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Instability of Simply Supported Square Plate With

Reinforced Circular Hole in Edge Compression

By Samuel Levy, Ruth M. Woolley, and Wilhelmina D. Kroll

A method is presented for computing the compressive buckling load of a simply supported

elastic rectangular plate having a central circular hole reinforced by a circular doubler

plate.
one-half of the plate length.

Numerical results are presented for six square plates having hole diameters up to

Comparison of these results with those computed for plates

without holes shows that an unreinforced circular hole causes a relatively small reduction in

buckling load, and reinforcement of a circular hole by a doubler plate causes a substantial

increase in buckling load.

I. Introduction

The stressed skin cover of airplane wings and
fuselages has to be perforated by holes at a number
of places to give access to the interior of the wing
or fuselage. These holes must be reinforced to
prevent weakening of the entire structure by the
hole.

An ideal reinforcement would be one that
confines the disturbance in the stress flow to the
immediate neighborhood of the hole and which, at
the same time, adds minimum weight to the
structure.

Too little is known about reinforcements to
approximate this ideal in practice. In the
absence of a rational design procedure, it has been
customary to reinforce holes by circular doubler
plates riveted to one side of the sheet, thereby
increasing the effective thickness and rigidity of
the sheet at the edge of the hole.

The Bureau of Aeronautics, Navy Department,
initiated a study of reinforcements around holes
at the National Bureau of Standards to provide a
better understanding of reimforcements and to
indicate practical improvements i their design.
The first phase of this investigation was a plane
stress analysis of a doubler plate reinforcement
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around a circular hole in an infinite sheet under
uniform compression in one direction or under
shear.

The second phase of this investigation consisted
of a check of the theoretical analysis by tests on
plates having reinforced circular holes. It was
found that the analysis gave an adequate desecrip-
tion of the stresses and displacements provided
that the doubler plate was fastened to the sheet
by at least two concentric rows of rivets.

The third phase of this investigation is described
in this paper. An analysis is given for the stabiliz-
ing effect of the doubler plate for square plates
with central circular holes when the plates are
subjected to edge compression in one direction.

II. Method of Analysis

An energy method for determining the buckling
load of rectangular plates of constant thickness
under compressive loads is presented by Timo-
shenko.! A review of this derivation shows that
the method is also applicable to plates of variable
thickness. In this case, Timoshenko’s integrals
I, and 1, are

1 8. Timoshenko, Theory of elastic stability pp. 307 to 326 (McGraw-Hill
Book Co., New York, N. Y., 1936)
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where
h=plate thickness (function of z and ).
x, y=rectangular coordinates with origin at
center of plate and z-axis in direction
of load.
w=lateral deflection of plate.
D=FR¥/12(1—u?), flexural rigidity of plate
(function of z and 7).
w=0.3, Poisson’s ratio.
o,—tensile stress in z direction.
o,—tensile stress in y direction.
7 —shear stress. .
S=tensile stress in z direction far from hole.

The stress ratios o,/S, ¢,/S, and 7,,/S just prior
to buckling may be obtained as shown by Gur-
ney.? The stresses o, g5, and 7, referred to
polar coordinates 7, 6 are given, with some change
in notation, as

= {F+KRZ/r — (A+3CR*/r*+2DR?/r?) cos 26}
a=S{F KRZ/7'2+(A+bBr2/R’+SCR4/r4) cos 26}
9=8{ (44 3Br*/R*— 3CR*/r*— DR?/r?) sin 26}

2)
where

r, 0=polar coordinates with origin at center of
hole,
f#=angle between radius » to point and direc-
tion of load,
R=radius of hole.

F, K, A, B, U, D=coeflicients with different
values in sheet and in
doubler plate.

The values of I, K, A, B, C, and D may be deter-
mined from the dimensions for a particular
doubler plate by using figure 1. The coefficients
from “1”” region, figure 1, are used in eq 2 when
computing the stresses in the unreinforced sheet;
the coefficients from ‘2’ region are correspond-

2 G. Gurney, Brit. Rep. Memo. No. 1834 (Feb. 1938).
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ingly used when computing stresses in the rein-
forced sheet. The abscissa in figure 1, (7/t-1)
(b*/a*-1), is the ratio of the volume of material in
the reinforcement to the volume of material
removed from the sheet to make the hole.

The stresses in rectangular coordinates may be
computed from the stresses in polar coordinates
as given in eq 2 by using the conversion formulas:

0,= 0, c0S%*0+ oy sinQB—r,e sin 26
o,= a, SIn*0+ gy cOs*0+ 7,4 Sin 26

o (3)
ey —< > sin 20+ 7,5 cos 26.

The lateral deflection w of a simply supported
rectangular plate of length @ and width b will be
approximated by the first terms in the trigono-
metric series

“ cos i@/ *F

W=, cos 0 COS b -{—(1]3 cos

37 m 3 J” r31r1
s COS —q ©0S 7)J—|—a33 cos — = ‘/

+ .. @

Substitution of eq 4 in eq 1 and integration
(see mnext section for method of numerical in-
tegration) reduces integrals I; and /I, to quadratic
expressions in the coefficients ayy, @3
The critical value of S at which buckling of the
plate occurs is obtained from these expressions,
according to Timoshenko, as that value of S
which reduces to zero the determinant of the
coefficients of @, a3, ete. in the set of simultaneous
equations,

ol SOL

W’11 day, =0
oI, oL (5)

The sign before S in eq 5 is plus, and that before y
in the corresponding eq 212 given by Timoshenko ?
is minus. Where § is considered positive for
tensile stress, as is done in this report, the signs in
eq 5 are correct.

3 8. Timoshenko, Theory of elastic stability (McGraw-Hill Book Co.,
New York, N. Y., 1936).
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Ficure 1.—Values of coefficients F, K, A, B, C, and D lo be used in eq 2 for computing the stress distribution in the
sheet and reinforcement.
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III. Numerical Integration

The evaluation of the integrals in eq 1 over the
surface of the plate is made difficult by having a
circular inner and a rectangular outer boundary
and by involving a stress that is a complicated
function when expressed in rectangular coordi-
nates.

The integral 7,, eq 1, was evaluated as the
resultant of three integrations:

11:11a+11b_110 (6)

where

I,,=The integral I, for the surface enclosed
by the outer rectangular boundary of the
plate taking D=2D,, the value of D in
the unreinforced portion of the plate.

I,,=The integral I, for the surface enclosed
by the outer circular boundary of the
reinforcement taking D=D,—D,, where
D, is the value of D in the reinforcement.

I,,=The integral 7, for the surface enclosed

by the circular boundary of the hole
taking D=D.

The double integration necessary to evaluate 7,
could in every case be done directly. However,
this was not possible in evaluating 7;, and I;..
The integrals 7,, and I;, were obtained by integrat-
ing directly in respect to one variable and using
Gauss’ method of numerical integration,* for in-
tegration with respect to the other variable. In
each case where numerical integration was used to
evaluate 7;, the number of Gauss points was in-
creased to the place where the addition of another
point caused less than 1 percent change in the
integral. In general, five Gauss points were
enough for this purpose.

The integral I, was evaluated by considering
the surface of the plate in three portions. The
first portion, A, figure 2, was taken as the circular
disk of the reinforced area; the second portion,
B, figure 2, was taken as the circular disk between
the outer edge of the reinforcement and the largest
inscribed circle in the plate; and the third portion,
O, figure 2, was taken as the remainder of the
plate. The integral for each circular portion was
determined, using Gauss’ method of numerical
integration, by first integrating numerically in a

¢ E. T. Whittaker and G. Robinson, Calculus of observations, p. 159
(Blackie and Son, Ltd., London, 1944).
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Frcure 2.—Subdivision of plate into three portions A, B, C,
in evaluating I».

circumferential direction and then integrating
numerically in a radial direction. The integral
for the remainer of the plate was obtained also by
using Gauss’ method, first integrating numerically
in the direction of the load and then at right angles
to the direction of the load. Only one quadrant
of the plate had to be considered because of sym-
metry. In each case, a sufficient number of
Gauss points was used to reduce the estimated
error to less than 1 percent. Twenty-three points
in ‘each quadrant were used for cases 1, 3, 4, and
5, table 1, thirty-three points for case 2, and
twenty-eight points for case 6.

TaBLE 1.—Dimensions for plates investigated

Width Thickness
gk Erifeetly Outer
G Radius of | radius of
o8] Direc- Trans- hole, R | reinforce- | Rein- | Unrein-
tion of | verse to ment forced | forced
load load region | region
1 a a 0.125a O] ® h
2 a a . 06250 O] (8) h
8 a a . 25a (O] O] h
4 a a . 125a 0. 25a 2.0k h
5 a a .125a . 25a 1. 5k h
6 a a . 125a . 1875a 3.4k h

1 Hole in plate not reinforced.

A typical distribution of Gauss points for
computing 7, is shown in figure 3 for one quadrant
of a square plate with a central hole. For this
distribution, the integral of a function F over the
plate surface is
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Fi1Gure 3.— Distribution of Gauss points for computing I, in case
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fdeA:a2[O.075316Fl—|—0.068366F2+
surface
0.068366F5+0.041605F,+

0.084048F5-+0.099898 ;-
0.084048F;+0.041605F;-+
0.028176F,+-0.056919F,+
0.067653F,,40.056919F,+
0.028176F3+0.010401 F},+
0.021012F,;40.024975F 5+
0.021012F;+0.010401 F\+
0.007044F,,+0.014230Fy,+
0.016913F,,4-0.014230Fy,+
0.007044 F5;] (7)

where F;, F, ... Fy are the values of the
function F' at the positions indicated in figure 3.

An approximate check on the over-all adequacy
of the numerical integration methods used was
obtained by determining the buckling load of a
square plate with no hole both by the exact
method,” and by numerical integration with 23
points for [I,. The results differed by only
0.7 percent. In the case of a plate with a rein-
forced hole, it is likley that the more complicated
stress distribution and the greater prominence
of higher order terms in the series used for the
deflection causes the error to be somewhat higher.

IV. Convergence of Deflection Function

The correct value of S for buckling of the plate
would be that value of S which reduces the deter-
minant of the coefficients of a;;, a3, . . . in the
infinite set of eq 5 to zero. In order to limit the
work of computing Sto a finite amount, preliminary
computations were made to see which terms in
the deflection function, eq 4, were most important
in determining the value of S for buckling. These
computations were made for the square plate of
case 4, table 1. The compressive stress (—S8) was
10.33 Eh*/a® using only the ﬁrst term of eq 4,

w=a COS COS Ty
11 a b

Using only terms 1 and 2 of eq 4,

L 3my.
W=0ay; cos - cos —I—am COS — COS —=
b a b

(—S) was 9.43 hh‘,’az, a decrease of 8.6 percent.
Using only terms 1 and 3,

§ 8. Timoshenko, Theory of elastic stability, p. 331 (McGraw-Hill Book Co.,
New York, N. Y., 1936).
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w=a (osf cos +a cos3 cosﬂ'y
= Wil a b 31 a b

(—S) was 8.80 Eh’/a*, a decrease of 14.7 percent.
Using only terms 1 and 4,

T Y BY 2 37ry
W=dy; COS — COS -3 T (@33 COS —— COS
11 a b + 33 a b

(—S) was 10.32 Eh?*/a®, a decrease of 0.1 percent.
Had additional terms of the triconometric series
been used with term 1, the decrease in the buckling
stress would probably have been proportionately
smaller. It is believed, on this basis, that the
first three terms of eq 4 approximated the lateral
deflection of the square plates with simply sup-
ported edges with sufficient accuracy to give the
buckling stresses within 5 percent. Accordingly,
only the terms

T 3T
W=y COS - " €OS b +a13 cos L cos y+
g1 COS s COS
31 a b

were used in the remaining computations for
square plates.

V. Results

The compressive buckling load was computed
for six square plates with reinforced and unre-
inforced holes, figure 4. The dimensions for the
plates are given in table 1.

The analysis gave the compressive buckling
stress (—8) far from the hole corresponding to
the stress distribution derived in reference [2].
Values of (—S8) are given in table 2. The com-
pressive stress (—3S) is somewhat larger than the
average stress in the direction of the load along
the edge of the plate. A better value of the
average buckling stress o, along the edge of the
plate was obtained from

UC,:¥ (8)

where ¢, is the average compressive stress on the
loaded edge of the plate and o, the average com-
pressive stress on the center cross section, obtained
by dividing the load on that section by ak. The
value of ¢; was obtained by numerical integration
and the value of s by direct integration of the
stresses o, given by eq 3. Values of (—38), ¢y, o,
and o, are given in table 2. The average stresses
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Fiaure 4.—Loading of square plates with simply supported
edges.

Dimensions in table 1.

o, and o, differed from each other by less than 3
percent, indicating that the equilibrium condition
is substantially satisfied.

TaBLE 2.—Critical compressive stress for plates tnvestigated

Average stress | A veragestress ;
Stress (-S) o1at a3 correspond- | Buckling stress,
Case | tor'from hole e a q| ing to load at | ocr, average of
T=g9— s <y<p| =0 divided a1 and o
LR % by ah
1 3.611 Eh?/a? 3.454 Eh?/a? 3.490 Eh?/a® 3.472 Eh?/a®
2 3.620 Eh?a? 3.578 Eh?/a? 3.591 Eh?/a? 3.584 Eh?[a®
3 3.750 Eha? | 3.076 Eh¥/a? | 3.164 Eh%a2 | 3.120 Eh%/a?
4 8.021 Eh?/a? 7.984 Eh%/a? | 8.069 Eh2/a2 | 8.027 Eh%/a?
5 5.700 Eh2/a2 | 5.578 Eh%a? | 5.646 Eh%a? | 5.612 Eh?/a?
6 7.945 Eh?/a® | 7.881 Eh%a* | 7.984 Eh%/a? | 7.932 Eh?/a?

The buckling stress of a simply supported
square plate of constant thickness without a hole
is given on p. 331 of reference [3] (taking Poisson’s
ratio as 0.3) as

0o=3.615 Eh*/a>. 9)
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Comparison of this value with the values computed
for cases 1 to 3 of table 2 shows that unreinforced
central holes, having a diameter of %, } and % of
the length of a side of a square plate, reduce its
buckling load by only 1, 4, and 14 percent,
respectively. Comparison of the value in eq 9
with the values for cases 4 to 6 of table 2 shows
that the reinforcements inereased the buckling
stress over that for the plate without a hole by 55
to 122 percent.

The effect of the shape of the reinforcement on
the buckling load is indicated by comparing cases
4 and 6, table 2.  For these cases, the hole size and
volume of reinforcing material are identical but
the reinforcing material is concentrated nearer the
edge of the hole in case 6 (see fig. 4). The com-
puted buckling stresses are the same within 1.2
percent,

VI. Conclusions

A numerical procedure was developed for
estimating the buckling stress of simply supported
rectangular plates with circular holes and doubler
plate reinforcement. The procedure provides a
convenient method for solving the integrals for
the energy stored in the plate.

The computations showed that the buckling
stress of square plates is reduced only a small
amount by the presence of unreinforced holes. For
the cases considered, the greatest reduction, 14
percent, corresponded to case 3, asquare platewith
a hole diameter 0.5 times the length of the plate.

Reinforcements of the doubler-plate type are
shown by the computations to cause marked
inereases in the buckling stress. For case 4 with
reinforcement, the computed buckling stress was
2.3 times that for case 1 with no reinforcement.

The buckling stress seems to be insensitive to
change in shape of reinforcements of given
volume. The computed buckling stresses were
the same within 1.2 percent for cases 4 and 6,
which differed in having doubler plates of different
thickness and radius, but of the same volume.

The authors thank the Bureau of Aeronauties,
Navy Department, for their cooperation in
carrying out this investigation and for permission
to publish the results.

WasHINGTON, August 19, 1947,
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