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EFFECT OF SMALL CHANGES IN TEMPERATURE ON
THE PROPERTIES OF BODIES

By Mayo D. Hersey

ABSTRACT

When it is found necessary to determine the effect of small departures from
normal temperature upon some property of a body or system of bodies, such
as the stiffness of a steel spring, the vibration frequency of a tuning fork, or
the accuracy of an instrument, it is usually done either (a) by a detailed com-
putation or (6) by a direct experiment in which the temperature is actually
varied.

After reviewing and illustrating the usual methods of solution a general
mathematical treatment of the problem is given, from which two additional
methods are derived that can sometimes be usefully applied: (a) A simple cal-

culation, made possible by the theory of dimensions, which does not require
any detailed formula for the property in question; and (b) a combined theo-
retical and experimental solution, in which the experimental factors have been
reduced to a minimum and can be determined without varying the temperature
of the body itself, provided the thermal properties of the component materials
are known.

Finally, it is pointed out that the same treatment can be extended to any
other condition analogous to temperature, such as hydrostatic pressure. 1
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I. INTRODUCTION

In physical and engineering investigations involving the properties
of bodies (as distinguished from substances or materials) it is often
necessary to know at least approximately what will be the effect of

small departures from the normal working temperature. If the
magnitude of the property in question is represented by P, the effect

of any small change in temperature, At, can obviously be obtained
from the relation

AP ndF\ A . n ,

-p^\pn)M (1)

provided the value of the temperature coefficient (l/P)(dP/dt) is

known.
The quantity P may represent, for example, some familiar physical

property of a single homogeneous body or some performance charac-
teristic of an instrument or machine. The magnitude of the tempera-
ture coefficient (l/P)(dP/dt) must obviously depend upon various
different factors, including the physical properties of the component
materials.

The general problem considered in this paper is that of determining
the value of the temperature coefficient (1/JP) (dP/dt) or, in other words,
the value of the fractional or relative rate of change of the property in

question with respect to temperature.
The usual practice is to compute the temperature coefficient from a

detailed formula for the property P if such a formula can be written,

otherwise to have recourse to a direct experiment in which the values
of P are observed at different temperatures. In this paper two addi-

tional methods of solution are described after first reviewing and illus-

trating the more usual methods.

II. EXAMPLES ILLUSTRATING THE USUAL METHODS OF
SOLUTION

The usual methods of solution, particularly the computationmethod,
can readily be illustrated by three simple examples taken from the
field of elasticity, the first involving pure bending, the second pure
twisting, and the third involving complex stresses.

These examples will at the same time serve to illustrate the use of

logarithmic differentiation and the use of the dot above any quantity
to denote the fractional or relative rate of change of that quantity
with respect to temperature (1, 2).

23 For convenience both short

cuts will be employed throughout the paper. This present use of the
dot to indicate logarithmic differentiation with respect to temperature
need not be confused with its use to represent ordinary differentiation

with respect to time in mechanics. The logarithmic derivative of any
quantity Q with respect to t is defined by the expression d log Q/dt and
therefore is equal to (l/Q)(dQ/dt) and will be denoted simply by Q.

2 Figures in parentheses here and throughout the text refer to the numbers under "References" at the
end of this paper.

3 Previously used with advantage in papers on The Theory of the Stiffness of Elastic Systems, and Vibra-
tion Frequencies of Elastic Systems (1, 2).
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1. STIFFNESS OF A FLAT SPRING OF UNIFORM CROSS SECTION

Let the length, breadth, and depth (or thickness) of the spring be
denoted by L, B, and D, respectively. Consider the spring fixed at

one end like a cantilever beam and loaded at the other end by the
application of a force F. Let Y denote the deflection of the spring
at the extreme end due to the force F. The spring stiffness S may
be defined by the expression F/Y and corresponds, in this example,
to the general property P, whose temperature coefficient is desired.

Under the foregoing conditions the usual formula for the deflection

of a cantilever beam leads to the relation

„_BED*
S-^jjjr (2)

in which E is Young's modulus of elasticity. Differentiating loga-

rithmically to obtain the effect of temperature change,

ldS_ ldB,^dE,^dD_^dL
Sdt~Bdt + Edt +Ddt Ldt W

or more simply
S=B+E+3D-3L (4)

If the material of the spring can be treated as homogeneous and
isotropic, so that the body expands uniformly in all directions without
distortion, B =D =L and equation (4) become

S=L + E (5)

This result amounts to the statement that the temperature coefficient

of the stiffness of the spring is equal to the linear thermal expansivity
of the material plus the temperature coefficient of Young'.s modulus.
For the usual materials, L is intrinsically positive while E is intrinsi-

cally negative.

2. TORSIONAL STIFFNESS OF A WIRE OF CIRCULAR CROSS SECTION

Let M denote the torque or moment needed for maintaining an
angular deflection 6 at the free end of a vertical wire of length L and
diameter D. From the theory of elasticity, if the material is isotropic

and homogeneous,

M-$£.i (6)

in which jj, denotes the shear modulus of elasticity. Defining the
torsional stiffness T by the ratio M/9, that is, torque per unit twist,

equation (6) gives

lW«gf (7)

Differentiating logarithmically withrespect to the temperature and
making use of the fact that D = L,we obtain

f=ZL + iX (8)
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again a linear function of the thermal expansivity and the tempera-

ture coefficient of one of the elastic moduli, this time the temperature

coefficient of the shear modulus.

3. VIBRATION FREQUENCY OF A FLAT CIRCULAR DIAPHRAGM,
CLAMPED AT THE EDGE

Let n denote the frequency of the slowest vibration of a diaphragm
of thickness L and diameter D, composed of an isotropic, homoge-
neous, perfectly elastic material of density p, Young's modulus E and
Poisson's ratio a. According to Rayleigh (3)

4 after converting into

the above notation and working out an approximate value of the

numerical factor

Differentiating as before, and making use of the identity daldt = aa
}

we find that

* + i-2Z)+f-| (10)

1.88 (L\ [*»

-T^WV7 (9)

*Ki^?)-
Since, however, D =L and p = — 3Z for isotropic materials, equation

(10) can be written

This gives the result as a linear function of three of the temperature
coefficients of the material, one of which, the temperature coefficient

of Poisson's ratio, can be replaced by other data that are more readily

available.

Thus from the theory of elasticity, for the type of material under
consideration, the three elastic constants E, jjl, and a are connected
by a definite relation,

.'-if-
1 <12)

from which it is evident that it should be possible to express a in terms
of E and /i. Differentiating, we obtain

i=(~)(.E-fi (13)

Accordingly equation (11) reduces to

*-i+Ki#i:fe> <i4>

a linear function of the thermal expansivity, temperature cofficient of

Young's modulus, and temperature coefficient of the shear modulus.

* An alternative formula involving total mass in place of density is given in (2), footnote 3, p. 444.
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Taking Poisson's ratio = 3/10 as a rough approximation gives for

equation (14)

A=|+g^|/i (15)

from which the approximate magnitude of n can readily be computed
for various materials upon consulting tables of published experimental

data for the appropriate values of L, E, and /2.

4. EXPERIMENTAL SOLUTION

To determine the temperature coefficient of any property P when
the detailed formula for this property as exemplified by equations

(2), (7), or (9) is not available, the most obvious and usual procedure
is to set up the apparatus in question and make tests in which the

temperature is actually varied. The temperature must be appro-
priately controlled, allowing time for thermal equilibrium to be
reached. Preferably observations of P should be taken both above
and below the normal working temperature at which the value of P
is required. A sufficient range of temperature should be covered so

that in plotting P against t the slope can be determined graphically

with the requisite precision. Dividing the slope (in proper units) at

any given temperature by the value of P at that temperature gives

the corresponding value of the temperature coefficient P.
The observations may be extended, if desired, over a sufficient

range of temperature to permit plotting P as a function of tempera-
ture. This type of experiment, however, can not do more than provide
discrete numerical values of P applicable to the identical apparatus
under test. It does not throw any light on the functional relationship

between P and the temperature coefficients of the component mate-
rials, L, E, m, etc., as illustrated by equations (5), (8), or (14). Also
it requires a specialized laboratory technique in order to work with
actual changes of temperature.

III. GENERAL MATHEMATICAL THEORY

From a consideration of the nature of the variables entering the
problem it will readily become apparent why the solution in every
case takes the form of a linear function of the thermal expansivity
and other thermal properties 5 of the component materials.

The character of a body or system of bodies depends evidently upon
its size and shape and upon the properties of the component materials.

If the system is homogeneous and isotropic, it can be defined by some
linear magnitude L, together with as many length ratios rx . . . rz as

may be needed to fix the geometrical shape of the system, and the
appropriate properties of materials, pi . . . pm .

When the system is not homogeneous and isotropic, the distribu-

tion of the values of each one of the p's must be indicated. This
can most readily be done by selecting one point, and, if necessary,
one plane and one stated direction at that point, where the absolute
magnitude of the property will be given, and then expressing the
distribution of the property by ratios of other values to this one.

8 For brevity, the term "thermal properties" will be used collectively to denote the temperature coeffi-
cients of the properties of the materials, together with their thermal expansivities.
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When two bodies of unequal absolute size possess the same distribu-

tion of length ratios, they are said to be geometrically similar or to

have the same geometrical shape. By analogy, two bodies or systems
of bodies may be said to have the same generalized shape when they
possess the same relative distribution of properties (I). 6

A system which is not homogeneous and isotropic can, therefore,

be completely identified or described by giving its linear magnitude
L and the magnitudes of the properties Pi • • • pm , together with all

ratios of like quantities, rx
• • • r h including both ratios of linear mag-

nitudes and ratios of properties of materials, that may be needed to

specify the generalized shape.

The property P may depend not only on the intrinsic character of

the system as defined by L, rx
• • • r h and p x

• • • pm , which may be
termed internal variables, but also on a number of other quantities,

Si • • • <Ln, which might be termed the external variables, and which,
in general, are independent of temperature. Thus the entire list of

independent variables governing the magnitude of P can be divided
into the four groups or classes mentioned above and we may write

P=/(X, n . . . r lt p x . . . pm , 2i • • . tf») (16)

where the form of the function/ may or may not be known.
As a step toward investigating the effect of temperature on the

property P in the light of equation (16) let us consider any system
of N physical quantities Q , Q i}

• • • QN- X which are definitely related,

so that

Qo=j(Qu--QN-i) (17)

By ordinary differentiation

<z<2»=(H;)<^.+ • •
•

(lg )

Hence by logarithmic differentiation

dQc ( dQJQA dQ, (b log QA dQ,

Qo \ OQilQJ <2. " \d log QjQ l

+
'

" (19)

or

The same computation can now be applied to equation (16), taking
P as the equivalent of Q , and the quantities L, r x

• • • r h p x
• • > p mj

Q\- - - g n as equivalent to Q x
• • • QN-i. Since in general q\- • • q n are

wholly unaffected by temperature, we obtain

y, /alogP\ f ,

/dlogPY
,

,/dlogP\.
,

,/dlogPy /n^H^)He4yJn+ ' '

'+0ni> +
;

•

+(aio^> W
From equation (21) it

#
is clear that P must be a linear function of

the thermal properties L, h- • • r h p x
• • • pm in all cases, regardless

of the form of the function/.

6 See p. 571 for rolled sheet metal as an illustration of bodies having the same generalized shape, and for
further discussion of this concept. Two pendulums of different sizes having variable densities similarly
distributed constitute another such example,
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When the generalized shape can be treated as sensibly constant,

f\ . . . fi may be set equal to zero, and then equation (21) reduces to

a AHogPy ,/alogP\ ( b logP \p« (22 )

*-\d log L)L + \d \og PJ Pl+ " ' \d logpj

or more simply
P-=C L+Clp l +- • .+tfwpw (23)

in which C , Clf
- • • Cm denote the dimensionless, isothermal coeffi-

cients (a log P/d log L), (d log P/d log Pi), etc.

The restriction of equation (23) to a constant generalized shape is

not a prohibitive one because (a) for homogeneous and isotropic

bodies the generalized shape is the same as the geometrical shape
and is actually constant; (b) for many bodies that are not homo-
geneous and isotropic the variation of rx

• • • r t with temperature is a

second-order effect which can be neglected; and (c) when not negli-

gible, as, for example, in considering the efficiency of a machine built

of cast iron having its bearings fitted with brass bushings, the effect

of temperature on the ratios rx • • • rt can sometimes be calculated in

detail by conventional methods and superposed on the solution

obtained for a system of constant generalized shape.

From equation (23) it is evident that a complete experimental
solution can be obtained without varying the temperature, if appro-
priate experiments are made for evaluating the isothermal coefficients

C , Ci, - • - Cm , and provided the thermal properties of the component
materials are already known. These are usually available in pub-
lished tables to a sufficient degree of approximation for the purpose
in hand; if not, they can be determined by testing the component
materials as such, without reference to the particular form of the

bodies in question.

In actual practice the procedure suggested by equation (23) can
be further simplified, as will be shown by means of the theory of

dimensions.
IV. DIMENSIONAL THEORY

A number of very interesting conclusions can be deduced from
equation (17) if it is understood in what follows that this equation
expresses a qualitatively complete relation. If it is incomplete

—

that is, if any essential quantity has been overlooked in making up
the list of independent variables Qi • - - QN-i on which the value of

Q depends—we should not be warranted in applying the following
analysis. If, however, the equation is overcomplete—that is, con-
tains one or more quantities that are superfluous—no harm will be
done and the extra variables introduced will automatically drop out
again later.

For convenience equation (17) will further be restricted to systems
of constant generalized shape or to different systems of the same
generalized shape, so that the ratios rx

• • • rt need not be explicitly

mentioned, and therefore the variables Q , Qi • • • QN_ X represent iV"

different lands of physical quantities.

It is also understood that the form of the function / is entirely

unknown, for if it were already known we should have nothing to

gain by further inquiry and could proceed at once to the usual solution

by differentiation illustrated by three examples earlier in the paper.

84789°—29 10
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It follows from Buckingham's Il-theorem (4, 5) that equation (17)

must be reducible to the form (7)

no = (Hx, n2 , ...n;) (24)

in which the function
<f>

is unknown, but in which the ITs are known
and represent all of the independent dimensionless products that can
be formed from the N physical quantities involved, and in which
j= N— Jc— 1, where 1c is the number of fundamental units (6) needed
for measuring the N quantities.

In equation (24) II represents the dimensionless product containing

Q , together with as many of the quantities Q x
• • • Q?

as may be found
necessary to cancel out the dimensions of Q ; that is,

tio= (Qi
a°Q2 °-'-Q*K

°)Qo (25)

in which the exponents a0f (3 ,
• • • k are pure numbers, some of which

may be zero in any concrete example. In like manner we can write

for any one of the products Hi • • • IIj serving as arguments of the

unknown function <f>,

n-«Ji-Q^- ••«*")« (26)

Substituting from equation (25) into equation (24) and solving for

Q gives finally

Qo = Qra
° Q2- " • • • e*-Ko

<Kni, n2 ,
• • • n

;) (27)

Upon identifying the general quantities Q , Qu • • • QN-i of equation

(27) with the classified quantities P, L, p x
• • • pm and q_i- - -

q_ n of

equation (16), and omitting rx
• • • r

x by virtue of the restriction to

systems of the same generalized shape, two propositions of practical

interest can be deduced, as shown below.

1. PROPOSITION I

When N—Jc+ 1, that is, when the number of different kinds of

physical quantity entering the problem exceeds the number of funda-
mental units by one, as frequently occurs in practice, the unknown
function 4> reduces to a pure number, and is therefore constant.

If when N is greater than lc + 1, the arguments III • • • 11^ entering
the unknown function can be constructed solely from the external

variables q± . . . q n) which are independent of temperature, </> can be
treated as a constant with respect to temperature.

Again, if one or more of the arguments entering the unknown
function does contain the linear magnitude L or properties Pi - - - pm
it may, in some applications, be found upon inspection that these

quantities tend to balance one another in such a way that the net
effect of temperature on the product in question can be neglected
with a satisfactory degree of approximation. This possibility is

especially noteworthy in problems where it can be shown that the

product or products affected have only a slight influence on the value
of 0.

In any case where 4> can be treated as a constant with respect to

temperature it will be denoted by 4> and equation (27) becomes

Qo = <i>o-Qr
a°Q2- (3°- &-*• (28)
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Changing over to the classified notation we obtain for P the con-
tinued product

P = const. iTf?, ' ' ' Vm'mQi l
' ' ' 9.n

n (29)

in which x • • • xm denote the numerical exponents of the internal
variables and yx

• • • yn those of the external variables. The number
of factors, m + n+1, can not exceed the number of fundamental
units, k.

Differentiating equation (29) logarithmically and making use of the
fact that #i • • • q n are uninfluenced by changes of temperature, we
find that

P=x L+x1pl + • • • +xmpm (30)

Comparing equation (30) with equation (23) it is evident that C ^=x
,

Oi = 3?i, * * * \ym Xm .

Thus whenever the unknown function 4> can be treated as a con-
stant with respect to temperature, the coefficients entering equation
(23) may be found by inspection without the aid of experiment.

' 2. PROPOSITION II

In the general case where must be treated as a
#
variable the co-

efficients of L, pi • • • pm entering the formula for P, equation (23),

can not be determined solely by computation. Two methods are

available, however, mathematically identical in substance, one graph-
ical and the other analytical, by which the experimental work can
be reduced to a minimum.

(a) Geaphical Method.—Let K denote the slope, at any point,

of an isothermal curve obtained by plotting log IT as ordinate against
log IT as abscissa, where n and II are defined by equations (25) and
(26). If the function

<t>
has only one argument, II, we have

n = <Kn) (31)

so that equation (27) can be written

Qo = Qr a°Q2-e°--4>(ii) (32)

Differentiating to obtain the temperature coefficient of the property
P which is represented by Q in the foregoing notation, we find

Qc—«.&-&&- • • • +(Sf|)n (33)

But from equation (31) <j> = U , so that d \og
m
cf)/d log II is equal to the

slope K; and from equation (26), Jl = Q + aQl + pQ2 + . . . ; therefore

Q = KQ+(aK-a )Q l +((3K-(3 )Q2 + ...
.

(34)

The same result can be obtained by putting equation (3 1 ) in the form
IloOcn*, substituting from equations (25) and (26), differentiating

and solving for Q , treating Zasa constant in the immediate vicinity

of any given point on the curve.
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In the rare event when we are obliged to deal with more than one
argument n, this result will be replaced by a summation of terms on
the right-hand side, in which K denotes in succession each one of the
partial derivatives.

The simplification accomplished by equation (34), as compared to

equation (23), consists in three facts:

(1) The experiments can be performed on geometrically similar

models, i* preferred, instead of on the original system of bodies.7

(2) Only one quantity need be varied in conducting the isothermal
observations; therefore if more than one quantity can conveniently
be varied, an absolute check is available.

(3) The quantity selected for experimental variation need not
necessarily be the linear dimension or one of the properties of the
component materials, since, if preferred, any one of the external
variables entering the product will serve equally well.

(b) Analytical Method.—If Qi and Q2 are any two quantities

that occur in either or both of the dimensionless products no and IT,

the remaining products being held constant for the time, it follows

from the relation connecting the derivatives of physical quantities (7)

that

In applying this formula to equation (23), Q is taken as before to

represent P, while Qi represents any one of the internal variables L,

Pi . . . pm , and Q2 may represent either an internal or an external

variable; that is, it may be allowed to represent any one of the quan-
tities L, pi . . . p m , qi . . . q n , subject to the restrictions discussed in

the reference cited (7).

In practice the values of a0) /3 , a, and /? are found by inspection
upon comparing the actual dimensional expression for the property P
with the symbolic expression given by equations (25) and (26), while
the value of the partial derivative d log Q /d log Q2 is obtained from the

isothermal observations.
The use of equation (35) in conjunction with equation (23) has the

same ultimate advantages as the use of the graphical formula (34)

and should give the same result; therefore, in any particular appli-

cation one method can be employed as a check on the other.

V. EXAMPLES SOLVED BY DIMENSIONAL ANALYSIS ALONE

1. PERIOD OF A PENDULUM

Let T denote the 1 period of any rigid compound pendulum of hetero-

geneous construction, whose generalized shape might be specified by
various length ratios and density ratios r

x
. . . r%. Then if g denotes

the acceleration of gravity, while L represents any chosen linear

dimension,
r-/(&, 9,n... r,) (36)

7 The requisite conditions have been fully discussed by Buckingham (5) and consist essentially in securing
the same value of n for both model and original.
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in which the function / will be considered unknown. Applying the
n-theorem; 8 that is, rewriting equation (36) in the standard IT-theo-
rem form which involves dimensionless variables only and then
solving for T, we obtain

T-Jjj 0(r1 --T I) (37)

To a high degree of approximation for small changes in temperature
the generalized shape may be treated as a constant with respect to
temperature, and since g, being an external variable, is also independent
of temperature, we find simply

f=~L (38)

This example, therefore, is an illustration of Proposition I and might
have been solved by direct substitution in equation (30), taking
P=T,L = L, andx = l/2.

2. SPRING STIFFNESS (PURE BENDING OR TWISTING)

For springs of irregular shape, such that no detailed formula
equivalent to equation (2) is available, we can write, in the case of

pure bending,
S=j{L

J
E

1
rv --r l) (39)

in which / is an unknown function, while L denotes a linear dimen-
sion, and E denotes Young's modulus either at some arbitrary point
in the material or the mean value throughout. The length ratios

and ratios of Young's modulus, r x ---r h taken together, serve to
define the generalized shape of the spring. By dimensional analysis,

as before, equation (39) becomes

S^LEtfrfa-.-rt) (40)

in which <£ is an unknown function. Treating the generalized shape
as a constant with respect to temperature, which permits a moderate
but not an excessive departure from the homogeneous, isotropic con-
dition due to rolling, stamping, or heat treatment, we have

S=L + E (41)

This result also might have been obtained from equation (30) by
substituting P = S, L =L

} z>i
= E, x = 1 , and x1

= l.

If instead of pure bending we have a spring deformed by pure
twisting or shearing, the solution is the same as before, except that
Young's modulus E will be replaced by the shear modulus p, in equa-
tions (39) to (41).

The solution for the torsional stiffness of a vertical suspension
(wire, ribbon, or fiber) of any cross-sectional form can be shown by

8 See references (4) and (5). The n-theorem can be applied by inspection after a little practice if the
dimensions of the various quantities are first written down for ready comparison. Further information
on the method of dimensions will be found in references (8), (9), (10), and (11),
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dimensional analysis to be the same as was given for the circular wire
in equation (8).

The solution for complex stresses, that is, where bending and shear-
ing deformations occur simultaneously, can not be obtained from
dimensional analysis alone without experimental data and will, there-

fore, be treated later as an application of Proposition II.

3. ELECTRICAL AND THERMAL RESISTANCE

Let R denote the resistance of any electrically conducting body of

irregular shape for which the detailed formula is not available; then
if L, as before, represents a linear dimension of this conductor, while
the resistivity of the material is denoted by p,

R=f(L,p,r l .--r l) (42)

For conductors of constant shape we obtain from equation (42) by
the method of dimensions

£=£ • to (43)

where
<f>

is a constant, and, therefore

R = P-L (44)

Thus the temperature coefficient of resistance of the body is equal to

the temperature coefficient of the volumetric resistivity of the ma-
terial minus its linear thermal expansivity, a result which can be
checked by the usual method of solution in the particular case of

any body of simple geometrical form. Equation (44) will be recog-
nized as a consequence of equation (30) if we put P = R, L = L, Pi = p,

x = — 1, and Xi=l.
In the analogous problem of heat conduction the same notation

can be employed, R being interpreted as the thermal resistance of

the body (temperature drop per unit flow of heat) and p as the thermal
resistivity of the material (reciprocal of thermal conductivity). In
the thermal problem, however, the temperature of the body can not be
assumed uniform, since the existence of a finite temperature drop, At,

is essential to the process of heat conduction.
The material of the thermally conducting body is therefore, in

general, nonhomogeneous and departs more and more from homo-
geneity as the temperature drop increases. Mathematically this

signifies that the length ratios and resistivity ratios rx . . . r t corre-

sponding to any given reference temperature t (for example, the mean
temperature of the body or the temperature at the center of the cooler

surface) must be recognized as functions of At.

If the length ratios are functions of At, they must also depend upon
the thermal expansion characteristics of the material. Similarly if

the resistivity ratios are functions of At, they must also depend upon
the temperature-resistivity characteristics of the material. Up to

moderately large values of the temperature interval At these charac-
teristics can be sufficiently defined by the thermal expansivity L and
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the temperature coefficient of resistivity p, disregarding the variations

of L and of p with temperature. Equation (42) can, therefore, be
written

R=f(L, p, L, p, At) (45)

for all bodies having the same generalized shape.
Applying the dimensional method, equation (45) becomes

R= -£<f>(LAt, i>At) (46)

which immediately reduces to equation (43) if L and p are inde-
pendent of temperature, since At is an arbitrary (external) variable

and, therefore, likewise independent of temperature. From equation

(46) , therefore, we obtain the same final result as before, equation (44),

for the relative change of resistance R per unit change of the tempera-
ture t, although the intermediate steps are different on account of the
nonuniform temperature distribution.

VI. EXAMPLES SOLVED WITH THE AID OF ISOTHERMAL
EXPERIMENTS

1. VENTURI AIR-SPEED INDICATOR

Let p denote the differential pressure (or suction) generated either

by the Venturi-static or Venturi-Pitot instrument on an aircraft

traveling at a speed v through air of density p and let P denote the
dimensionless performance characteristic p/pv2

.

While the instrument dials are graduated for various air densities

on the assumption that P is a constant, it has been found that more
accurate results can be obtained by treating P as a function of vis-

cosity (12, 13).

To investigate the effect of temperature on the performance charac-
teristic P for tubes of any given geometrical shape, we can begin by
writing

P=f(L,», P,v) (47)

in which L denotes a linear dimension, as, for example, the throat
diameter, and p. denotes the viscosity of the air.

p
From equation (47) by dimensions

P-*(^) (48)

Differentiating and following the same procedure as was employed in

deriving equation (34) from equation (31), we obtain

P=K(L + p- li) (49)

where K denotes the slope at any point of the graph obtained by
plotting observed values of log P against log {Lvp/p) at constant
temperature.
Equation (49) will be recognized as an application of the graphical

method, equation (34), taking Q = P, Ii = P, U = Lvp/n, Q^L, Qi = p,

#2 = M, a = 0, fr,
= 0, a= l, and /3= — 1.
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The same result can be obtained in the following manner by the
analytical method, equations (23) and (35). In equation (23) let

P = P, L = L,p1 = P} p2 = v,

.\P=C L+Cip+C2ii (50)

in which

alogP
ft-TBg7 (63)

Obviously, a more convenient variable for experimenting than L, p,

or p, will be the speed, v, since this is an external variable not involving
any alteration of the body under test. We, therefore, seek to obtain,
if possible, equivalent expressions for C , 6i, and C2 in terms of the
isothermal slope d log P/d log v, to replace the expressions given by
equations (51) to (53).

In equation (35) let Q = P, Q2 = v, /3o = 0, and /3=1 throughout the
following analysis, while for the purpose of evaluating C we take

Qi = L, a = 0, a=l; for evaluating Cx take Qi = p, ao = }
<x= 1, and

for evaluating C2 take Qi = /x, a = 0, a = — 1

.

Substituting these values successively in equation (35) gives

ajogP= aiogP=
alogi aiog »

0<> l64)

|logP= |logP=
6 log p d log v

v y

|logP= ^|logP=
a log m a log v

v y

Substituting in equation (50) the values of C , Ci, and C2 given by
equations (54) to (56)

This result confirms equation (49), since when L, p, and fi are held
constant the slope K, representing d log P/d log (Lvp/pi) reduces to

d log P/d log v.

If we write Pocvn as an approximation for a limited range of speeds,

it follows that E=n. Now the exponent n would be expected to lie

between the limits of for completely turbulent fluid motion (large

throat diameter, high speed, and low altitude) and — 1 for stream-line

motion (small throat diameter, low speed, high altitude). For
practical purposes L can be neglected in comparison with p and p..

Treating the atmosphere as an ideal gas of absolute temperature $,

we find p= — 1/0. Also as a fair approximation from —40° to +40°
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C, it has been shown (14) that ^=+(4/5) (1/0). Equations (49)
and (57), therefore, reduce to the approximate form

5\0.

in which K is a negative number (ranging from to — 1), so that P is

always positive.

2. SPRING STIFFNESS (COMPLEX STRESSES)

When the shear modulus p, is added to the list of quantities already
included in the stiffness problem, we obtain in place of equation (40)
for all springs of the same generalized shape

S=LE<t>(j±) (59)

Differentiating leads to the result

S=L+(l-K)E+KiX (60)

in which K is the slope of the graph obtained when the observed
values of log (S/LE) are plotted against log (n/E) at constant tem-
perature.

Equation (60) can also be derived by direct substitution in equa-
tion (34), taking Q = S, Tl = S/LE, n = fj,/E, Q = fx, Qi = L, Q2 = E,
a = — 1, |8 = — 1, a = 0, and |8= — 1.

An equivalent result in analytical form can be obtained by making
the appropriate substitutions in equations (23) and (35).

If Poisson's ratio is used in place of n/E in equation (59), we find

(l) 9 with the aid of equations (12) and (13)

S=L+CE+C&

=L + [1 + CQ±1)]E--C(^y (61)

in which C is the slope of the graph obtained by plotting log (S/LE)
against log cr.

3. VIBRATION FREQUENCY OF A LOADED SPRING (ELASTIC
PENDULUM)

A stiff spring having its natural frequency reduced by the addition
of a localized mass m, has been used as a working standard for time
intervals intermediate between the period of a tuning fork and that
of a gravity pendulum.

If the stiffness of the spring can be measured at the effective point
of application of the mass m, it can be shown by the method of dimen-
sions that the frequency is given by

=
VI*(»)»-•*/= *U? (62)

•See equation (7) of reference cited.
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in which m denotes the mass of the spring itself. From equation
(62) we readily find

n=\s (63)

since evidently m and m are unaffected by temperature. Substi-

tuting from equation (60) into equation (63) gives

n=\L +\{l-Ks)E+\Ks i,. (64)

in which Ks is identical with K of equation (60), the subscript being
attached to call attention to the fact that the value is to be obtained
from observations of stiffness rather than of frequency.

A more general solution can be obtained without reference to

equation (62) as follows: Starting with a qualitative statement for

systems of fixed generalized shape, we can write

n=f(L, E, n, P,m) (65)

in which p denotes the density of the spring material, the other
quantities having the same interpretation as before. Then applying
the method of dimensions to equation (65) we obtain

n-£V!*(*S) (66)

It now appears immediately that the argument mjpU is unaffected

by temperature, since m is essentially independent of temperature,
while p= — 3L; differentiating, therefore, and disregarding m/pL3

, we
find that

n=~L +~{l-2K)E+Kfi (67)

in which X is the slope of the graph obtained by plotting log (nL^Jp/E)
against log (n/E). This result agrees with equation (64) when Ks is

put equal to 2K, a relationship which can be deduced from the
definitions of Es and K in conjunction with equation (62).

Equation (67) can also be obtained by direct substitution in equa-
tion (34) after extending the latter to include the term (yE—y )Q3

and then putting Q = n, Q = p, Qi^L, Q2 = E, Qs = p, a = l, a = 0,
j8
= —

1/2, |S=— 1, 7 = l/2, and y = 0, and an equivalent result can
be obtained, as in the two preceding examples, by making the appro-
priate substitutions in equations (23) and (35).

Turning back to the telephone diaphragm problem, it is interesting

to note that equation (13) is a special case of equation (67) for which
K has the particular value —3/7.

4. COEFFICIENT OF FRICTION OF A LUBRICATED JOURNAL BEARING

As an example of a system which does not conform to the usual
condition of geometrical similarity, 10 consider the energy dissipated

i° Sometimes erroneously assumed to be a prerequisite for the application of the method of dimensions.
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in the oil film which occupies the clearance space of a well-lubricated

journal bearing. In general the oil film is not of a uniform thickness

circumferentially, this being due to the eccentricity of the journal,

which in turn depends on the viscosity of the oil, /*, the speed of

rotation, n, and upon the total load, W. There may also be a varying
amount of cavitation at the open ends of the bearing; that is, the o3
may not completely fill the clearance space between the journal and
the bearing, even when liberally supplied. Nevertheless, under these

conditions a simple relation has been found by the method of dimen-
sions (15) which can be written

In equation (68) j is the coefficient of friction and L is the length of

the bearing, the subscript having been attached to represent the par-

ticular case in which the materials of both journal and bearing have
the same thermal expansivity.

Differentiating, we obtain as was first shown by equation (22)

From equation (68) either by inspection of by substituting in equa-
tion (35), selecting n as the most convenient variable for experimental
control,

|log^=2 |logi
? (70)

d log L d log n v

dlogfodlogfo
(71)

d log fx d log n

or very approximately on account of the linear expansivity of the metal
being small compared to the temperature coefficient of viscosity of

the oil,

Proceeding to the case of dissimilar metals where a still further
departure from geometrical similarity occurs, we may consider first the
effect of differential expansion on the clearance, C (difference between
bearing diameter and journal diameter). If AZ denotes the difference
between the thermal expansivity of the bearing metal and that of the
journal, while the diameter of the journal is represented by D, we have

C
_/#(|)a£ (74)

according as the bearing metal is free to expand without opposition,
or restricted in some degree by stresses that are set up.
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While the connection between coefficient of friction and clearance
can not be obtained from dimensional analysis, the following relation

expressing the shearing resistance of a uniform film may be applied
as a reasonable approximation for the purpose of computing the effect

of small changes in temperature, viz

:

/<*! (75)

Differentiating equation (75) we obtain for A/, the increment which
must be added to equation (73) to take account of the change in clear-

ance due to a rise of temperature,

A/=-<7 (76)

Referring to equation (74) and taking the equality sign as representing
the maximum effect, substituting in equation (76) and adding the
result to equation (73) gives finally

Both terms on the right of equation (77) are normally negative for

an oil-lubricated bearing operating on the stable side of the minimum
coefficient of friction value, since /i is negative and AL positive. For
an air-lubricated bearing /i is positive.

The first term on the right of equation (77) has been readily ob-
tained by the same methods demonstrated in the three examples
immediately preceding. The second term will serve as a particular

illustration of the general statement made in the paragraph following

equation (23) regarding effects due to change of shape which can be-

calculated by conventional methods and then superposed on the
solution obtained for a system of constant shape.

VII. EXTENSION TO DETERMINE THE EFFECT OF PHYSICAL
CONDITIONS OTHER THAN TEMPERATURE

The variable quantity t which has thus far been taken to represent

the temperature is in fact entirely arbitrary and can equally well be
interpreted as hydrostatic pressure, electrostatic, or magnetic field

intensity, or any other measurable condition on which the properties

of the system may depend. Temperature, however, can never (on

the absolute scale) be made equal to zero, and, in general, for practical

reasons, whatever other factor is investigated in any particular prob-
lem the temperature factor must be considered in addition.

As an example of the effect of pressure equation (44) may be written

Rp = Pp~Lp (78)

in which Rp denotes the relative increase in the electrical resistance

of a body per unit increase of hydrostatic pressure; pp the pressure
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coefficient of resistivity of the material and (— Lj) its linear com-
pressibility. Replacing (— Lp ) by its equivalent ( + &/3), where Tc is

the ordinary volumetric compressibility, equation (78) becomes

Rv = Pp+\ (79)

Rewriting equation (44) with subscript t indicating temperature
effects,

R
t
=p-L (80)

From equations (79) and (80) we obtain for the change of resistance

due to a simultaneous temperature rise At and pressure increase Ap

AR
R
= (j> t-L)At+(pp+f)Ap (81)

Equation (81) also enables us to compute either one of the coefficients

p t
or p p from a knowledge of the other when the expansivity and com-

pressibility of the material are given and the actual change of resist-

ance is observed.

VIII. FURTHER QUESTIONS FOR INVESTIGATION

A logical continuation of the present study might proceed along
somewhat the following lines

:

(a) Further practical applications.

(b) Compilation of tables of data for the requisite thermal
coefficients, such as L, E, /i, etc.

(c) Formulation of precedure for computing fx
• • • f i for sys-

tems of variable generalized shape.

(d) Extension to bodies of nonuniform temperature.
(e) Extension to include the effect of large changes in tem-

perature.

(J) Extension to other physical observations besides properties

of bodies.
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