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Breaking strength, weight, and circumference are three important qualities that are

determined when fiber ropes are submitted for test.

These properties are all subject to some variation because of differences in fiber quality

method of fabrication, and previous treatment.

The results of tests on more than 800

samples of 3-strand manila ropes ranging in size from %{5 in. to 3 in. in diameter are tabulated

and analyzed by the methods of modern mathematical statistics.

Jonsiderable emphasis is

blaced on the rationale and details of the methods of analysis, as they are considered to be
I VSIS, N

applicable to a broad variety of similar projects.

I. Introduction

Strength, weight, and size are usually deter-
mined for samples of fiber rope submitted to the
Bureau for acceptance tests. These properties
have been found to be subject to some variation
in manila rope by Stang and Strickenberg [1].!
This variation would appear to be caused by differ-
ences in fiber quality and in the mode of fabrica-
tion of the rope.

In many applications of fiber rope where even
small economies in weight are important, i. e., in
use of ropes on cargo airplanes, a knowledge of
the probable strength of a set of ropes can result
in an increase of the pay load. For other applica-
tions where ropes pass over sheaves and through
eyes, the probable range of size is an important
design consideration.

The manila ropes discussed in this paper were
submitted for test by a Government agency from
1938 to 1941. They represent material supplied
by rope works and rope contractors in the 3 years
just prior to the loss of sources of manila fiber in
World War II. This accounts for the heteroge-
neous sizes of the samples available for the various
nominal diameters, as the smaller sizes and the
integral multiples of % in. in diameter are ordered
more frequently than other sizes. Although some

1 Figures in brackets indicate the literature references at the end of this
paper.
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data were available for 4-strand manila rope,
they were not of sufficient quantity to allow statis-
tical treatment and consequently are not dis-
cussed here. In general, the requirements for
4-strand rope in the Federal Specification [2] will
yield a basis for comparison with the 3-strand
ropes treated in this paper.

The methods of test described are those found
in the Federal Specification for manila rope [2],
but the data are applicable to many situations
where the conditions may be somewhat different.
Whittemore [3] found that the speed of the moving
head of the testing machine between 1 and 4 in./
min had little effect on the observed strength of
the rope. It has also been noted [4] that measure-
ments of circumference with increasing loads on
the specimen yielded decreasing changes in cir-
cumference for equal increments of load up to
loads equal in pounds to 300 times the diameter
in inches squared.

II. Methods of Test

1. Circumference and Weight

Both weight and circumference of manila ropes
were determined on an unspliced sample that had
been conditioned in an atmosphere of 6542 per-
cent relative humidity and 70°+2° F for at least
72 hours preceding the test. The samples were
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long enough to provide the minimum free length
specified in table 1.

TaBLE 12.—Length of weight—circumference specimens

| |
| . P, Minimum

| Circumference free length !

- |

|

In. Ft. ’

Below3 ... _______ 10 ’

3 G016 C1SNASNEE 5 ‘

= Values from Table III of Federal Specification for Rope, Manila.

The rope was placed in a horizontal testing
machine and a tensile load =200 D? 1b (where
D is the nominal diameter of the rope in inches)
was applied. A single fiber was passed snugly
around the rope, near the middle of the sample,
and cut where it overlapped. The cut length of
fiber was measured and the circumference recorded
to the nearest ¥ in.

With the load, P, still applied to the rope, a
length as specified in table 1 was marked off on
the free length, and the load was then removed.
The marked length was cut from the sample and
weighed, and the weight in pounds per foot was
computed.

2. Breaking Strength

A breaking strength sample had an eye splice
at each end and measured from 5 to 6 ft between
the inner ends of the splices. The samples were
conditioned in the same fashion as the circum-
ference-weight samples. The ropes were then
removed from the conditioning room and the
splices were immersed in water for 15 minutes in
order to minimize the possibility of a failure in
the splice.

Ropes with breaking strengths over 2,000 Ib
were loaded to failure in a horizontal hydraulic
testing machine, and all others were tested using
a horizontal, pendulum, screw testing machine.
The ropes were loaded by means of 3-in. diameter
steel pins passed through the eyes at each end
of the sample. The speed of the moving head
of the testing machine was 3 in./min during the
tests. The tensile load was increased, until at
the maximum load the rope failed in one or more
strands.
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ITII. Methods of Statistical Analysis

Four fundamental relationships were studied:
(1) Circumference as a function of nominal diam-
eter, (2) weight as a function of nominal diameter,
(3) strength as a function of nominal diameter,
and (4) strength as a function of weight. The
first three are useful in preparing specifications
and predicting the characteristics of individual
ropes purchased under a contract or order. It
was therefore considered desirable in these cases
to furnish careful predictions of the dispersions
eneountered in practice, as well as of the mean
values, so that realistic tolerances for individual

* ropes can be set up. The fourth relationship is

important as a measure of innate characteristics
of the material. Central tendency, rather than
the dispersion, seemed to be of paramount interest
in this case.

Observations on 863 ropes were available for
this study. With truly random sampling and a
clearly defined and homogenous universe or popu-
lation, such a large sample, if properly handled,
should provide close estimates of the underlying
frequency distributions and relationships of the
variables. In such ecircumstances the use of
empirical equations containing, if necessary, sev-
eral parameters would be justified. In the present
instance, no direct control could be exercised
over the sampling, and the universe, which pre-
sumably consists of the entire National output
of manila rope of the relevant nominal sizes during
the period from 1938 to 1941, was far from
homogeneous. The data, as might be expected,
contained certain anomalies that are more or less
directly attributable to the composite nature of
this universe, or to the nonrandom sampling.

In spite of these shortcomings, the observations
appeared to exhibit a suflicient amount of internal
consistency to warrant the use of mathematical
methods, provided that the description of the
underlying causal situation attempted thereby
should not be too elaborate.

The mean values of the dependent variable were
represented in each case by a curve of the general
form

Y=kX?, (1)
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where Y designates the (arithmetic) mean value of
the dependent variable and X the independent
variable. The parameters £ and b were adjusted
to the data, except in the case of the circumference-
diameter relationship, where b was arbitrarily
taken as unity.

The curves were fitted by the following general
process: All data were first transformed to loga-
rithms (to the base ten), and then a regression
equation of the form

log Y=a-+b log X, (2)

was fitted by the standard unweighted least
squares method to the logarithmic data. At the
same time the standard error of estimate s (that is,
the root-mean-square deviation of the data about
the regression line) was also determined. The
resulting equation (2) yielded an optimum esti-
mate of the mean log 1 for each log X, provided
that it can be assumed that the true relation
between mean log Y and log X is exactly linear
and that the standard deviation of the variable log
Y for a given log X is a constant independent of
X. As the antilog of the mean of a set of loga-
rithms of Y is not the arithmetic mean of Y itself,?
it was necessary to add a correction of some sort
to (2) in transforming back to the form (1). The
correction chosen 1in this case was 1.15129s%
which is based on the further assumption that log
Y is normally distributed for each value of log X
(see [5], pp. 120—121). Thus in terms of the nota-
tion used in connection with (2), formula (1)
becomes

Y =10 at1.1512952 X'b_ (3)

The calculations involved in the curve-fitting
process were carried out almost entirely on
punched-card machinery at the Computation
Laboratory of the Bureau. The logarithmic
transformation was accomplished automatically
by the use of master logarithm cards in conjunc-
tion with a collater that simultaneously punched
both the logarithms and their squares onto the
data cards. Cross products and cumulative sums
were then obtained in the standard way on multi-
plying punches and tabulators.

A few general remarks on the underlying
rationale of this method of curve fitting and the

¢t is the geometric mean of Y, however,
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choice of the type of curve are in order, as the
situation about to be described is typical of that
frequently encountered in tests of materials.
The most elementary physical theory of the data
would suggest that mean observed circumference
should be directly proportional to the nominal
diameter (which is actually defined to be onec-
third of the nominal circumference), and that
observed weight and strength should then be
directly proportional to the square of the observed
circumference. This would ordinarily imply that
the mean values of circumference, weight, and
strength, as functions of nominal diameter, could
be most appropriately estimated by fitting linear
trends by the classical least squares method to
the observed values, respectively, of circumfer-
ence, the square root of weight, and the square
root of strength.

Unfortunately, as is so often the case, the data
for all of these variables reveal an unmistakable
tendency for the dispersion of the readings
(measured, say, by their standard deviation) to
increase with their mean. This would necessitate
the use of a weighted least squares solution. The
simple unweighted least squares solution would
give an inefficient estimate of the mean and would
not yield any over-all estimates at all for the
variances within nominal diameter groups. But
the difficulty of determining a posteriori the
proper individual weights to use in such cases has
led in recent years to the widespread use of trans-
formations of the scale, such as the logarithmic
transformation here used, to effect, at least
theoretically, a stabilization of variance over the
whole range of values of the mean. Such trans-
formations under certain circumstances have the
additional property of rendering the distribution
of the transformed variable more nearly normal
or Gaussian.

In the present case, as far as could be deter-
mined from the data, the standard deviation of the
observed circumference seemed to be roughly a
linear function of the mean. The transformation
ordinarily employed in that event is a logarithmic
transformation [5]. Preliminary exploration re-
vealed that this transformation indeed seemed to
stabilize the variance of the circumference meas-
urements. It also seemed to stabilize the variance
of the weight and strength measurements. This
would follow mathematically if the transforma-
tion really did stabilize the circumference variance

553



and if mean weight and strength really were
directly proportional to some power of the circum-
ference. Thus additional evidence was furnished
thereby as to the correctness of the choice of the
logarithmic transformation for the circumference
data.

As for the choice of the curve, it 1s natural to
choose a type that contains as few parameters as
possible and that can easily be handled in conjunc-
tion with the logarithm transformation. Stang
and Stickenberg [1] chose to use a one-parameter
curve of the form

Y=k X (X+1)=k X*+-Fk X,

to represent the strength-diameter relationship.
Although this equation is readily adaptable to the
logarithmic least squares approach (it seems to
have been fitted empirically in [1]), nevertheless
the first degree term is not easy to explain in terms
of the physical theory. KExponential equations
of the type (1), on the other hand, not only can be
conveniently handled after a logarithmic trans-
formation, but also accord very well with a slight
extension of the simplest physical theory of the
tests. They imply that weights and strengths of
a series of ropes of different sizes whose successive
nominal diameters are in a constant ratio will
themselves be in a constant ratio.

As a check on the adequacy of (1), three-pa-
rameter curves of the type

Y=0+C X+C; X2,

were actually fitted to the weight-diameter rela-
tions, and in spite of the additional parameter,
the results obtained were approximately equivalent
to those obtained with (1).

IV. Results and Discussion

The various equations for mean values, obtained
as described in section 111, together with the cor-
responding values of the regression constants a, b,
and s associated with eq 2 of section III are all
given in table 2.

In interpreting the equations, it should be under-
stood that they give the estimated mean values of
the dependent variable for each fixed, predeter-
mined value of the independent variable. Thus
the last equation, which gives the estimated mean
of S as a function of W, cannot be obtained by
merely eliminating ) between the second and
third equations, because the distribution of values
of S corresponding to a fixed D, say D=D, and
the distribution of values of S corresponding to a
fixed W, are not in general quite the same, even
if the fixed W was determined by setting D= D),
in the second equation. (Actually the two
methods of deriving the fourth equation in table 2
happen to agree to two significant figures in the
exponent and three in the constant factor, owing
to the relatively small scatter of the data about
the various curves.)

The standard errors s, and s, of @ and b are also
presented in table 2. It will be noted that these
standard errors turn out to be exceedingly small.
This is partly due to the large number of items
entering into the sample, and partly due to the
relatively small size of s in each case. Statistical
theory would state that if the sampling had been
truly random and if curves of the type used ex-
actly described the mean relationships in the
sampled universe, then ranges of a-+3s, and
b+3s, would, with high probability, contain the
corresponding ““true’”” values of @ and b; that is,
the values for the universe. Due mainly to the

TABLE 2.—Regression equations and statistics of distributions of circumferences, weights, and strengths of 3-strand manila rope

Dependent variable Independent variable Regression statistics &
I Equation of means
Meaning bggll' Unit l Meaning 5?)211 Unit a b ' s ' S 1 Sy

- |

Circumference_____ C | 1/16in_____ Nominal diameter.___.| D | 1/16in__ | C=3.119D_____________ 0. 49353 (b) 0.02026 | 0.00069 |________

Weight_._____ W | bt _| Nominal diameter.___| D 116 in_.___| W=0.001447 D1.*527__ __|—2. 84023 1.88268 | . 02541 . 0038 0. 0033

Strength S Ib___ Nominal diameter.__.| D 1/16in_._._| S=70.481 D1.&2&10_______ 1. 845979 1.828193 | . 042619 | .0064 . 0055

Strength_____ S b.__. _| Weight_______________ W | Ib/ft. .. S=40278 Wo.seses _____ 4. 602511 0.968940 | . 047059 | .0028 . 0032
|

= For explanation of a, b, and s, see discussion of eq. 2in sec. III, The symbols s, and s, denote the standard errors of @ and b, computed under the assump-
tion that for each value of D, the data constitute a random sample from a universe of such data. (See sec. IV.)

b Not adiusted to data.
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fact that the method of sampling was not rigor-
ously random, such a statistical interpretation of
s, and s, is apparently unwarranted. It is be-
lieved, however, that these standard errors afford
ample basis for the following important general
statements about the coefficients and exponents in
the equations in table 2:

(1) In the case of the circumference-diameter
relationship, the coefficient of D is significantly
larger than 3, which is the value suggested by the
definition of nominal diameter.

(2) In the weight-diameter and strength-diam-
eter relationships, the exponent of ) is signifi-
cantly less than the value 2 suggested by the
simplest physical theory.

(3) In the strength-weight relationship, the
exponent of Wis significantly different from unity.

If “true” values of @ and b may be postulated,
then it follows that there exists a “true’” value of
the ordinate of the equation of the mean for each
given value of the independent variable. Investi-
gation of the appropriate standard errors reveals
that theoretically with high probability the mean
values of (', W, and § do not deviate from the
corresponding “true’” values by more than 2 pei-
cent in the case of (" and W, and 4 percent in the
case of S.  But this statement must be interpreted
with much caution, not only because of the non-
randomness of the sampling, but also because even
if the curves had been fitted in some analogous
manner to the universe instead of to the sample,
it 1s possible that deviations of this order from
the actual true means of the universe might be
observed, because of the fact that the simple type
of curve chosen for fitting may not accurately
describe the real functional relation between the
true means and the independent variables.

The preceding discussion of standard errors may
be summarized by stating that from the viewpoint
of theoretical statistical analysis, the curves have
been fitted with a considerable amount of preci-
sion; but in default of exact knowledge as to the
mechanism of the sampling method, the real
accuracy of the curves as a description of the
rational manila rope technological situation during
the data period must be taken largely on faith.

The information in table 2 has been tabulated
numerically in table 3, and represented graphically
in figures 1, 2, 3, and 4. The “Estimates of
Mean” columns in table 3 and the central curves
in all of the graphs were obtained by straightfor-
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ward substitution into the equations in table 2.
The small ecircles that appear on the graphs
represent the means of the observations for the
respective indicated values of the independent
rariable.

The information as to dispersion of individual
observations about the curve of means is presented
in table 2 in the form of the standard error of
estimate s. For convenience in the applications,
this dispersion information is presented in table 3
in terms of tolerance limits obtained in the follow-
ing manner:

Reverting to the notation of equation 2 of
section 11, if it be assumed that the value of log
Y given by eq 2 is the true mean of values of log
Y for each value of .Y, and s is the true standard
deviation, then the interval [log Y —ts, log Y -+ts]
will bracket a fixed proportion p (¢) of the under-
lying distribution, the proportion being dependent
only on the value of . (The trivially small size
of all standard errors involved in the present case
makes these assumptions entirely tenable from the
theoretical point of view.) In the present case,
the value of t was so chosen that if the distribution
of individual value of log ¥ were normal or Gaus-
sian, the value of p (f) would be 0.95.  Specifically,
this value of ¢ to 6 decimal places 1s 1.959964.
Thus the formulas for the tolerance limits appear-
ing in table 3 were:

Lower tolerance limit=1(0~1-29994s }”
Upper tolerance limit=10!-959964 }”

In tabulating the numerical value of the toler-
ance limits given by these formulas, the general
practice was to round off to the number of signif-
icant figures appearing in the raw data. However,
a number of exceptions were made, chiefly in the
direction of retaining one extra significant figure,
to conform with the conventions of tabulation.
Ambiguous cases were always rounded outwards.

The tolerance limits are plotted on the graphs
as the outer curves. It should be emphasized
that these outer curves pertain to individual measure-
ments, and not to means, such as those represented
by the circles on the graphs

In general, the analytic representation of the
863 observations is remarkably faithful, as can be
seen from a glance at the figures. (In interpreting
deviations of the circles from the central line, the
varying number of observations represented by
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Fraure 1.—Circumference as a function of nominal diameter

The central curve is that of the first equation in table 2.
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Ficure 2.—Weight as a function of nominal diameter

The central curve is that of the second equation in table 2.
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The central curve is that of the third equation in table 2,
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FicUure 4.—Breaking strength as a function of weight.

The curve is that of the fourth equation in table 2,
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TaBLE 3.—Circumference, weight, and strength of 3-strand manila rope

Circumference Weight Strength
Nominal diameter | Num- : MR oo Nomi iam
o ber of IE;%' Ttgie{x{:g?sigfﬂlts Estimate Tiglre{ggfgig:f;fs Estimate | Tolerance limits for ot i
tré)slt):(sl Alaatin ropes of mean ropes of mean individual ropes
in e in e in. 1. in. 1b/ft 1b/it b b in. e in.
e 3 6 9.4 a9 al) [20.0114 |=0.010 |=0.013 525 430 630 31s 3
4 4 47 12.5 11 14 . 0197 .017 . 022 889 730 1,070 Y 4
He 5 21 15.6 14 ik . 0300 .027 . 034 1,336 1, 100 1,610 e 5
3% 6 60 18.7 17 21 . 0422 038 . 047 1,865 1, 530 2, 250 38 6
Ze G 3 21.8 20 24 . 0564 . 050 . 063 2,472 2, 030 2, 980 76 7
el 8 106 25.0 23 27 .0726 . 065 . 081 3,156 2, 590 3, 810 1% 8
96 9 5 28.1 26 31 . 0906 . 081 . 101 3,914 3, 210 4,720 %6 9
% 10 19 31.2 28 34 . 1104 . 098 . 124 4,745 3, 900 5,720 3% 10
114g 11 18 34.3 31 38 . 1322 .118 . 148 5, 648 4, 640 6, 810 1l4e 11
34 12 106 37.4 34 41 L1557 .139 . 174 6, 622 5, 440 7,990 34 12
1346 13 8 40.5 37 44 . 1810 .161 . 203 7, 666 6, 290 9, 250 1316 13
7% ¢ R 43.7 40 48 . 2081 L185 .233 8,778 7,210 10, 590 7% 14
1346 15 5 46.8 43 51 . 2370 .211 . 265 9, 958 8, 180 12,010 1346 15
1 ; 16 104 49.9 45 55 . 2676 .238 . 300 11,210 9, 200 13, 520 1 16
1l1e 17 4 53.0 48 58 . 3000 . 267 . 336 12, 520 10, 280 15, 100 14 17
11 18 8 56. 1 51 61 . 3340 . 297 . 374 13,900 11,410 16, 770 118 18
1346 19 1 59.3 54 65 . 3698 .329 .414 15,340 12, 600 18, 500 1346 19
14 20 112 62. 4 57 68 4073 . 363 . 456 16, 850 13, 830 20, 330 14 20
1546 21 7 65.5 60 72 . 4465 . 397 . 500 18,420 15, 120 22, 220 1516 21
134 22 s 68. 6 62 75 . 4874 .434 . 546 20, 060 16, 470 24, 200 13§ 22
176 28 | i 7.7 65 79 . 5299 472 . 593 21, 760 17, 870 26, 250 1% 23
1% 24 110 74.9 68 82 L5741 .511 . 643 23, 520 19, 310 28, 370 114 24
1946 71 I N 78.0 71 85 . 6200 . 552 . 694 25, 340 20, 810 30, 570 1946 25
13§ 26 10 811 74 89 . 6675 . 594 . 747 27, 220 22, 350 32,840 13§ 26
114¢ 27 | ——_i. 84.2 77 92 . 7167 . 638 . 802 29,170 23, 950 35,190 11Ye 27
134 28 9 87.3 80 96 L7675 . 683 . 859 31,170 25, 590 37, 600 134 28
1134 29 13 90. 4 82 99 . 8193 .729 917 33, 240 27, 290 40, 100 1134e 29
178 30 [ .- 93.6 85 103 . 8739 778 978 35, 360 29, 030 42, 650 178 30
11346 31 | .- 96.7 88 106 . 9295 . 827 1. 041 37, 550 30, 830 45, 300 1134¢ 31
2 32 50 99.8 91 109 . 9868 .878 1. 105 39, 790 32,670 48, 000 2 32
21¢ 33 | oo 102.9 94 113 1. 0456 .931 1.171 42,090 34, 560 50, 770 2l4¢ 33
214 34 1 106.0 97 116 1. 1061 . 985 1.238 44,450 36, 500 53, 620 21% 34
2316 7 TP N 109. 2 99 120 1. 1682 1. 040 1. 308 46, 870 38, 480 56, 540 236 35
2% 36 13 112.3 102 123 1. 2318 1.097 1.379 49, 350 40, 520 59, 530 214 36
2546 i 115. 4 105 126 1.2970 1.154 1.452 51, 890 42, 600 62, 590 2546 37
23§ >t i Fgoded S 118.5 108 130 1. 3669 1.217 1. 530 54, 480 44, 730 65, 720 23§ 38
2% KT Bl 121.6 111 133 1.4321 1.275 1. 603 57,130 46,910 68, 920 2%¢ 39
2% 40 1 124.8 114 137 1. 5020 1.337 1.682 59, 830 49,120 72,170 214 40
2% (W e v S 127.9 117 140 1. 5735 1.401 1.762 62, 600 51,400 75, 510 2%s 41
25 42 4 131.0 119 143 1. 6466 1.466 1.844 65, 420 53,710 78, 920 256 42
211 434 P 134.1 122 147 1.7211 1. 532 1.927 68, 220 56,070 82, 380 214 e 43
234 7 SR Do 137.2 125 150 1.7972 1. 600 2.012 71, 220 58, 480 85, 910 234 44
213{¢ dh e 140.4 128 154 1. 8749 1. 669 2.099 74,210 60, 930 89, 520 2134g 45
274 40 = FRee S 143.5 131 157 1. 9542 1.739 2.188 77,250 63, 430 93, 190 27§ 46
2154 47 v (855 des 146. 6 134 161 2.0349 1.811 2.278 80, 350 65,970 96, 930 2134¢ 47
3 48 ) 149.7 136 164 2.1172 1.885 2.370 83, 500 68, 560 100, 700 3 48

a See table 4.

765484—47——6
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each circle must be taken into account.) The
representation of dispersion is apparently as suc-
cessful as that of the mean values. As a partial
check it might be noted that, for example, 34
observations on S fell outside the tolerance limits
for S given in table 3; this is 4 percent of the total
number of observations on S, a proportion that
compares favorably with the specified theoretical
value of 5 percent. The fact that the number of
observations that were too high was about equal
to the number out on the low side gives added
credence to the validity of the logarithmic trans-
formation. Similar situations obtain in the cases
of Wand C.

The following irregularities in the data should
be explicitly noted:

(1) The observed distributions of €, W, and S
for nominal diameters of % in., 1) in., and 1% in.,
not found in the Federal Specification [2], were
very similar to the corresponding distributions for
the nominal diameters of 1} in., 135 in., and 1'%
in., respectively. In each case, the means and
tolerance limits given in table 2 for the larger
size represented the mean and range of the obser-
vation for the smaller size (as well as for the larger
size) much better than the mean and tolerance
limits given in table 2 for the smaller size. Ap-
parently, rope of the appropriate one of the three
larger sizes is supplied whenever one of the three
smaller sizes is stipulated in a purchase.

(2) The observed values of ), W, and S for a
fixed value of D exhibited some tendency to occur
in clusters having smaller individual dispersion
than that represented by the values of s in table
2 or the tolerance limits in table 3. This phe-
nomenon was undoubtedly due in part to non-
random sampling.

The chief result of misclassification such as
noted in (1) above, and of the clustering noted in
(2), is to increase the values of s (and thus in-
crease the spread of the tolerance limits) over the
values that would have been obtained if such
irregularities had been absent.

(3) In the case of the ¥ in. nominal diameter,
the observed circumference and weights of the six
ropes tested were not properly represented by the
analytical expression. In view of the various
testing, rounding off, sampling, and classification
errors involved in the measurements, it may well
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be that extrapolation from the analytic represen-
tation based on over 800 measurements should
furnish more reliable information than a sample
of six possibly anomolous observations. However,
for completeness, the means and ranges of the
and W observations for D=3%; are given in table 4.

TABLE 4.—Summary of observed circumferences and weights
for ¥ in. 3-strand manila rope

[Based on 6 observations on each variable]

Gireum | weignt
T _ S R | S
[ Ue in. bjft
Arithmeticmean____________________________. ______ l 11.2 0.0142
Minimum_________ . | 10 .013
Maximum____ | 12 .015

Figure 5 exhibits a comparison between the
results on mean strength obtained in the present
paper, and the curve fitted by Stang and Stricken-
berg [1] to the data on strength which they ob-
tained in 1921. An examination of the closeness
of fit of Stang and Strickenberg’s curve and of the
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Ficure 5.—Comparison of present sample with that of
reference 1]

The solid line is the present sample. The broken line is the sample of refer-
ence [1]
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dispersion of their data, indicates that the theo-
retical accuracy of their curve should be roughly
comparable with that of the corresponding curve
in the present paper when due allowance is made
for the fact that their curve is based on only
about one-half as many observations. It follows
that for sizes of 1 in. diameter and greater, the
average breaking strength of rope in 1921 as
represented by Stang and Strickenberg’s curve is
significantly lower than that of the rope discussed
in the present paper.

Properties of Manila Rope
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