
RP 145

THE PRINCIPLES OF MEASUREMENT AND OF CALCU-
LATION IN THEIR APPLICATION TO THE DETERMI-
NATION OF DIOPHANTINE QUANTITIES

By Edward W. Washburn

ABSTRACT

A Diophantine quantity is defined as a quantity which is numerically con-
ditioned in such a way that it is a member of a set of known quantities. The
measurement of such a quantity in the laboratory is therefore a problem of

identification. The principles of measurement and of calculation and the
precision aspects of measurements involving one or more Diophantine quan-
tities present features quite different from those associated with ordinary physical
measurements. In particular, the individual determinations should not be
averaged and the most favorable experimental values are not necessarily those
which are closest to the true value. The principles of "precision of measure-
ment" as set forth in the numerous treatises on that subject are not applicable
to the measurement of Diophantine quantities and may lead to erroneous
conclusions.

In the present paper an experimental procedure for measuring such quantities
is described, and appropriate methods for treating the experimental data are

developed. The treatment of the subject is based upon the "principle of maxi-
mum error" and the methods of Diophantine analysis instead of the theory of

probability and the calculus. Examples of Diophantine problems in chemistry
and physics are given.
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I. INTRODUCTION

1. THE PROBLEM

In the case of most physical measurements, the value finally adopted
is a mean obtained by averaging in some manner the results of a
number of determinations. To this final "best" value a precision

measure is attached as an index or reliability. The methods of

combining experimental data so as to obtain the most reliable value
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and the computation of an appropriate index of reliability are dis-

cussed in an extensive literature dealing with the theory of probability
and precision of measurements.

All discussions of this character with which the author is familiar

seem, however, to be confined to two types of cases which can be
described somewhat as follows:

Type 1.—The "correct" value of the quantity sought is and must
necessarily always remain unknown. It is, however, assumed to be
a member of a continuum of "possible " values lying between the limits

determined by the reliability index. Most of the so-called physical

constants belong to this type. The assumption is that if the chemical
composition and physical condition of the system are completely
defined, then there exists a single and definite value for each of its

physical constants or properties. The problem is to find a given
number of significant figures of this value and to fix the limits of

uncertainty.
Type 2.—In the second type of cases the individuals are either

inaccessible to direct measurement or, if they are subjected to meas-
urement, the result for a given individual is of no particular interest;

that is, the actual individuals, as individuals, are inaccessible or

unimportant. They are, however, members of a definable group,
and the behavior of the group as found by studying a sufficient

number of representative samples is capable of numerical representa-

tion by the application of statistical methods. This behavior is

sometimes embodied in that fictitious entity known as the "average
individual," who not infrequently has no counterpart among the

actual individuals.

In addition to these two types, there exists also a third type which
apparently has not been discussed by writers on this subject. This
type may be described as follows:

Type 3.—The quantity sought is perfectly definite and belongs to

an actual individual. The possible values - of the quantity lying

between the extremes determined by the accuracy of the method of

measurement do not, however, form a continuum, but instead, all of

these possible values, including the true or correct value, are members
of a finite set or series of known values, and the problem which
presents itself is the definite and certain identification of the quantity
sought with one of these known quantities.

A quantity of this character may be called a "numerically condi-
tioned" or Diophantine quantity. Following are some examples of

such quantities:

The quantity is

—

1. A positive integer.

2. A negative prime.
3. The logarithm of an integral multiple of 3.

i_

4. A member of the series 2 n
, in which n is a positive integer.

5. A member of the set: (-37.3 ±0.8), (-20 ±2), (-15.3 ±0.5),
(10 ±1), (30.1 ±0.2), (34.8 ±0.7).
In examples 1 and 2 each member of the set is exactly known; in

examples 3 and 4 each member of the set is known (or knowable) to

any desired degree of accuracy; in example 5 each member of the set

is known with a stated degree of accuracy.
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The principles of measurement and of calculation and the precision

aspects of problems involving Diophantine quantities present features

quite different from those associated with the first two types described

above. It is the purpose of this paper to discuss these features for

cases of this type.

Before proceeding to the detailed consideration of this type,

however, it will be necessary to prepare the ground by an examination
of certain features of the general problem of errors of measurement
and in particular to formulate what we shall call the " principle of

maximum error," a principle which in theory is applicable to any
type of physical measurement, but which in practice appears to be
almost valueless except in connection with the determination of

Diophantine quantities or of functionally conditioned quantities. 1

2. THE PRINCIPLE OF MAXIMUM ERROR

In the measurement of any physical quantity characteristic of a
given constant (or reproducible) physical system, the accuracy of

the result obtained is determined by the following elements: (1) The
observer, (2) the technic, and (3) the equipment. The combination
of these three elements 2 we shall designate as the " method.' '

The errors present in the immediate observational data will be of

two classes which will be designated as vectorial and nonvectorial,

respectively. The class of vectorial errors has a unidirectional (plus

or minus) component. Such errors are usually called "systematic
errors." They must be eliminated by proper calibration and stand-
ardization of the "method." The remaining errors are of the non-
vectorial type and it is this class only which will be considered in

what follows. They will be designated simply as "errors."

If, now, repeated observations of the same quantity are made,
these observations will differ from one another, from the mean and
from the true value of the quantity by varying amounts. Experi-
ence shows, however, that, barring mistakes, all of the observations
will lie within certain finite limits above and below the true value.
The deviations of the individual observations from the true value
we shall call the "errors of the observations." The largest error

which could conceivably be made with the "method" employed will

be called the "maximum error of the method." This maximum
error is a characteristic of the "method" and is an important element
in connection with the measurement of numerically conditioned
quantities, since it can be made the basis of a general method of

treating the experimental data. In principle it could likewise be
similarly applied to experimental data on nonconditioned quantities,

but in practice it is of little value with such quantities because the
maximum error can not ordinarily be determined with the required
precision. Unless the estimated maximum error is substantially
less than twice the actual maximum error, it is practically valueless
in connection with nonconditioned quantities except possibly as a
criterion for the exclusion of an observation from the mean.

* Application of the principle of maximum error to the determination of the parameters of a function
connecting two or more directly measured quantities is discussed by Campbell (Norman Campbell,
Measurement and Calculation, Longmans, Green & Co. (London), 1928, p. 169, et seq.). The procedures
recommended by Campbell have the merit of simplicity which certainly can not be said of most of those
given in the standard treatises in this field. See, however, the simple procedure suggested by Edgeworth
(Hermathena, 6, No. 13; 1887).

a The first of these elements—the observer—is in part suppressed when recording instruments are used.

88500°—
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3. DETERMINATION OF THE MAXIMUM ERROR

Unfortunately no exact directions can be given for determining the
"maximum error" of a " method." The best that can be done is to

indicate two possible types of procedure. The final details must, how-
ever, be determined by the good judgment of the investigator.

(a) BY ANALYSIS

Resolve the "method" into its operation elements.3 Determine
for, or assign to, each operation element an appropriate "maximum
error." With the aid of the functional relation connecting the oper-

ation elements with the final result, select a reasonable value for the
corresponding maximum error in the result.

(b) BY TRIAL

Apply the experimental technic repeatedly to the same (preferably

known) magnitude until a sufficient number of observations have
been obtained to permit the construction of a satisfactory error-fre-

quency curve. After eliminating any observations which are obviously
mistakes, take as the "maximum error" the maximum observed
deviation, increased by some reasonable factor of safety.

It will be noticed that in the above descriptions we have employed
such expressions as "obviously," "reasonable," and "appropriate"
which are not defined and which are essentially incapable of exact
definition. In fact, except perhaps in purely statistical problems,
no mathematical method of treating the observational data can
entirely replace the scientific good judgment of the investigator.

At most it can only suggest an orderly procedure and point out the
logical inferences involved.

As an example of a measurement which is itself a simple operational

element, let us consider the measurement of the distance between
two parallel fine lines on a plane surface. We will suppose that one
of the. lines is brought into coincidence with a graduation mark of a
standard meter divided into millimeters and that the position of the
second line is estimated, to the nearest tenth millimeter or better

with the aid of a cross hair, no vernier being used. It will be generally

agreed that a trained observer using the above apparatus and technic

could not make an error of as much as 0.5 mm. This agreement
would still prevail for 0.3 mm and probably for 0.2 mm. In other
words, the value 0.2 mm would be generally approved as a reasonable
and conservative choice for the "maximum error" of the method.
In fact, a smaller value, say 0.15 mm, would doubtless meet the
approval of many investigators accustomed to making observations
of this character, but this smaller value is obviously approaching the
danger limit, and an investigator who proposed using it would
probably be expected to justify his choice.

4. MISTAKES

Observations which differ from the true or "best" value by more
than the "maximum error" may arise from any one or more of the

following causes : (a) Mistakes by the observer, (b) mistakes by the

apparatus, and (c) occasional vagaries on the part of the system.

3 The subject of "instrumental variance" (which is one of the elements entering into the establishment
of the maximum error of the method) has been discussed by Schlink, Bull. B, S., 14, p, 741; 1919,
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(a) MISTAKES BY THE OBSERVER

These include such blunders as the transposition of digits in setting
down a numerical result; incorrect addition of weights during a
weighing operation; omission or neglect of some item in a complicated
technic; errors in computation, etc. A probable explanation can
sometimes be found for such a mistake, and in that case the observer
naturally has little hesitancy in excluding the observation, particu-
larly when the discrepancy is large.

(b) MISTAKES BY THE APPARATUS

These arise from a temporary appearance of some variable which
normally is absent or under control. For example, in a viscosity

measurement a small dust particle might lodge temporarily in the
capillary and give rise to one flow time much longer than any of the
others in the series. A poor electrical contact might cause one elec-

trical measurement to deviate widely from its fellows. A temporary
stoppage of the ventilating fans of a laboratory might affect one mem-
ber of a set of measurements appreciably influenced by barometric
pressure.

If such sources of error affect several of the last measurements of a
series, the observer naturally concludes that something has gone
wrong and proceeds to look for and correct the trouble. When the
difficulty occurs only once, however, its cause is not always easy to

discover.
(c) VAGARIES ON THE PART OF THE SYSTEM

In certain types of systems an occasional value deviating from the
mean by more than the maximum error may be obtained when no
mistake has been made by either the observer or the apparatus.
In other words this abnormal value actually characterized the system
at the moment when it was obtained. Such a rare occurrence might
possess a special interest in itself. Nevertheless the unusual value
should be excluded from the mean, not because it represents a mis-
take but because in such a situation the mean is wanted presumably
because it characterizes the normal behavior of the system, while the
mean obtained by including the unusual value would not represent
a quantity having any particular interest or importance. The
" abnormal" value should, of course, not be rejected but should be
recorded and discussed for any interest which it might possess.

Having selected an appropriate value for the maximum error of a
method there are certain logical deductions therefrom which consti-

tute a set of rules for the treatment of the observational data on
Diophantine quantities. These rules will be discussed below and
illustrated by numerical examples.

5. DIVISION OF THE PROBLEM

The general problems associated with measurement and calculation

in dealing with Diophantine quantities may for convenience of treat-

ment be divided into two classes as follows:

Class I.—The quantity sought is either capable of direct measure-
ment or a value for it may be computed by ordinary mathematical
methods from one or more quantities which are capable of direct

measurement. Such a quantity will be called an experimentally
determinable quantity. A general discussion is possible for this class

of quantities.
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Class II.—A great variety of more complicated cases can be for-

mulated for which no general discussion is possible. Each type of
case must be separately considered. Following are some examples
of such cases:

Case 1.—Given
3 = fi(m, 7i, p)

The form of the function and its numerical parameters are known.
Only the quantity x is capable of experimental determination and
it is required to find the exact values of ra, n, and p, each of which
is a numerically conditioned quantity. For example, they might be
conditioned as follows:

(a) m is a positive integer.

(b) n is a negative even integer.

(c) p is an integral power of 2.

Case 2.—The same as case 1, but with the following added relation.

y = f2 (n,p)

in which y is also capable of experimental determination.
Obviously a great variety of cases is possible. In all of these one

or more of the quantities sought may be a Diophantine quantity.
Any one or more of them may or may not belong also to Class I.

The number of functional relations given may be equal to, less than,
or more than the number of quantities sought. Many of the mathe-
matical problems encountered in these more complicated cases are,

in part at least, problems in Diophantine analysis, a branch of mathe-
matics which so far as the author has been able to discover has not
hitherto found much application in the physical sciences.

In the following discussion we shall first consider the simplest

type as represented by Class I. This will be followed by a brief

outline of the method of treating a more complicated type.

II. PROBLEMS OF CLASS I

The quantity sought is capable of experimental determination,

and it is conditioned in such a way that its true value must be a

member of the ascending series

Mo, Mlt M2, Mz Mn

all members of which are known.

1. NOMENCLATURE

M, The true value of the quantity sought.

Ma , The actual value found as the result of any single experimental

measurement.
5M, The actual error

8M=±(Ma-M)
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(5Jf)max.> The maximum absolute error which can be made with the

experimental technic employed.4

p = -TTjrt The actual fractional error.

Pm&x. = -—
m*' > The maximum fractional error.4

Mu <M- (5 Jf) max .

|
Ttie iowest p0SSible value for Ma consistent with

°Ir vi//i \ the accuracy of the method.
Mu <M(l-pmaxJ J

J

Ma ,
>M+(8M) max .

|
The ftgfrest possible value for Ma consistent

°7!^ ^ 7i>r/i i
\ with the accuracy of the method.M2 , > M{l+pmaxJ J

J

AM, The difference, Mn—Mn-i, between two specified members of

the series.

n+i l^he two members of the series which inclose the value M.

2. GENERAL CONDITIONS

1. The various possible values of Ma will ordinarily form a con-
tinuum between the limits Mi and M2 ; that is, within these limits any
value is possible for Ma . Practically, however, only a finite number
of values need be considered. This number will be determined by the
number of significant figures 6 justified in Ma .

2. As with many cases encountered in precision-of-measurement
discussions, it is necessary to know at least the order of magnitude of

M in order to draw definite numerical conclusions concerning the
required precision. The first step in the experimental technic is

therefore the determination of an approximate value for M by some
rapid method. In the present instance this determination serves to

locate the region of the series in which M must lie and the remainder
of the series on both sides of this region can be excluded from consid-
eration.

3. In the following discussion the "accuracy of the experimental
technic" will be understood to be measured by the magnitude of

(5 Jf)max. or pm ax. and to vary inversely with these quantities. It will

also be assumed that each of these quantities is equally likely to be
positive or negative.

3. APPLICATIONS OF THE PRINCIPLE OF MAXIMUM ERROR

A number of interesting problems present themselves. In discussing

these problems we shall illustrate our conclusions by applying them
to a specific case. For this case we shall take usually the series

represented by all of the even positive integers. In other words, we
shall assume that the true value of if is an even positive whole number.
Evidently for such a series AM= 2 and is a constant for the series.

In general, the form in which the conclusions are expressed will

depend upon whether the errors in the measurements are given in

absolute terms (8M) or in relative terms (p).

4 It is assumed that vectorial errors have been eliminated.
* Thus if Mi=240 and Ma =244 and the values ofMa are read or computed only to the first decimal place,

there are only-41 possible values forMa ,
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In practice, one form of expression can be frequently translated

into the other, but in some cases this is not possible, and, to make the

treatment perfectly general, it should cover both forms of expression.

In discussing the various problems we shall, therefore, include both
forms as subcases (1) and (2), respectively, under each problem.
After discussing each problem in analytical terms we shall then
present a discussion of subcase (1) in graphical form.
Owing to the simplicity of the graphical presentation, it is sug-

gested that the reader turn to II, 4, on p. 233, and read the description

of the graphical presentation before undertaking a study of the more
exact and complete analytical presentation which we shall now
proceed to discuss.

(a) Ma GIVEN. TO DETERMINE THE POSSIBLE VALUES OF M.

(1) Maximum Error Given as (5M) max.—Obviously the only pos-
sible values for M are those members of the series which meet at least

one of the following conditions:

M+(8M) m&x.<Ma<M-(dM) l (1)

(2) Maximum Error Given as pma
dition is

M (1+2W.) <Ma <M (l-#

The corresponding con-

.) (2)

Example.—Given lfa = 241.4 and (5.M) max .
= 4.2 or pm&x =2 per

cent. Applying the above relations gives us the following table:

Table 1

M. 236
240.2
241.4
231.8
240.7
241.4
231.3

238
242.2
241.4
233.8
242.8
241.4
233.2

240
244.2
241.4
235.8
244.8
241.4
235.2

242
246.2
241.4
237.8
246.8
241.4
237.1

244
248.2
241.4
239.8
248.9
241.4
239.1

246
250.2
241.4
241.8
250.9
241.4
241.1

248
M+(8M)max. 252.2Ma 241.4
-M-(6M)max - - 243. 8
M(l+pmax .) 253.0Ma 241.4M (1-Pmax.) - 243.0

Consequently, if (8M)m&x =4.2, M must be 238, 240, 242, or 244;
or, if pmax .

= 2 per cent, if must be 238, 240, 242, 244, or 246.
Kelations (1) and (2) may also be written in the forms

-Mmln. <Ma~(8M)m&x .

Mm**. >Ma+ (SlOmas.

MmlD . <Ma/(l+pmax)

Mm&x.>MJ(l-pmtiX)

(la)

(lb)

(2a)

(2b)

which are convenient for calculating the extreme values for M.
Example.—If we apply these relations to the above example we

have
(a)

Mmin. <241.4-4.2 <237.2 <238

Jfm<«, >241.4 + 4.2 >245.6 >244
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or (6) Mmin . <241.4/(1.02) <236.7 <238

Mmax . >241.4/(0. 98) >246.3 >246

(b) (MiW OR pmax. GIVEN. WHAT SINGLE VALUES OF Ma WILL LEAD TO THE
DEFINITE EVALUATION OF Ml

(1) (5J/)m a x. Given.—The condition is obviously that Ma shall be
included within M± (8M)max . for a single member of the series or,

what amounts to the same thing, that Ma ± (5if)max . shall include a

single member of the series. In other words, in order to definitely

evaluate M, Ma must lie between the limits

Mn+1 -(8M)m&x. and Mn^ 1 +(8M)m&x

which may be abbreviated thus

Mn±^(5M)m&x . (3)

For a series in which AM is a constant, this is equivalent to

(8M)m&x,<AM-8M (4)

in which dM is the actual error taken with a positive sign.

(2) Pm&x. Given.—The condition is that Ma shall be included
between the limits

Mn±1(l^pm&x .) (5)

for a single member of the series. For a series in which Aif is a
constant, this reduces to

(M±AM) (1T2W) (6)

Example.—Given (6if)max .
= 1.3 or ^max .

= 0.5 per cent. If M=242
and AM=2 y then M will be definitely evaluated if Ma has any value
not less than

Jf-(AJ/-(5Jf)max.)=242-2 + 1.3 = 241.3

or not greater than

242 + 2-1.3 = 242.7

Or using pm&x ., M will be definitely evaluated if Ma has any value
between

(242-2) (1 + 0.005) = 241.20
and

(242 + 2) (1-0.005) = 242.78

The above limits are noninclusive in both cases.

(c) WITH A GIVEN VALUE FOR Ma WHAT ARE THE MAXIMUM ALLOWABLE VALUES FOR
(8M)max. AND pm ax., IF M IS TO BE DEFINITELY EVALUATED?

(1) For (5if)max .—The condition is that

(8M)max . shall be< ± Mn±1 + Ma (7)
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For a series in which AM is constant, this reduces to

(S^max . shall be< ± M+AMt Ma (8)

which is equivalent to relation (4).

(2) For ^max.—The condition is

2W. shall be< ^ (9)

For a series in which AIf is constant this reduces to

, u ,

'

=F Ma±M+AM ,in *2W shaU be< M+AM (10 )

which is equivalent to
SM AMMM

2?max. shall be< ^y- (1 1

)

1+T
Examples.—

(1) For (5M)m&x .

(a) Suppose If=242 and given Ma = 242.0. From relation (8) we
have

(*JOmtt. shall be< ± 242 + 2 =f 242<2

(5) If Jf« = 241, we have

(5-M)max . shall be<±242 + 2T241<l

This involves a contradiction since if the actual error (that is, 242 —
241) is 1, the maximum error can not be less than 1. In other words,
if Ma differs from M by as much as one-half A if, definite evaluation
of M will not be possible from a single value of Ma .

(2) For pm&x ,

(a) Suppose M=242 and given M& = 242.0. From relation (ll)'we
have

pmax shall be< ^—~ <0.82 per cent.

1+—
242

(b) If Ma= 241, we have
-1+2
242

Vm&x shall be<\ ~-<0.41 per cent.

1+—^242
The actual error is o^k= 0.413 per cent. Consequently ^max . can not
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be less than 0.41 per cent; that is, evaluation of M will fail, if Ma =
241.

(d) WHAT IS THE MOST FAVORABLE VALUE FOR Mi

(1) Error Given as (5M)m&x—The most favorable value is given
by

;
2 Ma = M»v + M*-! (12)

since then and only then will the allowable (5 Jf)mas . be a maximum.
From this relation it is obvious that the most favorable value is not in

general the true value, M. The most favorable value for Ma is the

true value M only when
Mn+1+Mn_ 1

=2M (13)

which is equivalent to, AM=sl constant. For example, given the
series 2, 4, 8, 16, 32, 64, etc. Suppose the true value is 32. The most

favorable value for Ma is then —~— =40, since this value will

permit (51f)max . to have any value less than 32 — 8 = 24. In other
words, if the true value of M is 32 and the accuracy of the experi-

mental technic is ± say 20 units, then if will be definitely evaluated, if

the value obtained in the measurement is in error by + 18 units, but
the evaluation will fail if the investigator is so unfortunate as to

obtain the correct value in the determination. A similar situation

would exist if the correct value of M were 15, 20, 25, 30, 35, or 40,
etc., and the series to which M belonged were the following: 10, 11,

12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 40, 41, etc.

(2) Error Given as ymax .—The most favorable value for Ma is

given by
Ma=Mn+1 (l -pmax .) = Jf„_i(l +;pmax .) (14)

since under these conditions the allowable pmax , has its maximum
value which is

Combining this with (14) gives the most favorable value of Ma

Mn =
2J£^M»

Mn+1 + Mre_!

For a series in which AM is constant relation (15) becomes

(16)

2w.<-y (10

and equation (16) becomes

M2 -{AM)'<Ma- M



232 Bureau of Standards Journal of Research [von

The most favorable value is the true value only when 6

M= 2Mn+1Mn. 1

Mn+1 + Mn_!

or for a series in which AM is constant, only when

(18)

M^M-^- (19)

which is equivalent to the condition

{AM) 2

M = (20)

(A if) 2

In words, the smaller —r?— > the more nearly will the most favorable

value approach the true value.

Examples.—If if=4 and AM= 2, then the most favorable value
for Ma is

M« =4-|=3

If If=32 and the series is 2, 4, 8, 16, 32, 64, 128 ....
,

the most favorable value for Ma is

2X64X16
Ma

64 + 16
Zb ' b

If M=100 and the series is 95, 96, 97, 98, 99, 100, 110, 111, 112,

113, 114, 115, 120, 121, . . . . , the most favorable value
for Ma is

,r 2X110X99 , n .M°
=

99 + 100 ^ 104

(e) LEAST FAVORABLE VALUE OF Ma

(1) Error Given as (SJf)max .—There are two values of Ma which
are in general equally unfavorable and which represent the limits

at which evaluation of M from a single value of Ma just fails of ac-

complishment. They are respectively given by

2Ma=M+Mn. 1 (21)

and
2Ma=Mn+1 + M (22)

While, in general, both values are equally unfavorable from
the standpoint of the definite evaluation of M from a single value
of Ma , there is a special case in which one of them disappears. For
example, if the series starts with M, the value Ma = %(Mn+i+ M), is

the most unfavorable value. Similarly if the series ends with M, the
value, Ma = )£(Mn-i+ M), is the most unfavorable value.

6 This is ordinarily an impossible condition, since it imposes an arbitrary mathematical restriction on
the series to which M belongs.

7 Note that here the most favorable value is less than the true value while in (l) above the most favorable
value was greater than the true value.
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(2) Error Given as pm &x.—The two least favorable values are:

_2MxMn. 1

Ma ~ M+Mn.t
{26)

and

m -tM+ Mn+l
M.=

2-m** (24)

As in the above case, one of these values disappears when M is

the end member of a series.

(f) WHAT ARE THE CONDITIONS WITH RESPECT TO Ma AND (5 M) ma*. OR pma*. WHICH
WILL LEAD TO DEFINITE EVALUATION OF M FROM A PAIR OF VALUES OF Ma?

(1) For (e>Jf)max .—Definite evaluation of M from a pair of values

of Ma is frequently possible when neither value alone will lead to

evaluation. If Ma and Mf

a are the two values, then definite evalua-

tion will result, if

2f«-(«J/)max.>ifc.-l (25)

M'a +(5M)m&x.<Mn+1 (26)

and
Ma>M>M'a (27)

(2) For pm&x .
—The corresponding conditions are

Ma-Mp^yMn., (28)

M'a+Mpm&x.<Mn+l (29)

and
Ma>M>M'a (30)

Example.—Using our type series 238, 240, 242, 244, etc., suppose
M=242 and (5if) max .

= 3. It is obvious that no single value of Ma

can lead to definite evaluation of M. From relation (25) we have

J/c>240 + 3>243

Jf'a<244-3<241

That is, if two values are obtained for Ma , one of which is greater
than 243 and the other less than 241, if will be definitely evaluated.
Evaluation by this method is mathematically possible no matter how
great (5if)max . or pmax . may be. It is of no practical importance,
however, when the steps in the series to which M belongs are small
in comparison with (5lf)max .

(See further below, pp. 237 to 241.)

4. GRAPHICAL REPRESENTATION

The relations deduced in the foregoing pages may be illustrated

graphically. We shall discuss this method only for (5if)max . Its

extension to cover the case in which the error is given as pm&x. will

be obvious.
Imagine the members of the group in the neighborhood of Ma to

be located on a uniform scale. We may now proceed as follows:
1 . From the locus of a given value of Ma as a center draw a circle

with the radius (6Jf)maXt If the circle contains only one of the M
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points, If is definitely identified. (The word " contains " will be here
understood to include values lying upon the circumference as well
as those lying within the circumference.)

2. If the above procedure is followed for two or more values of Ma ,

then M will be definitely identified, if any two of the circles contain
only one M point in common, even though each circle contains more
than one M point.

3. Identification will follow from any value of Ma , if no center can
be found for a circle which will inclose more than one M point.

4. Identification by 1 above may follow, if any center can be found
for the circle which will inclose only one M point.

5. The locus of the most favorable Ma value is a point from which
as a center the largest possible circle containing only one M point
can be drawn. The radius of the smallest of these "most favorable
circles" is the value below which (5J/)max . must lie, if identification

is to be possible from a single value of Ma for the most unfavorable
case in the group of possible M values.

6. A least favorable Ma value is similarly a point which is the center
of the circle (containing only one M value) which has the smallest

radius.

5. A SPECIAL CASE—THE KNOWN MEMBERS OF THE SERIES ARE
NOT EXACTLY KNOWN

In all of the preceding discussion we have assumed that the members
of the set of known quantities were exactly known (or knowable).
If this is not the case, we have the situation illustrated by example 5,

p. 222, and the foregoing discussion must be modified. The necessary
modifications can best be indicated by using the graphical method.
In this method it is necessary only to replace the M points by circular

areas, the radius in each case being taken equal to the maximum
uncertainty in the value of the corresponding M, the center being the

"best value" of the M. Instead of M points we now have M areas

and the preceding discussion is applicable, if for "M point" we sub-

stitute "any part of an M area" in all cases in which the "containing"
of an M point is involved.

A numerical example will illustrate this case. The unknown
quantity is known to be one of the members of the following set

:

(200 ±5), (210 ±1), (212.0 ±0.2)

1. Identification will be certain from any value of Ma , if (dM)max .

is less than the smaller of the two quantities

(210-1)- (200 + 5) _ n
2

~ Z

and
(212.0-0.2)- (210 + 1)

2

that is, less than 0.4.

2. If (5if)max. is less than 2, definite identification will result or

the value 200 will be eliminated.

3. If the actual value is 210, definite identification will result, if

(5Jf)max <0.8, provided the value obtained for Ma is less than
211.8- (5Jf)max .
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4. If 210 is the actual value, the most favorable value for Ma

is 210.4, since with this value for Ma definite identification will result,

if (5Jf)max.<1.4.
It is obvious that if any two of the M areas have one or more

points in common, identification with one of such a pair of M areas

can never be certain.

6. EXPERIMENTAL PROCEDURE

An appropriate experimental procedure to be followed in cases

belonging to the subject of this paper will now be described. Each
step of the procedure will be given, together with an illustrative

example.
(a) PRELIMINARY DETERMINATION OF M

Determine M approximately by any convenient rapid method and
write down the corresponding members of the series.

Example.—Suppose we find Jf=242±5 per cent and that the
members of the series in this neighborhood are the following: ....
216, 220, 224, 228, 232, 236, 240, 242, 244, 246, 248, 250, 254, 258,
262, 266, 270 ... .

(b) COMPUTATION OF VALUES OF (5M)m«. AND OF jw. WHICH WILL MAKE CERTAIN
THE EVALUATION OF M FROM A SINGLE VALUE OF Ma

1. Value of (5if)max .—For the above series the smallest value of

Aif is evidently 2. Consequently we have (see p. 230, supra)

(Sif)max . must be<l (31)

2. Value of pmax .—Since If is unknown it is necessary to provide
for the least favorable case. This is the case which will give the
smallest value of p in the following expression

:

{M-Mn±1)
* {M+Mn±l )

(32)

in which the ± sign is to be taken in the sense which gives the smaller
value for p.

Example.—For the above series the values of p so calculated are

shown in Table 2 in the column headed p x . For the least favorable
case it is obvious that

pmskX . must be <0.4 per cent

(c) COMPUTATION OF VALUES OF (5M) ma *. FOR WHICH EVALUATION OF M IS POS-
SIBLE FROM A SINGLE VALUE OF Ma

(1) For (5Jf)max .—From the general relation

(dM)m&x.<AM-8M (4)

it is obvious that evaluation of M is possible whenever

(5Jf)max.<Ajf (33)

In the above series the smallest value for AM is obviously 2.

(2) For pm&x .
—The condition is expressed by relation (15) or (17).
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Example.—For the series under consideration these values for

Pmsix. are shown in Table 2 in the column headed p2 . For the least

favorable case it is obvious that

Pm&x. must be <0.8 per cent

Table 2

For M= Pi V2 For M= Pi Pi

220 .

Per cent

0.901
.875
.870
.854
.840
.415
.411

Per cent
1.818
1.785
1.754
1.724
1.695
1.255
.826

244
Per cent

0.408
.406
.402
.402
.782
.769
.758

Per cent

0.820
224 246 .813
228 248 .806
232 250__. 1.195
2-36- 254 1.575
240 258 1.550
242__ 262 1.526

(d) SELECTION OF (5M)max . OR OF pm&x .

If the conditions set down in 2 above can be readily met, this

should of course be done and M can be definitely evaluated from
a single determination. Even in this case, however, check deter-

minations would ordinarily be made to eliminate the possibility of
" mistakes.

"

If this condition can not be readily met, then the smallest prac-
ticable value of (SM)mtkX , or of pm&x . should be selected and repeated
observations made.

7. TREATMENT OF THE OBSERVED VALUES

(a) GENERAL METHOD

From the first value obtained for Ma deduce (as explained above,

p. 228) the possible values of M. Do the same for the second value
of Ma . Strike out of the two sets of possible M's all values not
common to both sets. Proceed similarly with each Ma as it is

obtained until only one value of M remains as a possibility. Obvi-
ously the true value of M must be contained in all of the sets of

possible M values. As soon as M has been identified in this way the

result may be checked by additional determinations of Ma treated
in the same way. A check is obtained as soon as the same M emerges
a second time as the only value common to all the sets.

If a number of determinations (say seven or more) have been made
without obtaining a definite identification of M by the above pro-

cedure, or if the chance of obtaining identification by this procedure
is small, the investigator may prefer to treat his measured values by
the target procedure which is described below. This procedure may
also be used in addition to that described above, if desired.

Example.—Given pmax .
= 0.7 per cent. Suppose our first experi-

ment gives Ma = 240.4. We now prepare the following table:

Table 3

M. 240
241. 68
238. 32

242
243.70
240.30

244
M(l+;pmax )- 245. 71M (1—Pmax.) 242. 29

Evidently the only possible values for M are 240 and 242.
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Second experiment.—1^ = 240.5. The only possible values for M
are 240 and 242.

Third experiment.—Ma = 241.9. The only possible value for M is

242. Hence, M must be 242.

This is a complete identification. If treated in the usual way
these measurements would give as an average 240.9 with an average
deviation of ± 0.9 and the identification would be in doubt.8

In this example the value 241.9 is alone sufficient for identification.

If instead of 241.9 we had obtained say 243.0 in our third experiment,
the corresponding possible values of M would be 242 and 244. This
result combined with either of the preceding ones would also give
242 as the only possible value.

The above procedure is in sharp contrast with that ordinarily

followed in physical measurements, in that (1) the individual measure-
ments are not averaged, and (2) the most favorable values are not
necessarily those which are closest to the true value.

Mistakes.—In the above procedure nothing has been said concern-
ing the detection and elimination of values of Ma which are affected

by mistakes, nor is it necessary to include any special machinery for

this purpose in the case of large mistakes. The procedure automati-
cally eliminates such values. For example, suppose the first value
of Ma yielded 230, 232, and 234 as possible values for M and the sec-

ond determination gave 240, 242, and 244. Since the true value of

M must belong to every set of possible values, one of the above values
of Ma must contain a mistake. It is not necessary, however, to

make special provision for detecting and rejecting large mistakes of

this character, since the procedure automatically eliminates them.
The situation which arises in the case of small mistakes, however,

requires further examination. A small mistake may yield an Ma

value differing from the true M by an amount only a little greater
than (5Jf)max .. This result is equivalent to, and in practice can not
be distinguished from, the selection of a value of (5lf)max . slightly

smaller than the true value. The two effects may, therefore, be
discussed together.

Such a situation, if it occurs early in a set of Ma determinations, can
under some circumstances lead to an erroneous conclusion. For
example, using our type series, suppose that the correct M is 242 and
that (5M)m&x . is estimated to be 1.5. Given

1. Ma = 240A, hence M =240.

This value is incorrect. The only recourse is to make a sufficient

number of check determinations. For example:

2. 2f« = 241.1, hence M=240, or 242.

3. Ma = 242.3, hence, J/=242.

4. Ma = 243.2, hence M=242, or 244.

8 This is admittedly an improbable case; that is, in an actual set of measurements it is unlikely (but not
impossible) that the first two results obtained will be low by amounts approaching the maximum error of
the method.
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It is now clear that the first observation contained a mistake, or that
the value selected for (dM)max . was not chosen with sufficient

conservatism.
If we assume that the first value of Ma was affected by a mistake,

and we must make this assumption if we retain our confidence in the
value selected for (5if)max ., then the other three values check one
another in yielding 242 as the value for M. If, however, we reex-
amine our grounds for selecting (Sif)max . and decide, let us say, to

raise our estimated value to (5Jf)max .
= 2.0, then the above observa-

tions would give
1. M=240 or 242

2. If=240 or 242

3. Jf=242 or 244

4. J4 = 242 or 244

and if is evidently 242.

In other words, if (5Jf)max . >2.0 the above set of observations
gives two independent evaluations of M, since 1 and 4 together and
2 and 3 together both yield M=242. The same is, of course, true

of 1 with 3 and 2 with 4. If, however, (Sif)max .
= 3.1, then the above

set of observations would still yield if=242, but the evaluation
would now come only from the two extreme values, 1 and 4, and if

either of these values contained a mistake the conclusion might be
in error. In other words, an evaluation which depends solely on
one Ma value or solely on the two extreme members of the set should,
in general, be checked by additional determinations or confirmation
should be sought from the target method.

(b) THE TARGET METHOD

We have now to consider the treatment of a considerable number
of observations which, by the methods outlined above, have failed

to yield a definite evaluation of M.
The problem may be illustrated by the following situation. Assume

a marksman whose shots have the property of randomness and whose
shooting has an accuracy which can be represented by a circle of

radius R inclosing the target; that is, no shots will fall outside pf

this circle. Place before this marksman a set of targets only one of

which is exposed. The marksman now makes a series of shots at

the exposed target. The problem is to determine, from the distri-

bution of the hits, the target which was exposed during the firing.

Bring the center of the circle of radius R into coincidence with
each target in turn. For the actual target fired at, this circle must
inclose all of the hits. This test will eliminate all but a small number
of targets and the problem is to select the actual target from this

small number of possibilities.

In the case of physical measurements of numerically conditioned
quantities the possible values of M remaining after treatment of the
observations by the methods of the preceding pages correspond to

this small number of possible targets. For selecting the correct value
from among these possible values the following methods suggest
themselves.
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Exclude any values of Ma whose corresponding set of possible M
values does not include any members of the final set of possible M
values. Treat the remaining Ma values by one or more of the follow-

ing procedures.
1. Each value of Ma considered by itself yields a set of possible

values for M. A given M will occur n times in the group of these

sets. Using values of M as abscissae and corresponding values of n
as ordinates, construct the frequency-of-occurrence curve. This
curve will have a flat maximum on which will be found the only
values of M consistent with the whole set of observations. Locate
the ordinate which bisects the area under the curve. The most
probable value for M is the value closest to this ordinate. This

<\|CS|«M<N|(N|C\l<V|C\jC\tCMCS|€V|CSj

Figure 1

procedure should be applied only when the set of M values is

characterized by a constant value of AM.
If a sufficient number of observations have been made, the flat

maximum should always contain an odd number of points, the mid-
point being the true value of M. This value should, in general, be
also the median of the whole set.

2. (a) Average the Ma values, (b) Take as the most probable
value of M that member of the M series which is closest to the
average Ma

9

9 If the values of Ma are directly measured or are computed from measurements of a single variable,
the average value is usually taken as the arithmetic mean. If, however, Ma is a function of two or more
measured quantities from which it is computed, then a method of averaging appropriate to the situation
should be employed. Such methods are described in treatises on precision of measurement. That de-
scribed by Campbell (see p. 162 of reference in footnote 1, p. 22S), for example, employs the principle of
maximum error in obtaining the average and its precision measure.

88500°-
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3. Take as the most probable value of M that member of the M
series which is closest to the median of the set of Ma values.

Example.—Given (5Jf)max .
= 7, A_M = 2, and the values of Ma

shown in Table 4. This table illustrates the result of applying pro-
cedures 2 and 3. Procedure 1 gives the curve shown in Figure 1.

Table 4

Ma
Ma

-
mean

Mean—
Ma

Ma~
240

240-Ma

Ma~
242

242-Ma

Ma
-

244
244—Ma

241 0.8

1.8
.8

2.8

~" _

4.Y

1

2

7

4

1— -----

2

....

2

1 3
242 0.2

5.2
2.2

5

2

2
247

2
1

3

3
244

240 4
241 3
239 1

________

_______

________

5

243 1.2

.2

1

242
5

________
........

2
237 7

245 3.2
.2242. 2

Mean=241.8. 1.8 2.2 2.7 1.3 1.6 1.7 1.3 2.9

Median =242. a. d. = 1.95 =2.6 = 1.92 =2.78

Possible values by methods of preceding pages, 240, 242, 244.

If the procedures check one another in clearly designating one and
the same M value, there is considerable probability that it is the

correct value. If the procedures do not check one another, or if, for

example, the mean Ma is about halfway between two members of the

M set, identification is in doubt and a more accurate method of

measurement should be employed. Obviously the results obtained
by the target procedure will be materially strengthened, if it is first

applied to the data obtained by applying the experimental "method"
to one or more known members of the M series in the neighborhood
of the value sought. This amounts to a calibration or standardiza-
tion of the experimental l'method."

8. RESUME FOR CLASS I

The procedure for the identification of a numerically conditioned
quantity open to direct experimental determination may be summed
up as follows:

1.. Approximate determination of the quantity and consequent
limitation to a small number of possibilities.

2. If possible and convenient, select (5M)max . or pmax . so that a

single determination will be certain to yield positive identification.

3. If this is impossible or inconvenient, then if feasible, select

(5_¥)max. or pmax . so that a single determination may lead to positive

identification. In any case proceed with the determinations until

the combined conclusions obtained by treating each determination

separately lead to positive identification or until the investigator

prefers to resort to the target method.
When positive identification has not been attained at the end of a

number of determinations (say 7 or more), the investigator may pre-

fer to treat his combined results by the target method instead of con-
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tinuing his determinations. This situation is likely to arise (a) when
the investigator has been too conservative in estimating the value

of (5lf)max . or Pm&x. for the technic and apparatus employed; or (b)

when the requisite values for Ma lie in the neighborhood of Ma ±
(Sif)max . Under these circumstances the probability of obtaining
sufficiently favorable values of Ma may be small.

In general, the target method will have to be resorted to whenever
(5if)max . is large in comparison with AM, since with increase in the

ratio, {bM)m&xJAM, the situation approaches that which prevails in

physical measurements of nonconditioned quantities. The target

method will also be frequently employed for purposes of confirmation

III. PROBLEMS OF CLASS II

1. A PROBLEM INVOLVING FUNCTIONS OF TWO VARIABLES

We shall now consider briefly the following case:

Given
M=Un+x (34)

r=l (35)

and the following conditions:
(a) n is a positive integer,

(b) x is a member of the closed series, 2, 0, — 2, — 4, — 6, • • • • (2 — 2n)
(c) M and r only are capable of experimental measurement. The
general problem is to determine the exact values of n and x.

It is obvious to begin with that M is an even positive integer. Also
up to any given value of n there are only a finite number of values
possible for r and these are all calculable. M and r are, therefore,

Diophantine quantities belonging to Class I.

Belonging to each possible value of M or of r there are only certain

possible values for n and x. Thus there are 42 values of M for each
of which only one value of n and only one value of x is possible. If,

therefore, M is definitely identified as one of these 42 values, n and x
will be also determined thereby and the experimental determination
of r will be unnecessary. There are also 42 values of M for each of

which 2 values are possible for n and x, 42 for which 3 values are
possible, etc. There are also 15 members of the M series of even
positive integers for which no values of n and x are possible.

For each finite value of r there exists a minimum value for n and a
minimum value for x, the other possible values being the integral

multiples of these values. The corresponding values of M belong
to the series (14 n^in. +xmin .)Xl in which 7 is a positive integer.

This is a series in which A If is constant and equal to (14 nmin .+xmln .).

Thus for example, if r is found to be —0.875, nmln .
= 7, xmln .= —8.

The n series is defined by 7 X /, the x series is in correspondence and is

defined by —8X/, and the M series is defined by 90X7. This. last
is a series in which AM= 90. Consequently, M will be identified with
certainty from any single value of Ma , if (5lf)max .<45.

In many cases, however, the exact value of r can not be determined,
but only certain limiting values determined by the magnitude of

(^)max . For example, suppose we find

r= -0.875 ±0.003
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For values of n not exceeding 100 it can be shown that the possible
values of n must belong to the series

(7X1), (72 + 7XI) or (75 + 7X/)

the possible values of — x are the corresponding (1 to 1) members of
the series

(8X7), (82 + 8X7) or (86 + 8X7)

and the possible values of M belong to the series

(90X7), (926 + 90X7) or (964 + 90X7)

It is obvious, therefore, that if Ma is determined with any given
accuracy (5J7)max ., the possible values of M, n, and a? will be limited
to a small number of known quantities and one can then easily compute
the accuracy necessary in r in order to select from these values the
correct ones. Similarly if r is determined with a given accuracy,
(5r)max., the possible values of M, n, and x will be limited to a known
set from which the correct values can be selected provided M is deter-
mined with an accuracy, (5J7)max., which can be readily calculated.

The errors in the determinations of Ma and ra can, therefore, be as-

signed to meet the convenience of the investigator; that is, within
certain limits (which can be computed in any given case), (5i/)max .

can be made large and (5r)max . small, or vice versa, or any desired
distribution can be made.
For any given accuracy in Ma , ra being undetermined, or for any

given accuracy in ra , Ma being undetermined, or for any given values
of (5 J7)max . and (5r)max ., both Ma and ra being determined, it is pos-
sible to compute the limits between which n and x must lie.

In other words, it is possible to compute for each value of Ma the
corresponding set of possible values of M, n, and x. Similarly for

each value of ra it is possible to compute the corresponding set of

possible values of M, n, and x. The true values of n and x must belong-

to both of the sets of possible values so computed. The computations
of the sets of possible values are problems in Diophantine analysis.

This case will not be discussed in any further detail in this paper,
since the detailed discussion of an artificial case would have an aca-

demic interest only. There are many actual scientific problems which
involve one or more numerically conditioned quantities, and one of

these problems will be fully discussed in a later paper.

IV. EXAMPLES FROM CHEMISTRY

As examples of scientific problems involving numerically conditioned
quantities, the following may be cited

:

Example 1

.

—Given, a sample of a pure chemical substance contain-

ing only carbon, hydrogen, and oxygen. Required, its empirical

formula.
The formula may be written, CaHbOc . The laws of valency and of

atomic proportions impose the following conditions:

(1) a is a positive integer.

(2) b is a positive even integer.

(3) c is a positive integer.

(4) 6>2a + 3.
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We have also

(5) M=12a + b + 16c+ (0.00776)

where M is the molecular weight. M is experimentally determinable
and is itself a numerically conditioned quantity belonging to Class I.

It differs from an even whole number only by the small quantity
0.00776.

We may, if we wish, have at our disposal also or instead, either or

both of the following relations

:

(6) rc-jf

1.00776
(7) rH—^-

in which rc and r# are experimentally determinable numerically
conditioned quantities; that is, they belong to Class I.

Example 2.—Given a sample of a pure chemical substance known
to have the empirical formula C^HgO. Kequired to determine
which of the various possible isomers it is.

If some one property has been measured for each isomer and if

these values are available in the literature, the identification can be
made by determining this property for the substance in question.
It is obvious that under these conditions we are dealing with a numer-
ically conditioned quantity belonging to Class I and of the kind dis-

cussed on page 234, section 5.

If the corresponding necessary conditions for definite identification

can not be met, then we may take also (or instead) some other property
for which data are available for the different isomers. For absolute
certainty of identification it is essential that every possible isomer
be included at least once in the group of sets of property values taken.
If several sets of property values are available, however, identifica-

tion will in many cases be practically complete, if the isomer in ques-
tion is included in all of the sets, even though one or a few of the
isomers may not appear in every one of the sets.

The accuracy necessary in the measurement of the property will

depend upon the number of properties which are measured, the accu-
racy with which the values in the sets are known, the number of sets

of properties in which a given isomer appears, the nature of these

sets, and the distribution of the known values in the sets.

Example 8.—Given a pure chemical substance. Required to identify

it by means of its properties. This example is similar to the pre-

ceding one except that the possibilities, instead of being restricted

to a comparatively small number, include all chemical substances
known and unknown. The success of the identification is materially
affected by the choice of the property or properties to be measured.
The principles governing this choice will not be discussed here. We
shall content ourselves with an example based upon the use of the
following extensively available properties: Freezing point, normal
boiling point, and density. Starting with the freezing point suppose
that we find -25 ±1° C.
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From some compendium of freezing-point data we now select those
substances which have recorded freezing points within say— 25 ±6°.
If we use International Critical Tables for this purpose, we obtain a
list of 69 substances. We now determine the normal boiling point
of our substance and find 81 ± 1°. We now obtain a similar list

of substances boiling within say 81 ± 6. We compare the two lists

and eliminate all substances not common to both lists except those
appearing in one list which have no value recorded for the property
corresponding to the other list.

This procedure reduces our list to 16 items. We now measure
the density of our substance at 20° and find 0.690 ±0.001. From
our 16 items we now discard all having density values outside the
limits of 0.690 ± say 0.005. This leaves us with the following items:

Table 5

Substance Mol.
wt.

M. P. B.P. dr

(1) CI2O7 183
174
100
98
91.5
71

157.5
45
98
90

-30
-30
-25.0

82
(2) SCU -

(3) 2, 2, 3—Trimethylbutane _ 80.9
80
81

81
82
84
84
85

0. 6909
(4) 2, 2, 3—Trimethyl-1-butene
(5) CICH2CNO.
(6) Crotonylamine, C4HqN ______
(7) (CH3) 2Te
(8) H2C: NOH.
(9) 2,4—Dimethyl-2-pentene ________ 0. 69925/4

(10) (C 2H5) 2PH

We are now justified in concluding that our substance is one
of the 10 substances appearing in the above table, or it is a sub-
stance which did not appear in the lists employed. Undoubtedly
most of the above substances have been retained in our final list

solely because only one property is recorded for them. To reduce
our list still further we must resort to chemical means or to the
measurement of another characteristic. 10 Fortunately there is one
property which is accurately known for all of these substances,
that is the molecular weight. Suppose, therefore, we make a molec-
ular weight determination and find 99 ± 5. Our list is now re-

duced to items (3), (4), and (9). A combustion analysis or a bromine
or iodine number determination will eliminate either (3), or both

(4) and (9). If No. (3) is eliminated in this way, we may resort to

chemical methods to distinguish between (4) and (9); or, if the re-

corded data are trustworthy, to a more accurate determination of

boiling point, density, or some other physical property.
It is obvious that the atomic weights of the elements, the atomic

numbers of the elements, and the proportions with which the elements
combine are all examples of Diophantine quantities. Consequently,
any property or numerical characteristic of a substance which is a
known function of any one or more of these quantities is itself a

Diophantine quantity, and the problem of determining its value by
measurement in the laboratory is a problem belonging to the subject
of this paper.

10 The chemist would materially reduce this list on the basis of obvious chemical characteristics or simple
chemical tests.
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V. EXAMPLES FROM PHYSICS

In the measurement of any magnitude composed of quanta, the

problems involved in the precision aspects of the measurements
are, in the last analysis, Diophantine in nature. In principle, nearly

all physical quantities seem to be acquiring a Diophantine character

with the continued extension of the process of quantization in physics.

In the vast majority of cases, however, the quantization is as yet
too fine-grained to be distinguishable from perfect continuity in so

far as it can influence problems in precision of measurement, but with
the continued development of quantum theory and the ability to

measure small magnitudes, more practical examples are likely to be
found. The method of treatment of such problems can be generalized

as follows:

Given a class of magnitudes composed of quanta of the same
kind. Required to determine (a) the number of quanta in a given
magnitude and/or (jb) the most accurate value of the magnitude of

a single quantum. We proceed as follows:

1. Determine as accurately as convenient by any available method
the approximate magnitude of the quantum.

2. Measure as accurately as possible the value of a magnitude
composed of approximately n quanta, n being appropriately chosen
(in accordance with the result obtained in 1) so as to make possible

operation 3.

3. Divide the result obtained in 2 by that obtained in 1 and take
the integer nearest the quotient. This will be the exact value u of n.

4. Now divide the result obtained in 2 by this exact value of n.

This will give a new and more exact value for the magnitude of the
quantum.
Using this new value, the above series of operations can now be

repeated with a larger value of n and a still more accurate value
for the magnitude of the quantum obtained. Continued repetition

will result in continued improvement in accuracy as long as the new
magnitude composed of the n quanta can be measured with a higher
percentage accuracy than can the corresponding smaller magnitude
in the preceding series. The accuracy required in the various steps
of the above procedure can be readily computed by the methods
outlined in the preceding pages.
Having once determined as accurately as possible by the above

procedure the value, q, of a single quantum, then at any future
time the value of any magnitude composed of n quanta can be found
to the same accuracy with which q is known merely by measuring
the magnitude with an accuracy sufficient to evaluate n.

For example, suppose it is desired to obtain, with an accuracy
of about 0.1 per cent, the magnitude of an electrical charge which
has been measured approximately and found to be (94 ±2 per
cent) X10-10

esu. Dividing by the value of 6 = 4.770 X lO-10 , we
obtain, n= 19.7 ±0.4 = 20 and the value of our magnitude is

20 X 4.770 X 10~ 10 = (95.40 ± 0.1 per cent) X 10" 10 esu.

The above principles are applied for the purpose of determining
the period of an undamped oscillator (such as a pendulum, for

11 Method of counting by measurement. Used, for example, by Millikan to determine the number of
elementary charges of electricity on a charged oil drop (Phys. Rev., 2, p. 124; 1913). Used also in a variety
of industrial machines in which, by automatic or semiautomatic devices, weighing operations are utilized
for counting industrial quanta, such as pins, nuts, bolts, coins, sheets of paper, etc.
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example). The period is here the quantum and the total elapsed
time between any two passages in the same direction through a

given point is the larger magnitude^composed of the n quanta.
If the "period" of the oscillator is accurately known then it might

be employed for the accurate measurement of a time period composed
of a whole number of such quanta. The period, or rather the cor-

responding wave length, is in the case of light waves employed in

measuring distances with an interferometer, the principle of the
method being substantially that used in the example of the electrical

charge given above.

Washington, July 18, 1929.


