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Validity of the Cosine-Fourth-Power Law of Illumination
By Irvine C. Gardner

The cosine-fourth-power law states that the irradiance ! at any point in the image
formed by a photographic lens, in the absence of vignetting, is equal to E, cos* 8, where FE,
is the irradiance at the center of the field, and g is the angle between the axis of the lens and
the conjugate chief ray in the object space. Although not usually so stated, this law involves
the additional assumption that the lens is free from distortion. With this assumption,
the law applies rigorously when the diaphragm is between the lens and object and the
object is at an infinite distance. If the diaphragm is between the lens and the image plane,
there may be cases in which the irradiance falls off less rapidly from the center of the field
outward than is predicted by the cosine-fourth-power law. A type of negative distortion
is defined for which the irradiance is uniform over the entire image. When the diaphragm
is within the lens system (the more common condition for photographic lenses), one must
know the distortion of the portion of the lens following the diaphragm before a definite
statement regarding the irradiance of the image can be made. The departures from
exactness of the cosine-fourth-power law arise partly because the effective area of the
entrance pupil is a function of the obliquity of the incident chief ray. A method is given
for measuring this variation in effective area.

I. Introduction

The cosine-fourth-power law may be stated as
follows: In the absence of vignetting, the irradi-
ance (or the effective exposure) for different parts
of the image formed by a photographic objective
varies as the fourth power of the cosine of the
angle between the axis and the chief ray proceed-
ing from the conjugate object area. The de-
sirability of and the economic advantage resulting
from the use of photographic objectives of ex-
tremely wide angle has made it important to re-
investigate the validity of this law because, unless
the consequences of the cosine-fourth-power law
can be evaded, negatives made with extremely
wide angle photographic objectives will vary to
such an extent in density from center to edge that
their usefulness is greatly restricted. Although the
cosine-fourth-power law is commonly set forth as

1 Throughout the text of this paper the terms irradiance and radiance as
defined by the Optical Society of America (J. Opt. Soc. Am. 34, 184, 1944)
will be used instead of the older terms illumination and brightness. Illumi-
nation and brightness usually relate to radiant energy as evaluated in terms
of the luminosity function, a consideration which does not apply when
dealing with an image to be recorded by photography. All the relations
involved in this paper are geometrical, and hence the equations apply with
equal rigor, whether applied to radiant energy, radiation evaluated in terms
of theluminosity function, or radiation evaluated in terms of photographic
sensitivity.
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a precise statement of fact, for most photographic
lenses it is, at best, an approximate relation.
Slussareff ? has published a paper of fundamental
importance in connection with this subject, in
which he demonstrates the importance of the aber-
rations of the pupils, a characteristic that has been
neglected in previous treatments of the cosine-
fourth-power law. He concludes that the irradi-
ance of the marginal parts of the field can be in-
creased significantly beyond that predicted by the
cosine-fourth-power law by one of the following
three optical devices: appropriate aberrations of
the entrance pupil; the introduction of negative
distortion; and the use of a strongly curved con-
cave image field with a concave photographie
plate. Reiss?® has taken exception to some of the
methods of computation employed by Slussareff
but accepts the limited validity of the cosine-
fourth-power law and the importance of the aber-
rations of the pupils. In the present discussion
the derivations of Slussareff and Reiss will be
briefly repeated, and the treatment extended to
cases not previously considered.

2J. Phys. USSR 4, 537 (1941).
3J. Opt. Soc. Am. 35, 283 (1945).
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II. Magnification Ratios and Distortion of
Pupils

If dF is the radiant flux proceeding from one
elementary area, dA, to a second, dA’ (see fig. 1),
its magnitude is given by the equations

dF=B cos a cos o’ @ﬁ‘i
—B cos ad¥'dA ; (1)
=B cos o’dQd A’

where B is the radiance of the radiating surface,
r is the distance between the two elementary
areas, « is the angle between the radius vector
and N, the normal to dA, and o’ is the similar
angle between the radius vector and N’, the
normal to dA’. In the second and third equations,
d is the solid angle subtended by the arca dA’
at. dA and dQ is the solid angle subtended by
dA at dA’. The quantities dA and dA’ enter
symmetrically in these equations, and 4F may
be assumed to represent the flux proceeding in
either direction between the two elementary
areas, provided that the appropriate value of
B is used. If the normals to the two elementary
areas are parallel, a=a’ and eq 1 becomes

dlf':g cos* adAdA’, (2)

where ¢ is the distance between the parallel planes
containing dA and dA’.

In figure 2 a photographic objective is repre-
sented with the conjugate areas dA and dA’ in the

dA

Frcure 1. Geometrical variables that determine the flux
radiated from one elementary area to a second.
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Fraoure 2. Geometrical variables governing the transfer of
radiant energy from the elementary area dA in the object
space to the conjugate area dA’ in the vmage space.

object and image spaces respectively. At S and
S’, are two additional planes normal to the axis
of the lens, one being in the object space and the
other in the image space. The shaded pencil in-
cludes all rays proceeding from dA through the
lens to dA’. The cross sections of this pencil, in
the planes S and S’ are dS and dS’, respectively.
If, for the moment, absorption and reflection
losses in the lens are neglected, B is the same for
each of the four elementary areas under considera-
tion and the flux through all the cross sections of
the pencil is the same. Therefore, applying eq 2,
one may write

g ont 6dAdS:£i,z cost BdA'dS’, 3)

where 8 is the angle between the elementary pencil
in the object space and the normals to the parallel
elements of surface dS and dA. In the image
space, 8" is the corresponding angle. From eq 3

IS’ e dA cos' 5 "
dS e* dA’ cos' B’

1f it be assumed that the photographic lens is free
from distortion, dA/dA’=1/M?, where M is the
magnification. KEquation 4 can, therefore, be
written

dS’[dS=C cos* B/cos* B, (5)

where O=¢"?/¢*M? is a constant independent of B

and B’. It will now be assumed that S and S’
are the planes of the entrance and exit pupils, in
which case dS and dS” are conjugate elementary
areas in the entrance and exit pupils, respectively.
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Equation 5 now has a twofold interpretation. If
it be assumed that the conjugate areas dA and
dA’ remain fixed, the ratio cos* g/cos* 8’ will, in
general, be different for different pairs of conjugate
areas in the entrance and exit pupils. It follows
that the exit pupil will be a distorted image of the
entrance pupil. If, on the other hand, dS and
dS’ are assumed to be two conjugate elementary
areas that contain the axial points of the planes
S and S’, the rays making angles 8 and B’ with
the axis are chief rays. If now the positions of
dA and dA’ are allowed to vary within the object
and image planes, the ratio cos* g/cos* g/ will, in
general, not be constant, and this indicates that
the areal magnification at the axial point of the
exit pupil, with respect to the entrance pupil, is a
function of the inclination of the chief ray. These
conclusions are in conflict with deductions based
on first-order imagery, and the departures are of
the same order as the variations of irradiance in
the image plane with which we are concerned.
Consequently, it is necessary that these departures
from first order imagery not be neglected when
computing the irradiance in different parts of the
field of a photographic objective.

III. Irradiance at Any Point in Image
Plane

If either member of eq. 3 is integrated over the
area of the corresponding pupil, one obtains the
total flux through the elementary area dA” in the
image space. Dividing by dA’, one obtains the
equation

E:ez{f [J “eost 3(13:?;, f “cost gdS’,  (6)

where £ is the irradiance. For any point in the
field of the lens, for which vignetting does not
oceur, either integration will give the correct value
of the irradiance. The angles g and B’ are
different for different points in the pupil areas S
and §’, respectively, and are also functions of the
point in the field for which the irradiance is being
computed. Care must be used in selecting the
appropriate boundary for the area over which the
integration is extended. If the pupil over which
one integrates is an actual physical diaphragm,
the integration is extended over the aperture and
the limits of integration are the same for all points
of the field. On the other hand, if the pupil is an
image of a diaphragm positioned somewhere clse
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in the optical system, eq 4 indicates that the area
over which the integration is to be performed, in
general, will be a function of the point in the field
for which the irradiance is sought. The correct
area over which the integration should extend is
the cross section of the complete pencil lying in
the pupil plane. Equation 6 will now be applied
to special cases that admit of general treatment.

IV. Special Illustrative Examples
1. Diaphragm Follows the Lens

For this example it is better to integrate the
third member of eq 6 because of the simpler limits
for the integration. If the aperture of the dia-
phragm is circular, of radius a, and if g, is the
angle between the axis and the chief ray passing
through the point under consideration, the integral
1s seen to be identical with that giving the irradi-
ance produced by a disk of radius @ and of uniform
brightness B at a point distant ¢’ from the disk
and at a distance ¢/ tan B, from the axis. The
exact value of this integral, as given by Foote *
may be written in the form

. =B 4a’k? —3
= [14<1+Gf+k2~a2)2> ]’ @)

where a is the diameter of the disk, £ is the distance
of the selected point from the plane of the disk,
and z 1s the distance of the point from the axis.
These magnitudes and their equivalents in the

a=e' tan (sin—| Z!N)

Ficure 3. Geomelrical quantities involved wn computing
the irradiance produced by a disk of radius a and of
uniform radiance at a distance e’ from the disk and at a
distance €' tan B’ from its axis.

present notation are shown in figure 3. If 6 is
defined as tan ~'a/k and B, is defined as tan ~'w/k,
eq 7 can be written
, mB oy tan® 0 o
E=7 l:l <1+4 Co8 (1—tan® 0 cos® B;)* > :I
(8)

4 Bul. BS 12, 583 (1915) S263.
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With this notation the aperture ratio of the lens
is 1: N, where N=1/(2 sin ). For a point on the
axis, 8,=0,and eq 8reduces to the familiar equation

E=xB sin? 0==B(4N)2 (9)

If eq 8 is expanded with reference to the ex-
ponent —1/2 by the binomial theorem and the
first two terms of the expansion retained, one
obtains the equation

n_ 2o tan 6 77777>2
FE=xB cos 6,)\1*,[{”1200052 8, 4+ ... (10)

Equation 10 is not recommended for computa-
tional purposes, but it does show that the irradi-
ance produced by a uniformly irradiated disk at
a point off the axis varies approximately as the
fourth power of the cosine of the angular dis-
placement of the point from the axis. By the
argument of the preceding paragraph, it follows
that when a photographic objective has the dia-
phragm between it and the image plane, the irradi-
ance of the field varies approximately as the fourth
power of the cosine of the angle between the axis
and the chief ray in the image space.

An estimate of the degree of this approximation
is afforded by table 1.

TasrLe 1.—Comparative values of irradiance (or effective
exposure) in the field of a photographic objective as a
function of relative aperture and angular distance 8y from
the center of field when the dzaphragm is between the lens
and the image plane

Aperture ratio

1:8 1:4 1:2

0° | 1.000 1.000 1.000
20° | 1.000 cos* 20° 1.007 cos? 20° 1.027 cos* 20°
30° | 1.002 cost 30° 1.013 cos? 30° 1.052 cost 30°
40° | 1.004 cost 40° 1.018 cost 40° 1.076 cos* 40°

In this table, the values of the irradiance have
been computed by means of eq. 7, which is exact,
for aperture ratios 1:8, 1:4, and 1:2 and for the
values 0, 20, 30, and 40 degrees. The computed
values are expressed as the product of cos* g, and a
numerical coefficient. It will be noted that the
coefficients of cos* 8, are greater than 1 for points
not on the axis, indicating that the irradiance of
the image falls off less rapidly than cos' g;. If a
lens is so designed that the second principal plane
lies between the lens and the focal plane, the
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diaphragm may be placed in the second principat
plane, and g will equal 8. In such a case, one
has a lens in which the irradiance of the image
decreases from the center of the field outward at a
rate somewhat less than that indicated by the
cosine-fourth-power law, although the departure
is not of sufficient magnitude to be of great im-
portance photographically. It does, however,
show conclusively that the cosine-fourth-power
law does not represent a limiting condition of
maximum attainable uniformity of image irradi-
ance. If the diaphragm precedes the second
principal plane, 8 is greater than g;, and the
departure from the cosine-fourth-power law will
be still greater.

2. Diaphragm Precedes the Lens

For this example the first integral of eq 6 is
the one more convenient to apply. This integral
represents the irradiance produced by a disk of
radius b, where b is the radius of the entrance pupil
and of brightness 5/M? at a distance ¢?. In most
cases encountered in practice, the object will be
at a distance of several focal lengths in front of the
lens, and consequently the numerical aperture of
the incident pencil will be much less (N greater)
than the values assumed in the preceding case.
Referring to table 1, it is evident that the irradi-
ance will be more nearly proportional to the fourth
power of the angle (measured in the object space)
than for the preceding example. If, for example,
the object is 10 focal lengths’ distant, the aperture
ratio is approximately 1: 10N. For a 1:2 lens,
the aperture ratio in the object space, therefore,
becomes 1: 20, and it is clear that the departures
from the cosine-fourth-power law will be much
less than those tabulated for the preceding example.

3. Diaphragm Precedes the Lens, Object at

Infinite Distance

This is a particular limiting case of the preced-
ing example. When the first integral of eq 6 is
applied, it is discovered that e becomes infinite and
M becomes zero in the limit as the distance to the
object increases. The limiting value of the product
Me is required. If ¢ denotes the distance from
the first principal focus to the plane of the entrance

i
i M=f/(e-+¢) 1)
Me= fe/(e+c). (12)

and
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1t follows that
lim Me=f (13)

el=too

With the object at infinity, 8 is constant over the
entrance pupil. From eq 6

E=BT2S cos* B3, (14)

and this example presents an instance in which the
cosine-fourth-power law, as stated in the introduc-
tion to this treatment, is precisely followed.

4. Diaphragm in Plane of First Principal Focus,
Object at Infinite Distance

This is a particular case of example 3. The
imagery is telecentric in the image space, and all
chief rays are normal to the focal plane. As B
equals zero for all parts of the image surface, it
has at times been mistakenly assumed that the
irradiance will be uniform. It is evident that
there 1s nothing in eq 6 to support this conclu-
sion. The application of the first integral of eq 6
gives the result that has been obtained in the
preceding example and indicates the irradiance
varies as cos'S. If the second integral is applied,
it must be remembered that the exit pupil is
infinitely large and at an infinite distance. The
value of ¢’ also becomes infinite and the integral
remains finite. Although it is true that g, is
zero for all the pencils, test measurements will
indicate that the solid angles included by the
pencils at different distances from the center of
the field are not equal but vary in accordance with
eq 5, and consequently a correct evaluation of
the two integrals of eq 6 gives identical results.

5. Diaphragm Precedes Lens, Object at Infinite
Distance, Distortion Present

Referring to the first integral of eq 6, when there
is distortion the areal magnification, AM? is a
function of B and must remain within the integral.
If one writes

M?= Mz? cos* B, (15)

where M; is the areal magnification at the center
of the field, eq 6 becomes

E=BS/eMz, ' (16)

and the field is uniformly irradiated. In the
presence of distortion, the linear magnification is
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not the square root of the areal magnification. For
a system possessing rotational symmetry, it can
be shown that eq 15 is satisfied, provided

r’=Mge sin £, (17)

where 7" is the radial distance from the center of
the image plane to the image of an object point
distant e tan B from the axis. Applying the con-
dition that e becomes infinite, eq 16 becomes

E=BS/f, (18)

where f is the focal length corresponding to the
scale of the image in the neighborhood of the axial
point. Equation 17 can therefore be written

7’ =f sin B. (19)

For an undistorted image, the corresponding
equation is

r”=f tan . (20)

Consequently, for an object point at the angular
distance B from the axis, the linear distortion is

f (sin B—tan B), which is negative and corresponds

to “barrel shaped” distortion. The ratio of
radial magnification of corresponding points in the
distorted and undistorted images is dr’ /dr” = cos®B.
In general, when negative distortion is present,
even though it does not follow eq 16 precisely, the
irradiance over the field is more nearly uniform
than when distortion is absent.

6. Diaphragm Between Components of Lens

Most photographic objectives are designed with
the diaphragm within the optical system, and eq 6
cannot be applied in the general manner of the
preceding examples because neither the entrance
nor exit pupil is a physical diaphragm, and the
region over which either integration must be ex-
tended 1s a function of the position chosen in the
image field. It will be assumed that the lens sys-
tem is divided into two parts, ¢ and b of focal
lengths f, and f,, the subseript @ referring to the
part of the lens between the object and diaphragm,
and b to the part following the diaphragm. Equa-
tion 6 will be applied to the part of the lens con-
sisting of the diaphragm and the part . The
equation becomes

S 4
E=pje [0 5 P, 1)
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where S; refers to the area of the diaphragm, 8; is
the angle between a ray and the lens axis in the
space occupied by the diaphragm, and M, is the
areal magnification for the part of the system un-
der consideration. (It is assumed that the image
formed by the first part of the system, which
serves as the object for the second part, is stig-
matic.) If the rays passing through the dia-
phragm and proceeding to any given point in the
image field are parallel, 8, is a constant over the
area of the diaphragm, and eq 21 becomes

S
E=B/e? cos* B | ¢ ]{[ ds. (22)
b

Even if the rays passing through the diaphragm
are not parallel, for most lens systems in use, the
intermediate image is remote, and the aperture
ratio of the beam is small. Consequently, as is
shown by reference to table 1, eq 22, while not
rigorously exact, will be a good approximation.

The areal magnification M, will be a constant if
part b of the lens system introduces no distortion.
In general, however, part b is a positive lens system
preceded by a diaphragm, and the distortion for
such a system is frequently negative. As has been
mentioned, the effect of negative distortion is to
increase the irradiance of the peripheral part of the
image as compared with the central part. For
most photographic systems g; is greater than g.
Consequently, the factor cos * 8; indicates a more
rapid decrease of irradiance from the center out-
ward than would be predicted by the factor cos *8.
Therefore, in eq 22, the factors 1/M, and cos * 3,
indicate departures from the cosine-fourth-power
law in opposite directions, and a system with an
internal diaphragm must be carefully analyzed
before it is possible to say in which direction the
irradiance deviates from the cosine-fourth-power
law. In particular, if the portion of the lens that
follows the diaphragm is free from distortion, MM,
is a constant and, as is shown by eq 22, the irradi-
ance varies as the fourth power of the angle be-
tween the chief ray and the lens axis in the space
occupied by the diaphragm.

V. Effect of Light Losses Introduced by
Reflection or Absorption

In the preceding examples it has been assumed
that the lens is free from losses by reflection and
absorption. In an uncoated lens system such
losses are seldom less than 30 percent and may be
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considerably greater. Actually, the losses by re-
flection and absorption for any element of a lens
system are functions of the angle at which the
pencil of light is incident. These losses, therefore,
are functions of 8 or g’ of eq 6, and if they are to
be correctly taken into account, the transmission
coefficient should be within the integral sign.
Deriving an analytical expression for the loss by
absorption or reflection as a function of the angle
of incidence, involving the curvatures of the sev-
eral surfaces and the variations in thickness of the
lens elements introduces so many complications,
however, that it is usual to consider the transmit-
tance as independent of 8 or 8/ and to write it in
front of the integral sign, as a factor multiplied
into B. This gives results satisfactorily accurate
for most photometric questions that arise in con-
nection with a photographic objective. When the
transmission factor is written in front of the inte-
gral sign of eq 6, the magnitude of the factor does
not affect the indicated variations in the irradiance
of the field that have been derived in the several
examples of section IV. Neither does the neglect
of the effects of absorption and reflection introduce
any error in the geometric relations that have been
derived between entrance and exit pupils.

One can use a filter that is denser in the center
and becomes more transparent from the center
outward. If such a filter is placed some distance
from a pupil plane, the transmitted beams ir-
radiating the central parts of the field pass through
the denser parts of the filter while the more oblique
beams that irradiate the peripheral parts of the
field pass through the outer less dense parts of the
filter. Such a filter acts selectively to make the
irradiance of the field more uniform. Unless one
has an abundance of light this is an undesirable
method for increasing the uniformity of irradiance
because it reduces the average irradiance and
therefore increases the length of the required
exposure. To compute the effect of such a filter,
the analytical expression for its transmittance,
as a function of 8 (or g’) should be introduced into
the integrals of eq 6.

VI. Experimental Method for Measuring
Pupils

When a pupil is the image of a diaphragm formed

by a portion of the lens system, its size and shape

can be most readily determined by a photographic

method. If, for example, the size and shape of the
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entrance pupil are to be determined, a camera may
be placed in front of the lens of which the pupil
is to be measured and the diaphragm photographed
through the parts of the lens that come between
the actual physical diaphragm and the object
space. If the camera system is centered on the axis
of the lens and directed axially toward the dia-
phragm, one obtains the pupil corresponding to
B=0. If, now, the camera remains fixed and the
lens under test is rotated through the angle 8,
about an axis in the plane of the entrance pupil
and at the right angles to the optical axis of the
lens, one obtains the pupil corresponding to f=p,.
The images of the entrance pupils are measured on
the resulting negatives by means of a planimeter
and multiplied by a suitable scale factor to deter-
mine the area of the entrance pupil. The dia-
phragm aperture can be irradiated to be photo-
graphed by a ground glass and lamp placed back
of the lens. This method of measurement gives
the area of the entrance pupil as affected by
vignetting if present. To similarly measure the
exit pupil, the diaphragm is photographed through
the back component of the lens under test.

The method of the preceding paragraph is satis-
factory for most purposes but is not rigorously
accurate because, for the oblique positions, differ-
ent parts of the pupil are at different distances
from the lens and are reproduced to different
scales resulting in a distortion. This can be
eliminated by using a telecentric system as shown
in figure 4. The lens for which the entrance
pupil is to be determined is shown at A. The
entrance pupil, which is the image of the dia-
phragm formed by the first two elements of the

Ficure 4. Diagrammatic skelch of arrangements of parts
for expervmental determination of the dimensions of an
entrance pupil of a photographic objective.
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system, is represented at B. Actually, for the
case illustrated, the entrance pupil would be
within the lens, but it is shown here in front of
the lens to emphasize its position in the object
space. At (' there is a lens, preferably corrected
for chromatic aberration, which has the small
diaphragm D in its second focal plane. Lens &
and image plane A schematically indicate the
camera with which the photograph is made. The
diaphragm at D should in reality be the entrance
pupil of the lens @. In the object space of lens
(' the chief rays are parallel, and therefore the
different parts of the entrance pupil are repro-
duced to the same scale. This arrangement
gives a correct determination of the entrance
pupil when the object is at an infinite distance.

VII. Computational Method for Deter-
mining Diameters of Pupils

To determine the size of either entrance or exit
pupil by computation is a tedious process. If the
entrance pupil is to be determined for the angle
Bo, a point in the object plane distant ¢ tan g, from
the axis is chosen, and rays from this point are
traced into the lens as far as the particular space
in which the physical diaphragm is located. By
successive tests a series of rays are finally found
that intersect the edge of the diaphragm. The
tracing must be done trigonometrically and, skew
rays are required. After a sufficient number of
rays intersecting the edge of the diaphragm have
been traced, one can construct the surface that
encloses all the rays of the transmitted pencil.
The cross section formed by the intersection of
this surface with the plane of the entrance pupil
defines the entrance pupil corresponding to Bo.
If there is vignetting, the rays must be traced
through the entire system and the size of the
maximum transmitted beam determined. To
determine the exit pupil, one traces rays in a
similar manner, proceeding from the selected
image point in the reverse direction through the
lens.

WasHINGTON, May 7, 1947.
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