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Vibrational Frequencies of Semirigid Molecules:
A General Method and Values for Ethylbenzene'

By William J. Taylor * and Kenneth S. Pitzer *

It is shown that in normal coordinate calculations of the vibrations of molecules it is
sometimes advantageous to calculate the kinetic-energy matrix, rather than the reciprocal

kinetic-energy matrix.
matrix.

Ixplicit formulas are given for the elements of the kinetic-energy
Illustrative calculations are given for propane, toluene, and ethylbenzene. A

semiempirical assignment of the vibration frequencies of ethylbenezene is made on the

basis of these calculations and the spectroscopic data.

I. Introduction

For the purpose of calculating the thermo-
dynamic functions (particularly the entropy) of
molecules by statistical methods, it is important
that the low frequencies of vibration be assigned
as accurately as possible.  When these frequen-
cies have not been observed in the spectra, the
assighment must be made either by analouy with
other molecules, or on the basis of a normal

coordinate calculation, using force constants
determined from other molecules. Even when

the frequencies have been observed, a preliminary
assignment by analogy or calculation is often
necessary for the identification of the observed
frequencies. However, a complete normal coor-
dinate analysis for molecules with many atoms is
so time-consuming as to be impracticable in most
investigations. Therefore, an approximate meth-
od of calculating the low skeletal frequencies of
large molecules should be of considerable value in
connection with thermodynamic caleulations.
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the Properties of Hydrocarbons”,
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In this paper there is described an approximate
method that is based on the replacement of the
actual molecule by a semirigid model (of the same
dimensions and masses) in which certain groups
of atoms move as rigid units. In this way the
number of internal coordinates of the molecule
may be reduced sufficiently to make the calcula-
tion of the low skeletal frequencies practicable.

The semirigid model should be satisfactory,
provided that all the frequencies of internal

motion of the groups assumed to be rigid are
either considerably higher than the frequencies
to be calculated, or else do not interact seriously
with them because of molecular symmetry or
other factors. In order to reduce the error due
to interactions, it is desirable that the necessary
force constants be determined by analogous
(semirigid model) calculations on other molecules
in which the frequencies are known.

The analysis given in this paper shows that
the kinetic-energy matrix of a semirigid molecule
is usually more casily calculated than the reciprocal
kinetic-energy matrix. The reverse is true for a
complete normal coordinate caleulation for the
molecule.  Formulas are given that reduce the
calculation of the kinetic-energy matrix to a
consideration of the masses, moments of muass,
and moments of inertia of the rigid groups.



An illustrative calculation is given for ethyl-
benzene by using force constants determined
from propane and toluene. A semiempirical
assignment of the vibrational frequencies of
ethylbenzene is made on the basis of this calcula-
tion and the spectroscopic data. These calcula-
tions for ethylbenzene were completedin September
1945, were and used in the tables of the thermody-
namic properties of ethylbenzene issued November
30, 1945, by the American Petroleum Institute
Research Project 44.

II. Mathematical Analysis
1. Kinetic Energy of Semirigid Molecules

The first step in the normal coordinate analysis
of a vibrating system is the computation of the
kinetic-energy matrix, or of its reciprocal. Certain
general features of the calculation will first be
considered. Let the system of n particles be
characterized by 3n generalized coordinates, ¢,
six of which refer to over-all translation and rota-
tion of the system (external coordinates), and the
remainder of which specify the configuration of
the system (internal coordinates). The present
discussion is concerned only with small distortions
of the system from its equilibrium configuration,
so that the internal coordinates may pe assumed
to measure this distortion and to have the value
zero at the equilibrium configuration.

The kinetic energy is a quadratic form in the
coordinate velocities, the ¢’s,

27=§Sq. (1)

In this equation ¢ is a column matrix, q is a row
matrix (the transpose of ¢), and S is the square
symmetric kinetic-energy matrix. In general,
the elements of S are functions of the ¢’s (not of
the ¢’s), but because of the restriction to configura-
tions near the equilibrium configuration, S is to
be regarded as a constant matrix here.

For reasons that will appear presently, it will be
convenient to assume that the coordinates are
of three types, and to partition the column
matrix ¢ accordingly.

q1
Q:[Q2] (2)
(E]

The kinetic-energy matrix, S may be partitioned
into the corresponding submatrices, and it will

2

also be convenient to designate by @ the reciprocal
of S and to partition G,

§11 S Sis (311 G Gy
S= §12 AS;)z Su |, G=8S'=| Gi2 Gy Gy (3)
Sz S S Gz Gy Gy

The concept of a semirigid molecule, with
which this paper is principally concerned, will
now be introduced. A semirigid molecule, as
defined here, is one in which some of the internal
coordinates, say the group ¢;, remain zero
throughout the molecular motion, so that ¢;=0,
and ¢;=0. Thus, if parts of the molecule move as
rigid units in their equilibrium configurations, the
internal coordinates of these parts will remain
Zero.

The kinetic-energy matrix for a semirigid mole-

cule reduces to
—Sll SIZ]
~ ’ 4

5 o @

as ¢3=0. The equivalent expression for the
kinetic energy is

2T:&1S11(i1+2&1812Q.2+§2S22Q'2- (5)

The form of the potential-cnergy expression
will now be considered. As ¢;=0, these coordi-
nates do not influence the variable part of the po-
tential energy (the assumption that ¢;=0 1is
equivalent to setting the force constants for these
coordinates equal to infinity). In addition, there
will be a group of coordinates, say ¢, that do not
occur in the expression for the potential energy,
although ¢, occurs in the kinetic energy. This
group of coordinates of zero frequency includes
the external coordinates and possibly (as an ap-
proximation) some very low frequency internal
coordinates, in particular torsional motions. Final-
ly, it will be assumed that the potential energy is a
quadratic form in the remaining coordinates
(harmonic vibrations) so that,

2Vi— §2F22(12, (6)

where Fj is the symmetric potential-energy
matrix.

If the Lagrangian equations of a system
for which the kinetic and potential energies are
given by eq 5 and 6, respectively, are to be
integrable, it is necessary to remove by a suitable
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transformation the cross term between ¢, and ¢,
in the kinetic energy. The existence of this cross
term is a consequence of the fact that the initial
coordinates, ¢; have been defined in such a way
that their conjugate momenta, p;=(077/0¢,), are not
independent of ¢.. As a result, the momenta p,
are not conserved, as they should be, because the
coordinates ¢, do not enter into the potential-
energy expression, and are therefore not acted
upon by any forces.

As it is desired to find the proper kinetic-energy
matrix for the (arbitrary) internal coordinates ¢,
it follows that the transformation should leave
these coordinates unchanged. The most general
linear transformation of this type is

’ m
QG| T |6 (7)
Qo 0 Lo | Q2
where /4 is the unit matrix with the appropriate
number of rows and columns. The matrices T,

and 7', are subject only to the condition that the
transformed kinetic-energy matrix have the form

Sh 0 :I
[O V2’2 (8)

The equivalent expression for the kinetic energy is
2T:(1.1S11Q'1+(12822{b- (Q>

The transformed kinetic-energy matrix is obtained
by multiplying the original kinetic-energy matrix
from the right by the reciprocal of the transforma-
tion matrix, and from the left by the transpose of

the reciprocal (congruent transformation). There-
fore,
S, o |_[ 7 0
0 K 2’2 = T12 YJTI Ez?
[§11 S12:| [TJI =TTy, (10)
Stz Sao 0 By
Equation 10 is equivalent to the relations
Si= Ti'suli (11)
0= T (Se—Sulhi'Th) (12)
0= Bu—Tul\7'8) 1t (13)

Sor— i’127v1;1S12_§12T1;1T12+
TpT'SuTii T, (14)

’
Szz_
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Equations 12 and 13 are equivalent, and yield

T T, =51"Sh (15)
as the condition that there be no cross term be-
tween ¢, and ¢, in the kinetic energy.

Equation 15 does not determine 7 or 7T
separately, but only the product 77'7), and
therefore Si; is not uniquely determined. How-
ever, S5, is unique, as the combination of eq 14
and 15 yields

Agzzszz_nglf‘Slz (16)

The matrix Sz, will be called the reduced kinetic-
energy matrix for the internal coordinates (exclud-
ing those that do not occur in the expression for
the potential energy). A result equivalent to
eq 16 has been obtained by Majantz [1]* by an
argument less fundamental than that presented
here.

When applied to the external coordinates, the
transformation of eq 7 is equivalent to the applica-
tion of the conditions that the linear and angular
momenta of the entire molecule are independent
of the ¢’s. When applied to an internal tor-
sional motion, the transformation is equivalent to
the condition, previously stated by Sayvetz (2, 3],
that the momentum conjugate to the torsion
should be independent of the (remaining) ¢.’s.

An important property of transformations of
the type of eq 7 may now be stated. The proof
is given in appendix 1. The coordinates ¢; may
be divided into two or more groups in various
ways, and the transformation applied consecu-
tively to each group. The over-all transforma-
tions from ¢, to ¢, will not, in general, be identical.
However, the theorem states that all possible
transformations of this type lead to the same
reduced matrix 8. The importance of this
theorem 1s that in practice it is convenient to
apply the transformation consecutively to trans-
lation, rotation, and finally, in some cases, to
certain internal coordinates.

The Lagrangian equations for the system may
now be written as

pi=Suq:1=0 (17)

S2’2Q2+ F22(12:0 (18)

¢ Figures in brackets indicate the literature references at the end of this
paper.



The first equation shows that the momenta p, are
conserved. The second equation may also be
written

{2+ G F20:=0, (19)
where

Ga=(Sz)~" (20)

is the reduced reciprocal kinetic-energy matrix for
the internal coordinates ¢,. In eq 16, Sy, is de-
fined in terms of the submatrices of S. It is
proved in appendix 2 that G, may be expressed
in terms of the submatrices of @, eq 3, by the
equation

Gao=(S35) 1= G — G2 G5 lézso (21)

This result has been obtained previously by
Wilson [4], although not explicity for the case in
which coordinates of the types ¢, and ¢; are present
simultaneously.

As is well known, eq 18 and 19 lead to the
following secular equations for the determination
of the normal frequencies of vibration of the
coordinates ¢,:

IF‘-_)Q_ )\Sz; :0, (22)

or,
|GaFrn— M| =0, (23)
where A=47%?(v=normal frequency). In the

present method, in which Sy, rather than Gy is
computed, it is convenient to convert eq 22 to the
secular equation of a single matrix, in the form

|S2,2F1227 — x_lEgQ‘ :O (24)

In practice, Iy is diagonal, or nearly so, and
therefore easily reciprocated. The roots of eq
24 are, of course, the reciprocals of the \’s.

It is possible now to state clearly the relative
advantages of calculating Sy, and Gy, (see eq 3, 16,
and 21). In caleulating Sy, the coordinates ¢, are
ignored, but all the elements for ¢, and ¢, must be
computed. Conversely, in calculating Gy, the
coordinates ¢, are ignored, but all the elements for
¢» and ¢; must be computed. It should also be
noted that even with the simplifications described
later in this paper, the elements of S are more
difficult to compute than those of /> (this state-

5 Wilson [4] has described a now well-known method for the calculation of
G. A detailed exposition of the method has been given by Meister and
Cleveland [5]. A method similar to Wilson’s has been developed indepen-
dently by the Russian workers M. Eliashevich, B. Stepanov, and M. Wolk-

enstein. References to the papers of these workers are not given here, as we
are not directly concerned with the calculation of G.

4

ment does not apply to the elements for the
external coordinates, but these are just the ele-
ments of ¢ that may be ignored). From these
considerations it is obvious that the calculation
of Gy is to be preferred when all or most of the
internal coordinates are included in the calculation
(so that the number of coordinates of type ¢; is
zero or small).  On the other hand, Sy, is often to
be preferred in calculations by the semirigid mole-
cule approximation as the number of coordinates
of the type ¢; is then relatively large, and the
number of coordinates remaining in the calculation
(type ¢») is relatively small.

If the molecule has the symmetry of one of the
point groups, the internal coordinates fall into sets
equivalent under the group. The coordinates in
an equivalent set may be transformed into each
other by the operations (rotations and reflections)
of the group. In this case, just as is the case when
working with the reciprocal kinetic-energy mtarix
[4, 5], it is desirable to construct new coordinates,
symmetry coordinates, which are linear combina-
tions of equivalent internal coordinates, and which
reduce the group. That is, the symmetry co-
ordinates are chosen in such a way that each trans-
forms according to one of the irreducible repre-
sentations of the group. The advantage of the
use of symmetry coordinates is, that there are no
interaction elements in the kinetic- or potential-
energy matrices between coordinates which trans-
form according to different irreducible representa-
tions. The matrices therefore factor into sub-
matrices (the number of identical submatrices for
each representation is equal to the dimension, or
degeneracy, of the representation), and the
secular equation factors into the corresponding
equations of lower degree [6, 7].

It will now be shown that the symmetry
coordinates may be constructed either before or
after applying the transformation of eq 7, provided
that none of the symmetry coordinates involve
linear combinations of coordinates of types ¢, and
¢>.  With this restriction the symmetry coor-
dinates may be represented by

i1 0_] G
0 Uz 2]

The matrices {7;; and Uy, are usually, although not
necessarily, orthogonal. The transformed kinetic
energy matrix is
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('“71 0 Lg(u Aglg l/rlx L 0
0 l’Tz;l S12 ASV»_Q 0 7251

~ r r -
[ 11 ISIJ 11 ! ( S12 /22 ! (A)G)
{ Tz‘.: lSu["rnfl Uss 22 S2" Jog

The reduced kinetic-energy matrix is then,

['22_1S22. V22—1_ -
( 22 ‘Sl’[ (LT_ISU )_ 11 Sw 722_1
_l 22 S22 U22 SIZSII S12 72;1
<S22 Sl2Sll SIQ) Ll —-1 (27>
which is identical with the result obtained by
transforming the original matrix Sy, of eq 16 by
U/, Tt will also be observed that the matrix
Sy, is unaffected by symmetry combinations
formed with the coordinates ¢; (such, for example,

as a rotation of axes).

When 0/, is orthogoml the transformed kinetic-
energy matrix is [,'ZZS;2 /5, but for nonorthogonal
Uy, the general form 7,;'S,,0/,;* must be used.
An illustration of the use of a mnonorthogonal
transformation will occur in the calculations at
the end of this paper.

2. Calculation of the Kinetic-Energy Matrix

(a) Equations for Generalized Coordinates

Explicit formulas for the calculation of the ele-
ments of the kinetic-energy matrix for generalized
internal coordinates are presented in this section.
Denote by m; the mass of the ith atom, and by
R, the position vector of the ith atom with respect
to a point stationary in an inertial system. Then
the kinetic energy of the system of particles is

27=>"mR.R,, (28)

where R, is the vector velocity of the ith atom.
It will be assumed here, as in the preceding
section, that the positions of the n particles are
specified by 3n generalized coordinates ¢, some of
which, as before, remain zero for a semirigid
molecule.®  We may then define a set of vectors,
Smi:(aRi/aqm)' (29>

¢ In this section specific coordinates will be indicated by letter subseripts, as
qm and gn.

Frequencies of Semirigid Molecules

Thus s,,:is a vector pointing in the direction in
which the ith atom moves when ¢,, increases from
zero (for the equilibrium configuration) to a small
positive value, all other ¢’s remaining zero, and the
magnitude of s,,; is equal to the displacement of
the 7th atom per unit change in ¢,. Then,

Ri:ZSm i(l.my

m (30>
and
2T:;7ni<§sm id;f}).(;Srzzq,z>
—;qmqn(Zm S’ S) (31)
But from eq 1,
QTIZSn171QWadr17 (32)

m,n

where 8,,, 1s the element in the mth row and nth
column of the symmetric kinetic-energy matrix
S. It follows from eq 31 and 32 that

Smm:Z"LiSm[‘smn (ﬁ.})
7 \

Z_\,)”[Smi'sni
i

In order to proceed further, define an orthogonal
system of z, 7, z,-axes in the molecule, and denote
the unit vectors, directed positively along the
axes, by x, y, and z. Let the system be right-
handed, so that xXy=z. The position of the
origin of the system, and the directions of the
unit vectors, must be uniquely determined with
respect to the molecule for any arbitrary (small)
displacements of the internal coordinates, but the
choice of axes is otherwise arbitrary. In parti-
cular, it is not necessary that the origin be at the
center of mass of the molecule.

The coordinates of the 2th atom are x;, 7, and
2. For a given choice of axes these coordinates
are completely determined when the values of the
internal coordinates are given. The position
vector of the ith atom with respect to the origin is

(35)

ASYmnj:kgn m=— (34)

I, =X+ Yyt 22,

Three of the generalized coordinates will be
taken to be the translations of the origin of the
axes in the (instantaneous) directions of the x-, y-,
and z-vectors. The r-vectors of eq 29 are identi-
cal for each atom, for each tmnslamon and are
simply the unit vectors

S;=X, 8,=Y, S:=Z. (36)
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Three more coordinates will be taken to be the
three rotations, by angles ¢, ¢, and ¢, about the
a-, -, and z-axes. The S-vectorsfor these are easily
shown to be the vector products,

Sh =X AL NS o VTS o — 7T (37)

For the remaining coordinates, the (3n—6) in-
ternal coordinates,

Srrn: (ari,/a(Im) (38)
where,
(ari/a(lm) :X(DQET/D(I,,,) +y(ayz/an) +z(azi/aQ7n)~
(39)

Explicit formulas for the elements of the
kinetic-energy matrix may now be obtained from

reductions of the scalar products of the s-vectors
are made by the standard methods of vector
analysis. The reduction process of eq 16 may
then be applied explicitly to the translations. In
this reduction, S;; in eq 4 and 16 represents the
submatrix for translation, and is a 33 diag-
onal matrix, with each diagonal element
equal to the total mass of the molecule, M.

. Sy represents the submatrix for rotations and

internal  coordinates, and Sy, the submatrix
for the interaction of these coordinates with
translation. The elements of S, are simply
the z-, y-, and z-components of linear momentum
of the rotations (about the », ¥y, z-axes) and
internal coordinates.

The reduced matrix for the rotations and in-
ternal coordinates, corresponding to Si; in eq 16,

eq 33 and 34, combined with eq 36 to 39. The which is ebtained in this way may be written,
d’r ¢‘I/ ¢z qm Qn
[ ]z -[zy ]za: me . ]]:n
¢u [11/ v *Iyz Hum . I]un
b2 __‘]21 _Iyz ]z Hzm Ilzn
. . . . (40)
qm Hnm Hym H.,. Ky Ko
Gn it B e Ko o

The elements for rotation are the moments and
products of inertia of the molecule about axes
parallel to the z,7,z-axes, but passing through
the center of mass of the molecule,

L=2"m(y? +22) —M(yi+2%)
I,=20m, (22 +a3) — M (2 +23)
L=2 my(a2 447 — M (i +y i)
Iryzzi:mixiy,—MzMyM )

I”z:;mlylzz_A[yMZM

IZI:,Zm,zle—MzMxM

The total mass of the molecule has been denoted
by M, and the coordinates of the center of mass
of the molecule, for the equilibrium configuration,

6

by #a, ¥ar, and 2z, The first term in each equa-
tion of 41 is the moment or product of inertia
about the arbitrary origin; the second term arises
from the reduction process of eq 16, and vanishes
if the origin coincides with the (equilibrium)
position of the center of mass.

The elements for the interaction of rotation and
internal coordinates may be written

Hz?r::x'Hm ) I]ym:y'Hm ) I]zm:z'Hm 3 (42)
where H,, is the vector
H,, =3 mr; X (Or:/y ) —Fa X 3 3m;(3r;/dy,) (43)

The vector from the origin of the axes to the center
of mass of the molecule has been represented by

I,

rAIZM_IZmiri:X$M+ YYartZ2yr. (44)
1
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If the origin of the x,7,z-axes coincides with the
(equilibrium) position of the center of mass of the
molecule, the vector ry, and the second term in
eq 43, vanish. The sccond term arises from the
reduction process of eq 16. The first term in eq
43 represents the vector angular momentum of the
motion ¢,, about the origin, while H,, represents
the vector angular momentum of ¢, about the
(equilibrium) center of mass. The quantities
H,,, H,,,and H,, are therefore the components of
angular momentum of ¢, about axes through the
center of mass parallel to the z, vy, z-axes.
For internal coordinates,

Kmm,:Zmi(ari/a(Im)Q_‘Mml[zmi(ari/aq"l)jlz (45)
and for the interaction of two internal coordinates,
]{mn == Knrnzmi(bri,/a(lm> : (ari/a(ln)

— M2 0m(3r/gm) |.[23m(0r/0g,) | (46)

The second term in eq 45 may also be written
M(0r,/0q,,)?, and therefore vanishes if the position
of the center of mass of the moleculeisindependent
of ¢,. Similarly, the second term in eq 46 is
M(0r,,/0q,,) - (Or5/0q,,), and vanishes if the center of
mass is independent of either ¢, or ¢, (or both).
However, the wvanishing of the (equilibrium)
vector ry, 1s not, of itself, sufficient to cause these
terms to vanish. The second terms in eq 45 and
46 represent the kinetic energy of translation of
the center of mass of the molecule, and arise in
the reduction process of eq 16. The first terms in
these equations represent the kinetic energy of
the internal coordinates computed with respect
to the arbitrary origin.  Subtraction of the second
term from the first yields K, and K,,, which
represent the kinetic energy of the internal co-
ordinates computed with respect to the instan-
taneous position of the center of mass.

The set of atoms associated with the internal
coordinate ¢, will be defined to include those
atoms which move with respect to the x,y,z-axes
when the coordinate ¢,, varies. This set is not to
be regarded as fundamental, because the atoms
included in it depend, in general, on the definition
of the axes. The vector (dr,/dq,) vanishes by
definition for all atoms not in the set associated
with ¢,. As a result, the summations in eq 43
and 45 need extend only over the set of atoms asso-
ciated with ¢,. In eq 46 the two summations in
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brackets extend over the sets of atoms associated
with ¢, and ¢,, respectively, whereas the first
summation in eq 46 extends only over those atoms
included in both of these sets.

The final reduced kinetic-energy matrix is ob-
tained from the matrix 40 by applying the reduec-
tion process of eq 16 to the rotations, and to any
internal coordinates that do not appear in the
potential-energy expression. The elements of the
matrix of eq 40 are not independent, in general,
of the choice of the x,,z-axes, but the reduced
matrix is independent of the axes after the over-
all rotations have been removed. The reduced
matrix is most easily obtained numerically, by
applying the reduction process of eq 10 to one
row and column of the matrix at a time (so that
in each step Sy in eq 16 is a matrix with a single
element). This procedure makes it unnecessary
to reciprocate directly the submatrix for the co-
ordinates that are to be removed.

(b) Equations for semirigid molecules

The equations for the calculation of the kinetic-
energy matrix for generalized internal coordinates
have been given in the preceding section. These
equations may now be applied to the two types
of internal coordinates which will be found use-
ful in specifying the configuration of a semirigid
molecule.  These are coordinates that represent
either a translation or a rotation of their associated
sets of atoms with respect to the z,7,z-axes. In-
ternal translational and rotational coordinates will
be represented by ¢, and ¢,, respectively, where
¢, 1s the distance of translation, and ¢, is the angle
of rotation, both measured from the equilibrium
configuration.

Let u be a unit vector in the direction of transla-
tion for the coordinate ¢, with components
tz, my, and g, and let € be a unit vector directed
along the axis of rotation for the coordinate ¢,
with components &,, £,, and £.. Let p, be the posi-
tion vector of the ¢th atom associated with ¢,
with respect to an arbitrary point on the axis of
rotation for ¢,. In terms of these vectors eq 38

becomes,
(ori/0gq,) =W, (47)
and
(or./d¢,) =& Xpi, (48)

for translational and rotational coordinates, re-
spectively. Equations 47 and 48 may now be
substituted in eq 42 to 46, to obtain the elements

7



of the kinetic-energy matrix, eq 40, in vector form.
These vector expressions may then be reduced by
the usual methods to more useful scalar expressions
involving the masses, moments of mass, and
moments of inertia of the associated sets of atoms.
The details of these reductions will be omitted and
only the final formulas stated.

Some additional definitions will be necessary.
The total mass of the set of atoms associated with
a coordinate ¢, (m=t or r) will be denoted by
M,,, and the coordinates of the center of mass of
the set of atoms by iym, Yam, and ziy,. The
corresponding quantities for the entire molecule
are M, and zy, ¥, and z,.

For each rotational coordinate, ¢,, define a set
of orthogonal right-handed &, », {-axes, with the
origin at a point @, Y., Z,r, o0 the axis of rotation,
but otherwise aribtrary, and the -axis coinciding
with the axis of rotation. The direction cosines
of the &, n, (-axes with respect to the z, y, z-axes,

~written in matrix form, are

£ Nz $z
& My $u (49)
I-Ez Nz [

The determinant of this matrix will be +1 if
both the z, y, z-, and &, 7, {-axes are right-handed.

The following moments and products of inertia
of the set of atoms associated with ¢, will be
required,

Is:};mi(n?%-s“?)
Isn:ZmiEini (50)
I?SZZmififi

I; is the moment of inertia about the axis of rota-
tion. The products of inertia, /¢, and I, vanish
if (1) the ¢-axis is a twofold, or higher, axis of
symmetry for the associated set of atoms; (2) the
7, {-plane is a plane of symmetry; or (3) if a three-
fold, or higher, axis of symmetry lies in the 7,
¢-plane, and intersects the -axis. /Iy, (but not
necessarily I¢:) vanishes if (1) the ¢,&-plane is a
plane of symmetry or (2) the n-axis is a twofold
axis of symmetry.

Let d, be the perpendicular distance from the
center of mass of the set of atoms associated with

8

¢r to the axis of rotation, or ¢-axis, and let A\, \,,
and A\, be the direction cosines, with respect to
the z,y,z-axes, if the line along which this center
of mass moves when ¢, increases from zero to a
small positive value.

That 1s,
d, = (nig+ i), (51)
and
A= (Maer$z—$aerma) [ d
N= (Maer$y— Earrmy) /d; (52)
A= (aerla— e 2) /s
where,

ﬂzur:M_rlzmim, flmrr:i‘l?lszf‘i- (53) .

The sums in eq 50 and 53 extend over the atoms
associated with ¢,, Atoms on the axis of rotation
are not associated with ¢,, according to the
definition given in the preceding section. It may
be more convenient to calculate these quantities
as follows. Define a,, «, and a, to be equal to
their respective cofactors in the determinant,

a, a, a, ;
2 & E | (69
iyt are— ol S i)
Then
dr= (2 + o2+ ad), (55)
and

A= (az/dr)y N= (o‘z//dr>7 A= (Ol;/d,). (56)

The equations for the elements of the kinetic-
energy matrix, eq 40, may now be stated. For a
translational coordinate, q,, H,,, H,;, and H,, are
equal to their respective cofactors in the deter-
minant

1., m,, H, |
M, M, Mu, |(57)

\

(CnmaCir) (Yare—Yar) (2ar1— 2ar)|
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If the translation arises from the stretching of a

bond, w,. w,, and w. are the direction cosines of
y Mz My, K

the bond.

For a rotational coordinate, ¢,,
H,=HJY+H?
e — T (58)
18] =185

where 10, HY and H? aredefined by the equations

xr) ur

HY=tIi—nlu—Col
11(1,1,.):&[5—111,[5,,”—5'1,](5, (5()\
H(ZIT)Z&IE—W:[&—?:]{E

<and Y HY, and HY) are equal to their respective
cofactors in the determinant

He HE HE
M\, M,d.\, M\, (60)
(*"vr_fr.\l,\’ (.UorkyJI) (207_‘2.‘.1) .

In many cases, I,,=1;:=0, and eq 59 reduces to
IFIS= 5 Il IE0S =g, Il T[S Dfs Il (61)

Before stating the formulas for the remaining
elements, K,,,, and K,,,, of eq 40, it will be neces-
sary to differentiate between connected and un-
connected coordinates. If the sets of atoms asso-
ciated with two coordinates ¢, and ¢, contain no
atoms in common, the two coordinates will be
said to be unconnected—otherwise they are con-
nected.  Whether two coordinates are connected
or unconnected will be dependent, in general, on
the way in which the r,,z-axes are defined. The
only types of connected coordinates that will be
considered are those for which the set of atoms
for one coordinate, say ¢,, is completely contained
within the set of atoms for the other coordinate,
Gm- A special case is that in which the sets of
atoms for ¢, and ¢, are identical. If ¢, and ¢,
are unconnected, this fact will be indicated ex-
plicitly by writing K,,,(=K,,) as K,, ,(=K, ,.).
If ¢,, and ¢, are connected, and the set of atoms
for ¢, is completely contained within the set of
atoms for ¢,, then K, ,(=K,,) will be written
K, (=K, . If the set of atoms for ¢, and
¢, are identical, K,,,,=K,,,. Subscripts ¢ and »
will again be used to indicate translational and
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rotational coordinates, and a second coordinate
of a given type will be distinguished by the use of
primes. The equations for the several possible
forms of K, and K,, may now be written as

]\’//;“{l(\l—[‘lilk“[’) (62)
Ko v=—M"MM/ (o’ s+ pyn’y+ ep”2) (63)

]\’/( 5 :A{l, (1 = *"{*11‘11) (p'.rl-‘/.r ar N!/M,J,'+' li.’,u/z) (64)

K,,=—M'MMA, 65
Kun=M,01—M"M)A, 66)
K o=Mb,y— MMM, 67)
K, =I:— MM (68)

K, =—M'MM dd NN+ NN,FNN2) (69)
K= (HY' + £ HY' +EHP Y+ M. d; A, vy
—- MM Mdd, (NN, NN+ NN)  (70)

The symbols A, Ay, and Ay, represent the
following determinants:

A/r::(]r<#r)\t+‘#y)\3/+,Uz)\z)
Mz My Mz
El‘ S:'/ EZ (71)

(]/J[r - ,’/ur)

|

( 3
|\ Lagr— & nr)

(24\1r"*50r):7

Mz My Mz

Aru)" & &y fe (72)

|@are— o) Wsre—Yor)  (Zare—2Zor)l,

‘ N \, PV
A,(,/):} & £ £, (73)

[

’<'I':f_‘r0f) (lllr—yw) (Es=th),

Ineq 70, H»', HY' and HY’, are the quantities
calculated from eq 59 (with »=7"). When eq 61
applies, the first term in parentheses in eq 70
reduces to,

(&E+E 888 I (74)
If the center of mass of the set of atoms asso-

ciated with a rotation, ¢,, lies on the axis of rota-
tion, so that ¢,=0, ¢, will be called a balanced
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rotation. For a balanced rotation, H®=H® =
H® =0, in eq 58, and there are obvious simplifica-
tions in eq 65 to 70, as A,=0 (in addition to
d,=0). A balanced rotation may be called acci-
dentally balanced if the £-axis is not an axis of
symmetry of the associated set of atoms. Such
cases are very unlikely to occur. As a rule, the
¢-axis for a balanced rotation will be a twofold or
higher axis of symmetry. In this case, /;,= [{:=0,
and eq 59 is replaced by eq 61. However, it is not
necessary that a rotation be balanced for 7:, and
I¢: to vanish,

III. Application to Propane, Toluene, and
Ethylbenzene

1. Kinetic-Energy Matrices

The application of this method to certain vibra-
tions in ethylbenzene will be described in this
section. In order to obtain the necessary force
constants for ethylbenzene, it also has been neces-
sary to set up the kinetic-energy matrices for
propane and toluene. In the semirigid model of
ethylbenzene for which the calculation has been
carried out, it is assumed that the benzene ring
and the attached hydrogens move as a rigid body,
and also that the methylene and methyl groups
move as rigid bodies. That is, the force constants
for all deformations of the benzene ring and
attached hydrogens and for deformation of the
H—C—H angles in- the methylene and methyl
groups have been set equal to infinity. The force
constants for the stretching of the two C—C bonds
i the ethyl group have also been assumed infinite.”
in order that the force constants obtained from the
observed frequencies of propane and toluene
should be on a comparable basis, corresponding
assumptions have been made for these molecules.
The coordinates remaining in the problem are
therefore the rocking and twisting motions of
these rigid groups.

The total number of internal coordinators in
ethylbenzene is 48; of these, 8 are retained in the
present calculation, and 2 are assumed to have
zero frequency. In calculating the kinetic-energy
matrix by the present method it is necessary to con-
sider only these 10 internal coordinates, plus the

7 As no bond stretchings are included in the present calculations, they will
not illustrate the use of the formulas for translational internal coordinates
given in section II, 2b.
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3 over-all rotations, and then to remove the 5 co-
ordinates of zero frequency, as discussed in
section II,1. In order to obtain the reciprocal
kinetic-energy matrix for the 8 internal coordi-
nates, it would be necessary to set the matrix up
for the 46 internal coordinates of nonzero fre-
quency, and then to remove 38 coordinates, as
discussed in section I1,1.

Before enumerating the coordinates, the sym-
metry properties of the molecules will be reviewed
briefly. The propane molecule has the symmetry
(%, with the nondegenerate representations A,
A,, By, and B,. Representations A and B are
symmetric and antisymmetric, respectively, to
rotation by 180 degrees about the twofold axis.
Representations with subscripts 1 and 2 are sym-
metric and antisymmetric, respectively, to reflec-
tion in the symmetry plane. The toluene and
ethylbenzene molecules have the symmetry Ci,
with nondegenerate representations A’ and A’’,
which are symmetric and antisymmetric, respec-
tively, to reflection in a plane perpendicular to the
plane of the benzene ring.*

The notation adopted for the internal coordi-
nates is as follows. In-plane and out-of-plane
(with respect to the symmetry plane) rocking
motions are denoted by ¢, and =, respectively.
Internal rotational motions are denoted by ¢;.
The subscript ¢ indicates the group, as follows:
Propane, methyl (1 and 2), and methylene (3);
ethylbenzene, methyl (1), ethyl (2), and methylene
(3); and toluene, methyl (1), and methyl group
(2). On this basis methylene twisting is repre-
sented by ¢;. The C—C—C angle bending (in
propane and ethylbenzene) is denoted by «. The
coordinates represent in each case the angular
deformation from the equilibrium configuration.
In addition the over-all. rotations about the
ry,z-axes will be denoted by ¢, ¢, and ¢,
respectively.

$ The equilibrium configuration assumed for the ethylbenzene moleclue
is that in which the plane of the benzene ring is perpendicular to the plane
of the C—C —C angle in the ethyl group. The angle of rotation of the methyl
groups in these molecules does not affect the quantities entering into the
calculations.

¢ The axes for methyland methylene rocking pass through the carbon atoms
of the CH3 and CH3 groups, respectively, so that these are motions of the
hydrogen atoms only. The axis for ethyl rocking passes through the phenyl
carbon atom, sc that the entire CoHg group moves as a unit. The motion in
toluene of the entire CHs group as a unit about an axis through the phenyl
carbon atom has been called “methyl group” rocking to distinguish it from
methyl rocking. Methyl rocking may conveniently be denoted by CHjs
rocking, and methyl group rocking by —CHj rocking.
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In the case of propane it is necessary to con- TarLe 1.—Notation and symmetry for coordinates
| struct the following symmetry coordinates:

| Symmetry | Coordinate @ Description
ot= (1/\/2) (o1F 02)
i PROPANE (Cs,)
‘ o= =(1/v/2) (a1~ o)
‘ Ay ' CHj rocking
at= (] /\/2) (7!'1—|—7l'2) « 0—C—C bending
(75) Over-all rotati
_ = @z ver-all rotation
T = (1/\/2)(‘”1"‘7"2) ot CHj rotation
o N | e | N
+_— b @3 CH; twisting
a ¢"=(1/v2) (¢t ¢2) Lo e
= (1/\/§\, (¢1— ¢2) oy Over-all rotation
Bl ____________________________________
: " at CH3s rocking
These transformations are orthogonal, with the o CH; rocking
1 matrix, ' . Over-all rotation
@ CHj; rotation
7 - 1 l—l B
(1 /,\/2 ) x CH; rocking
3 ‘ 1 o 1J w3 CH: rocking
. o ITHY ENZ K
From eq 26 there are obtained the relations BT LEENZENE (Cud
(r%,6%) = (12) [ (01,0 + (009 + (01,0 s | oraalimazon
E o1 GHsrooking.
(U o )= (1/2)[(‘71)0—1) + (02y0'2>]— (0'1)0'2> A’ a2 C2H; rocking
a3 CH: rocking
(o%,07)=(1/2)[(01,01) — (02,02)]=0 (76) ] S = e bdig
- 0z Over-all rotation
(0’+,(1> = (1/42)[(01,9) 2 (‘72’(1)] R Over-all rotation
@1 CHj rotation
- 53 2] CyHj; rotation
(07,9) = (1/2)[(01,9) — (02,9)] ) ar
@3 CH: twisting
. . . w1 CH; rocking
where (¢t,0%) 1s the diagonal element in the w3 CyH rocking
' Kinetic-energy matrix for o*, (oF, o) is the element L peicne
connecting ¢ and o (equal to (¢, 0")), ete.
¢ represents any coordinate other than oy, o, o, TOLUENE (Ci)
. or o. Similar relations hold for the = and ¢ co-
ordinates. The elements for the internal coordi- o Over-all rotation
. . ’
nates are first calculated from the equations given ST o g
. . ol 3
in section II, 2b, and the elements for the sym- o —CHj rocking
metry coordinates are then calculated from eq 76. . .
The notation used for the coordinates, their 7 Over-all rotation
symmetries or representations, and their conven- e 2 S
~ tional descriptions are summarized in table 1. m CHjrocking
-1 Interaction terms in the kinetic- and potential- e =AClEn g o
energy matrices between coordinates belonging to
. ’ . . . . - H @ The coordinates above the dashed line in each representation were
different representations vanish identically. removed from the kinetic-cnergy matrices (see text).
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The dimensions used in the calculations are as
follows. The benzene ring was assumed to be a
plane hexagon, with the length of the C—C bonds
1.39 angstrom units. The other bond lengths, in
angstrom units, were 1.54 for the C—C bonds in
propane and in the alkyl groups (including the
bond joining the alkyl group to the ring [8]), 1.09
for the C—H bonds in propane and the alkyl
groups, and 1.08 for the C—H bonds on the
benzene ring. Tetrahedral angles were assumed
in propane and in the alkyl groups. In every case
the numerical values of the eclements of the
kinetic-energy matrices (tables 2 and 3) have the
units of mass in atomic-weight units multiplied by
the square of a length in angstrom units.

TaBLE 2.—Kinetic-energy matrices for propane before
removal of over-all and internal rotations

} ‘ o o
i fffffffffff
o | 1960  —2.04
N a | 204 11.63
1 \
@: ¢t 3 wt

bz 58. 44 2.61 1. 60 4.26

) ot | 261 3.194 0 0
2 b3 .60 0 1.597 0
| 426 0 0 1.996
|
’ by ot o3
$y | 66.66 4.67  1.57
B ot | 467 1978 0.026
o3 ‘( 157 0.026  .761
[ ¢ o T3
¢ | 1780  3.69  —2.07 3.16
i ¢ | 3.69 3194 0 0
' = | —2.07 0 1941 —0.045
w3 | 3.16 0 —0.045 2.358
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TasLe 3.—Kinetic-energy matrices for propane, toluene, and

ethylbenzene

Propane (Ca,)
o a
A [ o 1.96 —2.04
Ul e —2.04 11.6
é3 at
H | # 1.55 —0.120
N | —0.12 1.67
at 4]
+ 1.65 —0.084
B o
! { a || = 724
T Y
& ™ 1.63 0.44
! 8 0.44 1.62
Toluene (Ci)
a1 a2
P | 1.87 -1.90 |
2 l o | —1.90 4.4 |
ml w2
A st ~ L9l —2.37
: w2 —2.37 20.6
Ethylbenzene (C1;)
o1 a2 a3 (23
o1 1.93 —1.85 —0.023 —2.77
1 o2 | —1.85 29.8 —.57 19.9
= o3 | —0.028  —0.57 764 —0.157
« —2.77 19.9 —.157 27.2
b3 Tl E.9) T3
3 1.57 —0.089  —0.42 0. 067
A m —. 089 1. 66 .51 .25
™ —.42 .51 22.4 —3.14
™3 . 067 .25 ~Eik 2,04
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As stated previously, the intermediate steps in
the calculation are dependent upon the choice of
x,/,z-axes, but the final kinetic-energy matrices
(after removal of over-all rotation) are not. The
:alculations for propane are deseribed in some
detail in order to illustrate the method, and the
choice of axes for propane will therefore be stated.
The 2- and z-axes were taken in the plane of the
C—C—C angle, with the origin at the vertex of
the angle, and the z-axis bisecting the angle. The
z-anis therefore remains a twofold axis of sym-
metry as the C—C—C angle is deformed. Tbe
origin is not at the center of mass of the molecule.

The coordinate « In propane is most easily
treated as follows. By definition the z-axis
bisects the C—C—C angle. Denote the changes
in these two half-angles by « and a,. The
kinetic-energy matrix is first set up for oy and a,
and then the following transformation is carried
out:

a=(a;+a)
(77)
0=(oy—a)
The second equation is merely the condition that
the z-axis bisect the C—C—C angle when the
latter is deformed. The elements in the kinetic-
energy matrix for (eq—ay) are then ignored. The
nonorthogenal matrix of this transformation is

noon
Ll

Equation 26 leads to the relations
(ay0) = (1/4)[ (e, 1) +2 (e, ) + (ar,2)]  (78)
(Cl,(j) a (1/2)[(0‘1;(1) + (aQ;Q)])

where ¢ is any coordinate other than «;, as, or a.

The following remarks apply to the calculation
of the elements of the unreduced kinetic-energy
matrix, eq 40, for propane. If the origin of the
£ n, {-axes (the point x,,, ¥,s, 2,,) is located at the
carbon atom on the £-axis (or at any point on the
£-axis for the balanced rotations ¢, ¢,, and ¢s),
then 7, and I, vanish in each case, and /1%,
1)), and HY may be calculated from eq 61.
HY?, HY, and HY vanish for the balanced rota-
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tions ¢y, ¢, and ¢;. The diagonal terms A, are
obtained from eq 68. For balanced rotations
K,,=1;. Coordinates with different subscripts
(1, 2, or 3) are unconnected, and A, is calculated
from eq 69. K, vanishes if either rotation is
balanced (¢-coordinates), or if the directions of
motion of the centers of mass are perpendicular
(thus m-coordinates are perpendicular to o- and
a-coordinates). Coordinates with the same sub-
scripts are connected, and A, is obtained from
eq 70 (the first term being given by eq 74).
From a consideration of the directions of the
£-axes, and the directions of motion of the centers
of mass, for each coordinate, it is readily seen that
the only terms that do not vanish are K.,
(=152

The numerical values of the elements of the
matrices of eq 40 (one matrix for each representa-
tion) are given for propane in table 2.

The next step i1s the removal of the over-all
rotations by the reduction process of eq 16. In
the subsequent calculations the frequencies of the
¢, and ¢, internal coordinates (methyl rotations in
propane and toluene, and methyl and ethyl rota-
tions in ethylbenzene) have been assumed to be
zero.  This is justifiable because the potential
barriers for these rotations'® correspond to suffi-
ciently low frequencies for small oscillations from
the equilibrium configuration. The coordinates
¢1 and ¢, have, therefore, also been removed by
the reduction process of eq 16.

The final reduced kinetic-energy matrices, one
for each representation, for each molecule, are
shown in table 3.

2. Calculation of Frequencies

The force constants are now to be evaluated
from the observed frequencies of propane and
toluene. These force constants may then be sub-
stituted in the secular equation for ethylbenzene
to yield calculated frequencies for the latter
molecule.

The frequency assignment for propane has been
taken from Pitzer [9], and the assignment for
toluene from Pitzer and Scott [10], The fre-
quencies (v) are summarized in table 4. The

10 Propane, reference [9]; toluene and ethylbenzene, reference [11].

13



normal coordinates are mixtures of the coordinates
in each representation, and when this mixing is
appreciable it is not possible to assign the fre-
quencies in each representation to the coordinates
without some ambiguity. However, the pairing
indicated is fairly certain. Previous investigators
have assigned the two B, frequencies as 7~ (748)
and m (1179), but the assignment of these fre-
quencies in table 4 is supported by (1) the force
constants obtained for ¢;, o3, and ;, which should
have approximately the proportions 2,1, and 1,
respectively (these figures assume that interaction
constants are negligible, and that the main con-
stants arise from the constants for the four
O—C—H angles), and (2) the approximate
equality of the force constants obtained for =~
and ¢

TasLe 4.—Frequencies and calculated force constants for
propane and toluene

PROPANE
. o Sym-
Coordinate Description metry v by k
cm-1
= T CH3rocking__________ Ay 1155 | 1.334 2.08
Commmanes C-C-C bending | Ar 375 | 0.1406 1.68
3 B CH twisting_________ A2 1,278 1. 633 2.50
AR CHsrocking_____._____ A3 940 | 0.884 1.49
ot ______ CHj rocking _ e B 922 . 850 1.41
;S CHarocking . ____ By 1, 338 1.790 1.28
X o U _.| CHsrocking__________ B 1,179 | 1.390 1.97
A CHzrocking . _______ .| B 748 | 0.560 0.96
|
TOLUENE
[ S O CH;rocking . _______ 1, 190 1. 416 2.28
(o o e —CHj3rocking ¢ 216 | 0.0467 0.68
et CHjs rocking 1, 060 1.124 1.80
w2 .____| "CHsrocking ®________ 340 | 0.1156 2.43
|

The next column of table 4 gives the value of
N (eq 22 to 24) in the units

A=[v(ecm™")/1000]>.

The last column shows the calculated values for
the force constants, k, as calculated from the
secular equations. They are the diagonal ele-
ments in the potential energy, or F, matrix
(off-diagonal elements have been set equal to
zero as there are not sufficient data to determine
them). The units of these force constants corres-
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pond to the units that have been used for A and
for the kinetic-energy matrices in table 3; in the
reverse calculation for ethylbenzene the frequen-
cies are again obtained in cm™,

Table 5 shows the force constants selected for
the ethylbenzene molecule. Those derived from
toluene are o, from oy, and m from m. Those
derived from propane are ¢ from (o7 +7)/2,
m from (7"+477)/2, and 03,73, ¢35 and « from o,
w3, ¢, and «, respectively. The averaged force
constants, (¢7+07)/2 and (=4 77)/2, are the main
force constants for methyl rocking in propar
The observed separation of the frequencies 1ur
ot, ¢, and for 7, 7~ in propane, is due to methyl-
methyl interaction constants and the twofold
symmetry.

TaBLE 5.—Force constants and calculated frequencies for *

ethylbenzene
ETHYLBENZENE
. s Sym- y

Coordinate Description metry k A v
cm—1
07— CHszrocking _________ A’ 1.75 1.067 1,035
CoH; rocking..________ A’ 0.68 | 0.0187 137
_.| CHarocking__________ A’ 1.28 1.721 1,310
.| C—C—-C bending_____ A’ 1.68 | 0.1437 380
_| CH2 twisting_________ A 2. 50 1.615 1,270
_.| CH3rocking____ O - g 1.73 1.144 1,070
_| Ce:Hsrocking ___ | A" 2.43 0.1025 320
' CHzrocking_ _________ A 0.96 . 604 775

Substitution of these force constants in the sec-
ular equations for ethylbenzene then yields the
values of A, and the calculated frequencies, shown
in the last two columns of table 5. The observed
frequencies for ethylbenzene are discussed in the
next section.

IV. Vibrational Frequencies of
Ethylbenzene

The present calculations were undertaken as an
aid to the assignment of the vibrational frequencies
of ethylbenzene.* These frequencies were required
for the calculation of the thermodynamic functions
by statistical methods [11]. The frequencies have
been assigned on a semiempirical basis which
involved a detailed consideration of only the

*F., G. Brickwedde, M. Moskow, and R. B. Scott [24] have also presented
an assignment of the vibrational frequencies of ethylbenzene.
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lowest frequencies of vibration of the benzene ring
and also of the frequencies associated with the
vibration of the ethyl group. The remaining
froquencies w-re taken from the assignment for
toluene [10]. A complete frequency assignment
for ethylbenzene at this time is impracticable.

Several workers have reported Raman spectra
[17 14, 15, 16, 17, 18] and infrared spectra [19,
20, 21, 22, 23] for ethylbenzene. The lowest
observed frequencies in the Raman spectrum of
ethylbenzene, are, approximately, 154, 305 (weak)

9 (weak), 452, 485, 538 (weak), 553 (weak),
and 620 em™!. The frequencies 480, 567, and
617 ecm~' have been reported in the infrared spec-
trum in this region. It will be helpful to list
the six lewest frequencies of toluene, as assigned
by Pitzer and Scott [10]: 11, 216 (R); 18b, 340
(R); 16a, 405 (R); 16b, 467 (R); 6a, 521 (R); and
6b, 622 (R, IR). The first number designates
the mode of vibration (see fig. 6, of Pitzer and
Scott), the second is the frequency in em™, and
R and IR refer to the presence of the line in the
Raman or the infrared spectrum, respectively.

The vibrations 11 and 18b correspond princi-
pally to the rocking of the alkyl group perpendic-
ular to and parallel to the plane of the benzene
ring, respectively. The frequencies of these modes
in ethylbenzene were caleulated as 137 cm™! for
11 and 320 em™! for 18b by means of the approxi-
mate normal coordinate analysis of section III
(these vibrations were denoted by o, and m,
respectively, in that section). The only possibility
for the assignment of the 154 em™' frequency is
therefore mode 11. The mode 18b was assigned
the caleulated frequency of 320 em™'. The
frequency observed at 305 ecm™! may easily be
the overtone of 154 cm™.

The mode 16a has a frequency of 400 em™ in
benzene and 405 em™! in toluene. The observed
frequency at 399 cm™ in ethylbenzene may
represent 16a, or an overlap of 16a with the
carbon skeletal bending in the ethyl group, which
should fall at about 380 em~*. The toluene value,
405 em !was retained for ethylbenzene. The
mode 16b has the frequency 467 ecm™ in toluene;
the nearest observed frequency in the spectrum
of ethylbenzene, 452 em™!, was assigned to this

Frequencies of Semirigid Molecules
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mode. The mode 6a in toluene gives rise to a rel-
atively intense line at 521 em~'. The variation of
the frequency of the mode 6a in other monosub-
stituted benzenes, as a function of the mass of the
attached group [12], indicates that 6a should be
lowered somewhat in ethylbenzene, since the
effective mass of the ethyl group in this mode is
considerably greater than that of a methyl group.
Therefore, the frequency 485 ¢cm™', which is the
strongest observed line in this region, was assigned
to 6a. The mode 6b has a frequency of 606 em™" in
benzene, 622 em™ in toluene, and remains essen-
tially unchanged in frequency in other monosub-
stituted benzene [12]. The frequency observed in
ethylbenzene at 620 em™! was therefore assigned
to 6b.

The mode 7a, which is principally the stretch-
ing of the C—C bond joining the alkyl group to
the ring, has a frequency of 1,210 em™! in toluene.
As a strong line appears at about 1,200 em™' in
the ethylbenzene Raman spectrum, the toluene
frequency was retained for 7a. The other C—C
stretching mode in the ethyl group was assigned
the frequency of the strong line at 965 em ™" in the
Raman spectrum of ethylbenzene as this is close
to the average of the two carbon-carbon stretch-
ing frequencies of 868 and 1,053 ¢m™" in propane
[9]. The symmetry that splits these two com-
ponents in propane is absent in ethylbenzene.

The symmetrical hydrogen bending in the
methyl group was assigned the frequency 1,385
em™', and the doubly degenerate unsymmetrical
bending the frequency 1,460 cm~!. The symmet-
rical hydrogen bending in the methylene group
was assigned the value 1,460 em~'. The value
2,960 em~! was assigned the C—H stretchings in
the methyl and methylene groups. These assign-
ments were made on the basis of the frequencies of
these modes in propane and toluene, and to some
extent on the basis of the spectrum of ethylben-
zene.

The remaining frequencies of vibration of the
ethyl group were assigned values calculated by
means of the approximate normal coordinate
analysis of section I1I (see tables 1 and 5).

The complete frequency assignment for ethyl-
benzene is shown in table 6.
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TaBLe 6.— Vibration frequencies of the ethylbenzene molecule

( Type of Vibration ;136'{?;, quﬁéy

Vibrations principally characteristic of the benzene ring or phenyl radical

cmt

1,002
1,030
1,070
1,155
1,175
1,210
1,282
1,310
1,483
1, 586
1,603
1,630
3,046
3,047
3,062
3,080
3,080

group

CsHs-CH2-CH3 angle bending ... A’ 380
CHarocking___________________ .. A 77
CHy-CHj stretching . A 965
CHsrocking______ .. A’ 1,035
CHj; rocking A 1,070
CH; twisting _____ A 1, 270
CH; rocking A’ 1,310
CH; symmetrical bending A’ 1,385
CH; symmetrical bending .. A’ 1,460
A 1,460
AL 1, 460
CH; symmetrical stretching .. A’ 2, 960
CH; unsymmetrical stretching . ... A 2, 960
CH; symmetrical stretching____________________ A’ 2, 960

CH; unsymmetrical bending_ ... {

CH; unsymmetrical stretching_ .. A 2 960
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Appendix 1 "

Let the coordinates ¢; be divided into two groups, ¢,
and ¢, and partition S;; into the corresponding subma-
trices. Then the kinetic energy matrix, eq 4, becomes

Srm Pab Agn?

S Sh S |- (79)
l_Saz Sm Sa
The removal of the cross terms in the kinetic energy that
contain ¢, leads to the reduced matrix
(Sbbfsab GRS T (.Shzfsabsagls‘ﬂ)
(812 — 8287 S) (82— S:28,28:2)
and the removal of the remaining cross terms that contain
¢» leads to the final reduced matrix for the coordinates ¢,

) (80)

11 See section II, 1 (following eq. 16).
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‘\'21‘.' = (S;’: R ‘\'u'.IAQ(x;l‘\vu'J) -
3 3 Q-1Q y
(‘\52 o ‘suz‘snu A\.m) (‘&m.
- § 7 -
(‘Shz o SahSm. l‘\vnz)~

SapSaa ')~ (81)

Equation 81 may be rewritten in the form

S Q g & vy —1 Yy -1 Q P& Q-1
‘522**\'2:' [‘\r_"\hz (A\uu At aa AsubibAgab‘\au )

- Gh’b[gabsaa_l
—SESAC Sas
, , (82)
Gy, Sye
where
G =(Ses— Ac'abSu;lSab)—l- (83)

On the other hand, the simultaneous removal of the cross
terms that involve ¢, and 7, leads to the reduced matrix

p 5 & i
Syo=282—[Sa2 Sp2l | Saa  Sas I_S”;|

I_Sh'.’_l

(84)

& v
Sar, Swy

The matrices 8’5, caleulated from eq82and 84 are identical,
provided that

-1 Q-1Q (& Q-1 Y -1Q
[[(Sit+8.: 8060808 — 818,64

I_ —GwSuSa’ Gy

N Bl el
i = (85)
AS'(l b kq bk 0 41’) k

Frequencies of Semirigid Molecules

where F,, and E,, are unit matrices. But the last rela-
tion is easily verified by multiplying out the matrices on
the left. This establishes the theorem when ¢, is divided
into two groups; the truth of the theorem for any number
of groups follows by induction.

Appendix 2 "

From the relation that SG=EFE, where FE is the unit
matrix, and eq 3, there are obtained the relations

S'IZGIZ + S22Gae+ S-z:;ézz =E (86)
S1Ga+ 812G+ Sis ;2:; =0 (87)
S1Gis+ S+ SuGss=0 (88)
SiGis+ 812G+ Si3G33=0 (89)

Now multiply eq 89 from the left by S8,.8,7", and from the
right by Gi' Gy, and add the resulting equation to eq
86; next multiply eq 87 from the left by S8..8;" and eq 88
from the right by Gss'@,,, and subtract both of the result
ing equations from the previous sum. The resulting
equation may be factored as follows:

('Vz:;(lv:sgl('vza) - H:z~ (90)

<S22 o Sm‘ql] l‘glz) (G;’:
Equation 21 follows immediately from eq 16, 20, and 90.

WasHiNGToN, September 24, 1946.

12 See section 11, 1 (eq 20 and 21).
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