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Calculations on Countercurrent Electromigration '
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The mathematical problems presented by the countercurrent electrolysis method for

isotope separation are treated under the simplified assumptions described in the text as

(a), (b), (e), (d), (e), and (f) in section II, 2, of this paper.

in section II, 3, for a tube of finite length.
equations 9e, 9f, ete.
of tubes of infinite length.
described in section I11.

section IV.

I. Introduction

The countercurrent electromigration method
has been found to give isotope separation in the
case of potassium [1, 2]? and chlorine [3]. In
the present report some diffusion problems of this
method are treated mathematically. Formulas
are given for the calculation of the concentration
along the tube.  Some typical numerical examples
are given to illustrate the use of the formulas and
graphs and to show the variation of concentration
with time and distance.

II. Calculations
1. Notation

n,—number of more mobile ions per cubic
centimeter (supposedly light).
ny=number of less mobile ions per cubic
centimeter (supposedly heavy).
w1, pp=mobilities of licht and heavy ions respec-
tively.
D,, D,=eflective diffusion coefficients of light
and heavy ions.
v=velocity of liquid flow (positive when
toward cathode).

1 This paper will appear in volume 6, division III, of the Manhattan Project
Technical Series.

2 Professor of Physics, University of Wisconsin, now, Yale University.
Prof. Breit was on the staff of the National Bureau of Standards in connec-
tion with the initiation of the atomic-energy project when this work was done.

3 Figures in brackets indicate the literature references at the end of this
paper.

Calculations on Electromigration

The solutions are worked out

The formulas are put into numerical form in
Simpler formulas are obtained in section II, 4, in the approximation

Some of the results are presented in the form of graphs that are
The orders of magnitude of effects to be expected are discussed in

Ii=electric field (positive when directed
from anode to cathode).
n;, n,=normal values of n,, n,.
p=common symbol for u, or u, if distin-
guishing between them is immaterial.
D=common symbol for D, or D, if distin-
guishing between them is immaterial.
r=distance along tube measured
anode to cathode.
V=volume of cathode compartment.
A=cross sectional area of tube free to carry
electric current.
Ap= p— pp.
L=length of tube.
t=time counted from beginning of experi-
ment.
L'=V/A=effective length of cathode.

from

2. Simplifying Assumptions and Basic Equations

It is assumed that: (a) The mobilities and the
diffusion coefficients have the same values through-
out the tube. This is not true, but it is felt that
the variation of these quantities may be neglected
for the present preliminary estimates. (b) The
electric field is assumed to be constant along the
tube. This is also not strictly true. As the
electric field could be maintained at a constant
value, this assumption should not matter much.
(¢) The cathode is assumed to be stirred per-
fectly. (d) The concentrations in the anode are
supposed to be maintained at their normal
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values. (e) The solution is supposed to be com-
pletely dissociated. (f) Forces acting on ions due
to space charge effects are neglected.

At a point in the tube having distance, z, from
the anode the flux of light ions is

an,

¢l:(#1E+U) Dz (1)

The first term takes account of the combined
action of the electric field which gives rise to the
migration and of the counter current velocity, »
One has, therefore,

a"’+bx[n,<ma+e> D,a’”] )

9’—“‘ |:n,,(u,,E+v) — b a”":l 0 (2a)

for the equations expressing equilibrium of the
light and heavy ions within the tube. At the
cathode compartment az=—7L. Since the liquid
inside the cathode is stirred one has

V anl bnl

Z'ﬁ:%: (wE+v)n—D (30 L) (2b)
Vo b
o = B+ 0m—Dy 32 o=L) (20)
It is convenient to introduce
alzu,E—l—’U, a'h:,uhE“{‘U (Qd)
Tﬁg‘ £, rp= ]“)’;t (2e)
ay,
512* x, Eh*])'” <2f)
a; ap
=l (2¢)
Vo A 50
Z ﬁl_44L )\ )‘ly Y= L )\Iz (Qh)

This amounts to introducing units that are some-
what more natural for the discussion than the
original units. In terms of the natural units one
has instead of eq 2 and 2a;

%Z?fﬂ_l Onl bn,, oy, D_n,, (3)
a’fz afz a‘fl aTv afh afh
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The conditions for the cathode compartment

become
o e
& o, A ! 0§, A L o7y Ay " o, A\
(3a)

The problem is defined by equations 3, 3a, and the
conditions
nl(ort) :nc;; Ny (O}t) :n; (Sb)

n,(x,o):n‘;, n,,(x,o):nz (30)

which express the fact that at all times the con-
centrations are normal at the anode and also that
at =0 the concentrations are normal throughout
the tube.

Since the equations are of the same form for n,
and 7,, the indices I and &4 may be dropped in
most of the work.

3. Tube of Finite Length

In this section an exact solution for a tube of
finite length is given. The motion of one isotope
only is considered and the formulas are supposed
to be applied by working out separately the con-
centrations of the two isotopes. The indices [, &
are omitted in the discussion of the behaviour of a
single isotope. The equation

Dn bn o'n

is being solved subject to boundary conditions (eq
3a, 3b, and 3c¢).
For 7= one has in addition

n(§ o)=n¢ (4a)

The solution can be constructed by expanding the
initial state in terms of a complete set of functions.
For y=0 the functions are mutually orthogonal
and the method is then well known. For y=0 the
functions are not mutually orthogonal. It is
nevertheless possible to give an explicit usable
solution in this case also.
Equation 4 is first transformed by

n=e’N (4b)
It assumes the form

!N N oN

o (4c)
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The function 7 is expanded as

n(, N=nlet+et” N ap (et (4d)
where v,(§)e %7 are solutions of eq 4c¢ so that
d?v, 1
(8= )n=0. (4¢)

The functions »; are taken so as to satisfy the
boundary conditions

dv ] 1
e G O

The first of these corresponds to eq 3b, the second
to eq 3a. The condition in eq 3¢ is taken care of
by making

?)1‘(0) :O,

2n° sinh -l- >hawi(§)=0 (4g)

All initial conditions are satisfied automatically
as a result of eq 4f and 4g. It remains to deter-
mine the a,.

Combining two previous equations one has

0, (N (N — 8 (N () = (8,— B.) J:vj(s)m(s)dé

Eliminating v/, 2. by means of eq 4f, one has for i
) 7

| v @de+ om0, (5)
In order to expand the funetion

—2n° sinh (¢/2) =f(¢) =Zaw;(¢)

the functions »,(¢) are first normalized to unity:

(5a)

| rwde=1 (5b)
By integration one obtains from eq 5a,
0= 1SN0 N, fi= [ o@f©ds 6o
The abbreviations
:=0;(N), s=Zap;=f(N\) (5d)

sinh 72 slnh

are introduced. In terms of these, eq 5¢ gives

a =132 (5¢)

The boundary conditions in eq 4f and the nor-
malization in eq 5b are satisfied by

_V2/Asinh (rg]2) .

VAN e NS = = —
0o () Vsinh rhrh—1’ —/1—48, r=real number
(6)
where
tanh _ X z (6a)

27 11—
determines 7.

Equation 4c¢ is similar in form to the time de-
pendent wave equation in wave mechanics. Only
real =0 need be considered, therefore. Ac-
cordingly, only real or pure imaginary values of
r are of interest.

For v=0, A >0 eq 6a has in addition to r=o0 at
most one real root for » and this lies in 0<r<_1.
In addition there are pure imaginary roots

(6b)

r=1p,

These satisfy

tan (p 2

7) H—v(l-l-p‘)/’ (6c)

There is an infinite number of roots p, forming a
discrete set.

If the velocity of the liquid is higher than the
migration velocity then X and v have negative

values. From eq 6a one obtains
147147 r)/Z]
,in [1—r1+v(1+7>/‘> (6d)
For y<—2, values of » in 0<r<142/y give

alion ol i e H =
values of \ in T—2][~] >A>—o,
there are no real roots for ». For a< 0 there is
thus also at most one real root for 7.

Performing the calculation according to eq 4d,
5a, 5e, and making use of eq 6a and 6¢, it 1s found
that

For v>—2

E .

R i
n(¢r)=n ef—xn 6220
2

S—14r+3

Calculations on Electromigration
762613—47—2

( ><1+ i (@)
=
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where the summation covers real and imaginary
rs.  For imaginary r; eq. 6b and 6¢ are used and

®

ne“—‘ Z

sinh (r,M/2) is replaced by i sin (ps\/2).
As a special case

2 _la—r¥;

1—72

n(\, 7)=

gives the concentration at the cathode. For large
positive vy the real root moves toward unity so
that 7o=1—e where e<’<1. In this limit one has
approximately

(8)

The imaginary roots contribute terms in 1/4% and
become small for y—o. Equation 7a gives in
this limit

n(\, 7) =n°—n° (e —1)e" " " (8a)

so that the approximate time constant in units
D/a? is

P =7(e—1), (8b)
which corresponds to a time constant in seconds
V
o= (ex —1) (8¢)

If in addition A<<1 then

VL L'L

P> a4p="T1 (8d)

If a<C0, eq 8 to 8d still hold for large values of —7.

For a small cathode compartment, one has the
simpler formulas:
n(f, T) =3
8 . rs 35 ==
T sinh -3~ sinh - 9)
= -*1—!-7“? +2/ A

TR 72" (1=r9)7/4
S
=0 (1= 01 riFOfX)
(9a)
For v=0, A\=2, the real root is in the process of
becoming imaginary, and the corresponding term
in the above formulas needs special consideration
becoming indeterminate. Making \=2-F¢ with
e—0 it is found that:

n(§, 1) =net—
E_.

8n
Opf —
n°e X

n(\, 7)=n’e*—

sin p, sin (p.&/2)eFer

Bt~ ﬁor+2 (oo (9b)
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B 1*’)[(‘“”) ~Ta -1 (143) a-n (78)

n(\, 7)=n°e*— {66 Bor |- Z 1+ se Pt (9c)
In this case the roots are known and are tabulated
in Jahncke-Emde [4]. Substitution of numbers
gives
n(\, 7)/n°=e>—6e F7—0.18876¢ F1r—
0.06592¢ 27— (.03336e 37— 0.02011¢ 87—
0.01344¢ 57— 0.00962¢Fs7—(0.00722¢F17—
0.00562¢67—0.004496¢ #7— (0.00368¢ F1o7 —
0.00307e=A17—().002595e 27— (0.00223 ¢~ F137—
0.001929¢ A147—0.001688¢ 15— ().001489¢ 167 —
0.001324¢ #177—(0.001184¢ F157—0.001066€F197 —
0.000965¢5207—().000877 ¢ P217—0.000801 ¢~ F227—

. (9d)
Also
nO
n(1, 7) :n°e—7—6{36“’0’—0.150876“9"—
0.04388¢ %27 0.02473¢ 7
0.01374¢#7—0.00979¢ Fs7—
0.00664¢ %74 0.00522¢ 7
0.00390e 87— 0.00323¢ For— . } (9e)

The B’s in eq 9d and in 9e are given by:

0 1 1
Bo= ’ Br=0518876" P~ 006502’ *—0.03336

In order to see how the cathode volume affects
the results, the above solution can be compared
with that for N=2, y=15.2195. The choice of v
in this calculation is made so as to give r7,=0.98.
Approximate values of the p’s are p;=3.18, p,=
6.30, ps=9.44. For the cathode, one obtains by
means of eq 7a,

2 7.3801—6.3885¢~0-0Mr —
n »

0.00043¢=27—0.00004¢ 12—

which shows that in this case only the first term
having the time constant 7=101D/a* is of real
importance. The approximation in eq 8b gives
T=97D/a* and is suitable for an approximate esti-
mate for this v and . Because of the more rapid
convergence of the series, calculations with large
v are easier than with small ~.
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Another example of the application of eq 7a is
A=2, 7,=0.90, v=2.6995 for which p,=3.331,
p:=6.394, and

(_né) =7.3891 —6.376e004757 _().01 132¢—3-0257
n-Jg=n
0.00115¢719477—0.00025¢ 2% — . . . (9f)

An example for negative ¢ may also be given:

A=—1,7,=0.50, y=—8.111, p;=6.359, p=12.605,
which gives

3r
<ﬁo> =0.36788+0.6319¢ 164
VAN
0.00028¢~1036 - (9)

A consideration of these examples shows that

for a rather large range of values of v, the term in
1-r}

¢ ' s the last important one. The relation

79=ry(e*—1) for its time constant can be improved

on by using a graphical or numerical solution of

I
2T IR
and setting

4

1—»2

Qim
T =

(9h)

4. Tubes of Infinite Length

Substitution of different 7 into eq 9d, 9¢ shows
that the concentration at the cathode builds up
much more rapidly than in the middle of the tube.
For times appreciahly smaller than the time con-
stant the effect of the anode is, therefore, not
important, and the calculation of exact solutions
involves a needless amount of work. The initial
stages of the building up of the concentration
can be studied by supposing that the tube is
infinitely long because the solution for an infinite
tube gives practically zero concentration at the
anode.

In discussing a tube of infinite length it is con-
venient to measure lengths from the cathode

introducing
n=N\—¢ (10)

The differential equation is

on , on bn

on* Ton —or’ h0a)

Calculations on Electromigration

and the boundary condition at the cathode is
conveniently expressed in terms of

on
”L:b?+n (10b)
for which

©on (. om -
14 m>ﬂ=0w—<'y on m)ﬂzo—o (10¢)

The quantity m is the flux density of ions divided
by a. It has proved convenient to use m in con-

structing the solution because m—yaa—?: has the

simple initial condition of being 1 throughout the
length of the tube. It is thus possible to construct
first the solution for y=0, to equate the m ob-

. om .
tained for y=0 to m—~ o and derive m for any

v. From m, one obtains n by quadratures.
For a >0, one finds

{7 —@::ﬂ_;[ (2]
A= 2 AN

e Lﬂ [ (5 AL
@C+v)y

ntr, T
( vy Al n+r '\/T :I 11
s e G )] an

where
Fi
‘b(x)*vm fe‘zzd;r, &(—x)=—o(x). - (11a)
JO
For =0 i. e. for the cathode the above formula
is somewhat shorter:

o5, 2L Tk bR
() e o ()
St e (E)

Nt _. T y(y+2)
197 ¢ " Taasy 2ty 1P

and for y=0, the following simple form obtains:

i E A

e; (r—n+1) |:1—<b(%)] (11c)
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The values of ®(x) are available in Jahnke-Emde
[4] in good detail and numerical calculation by
means of eq. 11, 11b, and 11¢ is straightforward.
A convenient form of m is

m=1 1 f(n+r)/2w/_re_zg dor—
\/1r

e

——— e~ dz+

Ve(l+7) J a-nizd

*Zi oD [ytrly? f - e—*'dx.
Vr(1+7) R (11d)

For a<0, N\, 1, v are negative and = is positive.
In place of eq 11, 11b, 11¢, and 11d one has

n=n®_ N (i nt7
e[ G

[IIZ+1+J[1“’ Gl

2+v)y 1+7, >:|
21+ ¢ [Hq’( N
(12)
n—n°\  Arfr .1 v
2 g e ()
13 FORREREE v Vr
2[1+7+(1+v)2]|:1 ( >:|+
2+ 5*;’5[1 sl r \/T]
2(1Fy)?° s ( 7>
(12a)
and for y=0
(nﬂf el il [1+¢> <n+r) +
n°  Jy=o \"/1r 2471,

S e=gt1) [1+<1>( 0] a

while for arbitrary <0

1 1 (a+diedr
= /«J‘ e~Fdx—
= VTJO

e

e *(n—7)/2V7

e+ ik

2—{—7

"t’ 'J ()27 7/y
3 e
Vr(l+7)

—2idr (12¢)

—©
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The verification of the above equations by
substitution into the differential equation and the
boundary conditions is straightforward and is not
reproduced in this report.

III. Description of Figures

In figure 1 there is shown the dependence of
(n—mn)°/n° on 7 at the cathode for a tube of infinite
length. The curve for zero cathode volume
(y=0) is parabolic in shape at the origin. The
initial rate at which the concentration builds
itself up is seen to be very high. This is because
the cathode has zero volume so that the initial
rate is infinite. As time goes on the material con-
centrated at the end of the tube diffuses through a
volume proportional to v/7. The rate at which the
concentrated material is being fed to this volume

19~ I { ‘
Alre ! | /I/ ==
15 - 7*_L
13 :
g A
— | //, | —
i 2 | LA
Sl ER 7 ! — i
‘ ‘
o7 — —
' 2
05 | / |
L~ ;
ol fl < ez
ol 2/ e ol T
oo leat——1 3
000 002 004 006 008 OI0 Ol2 Oi4 016 .08 020 022 024
o
Fiaure 1.

A=, n=0; x are points from A\=2, v=0, {=2.

1. Parabola 0.17+/7/0.0200; 2. y=0; 2. osculating parabola 2+/7/x; 4. tangent;
5 ¥=0.1;6. y=1

is proportional to 7 and the concentration is
therefore proportional to /4 7=+/7. This is, of
course, not an exact consideration, because the
rate at which the concentrated material is being
fed to the end of the tube depends on the concen-
tration at neighboring places. The parabolic
approximation is not bad, however, as is seen in
figure 1, where the dotted curve above the curve
for y=0 is a parabola 0.17+/7/.0200, chosen so as
to give a good overall fit and the dotted curve
below the curve for y=0 is the osculating parabola
2+/7/w. The latter curve makes a second-degree
contact with the curve for y=0. In figure 1 there
are shown also, as crosses, points that correspond
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to N=2, £=2 v=0. These are seen to fall on the
curve A=, £¢=2 v=0 to within the accuracy of
the drawmg,. A close agreement of the two curves
can be expected because the diffusion distance in
natural units (D/a) is of the order +/7~0.15 for
the larger 7 in figure 1, while the length of the
tube in the same units is 2. The time in figure 1
may thus be considered so short that the concen-
trated solution has not yet diffused to the anode.
It is satisfactory in this case to make computations
of the initial stage of the enrichment on the sim-
plified assumption of an infinitely long tube
(A=),

Figure 2 corresponds to negative @ 1. e. to the
removal of ions from the cathode end. In this

case n—n° is negative and, therefore, — (n—n°)/n°
is plotted as ordinate. A large ordinate corre-
sponds to a small concentration in this figure and
the cathode volume is zero. For 7=1, the con-
centration is reduced to about 1/3 of its original
ralue. The lower curve is drawn on an expanded
time scale so as to show more detail in the initial
value.

1.2
1.0 — = —
—
8 | /'/
=08 ==
T
o
clz Lol A = |
= : L. —
/ //’
I o4 — —
7
7
02 |-
/
00
o | 2 3 4 5 6 17 8 9 o Il
(O 2 3 4 5

FiGcure 2.

A=, y=0, n=0. 1. Remaining concentration divided by n°=mn/n°.
In figure 3 a comparison is made between the
relative enrichment obtained by having the
countercurrent balance exactly one or the other
ion type that it is desired to separate. In this and
some succeeding figures a positive a that corre-
sponds to feeding an isotope into the cathode is
referred to by the subseript “pos” and a negative
a that corresponds to washing an isotope out of
the cathode 1s similarly referred to by the subseript
“neg”. The lower curve in figure 3 corresponds
to having the countercurrent of proper strength
to balance the migration velocity of the slower
isotope. If the initial concentrations of the more
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| |

i

J | |

/ ?

04 ‘

02

00
.000 002 004 006 008 Ol0O 0I2

T
Frcure 3.

Ol4 Ol 08 020 022

A=, y=0, n=0.

ke nin" el (ll;‘:’o) :
+(_ﬂ ) pos
1 n° neg

. . . o o
mobile and less mobile isotopes are n;, n, respec-
tively, then at the time ¢ this ratio is

n_ 'n, 1/°> .
ny l[,, l: ( y pm‘] (13)

and the factor by which this concentration is
increased is unity, plus the quantity plotted for
the lower curve.

If, on the other hand, the countercurrent is
adjusted to balance the more mobile isotope, then
the isotope of smaller migration velocity is being
drawn out from the cathode and after a time ¢

ni_ moo
Ny o n—n® h
n,,[l+<— — )]
n, 1 .
—¢14+] —1+—— (13a)
n, 1+ zyjn >
n° negq

The quantity in square brackets is plotted as the
upper curve in figure 3. It represents, as before,
the ratio of concentrations divided by its initial
value and minus 1:

It will be noted that for quite a while there is no
marked difference in the two ways of adjusting the
counter flow that have been considered.

In figure 4 five curves are shown. All of them
are for a tube of infinite length. The lower pair
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of curves is for |y|=0.1. In this pair the upper
curve corresponds to an adjustment of counter
flow corresponding to eq 13a, the lower to an ad-
justment corresponding to eq 13. The less mobile
isotope 1s being pumped out of the cathode for the
upper curve, the more mobile isotope is being
pumped into the cathode for the lower.

3

o
C|o
R =
c
Al
.0
00 .0l 02 03 .04
T
Ficure 4.
n—n° ) 1
W=, el ‘____’(—n"v)poe """""" (n—n") =l
e n°  Joee

The three upper curves in figure 4 are for a tube
of infinite length and zero cathode volume.
Among these the highest curve, H, corresponds
to countercurrent adjustment in eq 13a, the
lowest to eq 13. The curve in between, curve M,
corresponds to a countercurrent adjustment in
which the arithmetic mean of the migration
velocities of the more mobile and less mobile
isotopes is equal to the velocity of the liquid.

The value of @ for eq 13a is —|u;—us|£ and for
eq 13 it is +|u;— | £. In the computation for the
middle curve in the upper set of three in figure 4
the value of @ is =4 |u;—u|£/2 and in accordance
with eq 2e, the value of 7 for a given¢is % of what it
isfora= 4+ |u;—us| 2. For thisreason the abscissae
for curve M were made to be 47. In this way the
same value of the abscissae for the curves H, M,
L corresponds to the same time, ¢.

The curve, M, was computed by plotting
[(m/n°)pos/ (N[N °)negl —1 ~as ordinate and 47 as
abscissae. It is seen that the curve M falls nearly
half way between H and L. This indicates that
the exact adjustment of the countercurrent does
not critically affect the ratio of the abundances of
the two isotopes as long as there is an approxi-
mate balance of migration velocity and counter
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flow. With the idealized conditions assumed here,
the relative enrichment in the cathode is changed
more rapidly by having the counter flow too high
rather than too low.

The way in which the three typical adjustments
of countercurrent give about the same result for
small enrichments can be illustrated also in terms
of a formula for small enrichments for y=0. One
has approximately

(n/no)pos 1+2 /T/T; (n/no)neg

so that

1—2\ T/7I'

—124/r/7

<n—n°> - 1 _
Sy — <n—n°>
(R

no neg

(H,L)

which shows the approximate equivalence of
countercurrent adjustments, /7 and L. Also, for
the countercurrent adjustments of the curve M

1424/ /T
1—2y7/x
so that the quantity M is the same function of
47 as H, L are of .
For V=0 a change in the countercurrent gives

a change in v. For small ¢ the three types of coun-
tercurrent adjustment give nearly the same result.

In this case
( >pos I'Y()I

wn) EJAD.  Similarly

n° neg

For the arithmetic mean countercurrent adjust-
ment,

~ (1) 505
o (n/no)neg

—1~2+4r/x, (M)

where vo=V(u,—

27
@y Ml 4
(n/1°) neg _1 27 Lz

[vol

and the result is nearly the same as if the counter-
current were adjusted to keep one of the isotopes
stationary with respect to the tube.

In figure 5 the behaviour of a tube of infinite
length is compared with that of a tube of finite
length in the special case of zero cathode volume.
The concentration of an isotope at the cathode
end is plotted against = in both cases. The
equilibrium concentration for the tube of finite
length is taken to be ¢2=7.4. Up to 7=2, there is
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FiGure 5.
v=0,7=0. 1. A=, 2 A=2.

not much difference between the two tubes. The
concentration increases to about four times the
initial value at this 7. For 7>>4, the slope of the
curve for the tube of finite length decreases rapidly
so that it will not pay to run above this value.
The comparison of N=2 with an infinitely long
tube has already been made for small 7 in figure 1.
The initial stage of the divergence between the
two curves can be seen in figure 6.

4

&) ////

7
Vﬁ/
QCJ"C 2 7
c P yd
rd
. L

d

0

00 02 04 06 08 10 12 14 16 18 20 22 24 26
T

Ficure 6.

y=2, \=2, {=2, zare for \=w,

In figure 7 the dependence of concentration of a
single isotope on 7 is illustrated for y=0 at differ-
ent points along a tube of infinite length. The
migration velocity is supposed to be greater than
the countercurrent corresponding to a positive a.
At the cathode end the concentration increases
steeply, being proportional to +/7 for small 7. For
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///

.00 .02 .04 06 os 10 12 14 16 18
T

F1cure 7.

v=0. 2 are from A=w; o0 are from A=2, 1. n=0.00; 2. n=0.10, 3. n=0.25;
4. n=0 50.

points farther away from the cathode the initial
portion of the curve is flat and is followed by an
approximately linear rise. The initial flat stage
can be thought of as corresponding to the time
during which the concentration that first develops
at the cathode diffuses to the point under con-
sideration. Infigure 7 there are also shown points
that correspond to a tube of finite length with
N=2. These are seen to fall very closely on the
curve for A= . This is to be expected, because
for the small 7 covered in this figure there is prac-
tically no effect at the anode end so that it does
not matter whether the concentration at the anode
is maintained at its initial value or not.

In figures 8 and 9 there is illustrated the varia-
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Ficure 8,

v=0. 1. r=0.16; 2. #=0.010; 3, 7=0.0016,
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v=0. 1. 7=0010: 2. 7=0.0016.
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Ficure 10.

y=l.A=w. 1, 7=016.2. 7r=0.01.

tion with distance of [(n—n°)/n°] .. 1. ¢. of the
fractional increase of concentration for the case
of feeding the isotope towards the cathode. The
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cathode volume was taken to be zero for these
ficures, and the tube is infinitely long.

In figure 10 the variation of concentration with
distance is illustrated for a finite cathode volume
corresponding to y=1. The tube is assumed
infinitely long and @ >0 for this figure.

In figure 11 there is illustrated the variation of
concentration along the tube for the constants
used in eq 9f. The computation can be made by
means of formula 9. The term 7n°# outside the
sum is referred to as the “equilibrium term”.
The way in which the successive terms in the
series converge is illustrated by the three curves.
The first curve is marked ““equilibrium - (r5) 7. It
represents the effect of the term n° and of the
first term in the summation in eq 9. The second
curve is marked “equilibrium- (7o) 4 (p1)”. It
includes, in addition to the two previous terms,
also the second term in the summation which is
due to the root p;. This curve is already a fair
approximation to the answer. The third curve
includes the effect of the root p, and is marked
“equilibrium- () + (p1) + (p2)”’. It 1s practically
the answer. The special value, 7=0.16, was used
for all curves in this figure.

In figure 12 there is illustrated the superposition
of terms for N=—1, y=—8.1106, r=0.16 as in
eq 9g.

In this case the isotope is being pumped out of
the cathode. The convention regarding labeling
curves is the same as in figure 10. The convergence
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Ficure 11.

A=2, y=2.6606, 7=0.16. 1. Equilibrium+(ro)+(p,)+(p,); 2. equilibrium +
(r)4(p), 3. equilibrium+1ry).
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Ficure 12.

A=—1, y=—8.1106, r=0.16. 1. Equilibrium+-(ry); 2. (p,) X104 contribution.

is very good. The curve for “equilibrium--(r4)”
is practically the answer. The contribution due
to the term in p; multiplied by 10* is shown also
in the lower part of the figure.

In figure 13 small X\ and large v are employed,
A=1/5 and y=24.022. The convergence is so
rapid that even at 7=0 only the real root need be
considered. For 7=1.6, ten times the 7 used in
the two preceding figures, the distribution along
the tube is not far from linear.
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Ficure 13.

A=2, y=24.022. Equilibrium term--(r;) term in beth curves. 1. 7=16;
2. r=0.

IV. Discussion
1. Orders of Magnitude.

It appears possible that the difference in
mobilities is of the order of (y/M,/M,—1)u where u
is the mobility and M,, M, are the masses of the
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ions.  For AT, the experimental value of u is
cm?
v-sec’
Dy, D, due to thermal effects is not known. A
lower limit for 2, D), can be obtained from the

relations

~6.6X107* The effect of convection on

€
Dl; M=

ﬂ{i:]ﬁw Dh

e
ET
which follow from statistical mechanics. Here ¢
is the ionic charge and not the electronic charge.
For a singly charged ion, ¢ is minus the charge on
the electron. At room temperatures for singly
charged ions the above formulas give

cm?

v-sec

For a countercurrent adjusted to balance the
slower 1on one has, assuming

S.oem®
— (P il
D=.026u <D n oo min

o _66X10 _, em?
=00 T3S0 e

a=3.3X107°F

where £1s in v/em. Hence

BROE ] () - .
£=202 Fr=—0.2Er.

1.7X10
A change in )y 1 corresponds in this case to a
A chang by 1 1 tl t
drop of 5 v along the tube. More generally, for
the same countercurrent adjustment, and singly
charged ions

A % Au .
£= f 9157{:39 M# times voltage drop

Here Aup is the absolute value of the difference in
mobilities. Thus if Au/u=1/1,000 then 26 v are
required to change £ by unity and to give a factor,
¢, in the concentration in equilibrium.

The quantity 7 can be considered as the time in
units D/a®. For K this unit is of the order

-5
(32%')'27'%'11(());12102: 1.6 X 10° sec/ E*=430 hr/E*
where Fisin v/em and the countercurrent adjust-
ment is such as to keep one of the ions stationary.
In the example of figure 5 one may consider 7~2 as
corresponding to the time which it takes to reach
half equilibrium, and the time constant is in this
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case of the order 1,000 hr/E>
the natural unit of time is

More generally

_D
(Ap)*L*

On account of the large uncertainty in Au for
uranium this unit cannot be computed with cer-
tainty. Since Ap enters to the square, a decrease
in Au by a factor 10 brings about an embarrassing
increase of a factor 100 in the time unit. For
a small cathode volume 1. e. for small v, the
“natural” unit of time is the main thing that
matters so that a sufficiently large Ap is then
especially important for a small time constant.

On the other hand, if v is large the value of 7
corresponding to half equilibrium is much greater
than unity as is seen in the examples following
eq 9e. According to eq 8c for a fixed N\, the
difference of mobility enters only once in the
denominator in this case. For KT assuming
Ap= /o and taking V=20 cm?, A=1 em? the time
constant is

6<10° sec.
E

(@—1)= 2.’90%111

(e —1)

It is interesting to note that if the equilibrium
enrichment factor ¢* is kept fixed and if v is large
enough to make formula 8b applicable then the
time constant does not depend on the diffusion
constant, ), but only on the difference of mobil-
ity Aw. In order, however, that N\ be fixed for
different D and E, one has to vary the length, L.
For a tube 30 ¢m long with 90 v applied having a
free cross-sectional area 1 cm? and a cathode
volume V=20 cm?® one has in the absence of
convection and for Ap/p=1'/0, A=17.5, y=12.
An enormous equilibrium concentration of ¢'” could
be obtained in theory in such a case, but it would
also take an impractical time to approach this
equilibrium. Tt is doubtful, however, that D can

2
be as small as assumed (1.7>< 107° %) because of

the convection currents.

The values A=2, y=2.6995, (used in example
of 9f) in the absence of convection for Au/u="/0
correspond to 10 v applied to the tube. If the tube
is 30 em long and has a free cross-sectional area
of 1 em?, the cathode compartment would have to
be 40 cm®. Onehas a=3.3X107%/3=1.1X107% cm/
sec and V/A=40 e¢m so that 7=3>}<10%sec ~10° hr
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which is of the order of 5,000 days. If this tube
were shortened to 3 em keeping V and A constant
and the same voltage then N\ remains unchanged
and a is increased by a factor 10 so that 7 decreases
to about 500 days.

There isa large gain in the shortened time con-
stant due to shortening the tube for the same volt-
age. This is because of the increased current.
The gain is of no real help except through the
increased current and the detection of a difference
in ionic mobilities appears to be easiest with a
large current in a long tube.

2. Equilibrium Concentration

In this section the coefficients of diffusion will
be decomposed into a part present in the stagnant
liquid and a part due to spurious causes such as
convection and stirring.

D,=D+8, D,=D;+18.

It is supposed that the spurious effects give the
same contribution A to 1; and D,. The relations

e

IHZW

(4

D?; #h:ﬁD:

hold.

In equilibrium

o
nn
Pt a,
np Ny
where
a . [,LLE+D

L 3+D; DDy

_ Di=Di ([ eE g\
@+rD)@+D)\" kT )

#hE+0

The counter current is supposed to be adjusted so
that
v=—u, E(146)

If =0, then isotope A is kept stationary by the
combined action of the countercurrent and of the
migration velocity. However, 6 will not be sup-
posed to be necessarily zero. One has* from the
above equations,

__eiEL o DT—D:
R Rl ES T By

*Prof. H. C. Urey first derived a special case of the above formula which
corresponds to A=0, ¢=0. The authors are indebted to Prof. Urey for a
stimulating discussion in this connection. 4

Journal of Research



For A=0 one has

el L 105 ]),L
=" (14-6) o

Here at room temperatures

65]{: =39 z applied voltage >} valence

just as for the quantity £ It is seen from the
above formula for o that a large 8 is advantageous
for getting a large enrichment ratio. This fact
should perhaps be emphasized because it indicates
that it is better to have the countercurrent too
. strong rather than too weak if it is desired to test
for the existence of a mobility effect.
It M>">D°, one has

Calculations on Electromigration

kT A T KT w

EL D;—D;__ ¢EL pi—u D° U 5 @>>D°)

For large B the logarithmic increment is seen to
be a fraction D°/@ of its value for M=0, §=0.
In this limit the exact adjustment of the counter
current is of no importance for the enrichment
factor at equilibrium.
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