. adopted

data on Mixture of Color Stimuli.

O o Visibility.Gibson-Tyndall

Experimental Mean.

OO Visibility:Gibson-Tyndall

Recommended Mean.

Maximum and Minimum Visibility

from Gibson and Tyndall's 37
Completely Studied, Normal

Observers.
3

0/

6 /

.-«-

9 \

1

A

Figure 1.-

400 450 500 550 600 650 700

Wave length In mu

-Demonstration that the distribution curves expressing mixture data
are not inconsistent with standard visibility data

The weighted distribution curve sum is compared (l) to the Gibson-Tyndall experimental mean
visibility (B. S. Sci. Paper No. 475, Table 3, second column), (2) to the recommended mean (ibid,

Table 3, last column), and (3) to the highest and lowest visibility found experimentally among
the 37 completely studied, normal observers (ibid, Table 2). The weighted distribution curve
sum is seen to agree closely with visibility diiectly determined.

values recommended by them (large circles) or coincides with one of

them. To make further evident that the discrepancies which do
occur are negligible in comparison to individual differences, the

44 Subsequently adopted as standard by the International Commission on Illumination, 6th meeting,
Geneva, July, 1924; Proceedings, pp. 67 and 232.
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maximum and minimum, visibilities found by Gibson and Tyndall
among their 37 completely studied, normal observers 45 are indicated

also (points connected by straight, dotted lines). It may be seen
from Figure 1 that the differences which do exist between the values
of visibility and the sums of the weighted distribution curve ordinates

are negligible in comparison to differences between individual visi-

bilities.
46 On this account the failure of the distribution curves to

sum exactly to the standard visibility function need cause no further
concern. It is true, of course, that the standard visibility differs

significantly for some purposes from the distribution curve sums;
but the difference is significant because standard values have been
formally adopted, not because sufficient experimental data exists to

prove that the distribution curve sums fail to represent normal
visibility.

47 For this reason, the luminosity of Abbot-Priest sunlight

given by the weighted distribution curve sums (column 8 of Table 1)

is taken as
" standard" in the present paper for the mixture data of

the O. S. A. " excitation" curves; and there need be here no more
discussion concerning the "degree of approximation" yielded by a
given set of luminosity coefficients. If the values for the luminosity
coefficients yield the luminosity given in column 8 of Table 1, they
are the correct values for that set of distribution curves and con-
stitute the luminosity coefficients; and if the values do not, they are

wrong, and do not constitute the luminosity coefficients.

We now propose to take four different sets of distribution curves
representing the distribution of four new sets of "red," "green,"
and "blue" primary color processes throughout the spectrum of

Abbot-Priest sunlight according to the mixture data embodied in the

O. S. A. "excitation" curves. These four new sets of distribution

curves (p2 , y 2 , 02 ; p3 , 7s, 03 ; Pi, 74, 04 5 and Pb, 7b> 0s) are given by columns
2, 3, and 4 of Tables 2 to 5, and are plotted near the bottom of Figures
2 to 5. The distribution curves have been computed from pu yu
and X (see Table 1) in the following way:

P2 = 1.0499p 1 -0.15527l + 0.1054/3!
|

72 = 0.2023 Pl + 0.79777 i + 0.0000/?! (10)

2 =0.0000pi + O.OOOO71 + 1.000001

1

p3 = 1 .OOOOpi + O.OOOO71 + 0.000001

73 = 0.0000pi + 1.00007i + 0.0000j8i[ (11)

3 =0.3636pi + 0.363671 + O.27270 x j

p4= 0.9783pi + O.OOOO71 + 0.02170!

74= 0.0000pi + 1 .OOOO71 + 0.000001 (12)

4 s=O.OOOOpi + O.OOOO7i+ 1.000001

)

P5= 1.0000Pl + O.OOOO71 + 0.000001

)

75 = 0.4500pi + 0.540071 + 0.010001 (13)

5 -O.OOOOp! + O.OOOO71 + 1 .000001

)

46 One observer was rejected because be was known to be color blind; 14 observers of the 52 were also
rejected because they were not studied for the entire visible spectrum, but only for its more luminous por-
tion (490 to 680 niju) . Considering the data referring to the remaining 37 observers for one value of the wave
length at a time (at intervals of 10 nut) the highest value and the lowest value (as recorded in Table 2 of
Gibson and TyndalTs paper) for that wave length were plotted.
« Comparison has here been only with values of visibility found or adopted by Gibson and Tyndall

because that is the most recent work on visibility that has received formal recognition. The same sort of
spread among individuals has, however, been found by previous observers; for example, by Coblentz and
Emerson (B. S. Sci. Paper No. 303; 1917; see fig. 13).

47 Note that, since the O. S. A. "excitation" curves are based on so few observers (only three—Koenig,
Dieterici, and Abney), they are open to attack as being not truly representative of normal mixture data.
It is probable that at some future time the O. S. A. curves will be supplanted by curves more truly rep-
resentative of normal mixture data. They are not open to attack, however, on the ground of being in-

consistent with normal visibility because the differences of the weighted sums of the O. S. A. curves from
the standard visibility function (perhaps by good luck) are insignificant relative to individual differences.
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Table 2.

—

The distributions of the Konig " Grundempfindungen" throughout the

spectrum of Abbot-Priest sunlight according to the mixture data embodied in the

0. S. A. " excitation" curves

X in <T2= R2
=

P2J<n

Gz=
72/0-2

B2=

380
90

400
10
20
30
40

450
60
70
80
90

500
10
20
30

550
60
70
80
90

600
10
20
30
40

650
60
70
80
90

700
10
20

47
134

286
532
807

1,278
1,497

1,441
1,289
1,033

744

1,019
1,857
3,022
4,225
5,369

7,135
8,001
8,518
9,042

8,748
7,990
6,449
4,848
3,293

1,957
1,108
636
342

110
57
35

10
32
80

192
478

1,061
1,674
2,451

3,916
6,074
8,142
9,370

10, 092

10, 420
10, 040
9,266
7,811
6,102

4,538
3,162
2,074
1,335

771

417
226
122

442
1,274

2,717
5,045
7,679

12, 186

14, 351

14, 027
12, 958
11, 098
7,767
3,703

2, 112

1,517
1,076

765
517

322
196
124
71
35

1,408

5,577
8,496

13, 496
15, 928

15, 660
14, 725

13, 192

10, 185

6,822

7,047
9,448

12, 240
14, 360
15, 978

17, 030
17, 371

17, 391
16,400
15, 179

13, 303
11, 152

8,523
6,183
4,064

2,374
1,334
758
408
234

131

68
42

0. 0954
.0950
.0946
.0940

.0920

.0875

.0783

.0730

.0979

.1446

.1965

.2469

.2942

.3360

4107
4601
5194
5957

6576
7165
7567
7841
,8103

8243
8306
8391

0.0000
.0012
.0024
.0050

.0123

.0325

.0804

.1644

.3593

.5557

.6429

.6652

.6525

.6316

.6119

.5780

.5328

.4763

.4020

.3411

.2835

.2433

.2159

.1897

.1757

.1694

0.9046

.9010

.8957

.8800

.8413

.7626

.5428

.2997

.1606

.0879

.0533

.0324

0113
0071
0043
0023

0013
0000
0000
0000
0000

0000
0000
0000
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Table 3.

—

The distributions throughout the spectrum of Abbot-Priest sunlight

according to the mixture data embodied in the O. S. A. " excitation" curves of
primary color processes which suggest a degree of blue-yellow deficiency l

Xin
HLfi P3+73+03 P3/CT3

G3=
73/0-3

£3=
ft/«ri

90

400
w
20
30
40

450
60
70
80
90

500
10
20
30

550
60
70
80
90

600
10
20
30
40

650
60
70
80
90

700
10
20

15

64
231

1,430
2,644
4,125
5,479
6,681

7,604
8,325
8,989
9,210
9,388

8,841
7,900
6,291
4,690
3,161

1,871
1,057

606
326
187

105
54
33

13

41

100

240
595

1,313
2,040
2,897

4,546
6,944
9,160

10, 357
10, 958

11, 134
10, 475
9,336
7,456
5,269

3,447
1,960
1,004
484
164

48
16

121
347

741
1,376
2,099
3,338
3,951

3,913
3,756
3,528
2, 944
2,316

2,749
3,901
5,124
5,967
6,555

6,902
6,890
6,697
6,080
5, 340

4,473
3,585
2,653
1,881
1,209

390
220
119

121
347

741

1,376
2,112
3,379
4,051

4,153
4,366
4,905
5,215
5,906

8,725
13,489
18,409
21, 803
24,194

25,640
25, 690
25, 022
22, 746
19, 997

16, 761
13,445
9,948
7,055
4,534

2,617

445
255

0.0000
.0000
.0000
.0000

.0000

.0034

.0130

.0443

.1173

.1639

.1960

.2241

.2513

.2761

.2966

.3241

.3592

.4049

.4695

.5275

.5876

.6324

.6648

.6972

.7149

.7225

.7337

0.0000
.0062
.0121
.0247

.0578

.1363

.2677

.3912

.4905

.5210

.5148

.4976

.4750

.4529

.4343

.4077

.3731

.3278

.2635

.2057

.1458

.1009

.0686

.0362

.0183

.0109

.0000

1.0000

9753

9422
8603
7193
5645
3921

3151
2892
2783
2737
2709

2682
2676
2673
2670

2666
2667

143
74

1 The distribution curves were calculated from the O. S. A. "Excitation" curves according to relation
(6a) by setting Z>=4/5.
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Table 4.

—

The distributions of primary color processes such that the "blue" process
contributes nothing to the luminosity of the spectrum

[Mixture data as of O. S. A. "excitation" curves; spectrum of Abbot-Priest sunlight]

Xin
Pi 74 04

P4+74+04 Pi/&i 74/f4 fitfa

81 2 3 4 5 6 7

380
90

400
10
20
30
40

450
60
70
80
90

500
10
20
30
40

550
60
70
80
90

600
10
20
30
40

650
60
70
80
90

700
10
20

10
28

59
110
167
265
312

305
296
304
395
758

1,445
2,620
4,059
6,377
6,547

7,446
8,148
8,796
9,011
9,185

8,649
7,728
6,154
4,588
3,092

1,830
1,034

593
319
183

103
53
32

442
1,274

2,717
5,045
7,679

12, 186
14, 351

14,027
12, 958
11, 098
7,767
3,703

2,112
1,517
1,076
765
517

322
196
124
71
35

17

452
1,302

2,776
5,155
7,859

12, 492
14, 763

14, 572
13, 849
12, 715

10, 202
7,358

8,103
11, 081
14,295
16, 499
18,022

18, 902
18, 819
18,256
16, 538
14,489

12, 113

9,688
7,158
5,072
3,256

1,878
1,050
593
319
183

103
53
32

«

0. 0213
.0212
.0212
.0211

.0209

.0214

.0239

.0387

.1030

.1783

.2364

.2839

.3259

.3633

.3939

.4330

.4818

.5449

.6339

.7140

.7977

.8597

.9046

.9496

.9744

.9848
1. 0000

0.0000
.0017
.0033
.0068

.0165

.0430

.1033

.2000

.3937

.5610

.6267

.6407

.6277

.6080

.5890

.5566

.5114

.4508

.3637

.2846

.2023

.1403

.0954

.0504

.0256

.0152

.0000

0. 9787
.9771
.9755
.9721

.9626

.9357

.8728

.7613

.5033

.2606

.1369

.0753

.0464

.0287

.0170

.0104

.0068

.0043

.0024

.0014

.0000

.0000

.0000

.0000

.0000

.0000

.0000

13
41

100

240
595

1,313
2,040
2,897

4,546
6,944
9,160

10, 357
10, 958

11, 134

10, 475

9,336
7,456
5,269

3,447
1,960
1,004
484
164

48
16



Judd] Reduction of Color Mixture Data 531

Table 5.

—

The distribution throughout the spectrum of Abbot-Priest sunlight of one
of the sets of primary color processes for which neither the "red" nor the "blue"
primary color process contributes to the luminosity of the spectrum. The distribu-
tion of the "green" primary color process is the same as the distribution of
luminosity.

X
in mjt P5 75 ft

<75=
P5+75+05

i?5=
75/ff5 ft/as

1 2 3 4 5 6 7 8

380
90

400
10

20
30
40

450
60
70
80
90

500
10
20
30
40

550
60
70
80
90

600
10
20
30
40

650
60
70
80
90

700
10
20

4
13

27
50
84
144
198

270
458
849

1,283
1,913

3,119
4,955
6,813
8,066
8,929

9,437
9,405
9,088
8,171
7,070

5,840
4,613
3,373
2,372
1,511

868
484
273
147
84

47
24
15

442
1,274

2,717
5,045
7,679

12, 186

14, 351

14,027
12, 958
11, 098
7,767
3,703

2,112
1,517
1,076
765
517

322
196
124
71

35

17

446
1,287

2,744
5,095
7,763

12, 330
14,549

14,297
13, 431
12, Oil
9,281
6,309

6,661
9,116

12, 014
14, 310
16,127

17, 363
17, 926
18, 201

17, 452
16, 493

14, 698

12, 513
9,664
7,062
4,672

2,739
1,541
879
473
271

152
78
48

0.0000
.0000
.0000
.0000

.0000

.0011

.0053

.0249

.1098

.2147

.2900

.3433

.3829

.4143

.4379

.4644

.4939

.5277

.5692

.6015

.6313

.6510

.6641

.6766

.6831

.6859

.6894

0.0098
.0108
.0117
.0136

.0189

.0341

.0707

.1382

.3032

.4682

.5435

.5671

.5637

.5537

.5435

.5247

.4993

.4682

.4287

.3973

.3687

.3490

.3359

.3234

.3169

.3141

.3106

0.9902
.9892
.9883
.9864

.9811

.9648

.9240

.8369

.5869

.3171

.1664

.0896

.0535

.0321

.0185

.0109

.0068

.0041

.3021

.0012

.0000

.0000

.0000

.0000

.0000

.0000

.0000

15

64
231
693

1,430
2,644
4,125
5,479
6,681

7,604
8,325
8,989
9,210
9,388

8,841
7,900
6,291
4,690
3,161

1,871
1,057
606
326
187

105
54

33
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It is to be noted that each of these four new sets of distribution curves
represents the same body of mixture data as pi, 71, and ft, because
each set satisfies (2).

48 The theorem of Section II must, therefore,

hold for these four sets of curves; hence, the methods of computing
the luminosity coefficients (Sec. Ill) which depend on that theorem
can be used. We proceed to apply those methods.
The first step in the first method is to compute piL rl + yiL gl + p lL bl

for three convenient wave lengths. This has already been done for

all wave lengths (column 8 of Table 1); we choose 450, 550, and 650
mn, which give 269.9, 9,437.4, and 867.9, respectively. Then we
set up the following four triplets of simultaneous equations:

1,441 L r2 + 192 L g2 + 14,027 L o2 = 269.9]
6,288 L r2 + 10,420 L g2 + 322 L b2 = 9,437.4

1,957 L r2+ 417 L g2
= 867.9

J

240X.3+ 3,913 L b3

7,604 L rZ + 11,134 L g3 + 6,902 X 63

1,871 L rZ + 48X.3+ 698 L oZ

305 Z r4

7,446 L r4
-

1,830 LM

240 Z
ff4
+ 14,027 LM

11,134 L gi+ 322 LM
48 L g ±

269.9

9,437.4
867.9

269.9

9,437.4
867.9

7,604 Lr5+ 9,437 L g5 +
1,871 Lr5+ 868 L g5

270 L g5 + 14,027 X 65 = 269.9
322 L o5 = 9,437.4

= 867.9

and solve for the luminosity coefficients. 49

The second method consists merely of the substitution of the values
of L rl , Lgi, L ol (which are 0.4500, 0.5400, and 0.0100, respectively, in

each case) and of the values of the constants, Kx to KQ (which are

given in relations (10) to (13)) in relation (8).

The results of computation by these two methods appear in Table
6. It may be seen that the first method (which is, perhaps, less

provocative of arithmetical blunders, though it takes about ten
times as long) yields computational accuracy up to two or three in the
fourth decimal place. Rejection error in the second method may
readily be made negligible.

Table 6.

—

Results of solutions for the coemcients

Distribution
curves

,Lr L U

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

P2, 72, 02

P3, 73, 03
Pi, 74, 04
PS, 76, 05

0.2872
.4367
.4601
.0000

0.2875
.4367
.4600
.0000

0. 7330
.5268
.5401
1.0000

0.7327
.5267
.5400
1.0000

-0.0203
.0366
.0000
.0000

-0. 0203
.0367
.0000
.0000

48 We know, without troubling to integrate with respect to wave length, that each curve has the same
area as pi, 71, and /Si because the sum of the coemcients of pi, 71, and /3i in each of the 12 equations given in
relations (10), (11), (12), and (13) is unity (except for discrepancies of one in the last place due to errors of
rejection in the computation).

49 The numbers in the left members of the four triplets of equations may be obtained, of course, from
columns 2, 3, and 4 of Tables 2, 3, 4, and 5 for wave lengths 450, 550, and 650 m^.
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L r2 , L g2 , and L b2 were further checked by computation of p2L r2 +
y2L g2 + ($2L b2 which was found to agree for all wave lengths with
piLn + jiL g i +PiLj,i in accordance with relation (4); hence, the values
found, L r2 = 0.2875, L

ff2
= 0.7327, and L b2 = 0.0203 are the luminosity

coefficients for the distribution curves of the Konig "Grundempfin-
dungen" according to the mixture data embodied in the O. S. A.
" excitation" curves. 50 L r3 , L g3 , and L b3 were checked by compu-
tation from relation (6a) 51 and found to be correct. There is no
need of checking L ri , L g ±, and LM or L T5 , L g5 , and L b5 because the

constants, Kx to Kg, by which p4 , 74, and /34 (relation (12)) and
p 5 , 75, and p 5 (relation (13)) were computed, were chosen so as to

obtain the luminosity coefficients found. The correctness of this

choice can be seen by inspection of relations (12)
52 and (13).

V. DEMONSTRATION THAT THE NEW SETS OF DISTRIBU-
TION CURVES EMBODY THE MIXTURE DATA OF THE
O. S. A. "EXCITATION' ' CURVES

Since from their derivation (see relations (10), ( 11), (12), and (13))

the new sets of distribution curves all satisfy relation (2), we know
that they must embody the same mixture data as the O. S. A. " ex-

citation" curves. A demonstration more convincing than this

formal proof, perhaps, is to compute by each set of curves the domi-
nant wave length, purity, and luminosity of the color stimuli ob-
tained by filters illuminated by Abbot-Priest sunlight, and compare
the values obtained. If all five sets of distribution curves yield the
same values of dominant wave length, we could say that the identity

of their mixture data had been checked. Since luminosity coefficients

have been found for each set of distribution curves, we can also com-
pute the colorimetric purity and transmission of the filters (which
gives a measure of the luminosity of the color stimulus) for Abbot-
Priest sunlight. If all five sets of distribution curves yield the same
values of colorimetric purity and transmission for Abbot-Priest SUn-

so It is convenient to point out here that the computation of the luminosity coefficients for this approxi-
mation to the Grundempfindungskurven demonstrates that the failure reported by Ives (see footnote 18,

p. 519) of the Konig curves to yield consistent luminosity values was due (as he implies but does not state
explicitly) to his rejection of a negative value for the "blue" coefficient. With a negative value, Ives could
have obtained as close agreement with Konig's original Grundempfindungskurven as he did with his
transformed curves and positive coefficients. It should be noted that the convexity between 400 and
450 in.fi, which the spectrum locus according to the Konig-Ives curves shows, is not due to the transformation
of the coordinates, nor to the avoidance of a negative luminosity coefficient, nor to luminosity considera-
tions at all; it is due to the fact that the original mixture data on which the Konig-Ives curves are based is

different from that on which the O. S. A. curves are based. The essential difference lies in the inclusion in
the Konig-Ives curves of data by partially color-blind observers. There is fairly good ground to believe
that such inclusion is justifiable when the Konig Grundempfindungskurven are being considered because
it was shown by Konig that the color responses of his protanopic and deuteranopic observers could be pre-
dicted closely from the Grundempfindungskurven of the normal observers merely by the omission of either
the red or the green curve. Although it is the author's opinion that such inclusion is still questionable,
nevertheless there is some reason to suspect that an improvement was wrought by the introduction of data
by the partially color-blind observers because Guild (A Critical Survey of Modern Developments in the
Theory and Technique of Colorimetry and Allied Sciences, Proc. Optical Convention, London, Pt. I, p.
57; 1926) who uses the Konig-Ives curves for routine computation criticizes the O. S. A. "excitation" curves
in these terms, "My own view is that these are in some respects less satisfactory than the Konig-Ives curves.
One serious defect is the absence of any reappearance of red in the violet region, which on Weaver's basis
would be all of one color from 440 nut onwards." This seems to imply that Guild has evidence that the
Konig-Ives curves, which give a marked convexity in the spectrum locus on the mixture diagram from 400
to 450 m/x, agree with experimental results by his observers better than the O. S. A. "excitation" curves
which do not have that convexity (compare Guild's fig. 12 with figs. 2 to 5 of the present paper). It is also
true that Houstoun (Phil. Mag. (6), 45, p. 176; 1923) with rather crude apparatus found this eonvexity,
but it is probable that stray light was present in sufficient quantity in the photometric field of Houstoun's
apparatus to give his result. (For the effect of stray light under these conditions, see Abney, on the Change
of Hue of Spectrum Colors by Dilution with White Light, Proc. Roy. Soc, A., 83, 1909.)

41 Relation (6a) proves, of course, to be a special case of relation (6).
m Note that 45/46 is approximately 0.9783, and that 1/46 is approximately 0.0217. See relation (6) et seq.
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light, we could say that not only had the identity of their mixture
data been checked a second time, but also had we checked (for a

third time) the accuracy of the luminosity coefficients, since those
coefficients enter into the computation. We proceed to make these

computations, and for the purpose of checking we choose four (hypo-
thetical, nonexistent) filters defined by their spectral transmissions

which are zero for all wave lengths except as follows

:

Filter No. (rra) Spectral transmission (Tx) *

1 7
T

4oo= 1.00000
Tm= 1.00000
T59o= 1.00000
Tm= 1.00000

T6io= 0.37680
T6oo= .99291
Tuo= .72571
r55o= .47877

2
3 „
4

1 Of course, these values of spectral transmission were not chosen at random. The large wave-length
regions of zero transmission (all but two intervals of 10 m/t for each hypothetical filter) result in the avoid-
ance of much computation and, at the same time, provide a more rigorous test of the colorimetric identity of
the new sets of distribution curves than that afforded by actual niters. The transmissions which are
not zero were so chosen that the dominant wave length computed in the usual, routine way from the O. S. A.
"excitation" curves for each filter (m=l, m=2, to=3, m=4) is as nearly as convenient an exact multiple of
10 (530, 570, 510, and 480, respectively) when expressed in millimicrons. Such dominant wave lengths
may be computed with more certainty (say to 0.01 instead of to 0.1 m/a) than values of dominant wave length
for which the ordinates of the distribution curves are not specified explicitly but only indirectly by interpo-
lation.
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The method of computing dominant wave length, colorimetric

purity and transmission follows closely that recommended by the

O. S. A. Committee on Colorimetry for 1920-21 53 except for the

computation of purity for which papers by Priest M and Judd 55

should be consulted. Table 7 shows (1) the products of the dis-

tribution curve ordinates (p n , y n , $ n ) by transmissions (Tm)
66 of

filter, m; (2) the sums of these products which when multiplied by
/*oo poo fco

10 constitute the evaluation of p nTmd\, y nTmd\ and I fi nTmd\;

and (3) two of the three trilinear coordinates (r, g, b)
57 of the colors

whose dominant wave length and colorimetric purity we are com-
puting. The trilinear coordinates of filter, m, via distribution curves

p n , y n , and /3 ra are defined as:

r Tmd\Pn-L m<

I p nTmd\+ y nTmd\ +
Jo J>Tmd\

X"7 -Tmd\
/»oo r<x> rco

J q
PnTmd\+j

Q
y nTmd\ +

j Q
(3nTmd\

(3nTmdX
b = Too /*oo /*oo

I p nTmd\+
J

y nTmd\+ I (3nTmd\

(14)

Figures 2 to 5 show mixture diagrams on which the spectrum locus

has been plotted, the r-coordinate of the spectrum, R n , being plotted

against the (/-coordinate, Gn . (See columns 6 and 7 of Tables 2

to 5.)
58 On these diagrams, every color is represented by a point;

these diagrams possess the property 59 that the points representing

the colors which result from the additive mixture of two light stimuli

producing any two colors fall upon the straight line connecting the

points representing those colors. The "neutral" (r=l/3, <jr
= l/3)

point is connected by straight lines to the points representing the

colors of the extremes of the spectrum; these lines serve to divide the
diagram into the spectral colors and the nonspectral, or purple, colors.

The points representing the colors of filters Nos. 2, 3, and 4 (ra = 2,

3, and 4) are also shown; the color of filter No. 1 (m = l) is so close

to the " neutral" color that its point has been omitted for the sake of

«3 L. T. Troland, J. Opt. Soc. Am. and Rev. Sci. Inst., 6, pp. 527-596; 1922.
64 1. G. Priest, The Computation of Colorimetric Purity, J. Opt. Soc. Am. and Rev. Sci. Inst., 9, pp.

503-520; 1924. Also The Computation of Colorimetric Purity II, J. Opt. Soc. Am. and Rev. Sci. Inst.,

13, pp. 123-132; 1926.
« D. B. Judd, The Computation of Colorimetric Purity, J. Opt. Soc. Am. and Rev. Sci. Inst., 13, pp.

133-152; 1926.
w The subscript, m, here denotes the filter, not (as is usual) the wave length.
57 r and g are given in Table 7, although b is not. But from relation (14) we know that r+g+b=l;

hence we may easily find b from r and g since it is 1—r—g.
as The trilinear coordinates (Rn , Gn , Bn) of the spectrum referred to Abbot-Priest sunlight as the "neu-

tral" (r=l/3, 0=1/3) stimulus have been computed only for wave lengths between 410 and 670 m^,
inclusive, because beyond these wave-length limits according to the mixture data of the O. S. A. "excita-
tion" curves in their extrapolated form the trilinear coordinates are constant. If, for example,
the computation were carried out for 380, 390, and 400 mju, the trilinear coordinates found would differ

from those of 410 ray. only by reason of computational errors of rejection.
«e This property constitutes one expression of Newton's law of color mixture; on this account, the dia-

grams are sometimes called "Newton's mixture diagrams."
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£00

Trilinear Coordinates of the Spectrum
referred to the "Grundempfindungen"
(Koenig:Gesammelte Abhandlungen,p.3l6)

as stimulus primaries.

AOO .500

9a

The three "distribution" curves
which give the mixture

diagram shown above.

500 550 600 650
Wave length In mju

Figure 2.

—

The distribution curves, p2 , 72, and /32 , and the mixture diagram
showing the spectrum locus given by p2 , 72, and 82

Note that the points representing the colors of filters 2, 3, and 4 (see Table 7, r and g) fall on the
straight lines connecting the "neutral" point with 570, 510, and 480 nut, respectively.



538 Bureau oj Standards Journal of Research [Vol.4

Tri linear Coordinates of the Spectrum
referred to a set of stimulus primaries

which have been found useful in deriving

the "minimum purity perceptible?

(See: J.O.S.A. & R.S.I., l£,p.H5;l928)

The three "distribution" curves

which give the mixture diagram
shown above.

590
W«v* length In mu

Figuee 3.

—

The distribution curves, pz, 73, and /% and the mixture diagram
showing the spectrum locus given by P3, 73, and fa

Note that the points representing the colors of niters 2, 3, and 4 (see Table 7, r and g) fall on the
straight lines connecting the "neutral" point with 570, 510, and 480 mn, respectively.
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JOO .200 .300

Trilinear Coordinates of the Spectrum
referred to stimulus primaries such

that the blue "distribution" contributes

nothing to the luminosity (Le.Lb°0)

curve of the standard "neutral"

(Abbot- Priest- Sup).

The three "distribution" curves

which give the mixture

diagram shown above.

400 450 500 550 600 650 700
Wave length in rryj

Figure 4.

—

The distribution curves, p±, 74, and &, and the mixture diagram
showing the spectrum locus given by p±, 74, and &

Note that the points representing the colors of filters 2, 3, and 4 (see Table 7, r and g) fall on
the straight lines connecting the "neutral" point with 570, 510, and 480 mp, respectively.

°—30 6
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Trilinear Coordinates of the

Spectrum referred to

stimulus primaries such that

the green "distribution" curve

is the luminosity curve ot

the standard "neutraf
(Abbot-Priest -Sun).

A reduction of the

mixture data embodied
in the O.S.A. extrap.

"excitation" curves.

The three "distribution

curves which give the

mixture diagram shown
above. 5,006

500 550 600 650
Wave length In mju

Figure 5.

—

The distribution curves, ps, 75, and /%, and the mixture diagram-
showing the spectrum locus given by p5 , 75, and &

Note that the points representing the colors of filters 2, 3, and 4 (see Table 7, r and g) fall on
the straight lines connecting the "neutral" point with 570, 510, and 480 nut, respectively.
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clarity. The fact that all these apparently different mixture dia-

grams (figs. 2 to 5), represent the same body of mixture data may be
approximately demonstrated by the fact that the points representing
the colors of filters Nos. 2, 3, and 4 fall in each case on the straight
line connecting the "neutral" point with the point representing the
color produced by light of wave length 570, 510, and 480 m^u, respec-
tively.

60 We may also see now what the primary color processes are
whose distributions throughout the spectrum are given by p n , y n , and
p n (n = l to 5). The "red" primary process for set, n, of distribu-

tion curves is that designated on the mixture diagram by r n = l,

g n = 0; the "green" primary process is that designated by r 7l
= 0,

<7»=1; and the "blue" primary process is that designated by r n =
gn=o«l

We proceed with the more exact method for attaining the demon-
stration that the several mixture diagrams embody identical mixture
data (computation of dominant wave length and purity of the filter).

The condition that a point (r, g) on the mixture diagram lies on the
same straight line with the "neutral" point (r = l/3, (7=1/3) and a
point (R, G) of the spectrum locus is that: (r—l/3)/(g—l/3) = (R—
l/3)/(#-l/3). We proceed to compute (r- 1/3) /(g- 1/3) for each
of the four filters (ra = l to 4) and for each of the five sets of dis-

tribution curves (n = l to 5) and to compare it with (R— 1/3)/
((9—1/3) for the proper wave length and set of distribution curves.

Table 8 shows this comparison. It is seen that discrepancies exist

in every case; examination shows, however, that these discrepancies

may be ascribed to rejection error, since they are smaller than the
change introduced by an error of one in the fourth place of the values
of r and g.

«° It is also true for each diagram (figs. 2 to 5) that the points representing the colors of filters Nos. 1 to

4 (m=l to 4) lie upon the straight lines connecting the points representing the colors produced by light of

wave lengths 490 and 610 nnx, 500 and 640 m^, 440 and 590 mu, and 4 :

j0 and 550 mu, respectively. Thesa
straight lines were omitted for the sake of clarity.

61 Reference to fig. 3 shows that, for n=3, the "blue" primary process is that which is evoked by homo-
geneous radiation of wave length 380 to 410 imt, when the visual mechanism is in such a state of adaptation
that Abbot-Priest sunlight evokes the "white" or "neutral" process. Similarly fig. 4 shows that, for

n=4, the "red" primary process is that evoked by homogeneous radiation of wave length 670 to 720 im*.

The other primary processes plainly can not be evoked by homogeneous radiation of any wave length for

a state of adaptation for which Abbot-Priest sunlight yields the "white" response because the points
representing them do not fall on the spectrum locus. It is equally plain that they can not be evoked by
a mixture of homogeneous radiation with Abbot-Priest suDlight because they lie outside the area bounded
by the spectrum locus and the straight line joining its extremes. Take, for example, the "blue" primary
process for n=4 (fig. 4); this process could be evoked by a stimulus of dominant wave length about 452 m/x
(since the point representing it lies on the same straight line as the points representing the colors evoked
by Abbot-Priest sunlight and homogeneous radiation of wave length about 452 mu) and of purity greater
than unity (since the point lies farther from the "neutral" point than does that of the color evoked by
homogeneous radiation of wave length 452 nni). Such a stimulus, of course, does not exist; hence, it is

proper to say that this color process which we have happened to choose as a primary process in one case
(n=4) to place at r*=0, #4=0 of our mixture diagram corresponds to an imaginary stimulus if the visual
mechanism of the observer be in the "neutral state"; that is, in such a state of adaptation that Abbot-
Priest sunlight evokes the "white" response. It is not proper to say, however, that the color process,

itself, is nonexistent, or virtual, because it is possible to evoke colors for the visual mechanism in one state

of adaptation which can not be evoked if the visual mechanism is in a different state. We say, therefore,

that some of the color processes which we have happened to choose for primaries correspond to imaginary
stimuli for the visual mechanism in the "neutral state"; whether these processes, themselves, are real

or not, is not definitely known nor is it, for our purposes, important.
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Table 8.

—

Results of computation incident to evaluation of dominant wave length

and colorimetric purity of the four filters {m=l to 4) illuminated by Abbot-Priest
sunlight

Set (7i) of

Filter 1

w=l
Filter 2
m=2

Filter 3
m=3

Filter 4
m=4

distribu-
tion curves r-l/3

0-1/3

.R-l/3

0-1/3

Dif-
fer-

ence

r-l/3

0-1/3

JB— 1/3

6-1/3

Dif-
fer-

ence

r-l/3

0-1/3

fl-1/3

6-1/3

Dif-
fer-

ence

r-l/3

0-1/3

-R—1/3

6-1/3

Dif-
fer-

ence

71= 1

71= 2
71= 3
71=4
71= 5

-0. 0333
-. 1379
-. 6316
-. 0333
+. 1905

-0. 0114
-. 1225
-. 5787
-. 0251

+. 2153

0. 0219
.0154
.0529
.0082
.0248

+0. 8919
+. 6359
+.6540
+. 8337
+. 9680

+0. 8911
+.6356
+. 6508
+.8338
+. 9675

0.0008
.0003
.0032
.0001
.0005

-0. 3262
-.4422
-. 7570
-.3306
-. 2057

-0. 3260
-. 4419
-. 7565
-. 3303
-.2060

0.0002
.0003
.0005
.0003
.0003

+2. 3850
+1. 5419
-4. 9825
+2. 2107
+1.5809

+2. 3851

+1. 5411
-4.9914
+2. 2101
+1.5807

0.0001
.0008
.0089
.0006
.0002

Table 9 shows the final results of computation of dominant wave
length, purity, and transmission of the four filters illuminated by
Abbot-Priest sunlight. The dominant wave lengths are computed
from the differences recorded in Table 8, together with the known
rate of variation of dominant wave length with (r— l/3)/(6— 1/3)
for the wave lengths in question. 62 The purity, p, is computed from:

V
RL T

-\- GL g
~\~ BL

BL r+6L t+BL t +(g-6)l(l-Zg)
(15)

63

Table 9.

—

Computed values of the dominant wave lengthy colorimetric purity, and
transmission of filters (m=l to 4) illuminated by Abbot-Priest sunlight

Set (7i) of
distribu-

tion curves

Filter 1

7tt= l

Filter 2
7W= 2

Filter 3
TO= 3

Filter 4
771=4

A in
P T.

A in
P T,

A in
P T,

Ain
m/i P T.

71= 1

71= 2
71=3
71=4
n=5

528. 33
528. 91

525. 18
529.39
528. 45

-0. 0153
-.0156
-. 0152
-. 0152
-.0158

0. 03652
. 03651
. 03652
. 03651
. 03651

570. 01
570. 01

570. 02
570. 00
570. 01

+0. 5521

+. 5524

+. 5511

+.5524
+. 5518

0. 04608
. 04609
.04609
.04608
. 04608

509.99
509. 98
509. 96
509. 99
510. 01

-0. 6461
-.6463
-.6463
-.6459
-. 6461

0. 07215
. 07213
. 07214
. 07214
. 07214

480.00
480. 01
480. 01

480.00
480.00

+0. 3235
+.3235
+.3235
+.3236
+. 3236

0. 04976
.04976
.04976
.04976
.04976

The transmission (Ts ) for Abbot-Priest sunlight is computed as:

4 "Jo
p nTmd\ + L gn y nTmd\ + L n

j"(3 nTmd\

id\

(16)

Lrn
J Q

p nd\ + Lgn
J Q

y nd\ +L bn
J Q

J8*

where L Tn , Lgn , and L bn are given in Table 6, method 2; one-tenth of

I pnTmd\, I ynTmd\ and I (3nTmd\ are given in Table 7;

I Pnd\ I y nd\, and I pnd\ are taken as 1,000,000,
64 and their

62 This method is applicable because the dominant wave lengths fall so closely on the even 10 mya where
the distribution curve ordinates (and, hence R— 1/3 and 6—1/3) are definitely specified. The transmis-
sions of the four filters were chosen with this end in view. See footnote 1 to tables, p. 534.

63 D. B. Judd, The Computation of Colorimetric Purity, J. Opt. Soc. Am. and Rev. Sci. Inst., 13, p.

135; 1926. Relation (15) is form "Judd G." In 3 cases out of the 20, the "Judd R" form (Judd, loc. cit.)

was used because of its greater convenience.
e^ See footnote 38, p. 525.
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weighted sum is 1,000,000, since the luminosity coefficients have been
adjusted so as to sum to unity.

It is seen that (with one exception, the dominant wave length of

filter No. 1, ra=l 66
) to a high degree of accuracy the dominant

wave length, colorimetric purity, and transmission for Abbot-Priest
sunlight of the four filters is independent of the choice (among the
five, n=l to 5) of a set of distribution curves. It has been demon-
strated, therefore, that the four new sets (n = 2 to 5) of distribution

curves embody the same mixture data as the O. S. A. "excitation"
curves (n=l).

VI. CHOICE OF A SET OF DISTRIBUTION CURVES

As has been pointed out in the introduction, convenience in dis-

cussion of psychophysiological theory may justify the temporary
adoption of any one of a wide range of sets of distribution curves.

A set very similar to p2 , y 2 , and /3 2 was chosen by Konig and Dieterici

because it suggested a simple way of explaining the facts of congenital
dichromasy. p2 , 72, and /52 have also served to suggest (to the present
writer) a simple way of explaining the "hue change " which is observed
when "white" light is added to certain portions of the spectrum. 66

p3 , 73, and /33 were used by the present writer 67 to represent the
experimentally known facts concerning sensibility to purity change. 68

Neither of these sets of distribution curves could be used advan-
tageously in the routine computation of dominant wave length,

colorimetric purity, and transmission because both are less con-
venient for computation than the O. S. A. "excitation" curves

(poy 7o, A)) from which they were derived.69 A set of distribution

curves proposed by Luther 70 refers to such a choice of stimulus
primaries that i 6 = 0. The computational advantage of this choice
of primaries is quite evident. These same advantages may be
obtained by the use of p 4 , 74, and /3 4 , which also have a further advan-
tage over those of Luther because they involve more ordinates having
the value zero.

It seems, however, that there exists a choice of stimulus primaries
which expresses the mixture data of the O. S. A. "excitation" curves
in a way that affords still greater convenience in the routine compu-
tation of colorimetric purity, and transmission than any choice of

primary color processes heretofore proposed. The set of distribu-

tion curves resulting from this choice of primary color processes is

p 5 , 75, and /35 denned in relation (13). The computational superi-

65 The explanation for the deviation of the dominant wave length of this filter from 530 un* by more than
4 nut lies, of course, in the close approach to zero of the purity of that filter (—0.015). It has already been
shown (Table 8) that these discrepancies are ascribable to errors of rejection in computing.

«« W. de W. Abney, On the Change of Hue of Spectrum Colours on Dilution with White Light, Proc.
Roy. Soc, A., 83, 1909. Also Abney, Researches in Colour Vision, London, Longmans-Green, pp. 255-
266; 1913. D. B. Judd, The Empiric Relation between Dominant Wave Length and Purity, J. Opt. Soc.
Am. and Rev. Sci. Inst., 14, p. 475; 1927.

67 D. B. Judd, Sensibility to Color Change Determined from the Visual Response Functions: Extension
to Complete and Partial Dichromasy, J. Opt. Soc. Am. and Rev. Sci. Inst., 16, p. 115; 1928.

68 Reference to fig. 3 will show one of the characteristic properties of this set of distribution curves. It

is seen that the spectrum locus (at about 572 m^) approaches much closer to the "neutral" point (r=l/3,
g=l/3) than it does in figs. 2, 4, or 5. This is the dominant wave length of the color stimulus which is, for

normal observers, most confusible with the "neutral" stimulus. (See I. G. Priest and F. G. Brickwedde,
The Minimum Perceptible Colorimetric Purity as a Function of Dominant Wave Length with Sunlight
as Neutral Standard, J. Opt. Soc. Am. and Rev. Sci. Inst., 13, p. 306; 1926.)

69 They are less convenient chiefly because they involve fewer ordinates having the value zero.
70 R. Luther, Aus dem Gebiet der Farbreizmetrik, Zs. f. Techn. Physik, 8, p. 544; 1927.
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ority of this set of distribution curves can best be established by-

enumerating the conveniences which it involves

:

1. No negative ordinates. 71

2. Twenty out of one hundred and five ordinates specified are

zero. 72

3. L r
=Lb = 0.

7Z

Although the advantage of having Z r5 =Z&5
= (which makes

L g =1, and makes 75 identical with the luminosity function) u will

scarcely be denied, still it is of interest to point out exactly how
simple the formulas to be used in routine computation of trans-

mission and colorimetric purity become:

Ts =j\ 5Tmd\/j\ 5d^ (17)

G(l-3g) ___3-l/g
P ~g(l-SG)~Z-1/G {i* }

We do not propose that p 5 , y 5 , and (3 5 be adopted forthwith because
the confusion of changing from the O. S. A. ''excitation " curves in

their extrapolated form (p , y , /3 ) would probably more than out-

weigh the subsequent gain in computational convenience. How-
ever, when it does become desirable to adopt a new set of mixture
data which is more representative of average, normal vision than
that embodied in the O. S. A. " excitation" curves, it is evident
that the primaries embodied in p 5 , y 5 , and /3 5 could be taken with
advantage for routine computation rather than those embodied in

the O. S. A. " excitation" curves.

I wish again to express my indebtedness to Dr. L. B. Tuckerman
for his proof of the theorem of Section II. Doctor Tuckerman's
suggestions have resulted in a considerably improved presentation
of the introduction.

n In this respect ps, 75. and ft are no better than a number of other sets of distribution curves. (See
footnote 13, p. 518.)
« In this respect, these distribution curves are second only to the O. S. A. "excitation" curves them-

selves (po, 70, |8o) , which have 30 out of 105 ordinates specified equal to zero. They are, therefore, somewhat
less convenient than the O. S. A. "excitation" curves in their extrapolated form for the computation of
dominant wave length.
" There exists an infinity of sets of distribution curves which have this property; this set is the most

advantageous with respect to the two points already mentioned. Another of this infinity of sets was
approximately evaluated by Schrodinger (Ueber das Verhaltnis der Vierfarben- zur Dreifarbentheorie,
Sitz. Akad. Wiss., Wien, Abt. Ila, 134, pp. 471-490; 1925) in order to demonstrate that the mixture data
may suggest a four-color as well as a three-color theory of vision. In fact, a four-color theory is mathe-
matically equivalent to a three-color theory in which one of the three primary color processes is taken
as "white." We say the set of distribution curves was "approximately evaluated" because the mixture
data embodied in Schrodinger's curves are those of the Konig Grundempfindungskurven which are not
quite the same as those of the O. S. A. "excitation" curves which we have used. Furthermore the lumi-
nosity curve which Schrodinger derives from the Konig Grundempfindungskurven is distinctly too high
for short wave lengths. The discrepancies are, in fact, the same ones which led Exner (see footnote 19,

p. 519) to make unwarranted arbitrary changes in the Konig Gmndempfindungskurven. Though it was
not essential to his purpose, Schrodinger could have derived an acceptable luminosity curve from the
Konig Grundempfindungskurven (see Sec. IV especially footnote 50, p. 533) by using a negative luminosity
coefficient (his term, 7, see his relation (1)) of the proper magnitude for the blue curve.

i* It has already been pointed out that if any luminosity coefficients be chosen whose sum is unity, we
may find many sets of distribution curves to which they apply (see relation (6) et seq). This set (ps, 75,

Pi) is one for which LT =0, Lg=l and Lb=0, the choice being made purely for the purpose of simplifying
computation.

"5 Compare with the general formula (16).
76 Compare with the general formula (15). Of course, this form is not always applicable to computation

because when O approaches 1/3, it is difficult to avoid serious errors of rejection. In these cases the equally
simple form, p=G(r—g)/g(R—G), may be used.
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VII. APPENDIX—A GRAPHICAL INTERPRETATION

It has been pointed out 77 that the existence of an infinite number of

sets of distribution curves satisfying relation (2) corresponds to the
possibility of choosing an infinite number of sets of primary color

processes in terms of which to express a given body of mixture data.

If all color processes are represented on a mixture diagram (such as

figs. 2 to 5), each process by a point, this possibility corresponds to

that of choosing any three points in the plane as reference points

(with trivial exceptions already noted). It may be easily shown that

if the triangle formed by connecting these three points by straight

lines incloses the spectrum locus, then the distribution curves of the
primary color processes represented by the three reference points

will have positive ordinates throughout. Keference to Figures 2 to

5 shows that the four sets of distribution curves we have taken as

examples are cases of this kind. 78

Similarly the freedom of choice for the luminosity coefficients (see

relation (6),etseq.) may be interpreted in terms of the selection of

reference points on the mixture diagram which represent the primary
color processes. We proceed to develop the basis for such an inter-

pretation. The equation

rL r + gL ff
+ bL b = (19)

defines a straight line on the mixture diagram which represents color

processes of zero luminosity; hence, we shall call it after Schrodinger 79

"Alychne" (lightless). Naturally this fine does not intersect the
spectrum locus; the stimuli corresponding to the color processes
represented by points on the Alychne are all imaginary. If one of

these points be chosen to represent one of the primary color processes
of a three-color system, the luminosity coefficient attached to that
color process will be zero. 80 By analogy it is natural to suppose that
all points which fall on the same side of the Alychne as the spectrum
locus are associated with positive luminosity while those which fall

on the opposite side refer to color processes of negative luminosity;
hence, we might guess that if one of the first group of points were
chosen to represent a primary color process the luminosity coefficient

would be positive and if one of the second group of points were chosen
the luminosity coefficient would be negative. We proceed to sub-
stantiate this guess.

Theorem. 81—If a luminosity coefficient is positive (negative), the
point representing the corresponding primary color process lies on the
same (opposite) side of the Alychne as the spectrum locus.

Proof.—As already noted, the Alychne does not intersect the spec-
trum locus; hence, if we can show that any point lying within the
spectrum locus and the straight line joining its extremes lies on the
same (opposite) side of the Alychne as the point representing the

" See footnotes 9 and 10, p. 517.
w The O. S. A. "excitation" curves, the Elementarempflndungskurven of Konig, the Konig-Ives curves,

and the "sensation" curves of Abney also satisfy this condition. See footnotes 13 and 18, pp. 518 and 519.
m E. Schrodinger, Ueber das Verhaltnis der Vierfarben- zur Dreifarbentheorie, Sitz. Akad. Wiss., Wien,

Abt. Ila, 134, p. 476; 1925.
so Although this was pointed out by Schrodinger without proof, the accuracy of his statement may readily

be checked. Assume (for example) Lr=0. We must see whether the point corresponding to the red primary
process falls on the Alychne; that is, we must see whether the coordinates (r=l, </=0, 6=0) satisfy relation
(19). Substitution shows this to be the case.

81 For simplicity this theorem is stated in a form applicable only to trilinear diagrams in which the spec-
trum locus does not pass through infinity. This requires that P+7+/3 be not less than zero for any wave
length.
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primary color process having a positive (negative) luminosity coeffi-

cient, the theorem will be proven. We elect for the sake of conven-
ience to show that the " white" point (r'= 1/3, #=1/3, 6 = 1/3) is so
situated. 82

Assume (for example) £& greater than (less than) zero; we must
show that the point (r= 0, g = 0, 6 = 1) lies on the same (opposite)
side of the Alychne as the " white" point. Now the Alychne may
be defined in terms of r, g, L T , and L g alone since:

r+g+h=l (See relation (14))
and

L r+L g + L b = l (See Table 6)
83

thus
(2L r + L g -l)r+(L r + 2L g

-l)g+l-L r-L g
= (20)

Furthermore, we know that any point (r 1} g{) is on the same (opposite)

side of the line Ar + Bg+ C— as the origin provided:

Ari + Bgx + C
±tJa2+b2

is positive (negative), where the denominator of the fraction is given
the same algebraic sign as <7.

84

Now, from (20), C=l—L r
— L g

=L b , and since, by hypothesis, Lb

is greater than (is less than) zero, the theorem is proved (both cases)

if for r 1 =g 1
= l/3

}
Ar x + Bg x + C is greater than zero. But, from (20)

;

A = 2L r + L g-l
B =L r+ 2L g-l
C=l-L r-L g

and substitution shows that when r 1
= g 1

= l/3, Arx + Bgi + C^l/3
which is greater than zero.

Therefore, for sets of distribution curves like those of the present
paper, it has been proven that the spectrum locus is on the same side

of the Alychne as the point representing the primary color process if

the corresponding luminosity coefficient is positive, and on the
opposite side, if the luminosity coefficient is negative.

In Figure 6 are shown the same trilinear coordinates of the spectrum
(R2 , G2 ; see columns 6 and 7 of Table 2) that are shown in Figure 2;
but the scale is so chosen that the Alychne and the points representing
the primary color processes of some of the other sets of distribution

curves dealt with may also be shown. From (20) and from the values
of the luminosity coefficients found for p2 , y2 , and /32 (see Table 6),

the equation of the Alychne is:

r2 = 0.066 -2.446 02

The points representing the primary color processes whose distribu-

tions according to wave length are evaluated by p2 , 72, and /32 are, of

82 See footnote 29, p. 522. Since we make use of the "white" point at (r=l/3, 0=1/3, 6=1/3) this proof is

good for only those sets of distribution curves (like those of the present paper) whose "white" point falls

at that place on the mixture diagram. Similar proof for sets of distribution curves not satisfying this restric

tion can readily be formulated.
83 The condition that the luminosity coefficients sum to unity is imposed for the sake of convenience

throughout the present paper. It makes the present proof easier to state, but similar proof can readily be
given for sets of distribution curves whose luminosity coefficients sum to any positive value.

84 Ashton, Plane and Solid Analytic Geometry, New York, Scribners, p. 54; 1902.
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course (r = l, g = 0, 6 = 0), (r = 0, g=l, 6 = 0), and (r = 0, # = 0, 6 = 1),

respectively. These points have been labeled R' 2 , G' 2 , and B' 2r

respectively. The analogous points for the O. S. A. " excitation"
curves (see Table 1) have been labeled R' u G\, and B\. R\
and B\ are located at the extremes of the spectrum locus while G\
falls at the intersection of the tangents to the spectrum locus at R\
and B\. The points representing the primary color processes whose
distributions throughout the spectrum are given by p 3 , 73, and /3 3

Ri

IfiO

140

The Spectrum Locus and the
points R;,G;.B„ R2G'2 B'2 R;G'4 B;,ancJ

R5 Gi,B'5. which represent the

>v 120

primary color processes of

four of the five sets of
distribution curves dealt with.

Mote that the three primary color processes

having luminosity coefficients equal to zero
are represented by points (8,.Hj.By whicn

fall upon the Alychne.

100

\ £0

P* Note. too. that the primary color processes

N. having positive luminosity coetfients (See

\. table6J are represented by points on the
N. , same side of the Alychne as the spectrum
NRandR", locus, while that having a negative coef-
/Vk flclent (Bi)ls represented by a point on the
/ W. opposite side.

\ .60

\ fiO

/ YwhiW ^\

BiV
/ / n,VO^^ \

-.60 -M -20 Bi \ .20 ^^^^^ -60 -80 W8L L20 1,40

t20

\ ^**^c;.Cian« G'«

Figure 6.

—

The mixture diagram and spectrum locus of Figure 2 to such a
scale that the Alychne (lightless line) may be shown together with the points
representing some of the primary color processes dealt with

The relation between the algebraic sign of the luminosity coefficient and the position of the point
representing the corresponding primary color process with reference to the spectrum locus and the
Alychne is exemplified.

are not shown because two of these points (those representing the
red and green primary processes) are located too far from the origin

to be shown with any convenient scale for r2 and g 2 . The points

representing the primary color processes of p 4 , 74, and /3 4 (see Table 4)

are labeled R\, 6r' 4 , and B\. R\ like R\ is located at the long-

wave-length end of the spectrum locus. G\ does not coincide

exactly with G\, but it is so nearly coincident that the departure
can not be conveniently shown on Figure 6. B\ is located at the
intersection of the Alychne with the straight line joining the extremes
of the spectrum locus. R' 5 , G' 5 , and B'

'

5 , like R' u G\, and B\
all fall upon the tangents to the extremes of the spectrum locus, the
difference being that while R\ and B\ are the points of tangency
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R' 5 and B' 5 are the intersections of the tangents with the Alychne.
It is to be noted, of course, that, in accord with the theorem just

proven, the points (R' u G' u B\; R' 2 , @'k] H'*, G'i] and #'
6) repre-

senting primary color processes to which positive luminosity coeffi-

cients are attached (see Table 6) fall on the same side of the Alychne
as the spectrum locus; also the point (B' 2 ) representing the only
primary color process to which a negative luminosity coefficient is

attached is the only point which falls on the side of the Alychne
opposite to the spectrum locus.

If, then, we would avoid negative ordinates in the distribution

curves of the three primary color processes we must choose processes

such that the resulting triangle completely incloses the spectrum locus

(as, for example, any of the five sets of distribution curves dealt with
in the present paper). If we would make as many ordinates as

possible of the distribution curves zero, we should choose processes

such that the sides of the resulting triangle are coincident with the
spectrum locus for as great a wave-length range as possible (for

example, the O. S. A. "excitation" curves, pi, y 1 , and ft, best, see

Table 1; and p 5 , 75, and /3 5 ; next best, see Table 5). If we would
avoid negative luminosity coefficients, we must avoid, in our selec-

tion of primary color processes, all processes represented by points
which fall on the side of the Alychne opposite to the spectrum locus

(as has been done, for example, for all choices of primary process
shown on Figure 6 except B' 2)-

85 If we would make two of the
luminosity coefficients equal to zero, we must choose two of the pri-

mary color processes such that the points which represent them fall

on the Alychne (for example, Schrodinger's Vierfarbentheorie curves
see footnote 73, p. 544; and p 5 , y 5j and /? 5 ). If two of the luminosity
coefficients are zero, the distribution curve of the remaining primary
color process coincides with the luminosity curve. 86

p5 , y5; and /3 5

are the distribution curves of a choice of primary color processes

which to a considerable degree combine all the properties which have
just been enumerated. It is by virtue of these properties that

p 5 , 75, and jS 5 are advantageous from the standpoint of routine
computation.

Washington, August, 1929.

85 We may note that the Konig-Grundempfindungskurven refer to a "blue" primary process whose
point is separated from the spectrum locus by the Alychne. In so far, then, as it is justifiable from the
standpoint of psychophysiological interpretation to take the Konig primary color processes as identical
with some aspect of the retinal or post-retinal activity which actually occurs, it is justifiable to conclude
that the activity of the "blue" component of the visual mechanism involves an inhibition of the bright-
ness aspect of the response. In other words, we may obtain from Konig's work a suggestion of the "specific
darkening power" of blue light which was advocated by Konig's theoretical enemies (the Hering school).
Ives believed (see footnote 18, p. 519) that Konig's blue primary process had a sufficiently arbitrary basis

to justify another choice of primary that is, a choice which does not involve a negative luminosity coeffi-

cient. The Konig-Ives curves embody a blue primary which falls on the same side of the Alychne as the
spectrum locus.

66 The fact that a certain green process for the sake of computational convenience has been endowed with
a distribution curve throughout the spectrum which is identical with the luminosity curve of the spectrum
has, of course, no importance from the standpoint of psychophysiological theory whatever. The endow-
ment could be granted any color process represented by a point on the mixture diagram not on the Aly-
chne. If of this infinity of color processes there is one process which seems to have from the psychophy-
sical standpoint a real claim to a distribution curve identical with the luminosity curve, that is the "white"
process; and in Schrodinger's Vierfarbentheorie curves (see footnote 73, p. 644) the " white " process is so
endowed. These curves embody properties which permit them to be given important theoretical inter-

pretations; but it is not surprising that they should be distinctly inferior to p&, 75, and /3s from the standpoint
of convenience in routine computation.


