U. S. DEPARTMENT OF COMMERCE

RESEARCH PAPER RP1678

Part of Journal of Research of the National Bureau of Standards, Volume 35, November 1945

SECOND DISSOCIATION CONSTANT OF *o*-PHTHALIC ACID AND RELATED _pH VALUES OF PHTHALATE BUFFERS FROM 0° TO 60° C

By Walter J. Hamer and S. F. Acree

ABSTRACT

Measurements were made of the potential difference between hydrogen electrodes and silver-silver-chloride electrodes in aqueous solutions of 72 different phthalate-chloride mixtures at 13 temperatures from 0° to 60° C. By described experimental and mathematical procedures, the second dissociation constant of o-phthalic acid and related thermodynamic quantities were evaluated, and pH values were assigned to 217 solutions, including some containing no potassium chloride. The addition of the chloride lowers the pH of the solutions principally because of an increase in the ionic strength.

The second dissociation constant may be computed at each temperature by the equation

$$\log K_2 = -2175.83/T + 9.55095 - 0.025694T,$$

where $T = t \circ C + 273.16$.

The pH values of the solutions may be computed for ratios of dipotassium phthalate to acid potassium phthalate from 1 to 2, and for ionic strengths, μ , from 0. to 0.5, by the equation

pH=-log K_2 +log $\frac{\text{dipotassium phthalate}}{\text{acid potassium phthalate}} - 3A\sqrt{\mu}/(1+3.76B\sqrt{\mu}) + \beta\mu$,

in which A and B are constants dependent upon the temperature, and β is a constant dependent upon the temperature, salt concentration, and buffer ratio.

The addition of potassium chloride lowers the pH of the solutions in accordance with the equation

 $\mathbf{pH} = (\mathbf{pH})_0 + \alpha_1 m_{\mathbf{KC}1} + \alpha_2 m^2_{\mathbf{KC}1} + \alpha_3 m^3_{\mathbf{KC}1},$

where $(pH)_0$ is the value at any temperature for a solution containing no potassium chloride and α_t , α_2 , and α_3 are constants.

These solutions with or without potassium chloride are useful as pH standards from 4.87 to 5.72 and vary only slightly with changes in temperature. They have good buffer capacity and may be readily prepared from pure materials. The NBS Standard Samples 84a and 84b of acid potassium phthalate or Standard Samples of comparable purity are recommended for preparation of the solutions, together with carbonate-free potassium hydroxide of high grade and distilled water of pH 6.7 to 7.3.

CONTENTS

Introduction	382
Method for the determination of the second dissociation constant of	
o-phthalic acid	384
1. Approximate method	384
2. Complete method	387
Experimental procedures	390
1. Materials and solutions	390
2. Electrodes and apparatus	391
Calculation of the second dissociation constant of o-phthalic acid	391
pH values of phthalate-chloride mixtures	403
Thermodynamic quantities for the process: acid phthalate ion \rightleftharpoons hydro-	
gen ion + phthalate ion	414
References	416
	Introduction

Page

I. INTRODUCTION

Precision pH standards may be defined as buffer solutions whose compositions can be accurately reproduced and the pH values accurately obtained by hydrogen-electrode measurements. The pH standards commonly used are prepared from a weak acid and its salt, such as acetic acid and sodium acetate, or by the neutralization of an acid with alkali. The ideal ones can be prepared directly from a single salt, preferably a salt that is easily purified and is neither hygroscopic nor deliquescent, such as acid potassium phthalate. This salt is now issued by the National Bureau of Standards for acidimetric work and may be used equally well as a pH standard.

Mixtures of acid potassium phthalate with hydrochloric acid or with sodium hydroxide were included in a list of standards for hydrogen-ion determination prepared by Clark and Lubs [1]¹ in 1916. They determined the pH of the solutions by a galvanic cell comprised of a hydrogen electrode, a salt bridge of saturated potassium chloride, and a decinormal calomel half-cell. For many years after their measurements, the reproducibility of hydrogen electrodes in solutions of acid potassium phthalate was questioned. Many experimenters found drifting potentials with hydrogen electrodes. However, it has been recently found that hydrogen electrodes prepared with palladium function well and that precise values of the pH of phthalate solutions can be obtained with their use [2]. Clark and Lubs chose 0.3379 v for the potential of their calomel half-cell at 20° C and assumed that the potentials at the junctions of the saturated potassium chloride bridge with the phthalate solution and the 0.1-N potassium chloride were zero. By this procedure, they obtained 3.974 for the pH of a 0.05-M solution of acid potassium phthalate. However, the liquid-junction potentials are not zero. For instance, the potential for the junction between 0.1-N and saturated potassium chloride is 0.00187 v at 25° C [3]. A value of 0.00251 v may be calculated by the Henderson equation [4] for the potential of the junction between saturated potassium chloride and 0.05-M acid potassium phthalate, if 50.5 is used for the mobility of the acid phthalate ion. These values with 0.3337 v [3] for the potential of the 0.1-N calomel half-cell excluding liquid-junction potentials give 0.3343 v for the value of the total calomel half-cell and bridge. Many other values for this half-cell, and, therefore, for the pH of 0.05-M acid potassium phthalate, have been suggested from time to time.

The problem of determining pH values from the emf of cells with liquid junction becomes more perplexing when it is realized that the potential of a liquid junction cannot be determined on a thermodynamic basis without assumptions regarding the magnitude of the activity coefficients of the individual ions involved at the liquid junction, and that the potential of a liquid junction depends upon the manner in which it is constructed. Clark and Lubs assumed that the hydrogen electrode gives a measure of hydrogen-ion concentration,

¹ Figures in brackets indicate the literature references at the end of this paper.

whereas in reality it gives a measure of hydrogen-ion activity. In order to establish a pH scale on the basis of hydrogen-ion activity, Hitchcock and Taylor [5] and MacInnes, Belcher, and Shedlovsky [6] calibrated the calomel half-cell with solutions whose properties had been determined by cells without liquid junction.² The former obtained 0.2441 v for the saturated calomel half-cell and the latter 0.3360 v for the decinormal calomel half-cell. With the use of these values, they calculated 4.008 and 4.000, respectively, for the pH of 0.05-M acid potassium phthalate at 25° C. Recently, Hamer and Acree [9] obtained a value 4.008 for this solution by an abbreviated method based upon the measurements of galvanic cells without liquid junction.

A more precise method of approach to this problem is to make a comprehensive study of the thermodynamics of acid potassium phthalate or of mixtures of *o*-phthalic acid and potassium hydroxide. From the known equilibria of the two ionization steps in the dissociation of *o*-phthalic acid, designated as H_2Ph , and the concentration of the acid (*a*) and added base (*b*), it may be shown that the hydrogenion concentration of acid potassium phthalate of any strength (a=b in this case) is given by eq 1:

$$\frac{\mathrm{H}^{3} + [a + (K_{1}f_{\mathbf{H_{2}Ph}})/(f_{\mathbf{H}}f_{\mathbf{HPh}})]\mathrm{H}^{2} + [(K_{1}K_{2}f_{\mathbf{H_{2}Ph}})/(f^{2}_{\mathbf{H}}f_{\mathbf{Ph}})]\mathrm{H} - (aK_{1}K_{2}f_{\mathbf{H_{2}Ph}})/(f^{2}_{\mathbf{H}}f_{\mathbf{Ph}}) = 0,$$
(1)

on the reasonable assumption that the effects of hydrolysis are small. Therefore, in order to obtain the true value of the hydrogen-ion concentration of acid potassium phthalate of any concentration, it is necessary to obtain precise values of the dissociation constants, K_1 and K_2 , and of the activity coefficients, f, of the various ionic species.³

This paper gives the results of measurements of galvanic cells without liquid junctions and with hydrogen and silver-silver-chloride electrodes for the determination of K_2 , the related activity coefficients, and the pH values of the solutions used in the determination of K_2 . Measurements were made at 5-degree intervals from 0° to 60° C, inclusive, in order to determine the pH values over this range of temperature and to determine several thermodynamic quantities for the process $\text{HPh}^-=\text{H}^++\text{Ph}^-$. By comparison of these quantities with similar ones for other and similar types of dissociation, a critical estimate may be made of the reliability of the values of K_2 . Determinations of K_2 were made prior to K_1 because the low solubility of o-phthalic acid prevents an accurate evaluation of the ionic sizes and "salting-out" coefficients of phthalate ions.

383

I Invel

² It is well known that an exact differentiation between hydrogen-ion concentration and activity cannot be made, as the value of the activity coefficient of the hydrogen ion cannot be determined without some assumption. Hitchcock and Taylor, and MacInnes, Belcher, and Shedlovsky in their method obtain a quantity that approximates the value of the hydrogen-ion activity. In this paper the assumption is made that the activity coefficients of ions are given by the Hückel equation and that the "salting-out" terms of the chloride and hydrogen ions are equal. See references [3, 7, 8] for discussions of assumptions used in connection with work on measurements of acidity.

activity coefficients of ions are given by the Huckel equation and that the "sating-out" terms of the chiorde and hydrogen ions are equal. See references [3, 7, 8] for discussions of assumptions used in connection with work on measurements of acidity. ³ In this paper, the symbol f is used for the activity coefficient of an ion or molecule for any scale of concentration. In this work, molality is used as the concentration unit. The symbol γ is often used for activity coefficients on this scale of concentration.

II. METHOD FOR THE DETERMINATION OF THE SECOND DISSOCIATION CONSTANT OF o-PHTHALIC ACID

1. APPROXIMATE METHOD⁴

In the determination of the second dissociation constant of o-phthalic acid by the electromotive-force method, measurements are made of the emf of the galvanic cell

Pd, $H_2(g)$ |KHPh (m_1) , K_2 Ph (m_2) , KCl (m_3) |AgCl(s)|Ag(s)(1)

for a series of solutions of different molalities, m_1, m_2 , and m_3 , and of various buffer ratios, K₂Ph/KHPh, wherein the hydrogen and silver-silver-chloride electrodes are reversible, respectively, to hydrogen and chloride ions. The addition of the chloride is therefore a prerequisite for the use of silver-silver-chloride electrodes in such solutions. The calculations of the constant depend upon the equation⁵

$$E = E^{\circ} - (RT/F) \ln(a_{\mathbf{H}}a_{\mathbf{C}1}) = E^{\circ} - (RT/F) \ln a_{\mathbf{H}} - (RT/F) \ln(f_{\mathbf{C}1}m_{\mathbf{C}1}),$$
(2)

relating the emf of the cell, E, with the activities of the hydrogen and chloride ions, and upon the mass-action expression

$$K_2 = (a_{\mathrm{H}}a_{\mathrm{Ph}})/a_{\mathrm{HPh}} = (a_{\mathrm{H}}f_{\mathrm{Ph}}m_{\mathrm{Ph}})/(f_{\mathrm{HPh}}m_{\mathrm{HPh}}), \qquad (3)$$

which defines the dynamic equilibrium between the ions for the process $HPh^-=H^++Ph^=$. E° is the potential of the silver-silver-chloride electrode for unit activity of hydrochloric acid; a, f, and m are the activity, activity coefficient, and molality of the ions denoted by subscripts; and R, T, and F have their usual significance. In eq 2 and 3, E, E° , $m_{\rm Ph}$, $m_{\rm HPh}$, $m_{\rm Cl}$, R, T, and F are known quantities, whereas $a_{\rm H}$ and the activity coefficient terms (f) are unknown quantities. The former unknown may be eliminated by combining eq 2 and 3 to give

$$[(E-E^{\circ})/(2.3026RT/F) + \log (m_3m_1/m_2)] + \log (f_{C1}f_{HPh}/f_{Ph}) = -\log K_2 = pK_2,$$
(4)

upon substitution of m_1 , m_2 , and m_3 , respectively, for HPh⁻, Ph⁻ and Cl⁻.

The last term on the left side of eq 4 is an unknown quantity. The values of the activity coefficients in this term give the magnitude of the deviations of the ions or molecules from the perfect state. If the ions in solution conformed to the laws of perfect solutes having unit activity coefficients, this term would be zero. Only at infinite dilution do ions possess the characteristics of ideal solutes. Hence if values of the term in brackets for decreasing values of (m_3m_1/m_2) are plotted against the ionic strength, values of pK_2 are obtained by

⁴ A review of the development of the method and its application to a large number of acids and bases is given by Harned and Owen [10]. Heretofore, a successful application of the method to dibasic acids for which the ratio of the second to the first dissociation constant is greater than 10^{-3} has not been made (see Glasstone, Introduction to electrochemistry, p. 322, D. Van Nostrand Co., Inc., New York, N. Y., 1942), and involves successive approximations, which are tedious. The ratio of the constants for o-phthalic acid is about 3×10^{-3} , and hence the present paper presents the application of the method to a more involved system. For a review of earlier emf studies of the ionization of weak electrolytes, see references [11, 12]. ⁶ For simplicity, the ionic charges are omitted in the formulas and equations.

Second Dissociation Constant of o-Phthalic Acid

extrapolation to zero ionic strength. This extrapolation is usually difficult, owing to a marked curvature in the plots in the range of concentration accessible to experimental measurements [8]. However, this difficulty may be overcome by the use in eq 4 of the Debye-Hückel equations [13, 14] for the activity coefficients of the ions. From theoretical considerations Debye and Hückel obtained eq 5,

$$-\log f_i = A z_i^2 \sqrt{\mu} / (1 + B a_i \sqrt{\mu}) + \beta m_i, \qquad (5)$$

for the activity coefficient of an ion in terms of the general constants A and B, the constants a_i and β characteristic of the electrolyte under consideration, the ionic charge, z_i , the ionic strength of the solution, μ , expressed in moles of solute per liter of solution, and the concentration of ions (or salt).⁶ For the HPh⁻, Ph⁻, and Cl⁻ ions, this equation gives

$$-\log f_{\rm HPh} = A \sqrt{\mu} / (1 + Ba_i \sqrt{\mu}) + \beta_{\rm HPh} m_{\rm HPh}, \qquad (6)$$

$$-\log f_{\rm Ph} = 4A \sqrt{\mu/(1 + Ba_i \sqrt{\mu})} + \beta_{\rm Ph} m_{\rm Ph}, \qquad (7)$$

$$-\log f_{\rm Cl} = A \sqrt{\mu/(1 + Ba_i \sqrt{\mu})} + \beta_{\rm Cl} m_{\rm Cl}.$$
(8)

Substitution of these expressions in eq 4 for the respective activity coefficients gives eq 9,

$$\frac{(E-E^{\circ})/(2.3026RT/F) + \log (m_3m_1/m_2) + 2A\sqrt{\mu}/(1+Ba_4\sqrt{\mu})}{-\beta_{\rm HPh}m_{\rm HPh} + \beta_{\rm Ph}m_{\rm Ph} - \beta_{\rm Cl}m_{\rm Cl} = -\log K_2 = pK_2.$$
(9)

The term $(-\beta_{\rm HPh}m_{\rm HPh}+\beta_{\rm Ph}m_{\rm Ph}-\beta_{\rm Cl}m_{\rm Cl})$ may be replaced by $\beta\mu$. Justification of this may be shown as follows. If the properties of each ionic specie present in the mixture are additive functions of those of the individual ions composing the mixture, then $\beta_{\rm Ph}m_{\rm Ph}-\beta_{\rm HPh}m_{\rm HPh}-\beta_{\rm Cl}m_{\rm Cl}$ would equal $1/2(\beta_{\rm Ph})\mu_{\rm Ph}-\beta_{\rm HPh}\mu_{\rm HPh}-\beta_{\rm Cl}\mu_{\rm Cl}$ as $\mu_{\rm Ph}=2m_{\rm Ph}$, $\mu_{\rm HPh}=m_{\rm HPh}$, and $\mu_{\rm Cl}=m_{\rm Cl}$, and $\mu=\mu_{\rm Ph}+\mu_{\rm HPh}+\mu_{\rm Cl}$. Now, if the ionic strength due to each ion is some fraction of the total ionic strength, namely, $\mu_{\rm Ph}=p\mu$, $\mu_{\rm HPh}=q\mu$, and $\mu_{\rm Cl}=r\mu$ where p, q, and r are constants for a specified ratio of salts, we have $1/2(p\beta_{\rm Ph})\mu-(q\beta_{\rm HPh})\mu-(r\beta_{\rm Cl})\mu=1/2(p\beta_{\rm Ph}-2q\beta_{\rm HPh}-2r\beta_{\rm Cl})\mu=\beta\mu$. Hence the substitution of $\beta\mu$ for the term $(-\beta_{\rm HPh}m_{\rm HPh}+\beta_{\rm Ph}m_{\rm Ph}-\beta_{\rm Cl}m_{\rm Cl})$ is justified. With this substitution, eq 9 becomes

$$[(E-E^{\circ})/(2.3026 RT/F) + \log (m_3m_1/m_2) + 2A\sqrt{\mu/(1+Ba_i\sqrt{\mu})}] + \beta\mu = -\log K_2 = pK_2$$
(10)

 $\mathbf{p}K_2' + \beta \mu = \mathbf{p}K_2 \tag{10a}$

where pK'_2 is used to designate the terms in the brackets of eq 10. Values of pK_2 are then obtained by extrapolation to infinite dilution of the values of pK'_2 as a function of μ . The negative of the slopes of these plots gives the values of β for the various ratios of salts used in the experiments.

As values of p, q, and r are known for each ratio of salts, the values of β_{Ph} , β_{HPh} , and β_{C1} may be determined from the observed values of β as the ratio of salts is altered. It should be noted that when all three salts are kept in constant ratio, values of p, q, and r remain the same

670468-45-3

⁶ Scatchard [15] recommends the use of molality, or moles of solute per 1,000 g of solvent, in the Debye-Hückel equation. This recommendation has been followed in this laboratory.

even if the concentration of each salt varies considerably. However, values of p, q, and r vary if the ratio of only two salts is kept constant. Hence, it is simpler to use the molalities of each ionic species than values of p, q, and r in the calculations. When the molalities of each ionic species are used, a series of simultaneous equations of the type $(\beta_{Ph}m_{Ph} - \beta_{HPh}m_{HPh} - \beta_{C1}m_{C1} = \beta\mu)$ are obtained, from which the values of β_{HPh} , β_{HPh} , and β_{C1} may be evaluated. In the present case the simultaneous equations were solved by the method of least squares.

It is then possible by using these individual β values to calculate the pH values of the different solutions by means of eq 2 or the expanded form of eq 3, namely,⁷

$$\frac{(E-E^{\circ})/(2.3026 RT/F) + \log m_{\rm Cl} - A\sqrt{\mu}/(1+Ba_i\sqrt{\mu}) + \beta_{\rm Cl}m_{\rm Cl}}{-\log a_{\rm H} = \rm pH};$$
(11)

$$pK_2 - \log(m_1/m_2) - 3A\sqrt{\mu}/(1 + Ba_i\sqrt{\mu}) + \beta_{\mathrm{Ph}}m_{\mathrm{Ph}} - \beta_{\mathrm{HPh}}m_{\mathrm{HPh}} = -\log a_{\mathrm{H}} = pH.$$
(12)

Frequently the hydrogen-ion concentration is also desired (see footnote 2). If it is assumed that $\beta_{\rm H} = \beta_{\rm Cl}$, the hydrogen-ion concentration may be computed [16] from the emf by the equation

$(E-E^{\circ})/(2.3026 RT/F) + \log m_{\rm Cl} - 2A\sqrt{\mu}/(1+Ba_i\sqrt{\mu}) + \beta_{\rm Cl}m_{\rm Cl} +$ $\beta_{\rm H} m_{\rm H} = -\log m_{\rm H}.$ (13)

This equation is used in the calculation of $m_{\rm H}$, needed for the more rigorous evaluation of K_2 described below.

In the above procedure, the terms involving β for the various ions were considered to be additive. This procedure may be justified as follows, from considerations of the activity coefficients of hydrochloric acid in acid-salt mixtures. Güntelberg [17] and Harned [18] have shown that the activity coefficient of hydrochloric acid in acidsalt mixtures of a constant total molality is given by the relationship

$$\log (f_{\rm H} f_{\rm Cl}) _{\rm mixture} = \log (f_{\rm H} f_{\rm Cl})_{\rm pure} - k_{\rm l} m_{\rm salt}, \qquad (14)$$

where k_1 is a constant dependent upon the total molality of the mixture, and $(f_{\rm H}f_{\rm C1})_{\rm pure}$ is that for the total molality of the mixture. For mixtures of hydrochloric acid and potassium chloride at 25°C $k_1=0.080$ and 0.0624 for a total molality, respectively, of 0.1 and 0.5. For aqueous solutions of pure hydrochloric acid, Harned and Ehlers [19] obtained the expression 8 (eq 15) for the activity coefficient as a function of

$$\log (f_{\rm H} f_{\rm Cl})_{\rm pure} = -A \sqrt{\mu} / (1 + B a_i \sqrt{\mu}) + 0.133 \mu$$
(15)

the molality at 25° C. Hence, for an ionic strength of 0.1,

⁷ In the above treatment, a_i is considered to be the same for each ion. This constant has the dimensions of reciprocal centimeters and represents the so-called closest distance of approach of the ions in solution. On the other hand, the value of a_i could be considered an average of different values for the various ions. If this were the case, a different value of a_i would be required in eq 9 for different buffer ratios. The individual values of the closest distance of approach of the ions in solution. On the other hand, the value of a_i could be considered an average of different values for the various ions. If this were the case, a different value of a_i would be required in eq 9 for different buffer ratios. The individual values of the closest distance of approach of each ion could then be determined by the method of simultaneous equations, using the relationship $a_{i\mu} = a_{im_i} + a_{2m_i} + a_{3m_i}$ or some other more complex function, where a_i is the observed value for different buffer ratios and $a_i, a_2,$ and a_3 represent, respectively, the closest distance of approach of the acid phthalate, and chloride ions. It will be shown later in this paper that the same value of a_i represents the experimental data for different buffer ratios, and therefore within the experimental accuracy $a_i = a_i = a_i = a_i$ in phthalate-chloride mixtures. ⁸ Harned and Ehlers in their paper used γ for the activity coefficient of hydrochloric acid. The symbol fused in this paper refers to the same numerical values as they give in their paper. It is now the procedure in the symbols f_c, f_m , and f_s , respectively, for concentrations expressed in moles per liter of solution, moles per 1,000 g of solvent, and in mole fractions.

log $(f_{\rm H}f_{\rm Cl})_{\rm mixture} = -A\sqrt{\mu}/(1+Ba_i\sqrt{\mu})+0.133\mu-0.080 \ m_{\rm salt}$, (16) and for an ionic strength of 0.5,

 $\log (f_{\rm H} f_{\rm Cl})_{\rm mixture} = -A \sqrt{\mu} / (1 + Ba_i \sqrt{\mu}) + 0.133 \mu - 0.0624 \ m_{\rm salt}. \ (17)$

However, it has been found that the values of $\log (f_{\rm H} f_{\rm Cl})_{\rm mixture}$ may be represented equally well for both ionic strengths by the single equation

$\log (f_{\rm H} f_{\rm Cl})_{\rm mixture} = -A \sqrt{\mu} / (1 + B a_i \sqrt{\mu}) + 0.0635 \ m_{\rm H} + 0.0695 m_{\rm Cl}, \quad (18)$

with an accuracy of ± 0.0011 in the activity coefficient. Thus, the activity coefficients of hydrochloric acid in acid-salt mixtures may be calculated for different ionic strengths by an equation in which the terms involving β for H⁺ and Cl⁻ ions are considered to be additive. In this treatment the value of a_i for acid-salt mixtures is about the same as for pure hydrochloric acid. Harned and Ehlers [19] obtained a value of 4.3 A. In all buffer mixtures studied by the method in which hydrogen and silver-silver-chloride electrodes are used, a_i should therefore have a value very close to that of hydrochloric acid or 4.3. The value of 3.76 A found in this investigation is considered to be a close approximation. As the addition of potassium salts lowers the activity coefficients of hydrochloric acid, the value of a_i for such mixtures could be somewhat lower than 4.3 A, and the value of 3.76 A obtained here is in accord with this fact.

2. COMPLETE METHOD

In the foregoing it was assumed that the buffer ratio, m_1/m_2 , may be determined from the stoichiometrical molalities of acid potassium phthalate and dipotassium phthalate. However, owing to various ionic equilibria this is not strictly true and corrections must therefore be made accordingly.

In a mixture of o-phthalic acid with its acid salt, or a mixture of the latter with the completely neutralized salt, the essential equilibria are

$$H_2Ph = H^+ + HPh^-, \tag{19}$$

$$HPh^{-}=H^{+}+Ph^{-}, \qquad (20)$$

which upon subtraction give

$$2HPh^{-}=H_{2}Ph+Ph^{-},$$
 (21)

In each case, the ions and molecules are in dynamic equilibrium defined by the mass-action expressions. These give, respectively, for processes 19 and 21

$$K_1 = (a_{\rm H} f_{\rm HPh} m_{\rm HPh}) / (f_{\rm H_oPh} m_{\rm H_oPh}), \qquad (22)$$

and

$$K_2/K_1 = (a_{\rm Ph}a_{\rm H_2Ph})/a_{\rm HPh}^2 = (f_{\rm Ph}f_{\rm H_2Ph}m_{\rm Ph}m_{\rm H_2Ph})/(f_{\rm HPh}m_{\rm HPh})^2, \quad (23)$$

where the terms have the same significance as above. The expression for process 20 is given by eq 3.

As a result of these equilibria, in a solution composed of KHPh of molality of m_1 and of K_2 Ph of a molality of m_2

$$m_{\rm HPh} = m_1 - m_{\rm H} - 2m_{\rm H_sPh},$$
 (24)

as HPh⁻ is removed in process 20 to form H⁺ ions and in process 21 to form H₂Ph. Also

> $m_{\rm Ph} = m_2 + m_{\rm H} + m_{\rm H_{\circ}Ph},$ (25)

as HPh⁻ is removed in process 20 in an amount equivalent to H⁺ ions and in process 21 in an amount equivalent to H_2Ph . Consequently, the stoichiometrical molalities of KHPh and K₂Ph will be altered and a quantity of H₂Ph formed as a result of the above processes. However, if K_2/K_1 is less than about 10⁻³, the tendency of reaction 21 to take place from left to right will be small and $m_{\rm H,Ph}$ can be neglected in eq 24 and 25, leaving only the corrections for $m_{\rm H}$. This was shown in a previous paper to be true for malonic acid for which K_2/K_1 is about 1.4×10^{-3} [8]. The values for $m_{\rm H}$ are obtained from the emf by eq 13 given above. This entails the method of successive approximations as $\mu = m_1 + 3m_2 + m_3 + 2m_{\rm H}^9$. A preliminary value of $m_{\rm H}$ is first obtained from the emf, by the use of the stoichiometrical ionic strength. This value of $m_{\rm H}$ is then used to calculate a new ionic strength, and the process is repeated until selfconsistent values of μ and $m_{\rm H}$ are obtained. Hence two equations, eq 13 and the equation $\mu = m_1 + 3m_2 + m_3 + 2m_H$ are used in the method of successive approximations.

From data reported in the literature [20] for o-phthalic acid, K_2/K_1 is about 3×10^{-3} which exceeds the condition postulated for the neglect of $m_{\text{H_2Ph}}$ in eq 24 and 25. Therefore corrections for H₂Ph, sometimes called "overlapping" corrections because H₂Ph and HPh⁻ are titrated simultaneously, become necessary even though they are small. They may be obtained as follows. If a equals the molality of the acid and b the molality of added alkali, then for any mixture of the two

$$a = m_{\mathrm{H_2Ph}} + m_{\mathrm{HPh}} + m_{\mathrm{Ph}}, \qquad (26)$$

and for electrical neutrality

$$b + m_{\rm H} = m_{\rm HPh} + 2 m_{\rm Ph}. \tag{27}$$

By means of these equations and eq 3 and 22

$$m_{\rm H_2Ph} = [2 \ am_{\rm H} - m_{\rm H}(b + m_{\rm H})] / [2 \ m_{\rm H} + (K_1 f_{\rm H_2Ph}) / (f_{\rm H} f_{\rm H_{Ph}})],$$
 (28)

with the condition ¹⁰ that eq 29,

$$\begin{array}{l} m_{\rm H}{}^3 + [a + (K_{\rm 1}f_{\rm H_2Ph})/(f_{\rm H}f_{\rm HPh})]m_{\rm H}{}^2 + [(K_{\rm 1}K_{\rm 2}f_{\rm H_2Ph})/(f_{\rm H}f_{\rm Ph}) + \\ (bK_{\rm 1}f_{\rm H_2Ph})/(f_{\rm H}f_{\rm HPh}) - (aK_{\rm 1}f_{\rm H_2Ph})/(f_{\rm H}f_{\rm HPh})]m_{\rm H} + \end{array}$$

$$[(K_1K_2f_{\mathbf{H}_2\mathbf{Ph}})/(f_{\mathbf{H}^2}f_{\mathbf{Ph}})](b-2a)=0,$$
(29)

⁹ The ionic strength actually is given by $\mu = m_1 + 3m_2 + m_3 + 2m_H + m_{H_2Ph}$, where value of m_{H_2Ph} is given by

eq 28. As values of $m_{\rm H_2Pb}$ are so small, the term $m_{\rm H_2Pb}$ may be neglected in determining the ionic strength. ¹⁰ This condition must be imposed. In the four eq 3, 22, 26 and 27 there are 5 unknowns, namely $K_{\rm I}$, K_{2} , $m_{\rm H_2Pb}$, $m_{\rm HPb}$, and $m_{\rm Pb}$, provided $m_{\rm H}$ is determined experimentally. Hence an unequivocal solution is not possible without the introduction of a restriction or condition. Frequently, a solution of the equations is obtained in titration experiments by selecting 2 widely separated values for $m_{\rm H}$ on the titration curve and substituting them in eq 29 and solving the two equations simultaneously for K_1 and K_2 . This procedure is the same as imposing a condition.

obtained by the elimination of $m_{\rm H_2Ph}$, $m_{\rm HPh}$, and $m_{\rm Ph}$ in eq 3, 22, 26, and 27 is satisfied for the solutions of any composition and concentration. However, solution of eq 28 required a knowledge of $m_{\rm H}$, the activity coefficients, K_1 , and K_2 . Values of $m_{\rm H}$ can be obtained from the emf by eq 13 described above. Values of K_2 used first are those obtained by the simplified method described above. A value of 1.3×10^{-3} was used for $K_1[20]$.¹¹ The Debye-Hückel equations were employed to calculate the activity coefficients of the ions and the activity coefficient of H₂Ph was taken equal to unity, as is customary. After values of $m_{\rm H_2Ph}$ are calculated by use of eq 28 they are used in eq 24 and 25 to calculate new values of the molality for the HPh⁻ and Ph⁼ ions. These latter values are then used to calculate new values of K_2 and this arithmetical procedure is repeated until selfconsistent values of K_2 and $m_{\rm H_2Ph}$ are obtained.

The corrections for both $m_{\rm H}$ and $m_{\rm H_{2Ph}}$ become less significant as the ionic strength of the solutions increases. It was found that the total corrections, Δ , may be expressed as a function of the ionic strength by the eq

$$\Delta = (\omega + \lambda \sqrt{\mu})/\mu, \tag{30}$$

where ω and λ are constants independent of the temperature. With these corrections eq 10, 11, and 12 become

$$\frac{(E - E^{\circ})/(2.3026RT/F) + \log (m_3 m_1/m_2) - (\omega + \lambda \sqrt{\mu})/\mu}{2A\sqrt{\mu}/(1 + Ba_t\sqrt{\mu}) + \beta\mu = pK_2,}$$
(31)

$$\frac{(E-E^{\circ})}{(2.3026RT/F)} + \log m_{c1} - A\sqrt{\mu}/(1+Ba_{i}\sqrt{\mu}) - (\omega+\lambda\sqrt{\mu})/\mu + \beta_{c1}m_{c1} = pH,$$
(32)

and

$$pK_2 - \log (m_1/m_2) - 3A \sqrt{\mu/(1 + Ba_i \sqrt{\mu})} + (\omega + \lambda \sqrt{\mu})/\mu + \beta_{\text{Ph}}m_{\text{Ph}} - \beta_{\text{HPh}}m_{\text{HPh}} = pH,$$
(33)

by which precise values of pH and pK_2 (or K_2) can be computed.

Sometimes the β values are considered to be equal for all the ions involved, or $\beta_1 = \beta_2 = \beta_3 = \beta$. Then eq 33 reduces to

$$pK_2 - \log (m_1/m_2) - 3A\sqrt{\mu}/(1 + Ba_i\sqrt{\mu}) + (\omega + \lambda\sqrt{\mu})/\mu = pH,$$
 (34)

containing no β term,¹² and is therefore different from the Henderson-Debye-Hückel equation [21] generally used to express pH as a function of the ionic strength of the solution. In this case, the pH value of the solution could be calculated solely from the values of pK_2 and the concentration of the buffer without regard to salt effects. In eq 34, $-3A\sqrt{\mu}/(1+Ba_i\sqrt{\mu})$ represents the value of $\log(f_{\rm Ph}/f_{\rm HPh})$. However, the logarithm of the ratio of any two activity coefficients does not vary with the ionic strength in accordance solely with the first term of the Debye-Hückel equation. Furthermore, differentiation of eq 34 with respect to μ or $\sqrt{\mu}$ does not give a minimum in the plots of

¹¹ The calculations are insensitive to the value of K_1 . A value of 1.0×10^{-3} or 1.5×10^{-3} will yield substantially the same value of $m_{\rm H_2Ph}$.

¹² This equation has been shown to be applicable to buffers composed of disodium malonate, acid sodium malonate, and sodium chloride for which $\hat{\beta}$ is zero [8]. When β is zero, it is not possible to determine the β values for the individual ions.

(pH vs μ) or (pH vs $\sqrt{\mu}$), a result contrary to observed facts for the pH of several weak buffers [22] and of water in the presence of neutral salts [23]. Eq 34 also requires, for example, that a solution containing 0.1 M K₂Ph, 0.1 M KHPh, and 0.1 M KCl would have the same pH value as one composed of 0.07 M K₂Ph, 0.07 M KHPh, and 0.22 M KCl, or of 0.02 M K₂Ph, 0.02 M KHPh, and 0.42 M KCl, because of the identity in the ionic strength of these three solutions. In short, no "specific salt effects" would be observed and the change in the pH of a solution upon addition of salts could be calculated solely by the theory of Debye and Hückel. It is therefore necessary, in order to explain observed results with phthalates, to use eq 33, which includes the β term.

III. EXPERIMENTAL PROCEDURES

1. MATERIALS AND SOLUTIONS

The solutions used in this investigation were prepared in a CO₂-free atmosphere from known weights of stock solutions containing acid potassium phthalate, dipotassium phthalate, and potassium chloride by dilution with known weights of conductivity water having a specific conductance of 0.6 to 1.0×10^{-6} mho. The stock solutions were prepared by the addition of a calculated amount of dry acid potassium phthalate and dry potassium chloride to a standardized solution of potassium hydroxide, previously freed of carbonate by the addition dropwise of a saturated solution of barium hydroxide until no more precipitate of barium carbonate is formed. The potassium hydroxide solution was prepared from high-grade material, which exceeded the ACS specifications for analytical reagents. It was standardized against benzoic acid, National Bureau of Standards Standard Sample 39 e, in a CO₂-free atmosphere by using phenolphthalein solution as the indicator. Results of five titrations agreed to 0.02 percent. Acid potassium phthalate, NBS Standard Sample 84a, having a certified purity of 100 percent determined by titration, was dried according to the directions given in the Bureau certificate and was allowed to cool in a desiccator containing concentrated sulfuric acid. The potassium chloride was recrystallized twice from conductivity water and then thrice from 95-percent ethanol to remove the last traces of bromide. It was dried for at least 10 hours at 110° C and allowed to cool in a desiccator containing concentrated sulfuric acid. After the solutions were prepared, they were deaerated by hydrogen gas, corrections being made for loss of water from the solutions. All weights were corrected to vacuum. In determining the amount of water lost during the deaeration, corrections were made for the volume of air in the flasks displaced by hydrogen gas by using the density of each gas.

2. ELECTRODES AND APPARATUS

The hydrogen electrodes were platinum foil covered with palladium, according to the directions of Hamer and Acree [2]. Electrodes of this type do not catalyze the reduction of phthalates and they function reversibly for well over 100 hours.

Silver-silver-chloride electrodes of the thermal-electrolytic type were prepared from pure materials by the method described in a previous paper [7]. They were sufficiently aged to bring them to a stable state.

The details of the apparatus employed in these studies, including the cells, bubble tubes, thermostat, and the emf recording instruments have been described by Hamer and Acree [7]. The cells and bubble tubes were filled under reduced pressure, the temperature of the thermostat was controlled within 0.01° C at all the temperatures, and the emf was measured with a calibrated potentiometer and with a galvanometer and a standard cell. The electromotive forces were corrected in the usual manner to 1 atmosphere of hydrogen pressure.

IV. CALCULATION OF THE SECOND DISSOCIATION CON-STANT OF *o*-PHTHALIC ACID

The electromotive forces obtained at 13 temperatures from 0° to 60° C in 4 series of experiments on 4 different buffer ratios, K₂Ph/-KHPh, designated as series A to D, are given in tables 1 to 4 for the different solutions whose compositions are defined in terms of the concentration of acid potassium phthalate given in column 2 and the buffer ratio given at the top of each table. Table 5 gives the electromotive forces recorded for the same temperature range for seven less complete series of measurements on seven other buffer ratios, designated as series E to K. A number of dilutions were made in series A to D, whereas only two dilutions were made in the other seven series. Hence, only the first four series were used for the determination of pK_2 (or K_2) and the last seven together with the first four were used to determine the β values of the various ions of the mixtures. In series A to D the solutions had a buffer ratio, respectively, of 1.0057, 1.5070, 2.0005, and 2.0223; and a chloride-acid phthalate ratio, KCl/KHPh, respectively, of 1.0014, 1.0035, 1.0006, and 0.1858. Measurements of the emf were made for two slightly different ratios (see footnotes of tables 1 and 2). In the other series of experiments, the buffer ratio ranged from approximately 1 to 2, but the chloride-acid phthalate ratio varied considerably from approximately 0.09 to 0.70.

TABLE 1.—Electromotive forces of galvanic cells with hydrogen and silver-silverchloride electrodes and containing mixtures of phthalates and chlorides

[Series A, Molality of dipotassium phthalate=1.0057×molality of acid potassium phthalate. Molality of potassium chloride=1.0014×molality of acid potassium phthalate]

Solution	Molelity	Temperature in degrees centigrade									
number	of KHPh	0	5	10	15	20	25				
108 (J.16) 2 1	Moles of solute per 1,000 g of	and and	alo dine -	No M. M.	T	Dagon - o of 60	provio atable				
101101 front .80	water	Ð	D	0	v	0	D				
A1	0.0007661	0.69696	0.70191	0.70723	0.71243	0.71781	0.72333				
A2	.0014530	. 68072	. 68542	. 69032	. 69526	. 70033	. 70560				
A3	. 0016690	. 67744	.68200	. 68683	. 69171	. 69665	. 70180				
A4	.0023505	.66054	.66504	. 66956	. 67411	. 67886	. 68368				
A6	. 0034678	. 65817	. 66256	. 66709	. 67161	. 67624	. 68102				
A7	.0036275	.65701	.66142	.66594	. 67043	. 67498	. 67980				
A8	.0048224	.64961	. 65378	. 65820	.66244	. 66701	. 67162				
A9 A10	.0049454 .0069349	.64894 .63997	. 65326	.65745	. 66184	. 66635	. 67082				
A11.	. 0095161	. 63147	. 63534	. 63935	. 64335	. 64746	. 65171				
A12	.011319	. 62675	. 63059	. 63451	. 63830	. 64231	. 64664				
A13	. 014671	. 61968	. 62327	. 62705	. 63081	. 63474	. 63876				
A14	. 018381	. 61345	. 61702	. 62068	. 62432	. 62813	. 63190				
A15	. 023770	. 60643	. 60986	. 61341	. 61670	. 62036	. 62416				
A16	. 026358	. 60357	. 60688	. 61027	. 61376	. 61731	. 62093				
A17	. 027847	. 60212	. 60535	. 60889	. 61213	. 61559	. 61940				
A18	. 041527	. 59098	. 59407	. 59718	. 60042	. 60376	. 60705				
A19	.062963	. 57950	. 58223	. 58522	. 58808	. 59118	. 59428				
A20	. 10/81	. 20477	. 00/20	. 90990	. 3/244	. 07014	. 57800				
A'1 ª	. 10803	. 56468	. 56716	. 56979	. 57237	. 57508	. 57789				
Solution	Temperature in degrees centigrade										
number	30	35	40	45	50	55	60				
alagent angent a	Republica -	a nodatana	1.2	01 (1.80)	19.64.849 - 186 -	<u>una elent</u> r	Sopra				
A1	0 79996	0 72220	0 74020	0 74505	0 75104	0 75902	0 76444				
A2	71077	71598	72148	. 72685	73259	73836	74454				
A3	.70701	.71216	.71759	.72296	. 72851	.73441	. 74031				
A4	. 69725	.70225	.70751	. 71271	. 71809	. 72380	. 72934				
A5	. 68845	. 69334	. 69845	. 70349	. 70871	.71429	. 71992				
A6	. 68581	. 69063	. 69565	. 70065	. 70589	.71141	. 71689				
A7	. 68456	. 68938	. 69436	. 69934	. 70456	.71005	. 71556				
A8	. 67612	. 68085	. 68575	. 69058	. 69551	.70099	. 70622				
A9 A10	. 67556	. 68016	. 68503	. 68965	. 69467	.70004	. 70532				
A 11	65501	66022	66460	66019	67201	67976	60207				
Δ19	65057	65478	. 00409	.00912	66825	67306	. 00387				
A13	64278	64684	.65101	65530	65975	. 66436	. 66923				
A14	. 63585	. 63986	. 64390	. 64799	. 65233	. 65693	. 66161				
A15	. 62791	. 63165	. 63560	. 63961	. 64366	. 64811	. 65269				
A16	. 62468	. 62842	. 63237	. 63614	. 64026	. 64470	. 64917				
A17	. 62306	. 62658	. 63057	. 63448	. 63837	. 64287	. 64716				
A18	. 61054	. 61395	. 61757	. 62119	. 62509	. 62917	. 63331				
A19 A20	. 59745	. 00072	. 00415	. 00/32	. 01096	. 01480	. 01800				
************************	.00001	.00010	.00012	. 00010	. 05201	. 00000	. 00000				
A'1 a	. 58072	. 58358	. 58666	. 58960	. 59282	. 59630	. 59972				

 \bullet Molality of dipotassium phthalate=1.0074×molality of acid potassium phthalate. Molality of potassium chloride=1.0037×molality of acid potassium phthalate.

TABLE 2.—Electromotive forces of galvanic cells with hydrogen and silver-silverchloride electrodes and containing mixtures of phthalates and chlorides

[Series B, Molality of dipotassium phthalate=1.5070×molality of acid potassium phthalate. Molality of potassium chloride=1.0035×molality of acid potassium phthalate]

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	utja -	ade	Molality	Solution				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	25	20	15	10	5	0	of KHPh	number
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Var 1				Moles of solute per 1,000 g of	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 74838	0 74948	0 73663	0 73096	0 72528	0 71979	0 0004400	B1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	73886	73303	72744	72200	71642	71109	0006264	B9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	72108	71566	71028	70508	69987	69480	.0011836	B3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	70022	70401	69884	69385	68884	68392	0018128	B4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 70176	. 69668	. 69165	. 68676	. 68190	. 67719	.0023519	B5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 69482	. 68986	. 68495	.68022	. 67546	. 67085	.0030064	B6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 69093	. 68600	. 68120	. 67653	. 67190	. 66730	. 0034327	B7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 69018	. 68530	. 68046	. 67581	. 67113	. 66654	.0035250	B8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.68073	. 67603	. 67136	. 66687	. 66242	. 65805	.0048817	B9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 67023	. 66573	. 66125	.65694	. 65263	. 64850	.0069713	B10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 66334	. 65895	. 65459	.65042	. 64643	. 64227	.0087820	B11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.66317	. 65878	. 65443	. 65025	. 64616	. 64201	. 0088235	B12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 66284	. 65842	.65408	. 64991	. 64572	. 64166	. 0089534	B13
B15	. 65054	. 64644	. 64236	. 63832	. 63445	. 63057	.013470	B14
	. 64348	. 63946	. 63547	. 63166	. 62782	. 62417	.017045	B15
B16	. 62163	. 61802	. 61445	.61093	. 60767	. 60433	. 034937	B16
B17 051843 .59353 .59662 .59974 .60292 .60628	. 60962	. 60628	. 60292	. 59974	. 59662	. 59353	.051843	B17
B18	. 59986	. 59671	. 59355	. 59060	. 58761	. 58472	.071943	B18
B'1 a	. 59988	. 59668	. 59360	. 59068	. 58761	. 58473	.071886	B'1 a

Solution	Temperature in degrees centigrade									
number	30	35	40	45	50	55	60			
	v	v	v	Ð	v	v	v			
B1	0.75433	0.76034	0.76651	0.77269	0.77910	0. 78576	0.79240			
B2	. 74464	. 75049	. 75649	. 76250	. 76874	. 77523	.78149			
B3	. 72656	. 73210	. 73779	.74349	.74942	. 75560	.76175			
B4	. 71449	.71981	. 72530	.73078	. 73650	. 74246	.74834			
B5	. 70690	.71209	.71745	. 72280	. 72839	. 73421	.74001			
B6	. 69984	. 70490	. 71013	.71535	. 72082	. 72651	.73219			
B7	. 69587	. 70087	. 70603	.71120	. 71659	. 72222	.72782			
B8	. 69511	. 70009	. 70523	.71038	. 71575	. 72137	.72696			
B9	. 68549	. 69031	. 69528	.70025	. 70546	. 71089	.71631			
B10	. 67482	. 67945	. 68422	. 68900	. 69401	. 69926	.70461			
B11	. 66785	. 67240	. 67694	. 68159	. 68648	. 69168	. 69668			
B12	. 66761	. 67211	. 67676	.68141	. 68629	. 69150	.69659			
B13	. 66724	. 67173	. 67637	.68101	. 68589	. 69109	.69617			
B14	. 65475	. 65901	. 66342	.66784	. 67248	. 67735	.68226			
B15	. 64756	. 65168	. 65596	. 66025	. 66474	. 66948	.67403			
B16	. 62524	. 62896	. 63286	. 63674	. 64079	. 64511	.64936			
B17.	. 61304	. 61650	. 62011	. 62372	. 62755	. 63163	.63561			
B18	. 60307	. 60632	. 60972	.61312	. 61673	. 62058	.62427			
B'1 a	. 60309	. 60636	. 60975	.61316	. 61678	. 62065	. 62450			
	Contraction of the second second	and the second	and the second	and the second se	and the second sec	The second second second				

 \bullet Molality of dipotassium phthalate=1.5139 Xmolality of acid potassium phthalate. Molality of potassium chloride=1.0056 Xmolality of acid potassium phthalate.

 TABLE 3.—Electromotive forces of galvanic cells with hydrogen and silver-silver-chloride electrodes and containing mixtures of phthalates and chlorides

 [Series C, Molality of dipotassium phthalate=2.0005×molality of acid potassium phthalate. Molality of

beries C, Molancy	of ofpotassium philatate=2.0005 molanty of acto potassium philatate.	monancy of
	$potassium chloride=1.0006 \times molality of acid potassium phthalatel$	
	Ferneren Lever (

Solution	Molality		Temperature in degrees centigrade							
number	of KHPh	0	5	10	15	20	25			
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11	Moles of solute per 1,000 g of water 0.0012203 .0026363 .0044644 .0087742 .010675 .016461 .022447 .030548 .0330548 .033054 .033054 .033054	t 0.70038 .68043 .66459 .64833 .64287 .63111 .62254 .61408 .60064 .60532 .59848	p 0.70554 .68518 .67098 .65250 .64696 .63491 .62621 .61755 .61296 .60855 .60161	v 0.71085 .60008 .67565 .65671 .65125 .63880 .63000 .62113 .61645 .61202 .60488	v 0.71616 .69504 .68023 .66106 .65543 .64273 .63377 .62485 .61993 .61549 .60811	v 0. 72158 . 70003 . 68508 . 66544 . 65960 . 64685 . 63773 . 62844 . 62350 . 61896 . 61147	y 0, 72615 .70531 .68997 .67002 .66411 .65104 .65104 .63235 .62724 .62263 .61491			
Solution		N. 1989	Temperatur	e in degrees	centigrade					
number	30	35	40	45	50	55	60			
C1 C2 C3 C4 C5	<i>v</i> 0. 73273 . 71059 . 69502 . 67458 . 66851	<i>b</i> 0.73835 .71578 .69988 .67924 .67305	v 0. 74414 . 72110 . 70504 . 68383 . 67768	v 0. 74993 . 72656 . 71008 . 68860 . 68221	<i>v</i> 0.75595 .73216 .71537 .69365 .68716	<i>v</i> 0.76228 .73813 .72112 .69895 .69232	v 0. 76854 . 74395 . 72666 . 70413 . 69744			

TIDIE	1 Floatmomoting	forces of	antamin	collo a	with hardroad	n and	orthon orthon
LABLE	4Diechomotive	juices of	gawanic	cens u	and nyuroye	n ana	sucer-sucer-
chlor	ide electrodes and a	containing	mixtures	of phth	halates and a	chloride	28

. 66393 . 65389

. 64399

. 63870

. 63363

. 62557

.66826.65811.64800.64267

. 63756

. 62926

.67290.66267.65223

. 64698

. 64158

. 63334

.67777.66747.65681.65122

. 64604

.63716

. 68256

. 67189

. 65559

. 65007

. 64142

. 65535 . 64561 . 63612

. 63104

. 62614

. 61838

C6..

C7.... C8.... C9.... C10....

C11....

.65944.64983.63994

.63481

.62200

[Series D	, Molality	of dipotassium	phthalate=2.0223×n	polality of acid	potassium	phthalate.	Molality of
		potassium chlor	ride=0.1858×molality	of acid potassi	um phthala	ite]	

Solution number	Molality	Temperature in degrees centigrade							
	of KHPh	0	5	10	15	20	25		
	Moles of solute per 1,000 g of water	7	17	n	22	n	2		
D1	0.014013	0.67591	0. 68055	0. 68537	0.69022	0.69502	0. 70002		
D2	. 023409	. 66180	. 66620	. 67070	. 67522	. 67986	. 68454		
D3	. 024878	. 66019	. 66450	. 66895	. 67341	. 67796	. 68279		
D4	. 030089	.65416	. 65840	. 66273	. 66697	. 67149	. 67606		
D5	. 042383	. 64569	. 64978	. 65395	. 65815	. 66234	. 66672		
D6	. 043083	. 64531	. 64934	. 65358	. 65772	. 66189	. 66634		
D7	. 053814	. 63940	. 64335	. 64741	. 65128	. 65548	. 65965		

 TABLE 4.—Electomotive forces of galvanic cells with hydrogen and silver-silverchloride electrodes and containing mixture of phthalates and chlorides—Con.

Solution number	Temperature in degrees centigrade									
	30	35	40	45	50	55	60			
159.C. 97.60	v	v	v	v	v	v	v			
D1	0.70445	0.71011	0.71535	0.72064	0.72606	0.73190	0. 73754			
D2	. 68927	. 69397	. 69892	. 70396	. 70905	.71454	. 71987			
D3	. 68743	. 69221	. 69711	. 70194	. 70690	. 71264	. 71784			
D4	. 68062	. 68516	. 68980	. 69481	. 69969	. 70506	. 71020			
D5	. 67110	. 67558	. 68012	. 68470	. 68953	. 69467	. 69958			
D6	. 67068	. 67510	. 67965	. 68425	. 68897	. 69411	. 69906			
D7	. 66388	. 66818	. 67255	. 67510	. 68168	. 68665	. 69148			

 TABLE 5.—Electromotive forces of galvanic cells with hydrogen and silver-silverchloride electrodes and containing mixtures of phthalates and chlorides

Solution number	Molality	Molality of K ₂ Ph	Molality of KCl	Temperature in degrees centigrade					
Solution number	of KHPh	Molality of KHPh	Molality of KHPh	0	5	10	15	20	
	Moles of solute per 1,000 g of water			v	v	v	v	v	
E1	0.055730	1.0074	0.6479	0. 59356	0. 59672	0. 59989	0.60312	0.60644	
E2	. 10803	1.0074	. 6479	. 57556	. 57831	. 58109	. 58388	. 58678	
F1	. 053194	1.0074	. 2///	. 61530	. 61879	. 62243	. 62610	. 62980	
G1	. 10803	1.0074	. 09257	. 63196	. 63563	. 60242	. 60561	. 60891	
G2 H1 H2 I1 I2	$\begin{array}{c} .10803\\ .036174\\ .071886\\ .024728\\ .071886\end{array}$	$\begin{array}{c} 1.\ 0074\\ 1.\ 5139\\ 1.\ 5139\\ 1.\ 5139\\ 1.\ 5139\\ 1.\ 5139\end{array}$	09257 6956 6956 4143 4143	.62230 .61234 .59378 .63525 .59620	.62590 .61586 .59685 .63917 .60954	.62957 .61946 .60006 .64380 .61296	$\begin{array}{r} . \ 63325 \\ . \ 62304 \\ . \ 60321 \\ . \ 64724 \\ . \ 61636 \end{array}$.63705 .62660 .60641 .65184 .61990	
J1	. 054840	1, 5139	. 1392	. 63952	. 64349	. 64757	. 65143	. 65569	
J2	. 071886	1.5139	.1392	. 63219	. 63604	. 63997	. 64383	. 64776	
K1	. 026688	2.0223	. 5575	. 63214	. 63595	. 63992	. 64388	. 64790	
K2	. 053814	2.0223	. 5575	. 61319	. 61661	. 62014	. 62371	. 62731	

Colution number		Temperature in degrees centigrade										
Solution number	25	30	35	40	45	50	55	60				
	v	v	v	v	v	v	Ð	v				
E1	0.60987	0.61329	0.61683	0.62047	0. 62408	0.62795	0.63207	0.63617				
E2	. 58982	. 59284	. 59592	. 59914	. 60231	.60587	. 60950	. 61313				
F1	. 63360	. 63747	.64144	. 64544	. 64940	. 65375	. 65831	. 66285				
F2	. 61230	. 61574	. 61918	. 62288	. 62643	. 63025	. 63434	. 63840				
G1	. 65153	. 65565	. 65990	. 66422	. 66849	. 67306	. 67784	. 68259				
G2	.64197	. 64489	. 64882	. 65288	. 65697	. 66132	. 66587	. 67039				
H1	. 63048	. 63428	. 63813	.64218	. 64614	. 65037	. 65491	. 66031				
H2	. 60979	. 61319	. 61662	. 62021	. 62377	.62751	. 63098	. 63556				
I1	. 65561	. 65986	. 66419	. 66870	. 67311	.67780	. 68279	. 68775				
12	. 62350	. 62713	. 63086	. 63462	. 63846	. 64258	. 64680	. 65110				
J1	. 65995	. 66422	. 66854	. 67305	. 67748	. 68222	. 68716	. 69204				
J2	.65196	. 65604	. 66020	. 66450	. 66888	.67343	. 67818	. 68291				
K1	.65202	. 65619	66050	.66484	. 66918	.67379	. 67866	. 68345				
K2	. 63103	. 63478	. 63863	. 64255	. 64652	. 65062	. 65501	. 66006				
			AST A LONG									

The emf was used in eq 9 and 31 to calculate pK'_2 by the use of data for E° determined by Harned and Ehlers [19] and values of R, T, and F given by Hamer, Burton and Acree [8]. It was found that a_i must be assigned a value of $3.76\pm0.07A$ at all the temperatures in order for pK'_2 to vary linearly with the ionic strength. In figure 1, values of pK'_2 for the more dilute solutions are shown plotted against the ionic strength for series A to C at 25° C. The dotted line corresponds to the values of pK'_2 calculated on the basis of stoichiometrical molalities alone (eq 9), and the solid line to values corrected for the various processes depicted above, that is, for the

FIGURE 1.—Plots of pK'_2 as a function of the ionic strength for dilute solutions of phthalate-chloride mixtures.

Dotted line corresponds to stoichiometrical molalities. Solid line corresponds to ionic molalities. A, B, and C refer to the series of experiments designated by the same letters.

hydrogen-ion and o-phthalic acid (or overlapping) corrections (eq 30). These corrections become less as the buffer ratio becomes larger, or the higher the pH of the solution is from that corresponding to the first equivalence point, as is indicated in the graph. These corrections vary with the ionic strength, becoming less as the ionic strength increases, and may be computed for the 13 temperatures by eq 30 given above. Numerical values of these constants are given in table 6 for the various buffer and chloride ratios. In figure 2, values of pK'_2 , calculated by eq 31 with a value of 3.76 A for a_4 , are shown

Second Dissociation Constant of o-Phthalic Acid 397

plotted against the ionic strength for series A to D at temperatures of 0°, 25°, 45°, and 60° C. Plots for the other temperatures are similar. The slopes of the lines give the magnitudes of the constant— β of eq 31, and the extrapolated value at zero ionic strength gives the value of pK_2 , free of disturbing effects of the salts, the medium, or ionic association. Any value of a_i , different from 3.76 A, would give a curved line; neglect of the last term on the left side of eq 31 would give much lower values of pK'_2 , which when plotted against the ionic strength would give a very marked curvature, concave to

FIGURE 2.—Extrapolation plots of pK'_2 against the ionic strength. A, B, C, and D refer to the series of experiments designated by the same letters.

the axis of the abscissa; and the use of a value of zero for a_i (Debye-Hückel limiting law) would give much higher values of pK'_2 , which when plotted against the ionic strength would give a curve convex to the axis of the abscissa.¹³ In figure 3, values of pK'_2 , calculated by eq 31 with an a_i value of 3.76 A, are shown plotted as ordinates against the ionic strength as abscissas for the other buffer and chloride ratios at 25° C. Graphs for the other temperatures are similar to these plots. The negative of the slopes of the lines again gives the

13 See references [7, 8, and 24] for more details concerning the proper choice of values for a:.

magnitude of the constant β of eq 31. Numerical values of β are given in table 7 for the different temperatures and various buffer and chloride ratios. The β values are a function of the buffer and chloride ratios, being higher for larger buffer ratios and lower chloride ratios. The β values in all cases decrease with respect to temperature. The data given in the table are smooth values, which were read from a large-scale plot of β against temperature and buffer and chloride ratios and are accurate on the average to 0.004 unit. It

FIGURE 3.—Plots of pK' against the ionic strength of phthalate-chloride mixtures, for a temperature of 25° C.

Dotted lines correspond to values of pK's for series A, B, C, and D shown plotted in figure 2.

1,	K2Ph=1.0074×KHPh and	KCl=0.6479×KHPh (series E)
2,	K ₂ Ph=1.0074×KHPh and	KCl=0.2777×KHPh (series F)
3,	K ₂ Ph=1.0074×KHPh and	$KC1=0.09257 \times KHPh$ (series G)
4,	K ² Ph=1.5139×KHPh and	KCl=0.6956×KHPh (series H)
5,	K ² Ph=1.5139×KHPh and	KCl=0.4143×KHPh (series I)
6,	K ² Ph=1.5139×KHPh and	$KCl=0.1392 \times KHPh$ (series J)
7,	K ² Ph=2.0223×KHPh and	$KCl=0.5575 \times KHPh$ (series K)

may be assumed that the values of β are independent of the ionic species in the solutions or that they apply to each ion, which would then concentrate all the effects of the salts, medium, or ionic associations at finite concentrations on the activity coefficient of the hydrogen ion and would lead to eq 34, given above. However, it has been shown that this equation is inadequate. Therefore, the β values were considered to be dependent upon the kind and əmount of the ionic species present in the solutions and to be given by $(-\beta_{C1}m_{C1}-\beta_{HPh}m_{HPh}+\beta_{Ph}m_{Ph})/\mu$ for each buffer and chloride ratio. By using the β values for each of the 11 ratios studied in 11 simultaneous equations, β_{C1} , β_{HPh} , and β_{Ph} were evaluated by the method of least squares for each of the 13 temperatures.¹⁴ The values are given in the last three rows of table 7. These values make possible the calculation of the values of pK'_2 and pH for any buffer ratio between 1 and 2 and for any chloride ratio from 0 to 1. It should be emphasized here that the values of β_{HPh} , β_{C1} , and β_{Ph} are least-squared values. Values of these constants determined by solving any three simultaneous equations may show wide variations from the values of β_{Ph} are much higher than the values of the other two, owing to its bivalent charge, and decrease with temperature whereas the other two increase.

TABLE 6.—Numerical values of ω and λ for use in equation 30 for calculations of hydrogen-ion and overlapping corrections necessary in the determination of pK_2 and pH

Ratio K2Ph/KHPh	Ratio KCl/KHPh	ω×108	λ×10 ⁵
1.0057	1.0014	15	11
1.0074	1.0037	15	11
1.0074	0.6480	14	11
1.0074	. 2777	12	11
1.0074	. 09257	12	11
1.0074	.0000	11	11
1.5070	1.0035	10	9
1.5139	1.0056	10	9
1.5139	0,6955	9	9
1.5139	. 4143	8	9
1.5139	. 1392	7	9
1.5139	.0000	6	9
2 0005	1.0006	5	8.5
2 0223	5575	3.5	8.5
2 0223	1858	2	8.5
2,0223	.0000	1.2	8.5
1 00	1.00	15	11
1.50	1.00	10	9
2.00	1.00	5	8.5
1.00	0.00	11	11
1.50	. 00	6	9
2.00	.00	12	8.5

¹⁴ See Kilpatrick [25] and Hitchcock [26] for a discussion of this subject. See also Morton [27] for a discussion of salt effects and Scatchard [15] for a treatment of concentrated solutions.

TABLE 7.—Numerical values of the constant β in the Debye-Hückel equation for activity coefficients for various mixtures of acid potassium phthalate, dipotassium phthalate, and potassium chloride

Series	19101		ona Buie	39100 120113	Tempe	erature i	n degre	es centig	grade		instru Sind	o ^{ren} o Surar	Er P
num- ber	0	5	10	15	20	25	30	35	40	45	50	55	60
A B C D E	$-0.068 \\085 \\096 \\116 \\080$	-0.064 082 092 113 076	$\begin{array}{r} -0.061 \\078 \\089 \\110 \\073 \end{array}$	$\begin{array}{r} -0.057 \\075 \\085 \\106 \\069 \end{array}$	$\begin{array}{r} -0.054 \\071 \\082 \\103 \\065 \end{array}$	$\begin{array}{r} -0.050 \\068 \\078 \\099 \\062 \end{array}$	$\begin{array}{r} -0.047 \\064 \\075 \\096 \\059 \end{array}$	$\begin{array}{r} -0.044 \\061 \\072 \\092 \\055 \end{array}$	$\begin{array}{r} -0.040 \\057 \\068 \\089 \\052 \end{array}$	$\begin{array}{r} -0.037 \\054 \\065 \\085 \\048 \end{array}$	-0.033 050 061 082 045	$-0.030 \\047 \\058 \\077 \\041$	$\begin{array}{r} -0.026 \\044 \\054 \\075 \\038 \end{array}$
F G H J	$\begin{array}{c}094 \\102 \\093 \\100 \\109 \end{array}$	090 098 089 097 106	087 095 087 094 103	083 091 083 090 100	080 088 080 088 097	076 084 076 085 094	073 081 073 082 091	070 078 070 079 088	066 074 066 076 085	063 071 063 073 082	059 067 060 070 079	056 064 057 067 075	052 060 053 064 072
ĸ	107	103	100	096	093	089	082	082	079	075	072	068	065
Ionic spe- cies •				and and a second se			(hang,	ω <u>`</u> ω	1984) 1987 1997	STORE	owl Nur	odia al a	
Ph= HPh Cl	42 002 082	41 006 086	41 011 090	40 015 094	39 018 099	38 023 10	37 026 11	36 029 11	35 033 12	34 036 12	33 040 12	32 041 13	31 048 13

• Ph =, HPh -, and Cl - denote the diphthalate, acid phthalate, and chloride ions, respectively.

Values of pK_2 were then determined for the series of experiments A to D, the corresponding values of β being used. They are shown in figure 4 plotted as a function of the ionic strength. This figure is in reality a deviation plot. The average value of pK_2 with the mean deviation for each series is given in table 8. The average value of the four determinations with the total mean deviation is given in column 6 for each temperature. The deviations range from 0.0004 to 0.0011, which correspond to 0.02 to 0.07 mv in the emf. Values of the second dissociation constant of *o*-phthalic acid are given in the last column of this table.

Tem-			pK2			K2×106
ature	Series A	Series B	Series C	Series D	Average	Average
°C 0 5 10 15 20	*5. 4319 ± 0.0007 5. 4177 $\pm .0010$ 5. 4091 $\pm .0009$ 5. 4043 $\pm .0008$ 5. 4041 $\pm .0009$	$\begin{array}{c} 5.4326 \pm 0.0008 \\ 5.4182 \pm .0007 \\ 5.4093 \pm .0008 \\ 5.4050 \pm .0007 \\ 5.4051 \pm .0008 \end{array}$	$\begin{array}{c} 5.4324 \pm 0.0005 \\ 5.4178 \pm .0004 \\ 5.4095 \pm .0005 \\ 5.4053 \pm .0008 \\ 5.4047 \pm .0006 \end{array}$	$\begin{array}{c} 5.4323 \pm 0.0008 \\ 5.4184 \pm .0006 \\ 5.4103 \pm .0008 \\ 5.4060 \pm .0012 \\ 5.4053 \pm .0006 \end{array}$	5.4323 ± 0.0007 $5.4180 \pm .0008$ $5.4096 \pm .0009$ $5.4052 \pm .0009$ $5.4048 \pm .0008$	3. 696 3. 820 3. 894 3. 934 3. 937
25 30 35 40 45	$\begin{array}{c} 5.4077\pm.0008\\ 5.4150\pm.0008\\ 5.4259\pm.0010\\ 5.5522\pm.0009\\ 5.4613\pm.0010 \end{array}$	$\begin{array}{c} 5.\ 4079\ \pm\ .\ 0007\\ 5.\ 4154\ \pm\ .\ 0007\\ 5.\ 4269\ \pm\ .\ 0008\\ 5.\ 4423\ \pm\ .\ 0007\\ 5.\ 4615\ \pm\ .\ 0006 \end{array}$	$\begin{array}{ccccc} 5.4085 & \pm .0006 \\ 5.4165 & \pm .0011 \\ 5.4278 & \pm .0008 \\ 5.4426 & \pm .0007 \\ 5.4616 & \pm .0006 \end{array}$	$\begin{array}{c} 5.4090 \pm .0010 \\ 5.4160 \pm .0006 \\ 5.4276 \pm .0007 \\ 5.4423 \pm .0009 \\ 5.4625 \pm .0005 \end{array}$	$\begin{array}{c} 5.4083\pm.0008\\ 5.4157\pm.0009\\ 5.4271\pm.0010\\ 5.4424\pm.0008\\ 5.4617\pm.0008 \end{array}$	3.906 3.840 3.740 3.611 3.454
50 55 60	$\begin{array}{c} 5.4840\pm.0008\\ 5.5108\pm.0011\\ 5.5416\pm.0009 \end{array}$	$\begin{array}{c} 5.4848\pm.0007\\ 5.5116\pm.0006\\ 5.5403\pm.0005 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5.4849\pm.0005\\ 5.5137\pm.0007\\ 5.5418\pm.0007\end{array}$	$\begin{array}{c} 5,4849 \pm .0009 \\ 5.5122 \pm .0011 \\ 5.5413 \pm .0009 \end{array}$	3. 274 3. 075 2. 875

TABLE 8.—Summary of numerical values of pK_2 and K_2 calculated from measurements of four different buffer ratios at temperatures of 0° to 60° C

*Arithmetical mean deviations.

This plot represents a deviation plot.

(The symbols represent the same series of experiments given in figure 2.)

670468-45----

In table 9, the values of K_2 are compared with those obtained by other investigators at 18°, 20°, and 25° C. A critical comparison is not possible as previous investigations were limited to a single temperature and involved a number of uncertainties.

TABLE 9.—Numerical values of the second ionization constant of orthophthalic acid obtained by different workers at 18°, 20° and 25° C

Year			K2×106				
	Observer and reference	Method	18° C	K2×106 C 20° C	25° C		
1898	W. A. Smith, Z. physik. Chem. [B] 25, 193	Sucrose inversion			1.7		
1908	E. E. Chandler, J. Am. Chem. Soc. 30, 694	Partition			3.1		
1908	(1908). E. E. Chandler, J. Am. Chem. Soc. 39, 694 (1908)	Conductivity			3.9		
1915	A. K. Datta and N. Dhar, J. Chem. Soc. 107,	CO2 absorption			1.82		
1924	E. Larsson, Z. anorg. allgem, Chem. 140, 292	Potentiometric titration	4.0				
1925	(1924). M. Mizutani, Z. physik, Chem. [B] 118, 318 (1925).	do		5.8			
1928	R. Kuhn and A. Wasserman, Helv. Chim.	emf quinhydrone electrode	3.9				
1928 1935	C. Morton, J. Chem. Soc. 1406 (1928) W. R. Maxwell and J. R. Partington, Trans.	Potentiometric titration		4.6	5.2		
1945	Faraday Soc. 31, 922 (1935). Present investigation	Galvanic cells without liquid junction.	≈ 3. 936	3. 937	3.906		

• Value calculated by eq 38.

In figure 5, the values of pK_2 are shown as open circles and plotted with respect to the temperature in degrees centigrade. The curve approximates that of a parabola and passes through a minimum at about 18° C. Harned and Embree [28], from a critical survey of the variation of ionization constants of weak electrolytes with temperature, found that the variation could be expressed by the parabolic eq

$$pK_t = pK_{\min} + 5 \times 10^{-5} (t - \theta)^2,$$
 (35)

where pK_{\min} is the minimum value of pK at the temperature of the minimum, θ . This equation was later generalized by Harned and Hamer [29] to give

$$\mathbf{p}K_t = \mathbf{p}K_{\min} + k(t-\theta)^2, \tag{36}$$

where k is a constant characteristic of the acid or base. For example $k ext{ is 8 \times 10^{-5}}$ for the bisulfate ion [16] and 6.4×10^{-5} for the bimalonate ion [8]. It was found that eq 35 only approximately reproduces the experimental values, the mean deviation being 0.014, which greatly exceeds the experimental error. Equation 36, with $pK_{\min}=5.4049$, $k=8\times 10^{-5}$, and $\theta=18.5$, reproduces the experimental data very well except at 60° C, where a deviation of 0.0014 is found. An equation expressing the relation between pK_2 and the temperature may be obtained from eq 31. Both the emf obtained in this investigation and E° obtained by Harned and Ehlers vary quadratically with the temperature, and can be expressed by an equation of the form, $(E-E^\circ=a+bt+ct^2)$. Therefore,

$$\mathbf{p}K_2 = A^*/T + B + CT, \tag{37}$$

FIGURE 5.—Plots of the values of pK_2 against the temperature in degrees centigrade (open circles) and of -R in K_2 against the reciprocal of the absolute temperature (dark circles).

The latter plot may be used to evaluate the heat of dissociation of the acid-phthalate ion.

as log m_{Cl} , log m_{HPh} , log m_{Ph} , ω and λ do not vary with respect to temperature and $2A\sqrt{\mu}/(1+Ba_i\sqrt{\mu})$ is equal to zero at infinite dilution for which pK_2 applies. A^*, B , and C differ from a, b, and c by the factor 2.3026 RT/F. This is the equation proposed by Harned and Robinson [30] for those acids and bases for which ω and λ are negligible. The constants of this equation were obtained by the method of least squares and the use of the average values of pK_2 given in table 8. The values of pK_2 are given with a mean deviation of 0.0008 by the equation

$$pK_2 = 2175.83/T - 9.55075 + 0.025694T, \tag{38}$$

where $T = t \circ C + 273.16$.

V. pH VALUES OF PHTHALATE-CHLORIDE SOLUTIONS

The pH value of each solution of the four main series of experiments and of the seven less complete series used in the evaluation of K_2 may be computed either by eq 32 or 33 by using 3.76 A for a_i , the values of ω and λ given in table 6 and the values of β given in table 7. For synthetic solutions, eq 33 is preferable for the calculation of the pH

values in that no knowledge of the emf is required. Instead of computing the pH values of these solutions of uneven concentration, the pH values of solutions of even or rounded concentrations were calculated by using the proper values of ω , λ , and β . In tables 10, 11, and 12 the pH values are given for solutions whose compositions approximate those of series A, B, and C and in part II for the same solutions without potassium chloride. The pH values range from 4.868 to 5.439, from 5.061 to 5.600, and from 5.204 to 5.713, respectively, for series A, B, and C and are precise to 0.003 pH unit. The temperature of the minimum pH value shifts from about 18° to about 25° C as the concentration of the buffer solution increases. The data of part I and part II differ more for the concentrated than for the dilute solutions because of a greater difference in the ionic strength of the solutions. The data given in part I are shown plotted against the temperature in figures 6, 7, and 8. The variation of the pH values with temperature are similar for the three series. The data for the different concentrations are separated by amounts that are nearly independent of the temperature. The difference between the pH values of the solutions at 0° and 60° C is less than 0.1 unit for all concentrations and for the three series, which fact enhances their use as pH standards. Plots of the data of part II with respect to temperature are similar to those for part I.

TABLE 10.—pH phthalate and	values of aqueous solutions of acid potassium phthalate, dipotassium potassium chloride from 0° to 60° C for rounded concentrations
	Series A part 1 mr ph=mruph=mrol

Molality of acid potassium				J	emper	ature i	in degr	ees cen	tigrade	•			
phthalate	0	5	10	15	20	25	30	35	40	45	50	55	60
Moles of solute/1,000 g of water 0.10	4.918 4.958 4.998 5.059 5.106	4.899 4.940 4.980 5.042 5.090	4. 886 4. 928 4. 969 5. 031 5. 079	4. 874 4. 917 4. 958 5. 022 5. 070	4.870 4.913 4.955 5.019 5.068	4.868 4.912 4.955 5.019 5.068	4. 869 4. 914 4. 957 5. 023 5. 072	4. 875 4. 920 4. 963 5. 030 5. 080	4.883 4.929 4.974 5.041 5.092	4. 896 4. 943 4. 989 5. 057 5. 108	4. 913 4. 961 5. 006 5. 075 5. 127	4. 933 4. 982 5. 028 5. 098 5. 151	4. 958 5. 004 5. 055 5. 123 5. 176
0.01 0.007 0.005 0.003 0.002	$\begin{array}{c} 5.180\\ 5.213\\ 5.241\\ 5.279\\ 5.305 \end{array}$	$\begin{array}{c} 5.163 \\ 5.197 \\ 5.225 \\ 5.263 \\ 5.290 \end{array}$	$\begin{array}{c} 5.153\\ 5.187\\ 5.216\\ 5.254\\ 5.281 \end{array}$	$\begin{array}{c} 5.146 \\ 5.180 \\ 5.209 \\ 5.248 \\ 5.275 \end{array}$	$\begin{array}{c} 5.144\\ 5.178\\ 5.208\\ 5.246\\ 5.273\end{array}$	$\begin{array}{c} 5.144\\ 5.179\\ 5.209\\ 5.249\\ 5.276\end{array}$	$\begin{array}{c} 5.\ 149\\ 5.\ 184\\ 5.\ 214\\ 5.\ 255\\ 5.\ 282 \end{array}$	$\begin{array}{c} 5.158\\ 5.193\\ 5.224\\ 5.264\\ 5.292 \end{array}$	$\begin{array}{c} 5.\ 171 \\ 5.\ 207 \\ 5.\ 238 \\ 5.\ 278 \\ 5.\ 306 \end{array}$	$\begin{array}{c} 5.\ 188\\ 5.\ 224\\ 5.\ 255\\ 5.\ 296\\ 5.\ 325\end{array}$	$\begin{array}{c} 5.\ 207\\ 5.\ 244\\ 5.\ 275\\ 5.\ 317\\ 5.\ 346 \end{array}$	$\begin{array}{c} 5.\ 233\\ 5.\ 269\\ 5.\ 300\\ 5.\ 343\\ 5.\ 372 \end{array}$	5. 259 5. 290 5. 327 5. 370 5. 399
0.001	5.341	5.326	5.317	5.312	5.311	5.313	5. 320	5. 330	5.345	5.363	5.385	5.410	5. 439
ally re 2000.	110	10118	eries A	, part	2. mB	2Ph=m	KHPh (no KC	1)	NT 1	0.201	day	od1
0.10 0.07 0.05 0.03 0.02	4.951 4.991 5.029 5.089 5.133	4.933 4.972 5.011 5.071 5.116	4.919 4.960 4.999 5.059 5.105	4. 908 4. 950 4. 990 5. 051 5. 098	4.904 4.946 4.987 5.048 5.095	4. 902 4. 944 4. 987 5. 048 5. 096	4. 903 4. 947 4. 989 5. 052 5. 099	4. 909 4. 953 4. 996 5. 060 5. 109	4.918 4.963 5.007 5.071 5.120	4.931 4.977 5.022 5.087 5.136	4.949 4.995 5.040 5.107 5.156	4.969 5.017 5.062 5.129 5.179	4. 991 5. 040 5. 080 5. 154 5. 205
0.01 0.007 0.005 0.003 0.002	5. 201 5. 233 5. 259 5. 294 5. 318	$5.185 \\ 5.217 \\ 5.243 \\ 5.278 \\ 5.302$	$5.175 \\ 5.207 \\ 5.233 \\ 5.269 \\ 5.293$	$5.169 \\ 5.201 \\ 5.227 \\ 5.263 \\ 5.288$	$5.167 \\ 5.198 \\ 5.226 \\ 5.261 \\ 5.286$	$5.168 \\ 5.199 \\ 5.228 \\ 5.264 \\ 5.289$	$5.172 \\ 5.204 \\ 5.233 \\ 5.270 \\ 5.295$	$5.181 \\ 5.214 \\ 5.243 \\ 5.280 \\ 5.305$	$5.194 \\ 5.228 \\ 5.257 \\ 5.294 \\ 5.319$	$5.211 \\ 5.244 \\ 5.274 \\ 5.311 \\ 5.337$	$5.232 \\ 5.266 \\ 5.294 \\ 5.333 \\ 5.359$	$5.257 \\ 5.291 \\ 5.320 \\ 5.359 \\ 5.385$	5. 283 5. 318 5. 347 5. 386 5. 413
0.001	5.346	5.331	5.327	5.322	5.320	5.323	5. 330	5.340	5. 355	5.373	5.395	5. 422	5. 450

TABLE 11pH 2	values of aqueou	s solutions of a	cid potassium	phthalate, dipotassium
phthalate and	potassium chlor	ride from 0° to	60° C for rou	inded concentrations

Molality of acid				Г	emper	ature i	in degr	ees cen	tigrade	•			
p o t a s s i u m phthalate	0	5	10	15	20	25	30	35	40	45	50	55	60
Moles of solute per 1,000 g of water													
0.07	$\begin{array}{c} 5.\ 110\\ 5.\ 147\\ 5.\ 173\\ 5.\ 255\\ 5.\ 330\\ 5.\ 352\\ 5.\ 396\\ 5.\ 415\\ 5.\ 464\\ 5.\ 504\\ \end{array}$	$\begin{array}{c} 5.\ 091\\ 5.\ 129\\ 5.\ 155\\ 5.\ 237\\ 5.\ 313\\ 5.\ 336\\ 5.\ 380\\ 5.\ 398\\ 5.\ 449\\ 5.\ 489\\ \end{array}$	$\begin{array}{c} 5.\ 078\\ 5.\ 117\\ 5.\ 143\\ 5.\ 226\\ 5.\ 303\\ 5.\ 326\\ 5.\ 326\\ 5.\ 370\\ 5.\ 388\\ 5.\ 439\\ 5.\ 480\\ \end{array}$	$5.069 \\ 5.107 \\ 5.134 \\ 5.219 \\ 5.296 \\ 5.318 \\ 5.363 \\ 5.383 \\ 5.434 \\ 5.475 \\ \end{cases}$	$5.063 \\ 5.102 \\ 5.129 \\ 5.214 \\ 5.294 \\ 5.316 \\ 5.361 \\ 5.380 \\ 5.432 \\ 5.473 \\ \end{array}$	$\begin{array}{c} 5.\ 061\\ 5.\ 101\\ 5.\ 128\\ 5.\ 215\\ 5.\ 294\\ 5.\ 317\\ 5.\ 361\\ 5.\ 382\\ 5.\ 434\\ 5.\ 476\\ \end{array}$	$\begin{array}{c} 5.\ 063\\ 5.\ 103\\ 5.\ 131\\ 5.\ 218\\ 5.\ 298\\ 5.\ 322\\ 5.\ 368\\ 5.\ 387\\ 5.\ 440\\ 5.\ 482\\ \end{array}$	$\begin{array}{c} 5.\ 068\\ 5.\ 109\\ 5.\ 138\\ 5.\ 226\\ 5.\ 307\\ 5.\ 331\\ 5.\ 378\\ 5.\ 397\\ 5.\ 450\\ 5.\ 493\\ \end{array}$	$\begin{array}{c} 5.\ 077\\ 5.\ 119\\ 5.\ 149\\ 5.\ 238\\ 5.\ 318\\ 5.\ 344\\ 5.\ 390\\ 5.\ 410\\ 5.\ 464\\ 5.\ 507\\ \end{array}$	$\begin{array}{c} 5.\ 090\\ 5.\ 133\\ 5.\ 163\\ 5.\ 252\\ 5.\ 335\\ 5.\ 360\\ 5.\ 407\\ 5.\ 427\\ 5.\ 482\\ 5.\ 524\\ \end{array}$	$\begin{array}{c} 5.\ 107\\ 5.\ 151\\ 5.\ 180\\ 5.\ 272\\ 5.\ 355\\ 5.\ 381\\ 5.\ 428\\ 5.\ 449\\ 5.\ 503\\ 5.\ 546\\ \end{array}$	$\begin{array}{c} 5.\ 127\\ 5.\ 172\\ 5.\ 202\\ 5.\ 295\\ 5.\ 379\\ 5.\ 404\\ 5.\ 452\\ 5.\ 474\\ 5.\ 529\\ 5.\ 572\\ \end{array}$	$5.150 \\ 5.195 \\ 5.225 \\ 5.319 \\ 5.405 \\ 5.430 \\ 5.430 \\ 5.500 \\ 5.556 \\ 5.600 \\ 5.60$
		Ser	ies B, j	part 2.	m _{K2} PI		nkhff (no KC	1)				
0.07 0.05 0.04 0.02 0.01 0.008 0.008	$\begin{array}{c} 5.\ 135\\ 5.\ 171\\ 5.\ 196\\ 5.\ 275\\ 5.\ 348\\ 5.\ 369\end{array}$	$5.116 \\ 5.153 \\ 5.178 \\ 5.258 \\ 5.331 \\ 5.353$	$5.103 \\ 5.141 \\ 5.167 \\ 5.246 \\ 5.321 \\ 5.343$	$5.094 \\ 5.132 \\ 5.158 \\ 5.239 \\ 5.312 \\ 5.329$	$5.088 \\ 5.127 \\ 5.153 \\ 5.236 \\ 5.311 \\ 5.333$	$\begin{array}{c} 5.\ 086\\ 5.\ 126\\ 5.\ 153\\ 5.\ 236\\ 5.\ 312\\ 5.\ 334 \end{array}$	$\begin{array}{c} 5.\ 088\\ 5.\ 128\\ 5.\ 156\\ 5.\ 241\\ 5.\ 317\\ 5.\ 340 \end{array}$	$\begin{array}{c} 5.\ 093\\ 5.\ 134\\ 5.\ 162\\ 5.\ 248\\ 5.\ 326\\ 5.\ 349\end{array}$	$5.103 \\ 5.144 \\ 5.173 \\ 5.260 \\ 5.338 \\ 5.361$	$5.116 \\ 5.158 \\ 5.188 \\ 5.275 \\ 5.354 \\ 5.377$	$\begin{array}{c} 5.\ 133\\ 5.\ 176\\ 5.\ 206\\ 5.\ 294\\ 5.\ 376\\ 5.\ 398 \end{array}$	$5.154 \\ 5.198 \\ 5.227 \\ 5.317 \\ 5.399 \\ 5.422$	$5.176 \\ 5.221 \\ 5.251 \\ 5.342 \\ 5.425 \\ 5.449 $
0.005 0.004 0.002 0.001	$5.410 \\ 5.428 \\ 5.474 \\ 5.512$	$5.394 \\ 5.411 \\ 5.459 \\ 5.497 $	$5.384 \\ 5.402 \\ 5.450 \\ 5.488$	$\begin{array}{c} 5.381 \\ 5.396 \\ 5.444 \\ 5.481 \end{array}$	$\begin{array}{c} 5.\ 376\\ 5.\ 394\\ 5.\ 443\\ 5.\ 481 \end{array}$	5. 376 5. 396 5. 445 5. 484	$5.382 \\ 5.401 \\ 5.451 \\ 5.490$	5.393 5.411 5.461 5.502	$\begin{array}{c} 5.\ 405\\ 5.\ 424\\ 5.\ 475\\ 5.\ 515\end{array}$	5. 422 5. 442 5. 493 5. 533	$\begin{array}{c} 5.\ 443\\ 5.\ 463\\ 5.\ 515\\ 5.\ 555\end{array}$	5. 468 5. 488 5. 540 5. 580	5. 495 5. 505 5. 568 5. 608

TABLE 12.—pH values of aqueous solutions of acid potassium phthalate, dipotassium phthalate and potassium chloride from 0° to 60° C for rounded concentrations

	Se	ries C,	part 1	. m K ₂	Ph=2.0) m _{KHP}	h=2.0	MKCI				ζs	
Molality of acid				г	`emper	ature i	n degre	ees cen	tigrade				
potassium phthalate	0	5	10	15	20	25	30	35	40	45	50	55	60
Moles of solute per 1,000 g of water		0	†	ahu	14.93	9143	T						
0.05 0.04 0.03 0.02 0.01	$5.252 \\ 5.277 \\ 5.309 \\ 5.356 \\ 5.431$	$5.233 \\ 5.258 \\ 5.291 \\ 5.339 \\ 5.417$	$5.221 \\ 5.246 \\ 5.279 \\ 5.327 \\ 5.406$	$5.211 \\ 5.237 \\ 5.271 \\ 5.319 \\ 5.399$	$\begin{array}{c} 5.\ 206\\ 5.\ 231\\ 5.\ 266\\ 5.\ 315\\ 5.\ 396 \end{array}$	$\begin{array}{c} 5.\ 204\\ 5.\ 230\\ 5.\ 265\\ 5.\ 316\\ 5.\ 396 \end{array}$	5.2065.2325.2685.3195.401	$5.211 \\ 5.239 \\ 5.275 \\ 5.326 \\ 5.410$	$\begin{array}{c} 5.\ 221\\ 5.\ 248\\ 5.\ 285\\ 5.\ 337\\ 5.\ 422 \end{array}$	$5.234 \\ 5.262 \\ 5.300 \\ 5.353 \\ 5.437$	$\begin{array}{c} 5.\ 252\\ 5.\ 280\\ 5.\ 318\\ 5.\ 371\\ 5.\ 457\end{array}$	$\begin{array}{c} 5.\ 272 \\ 5.\ 301 \\ 5.\ 339 \\ 5.\ 393 \\ 5.\ 481 \end{array}$	$5.294 \\ 5.325 \\ 5.363 \\ 5.418 \\ 5.507$
0.005 0.004 0.003 0.002 0.001	$\begin{array}{c} 5.\ 502\\ 5.\ 522\\ 5.\ 546\\ 5.\ 576\\ 5.\ 618 \end{array}$	$\begin{array}{c} 5.\ 486\\ 5.\ 506\\ 5.\ 529\\ 5.\ 560\\ 5.\ 602 \end{array}$	5.476 5.496 5.519 5.551 5.592	$\begin{array}{c} 5.\ 470\\ 5.\ 490\\ 5.\ 514\\ 5.\ 545\\ 5.\ 588 \end{array}$	$\begin{array}{c} 5.\ 467\\ 5.\ 487\\ 5.\ 511\\ 5.\ 542\\ 5.\ 584\end{array}$	$\begin{array}{c} 5.\ 469\\ 5.\ 489\\ 5.\ 513\\ 5.\ 544\\ 5.\ 589\end{array}$	$\begin{array}{c} 5.\ 474\\ 5.\ 494\\ 5.\ 519\\ 5.\ 550\\ 5.\ 595\end{array}$	$\begin{array}{c} 5.\ 482\\ 5.\ 504\\ 5.\ 528\\ 5.\ 560\\ 5.\ 605 \end{array}$	$\begin{array}{c} 5.\ 495\\ 5.\ 517\\ 5.\ 542\\ 5.\ 574\\ 5.\ 619 \end{array}$	$\begin{array}{c} 5.\ 512\\ 5.\ 534\\ 5.\ 559\\ 5.\ 591\\ 5.\ 637\end{array}$	$\begin{array}{c} 5.\ 533\\ 5.\ 554\\ 5.\ 580\\ 5.\ 613\\ 5.\ 659 \end{array}$	$5.557 \\ 5.579 \\ 5.605 \\ 5.638 \\ 5.685 $	$5.584 \\ 5.605 \\ 5.631 \\ 5.665 \\ 5.713 $
		Sei	ies C,	part 2.	m _{K2} P	h=2.0	ткнрь	(no K	C1)				
0.05 0.04 0.03 0.02 0.01	$5.272 \\ 5.296 \\ 5.328 \\ 5.374 \\ 5.449$	$5.253 \\ 5.277 \\ 5.310 \\ 5.351 \\ 5.432$	$5.241 \\ 5.265 \\ 5.298 \\ 5.345 \\ 5.422$	$5.231 \\ 5.256 \\ 5.290 \\ 5.337 \\ 5.415$	$5.226 \\ 5.251 \\ 5.286 \\ 5.333 \\ 5.411$	$5.225 \\ 5.250 \\ 5.285 \\ 5.334 \\ 5.412$	5. 226 5. 252 5. 287 5. 337 5. 417	$5.232 \\ 5.259 \\ 5.294 \\ 5.345 \\ 5.425$	$\begin{array}{c} 5.\ 241 \\ 5.\ 269 \\ 5.\ 305 \\ 5.\ 355 \\ 5.\ 438 \end{array}$	5.2555.2835.3195.3715.453	$5.273 \\ 5.301 \\ 5.338 \\ 5.390 \\ 5.473$	$\begin{array}{c} 5.\ 293\\ 5.\ 322\\ 5.\ 360\\ 5.\ 412\\ 5.\ 497 \end{array}$	5.316 5.345 5.383 5.437 5.523
0.005 0.004 0.003 0.002 0.001	5.515 5.533 5.555 5.585 5.624	$\begin{array}{c} 5.\ 499\\ 5.\ 517\\ 5.\ 540\\ 5.\ 569\\ 5.\ 609 \end{array}$	$\begin{array}{c} 5.\ 488\\ 5.\ 507\\ 5.\ 530\\ 5.\ 560\\ 5.\ 600 \end{array}$	$\begin{array}{c} 5.\ 482\\ 5.\ 501\\ 5.\ 524\\ 5.\ 554\\ 5.\ 594 \end{array}$	$\begin{array}{c} 5.\ 479\\ 5.\ 499\\ 5.\ 522\\ 5.\ 552\\ 5.\ 593\end{array}$	$\begin{array}{c} 5.\ 482\\ 5.\ 501\\ 5.\ 524\\ 5.\ 553\\ 5.\ 596\end{array}$	$\begin{array}{c} 5.\ 487\\ 5.\ 506\\ 5.\ 530\\ 5.\ 559\\ 5.\ 602 \end{array}$	$\begin{array}{c} 5.\ 495\\ 5.\ 516\\ 5.\ 539\\ 5.\ 569\\ 5.\ 612 \end{array}$	$\begin{array}{c} 5.\ 508\\ 5.\ 528\\ 5.\ 553\\ 5.\ 583\\ 5.\ 626 \end{array}$	$\begin{array}{c} 5.\ 525\\ 5.\ 545\\ 5.\ 570\\ 5.\ 601\\ 5.\ 644 \end{array}$	$\begin{array}{c} 5.\ 546\\ 5.\ 566\\ 5.\ 592\\ 5.\ 622\\ 5.\ 672 \end{array}$	$\begin{array}{c} 5.\ 570\\ 5.\ 591\\ 5.\ 616\\ 5.\ 647\\ 5.\ 691 \end{array}$	5.5975.6185.6445.6755.720

FIGURE 6.—Plots of the pH values of phthalate-chloride solutions whose compositions correspond to those of series A against the temperature in degrees centigrade.
A, 0.001 M KHPh; B, 0.002 M KHPh; C, 0.003 M KHPh; D, 0.005 M KHPh; E, 0.007 M KHPh; F, 0.01 M KHPh; G, 0.02 M KHPh; H, 0.03 M KHPh; I, 0.05 M KHPh; J, 0.07 M KHPh; K, 0.10 M KHPh.

FIGURE 7.—Plots of the pH values of phthalate-chloride solutions whose compositions correspond to those of series B against the temperature in degrees centigrade.
A, 0.001 M KHPh; B, 0.002 M KHPh; C, 0.004 M KHPh; D, 0.005 M KHPh; E, 0.008 M KHPh; F, 0.01 M KHPh; G, 0.02 M KHPh; H, 0.04 M KHPh; I, 0.05 M KHPh; J, 0.0 M KHPh.

FIGURE 8.—Plots of the pH values of phthalate-chloride solutions whose compositions correspond to those of series C against the temperature in degreees centigrade.
 A, 0.001 M KHPh; B, 0.002 M KHPh; C, 0.003 M KHPh; D, 0.004 M KHPh; E, 0.005 M KHPh; F, 0.01 M KHPh; G, 0.02 M KHPh; H, 0.03 M KHPh; I, 0.04 M KHPh. J, 0.05 M KHPh.

Second Dissociation Constant of o-Phthalic Acid

In table 13, the pH values at 25° C are given for solutions of different buffer ratios containing various amounts of potassium chloride. The data are shown plotted against the molality of potassium chloride in figures 9, 10, and 11. The addition of potassium chloride has a similar effect on the pH values for the three different buffer ratios and is more marked for dilute than for concentrated solutions. The pH of these solutions may be computed as a function of the molality of potassium chloride by the equation.

$$pH = (pH)_0 + \alpha_1 m_{KC1} + \alpha_2 m_{KC1}^2 + \alpha_3 m_{KC1}^3, \qquad (39)$$

409

where $(pH)_0$ is the pH of a solution containing no potassium chloride and α_1 , α_2 , and α_3 are constants whose numerical values are practically independent of the temperature. Numerical values of $(pH)_0$, α_1 , α_2 , and α_3 are given in table 14. Values of the pH for any intermediate buffer ratio, concentration of acid potassium phthalate, or concentration of potassium chloride may be obtained conveniently by interpolation of the data of table 14.

TABLE 13.—pH values of aqueous solutions of acid potassium phthalate and dipotassium phthalate containing various amounts of potassium chloride at 25° C

Molality of potas-	Molality of acid potassim phthalate											
sium chloride	0.10	0.07	0.05	0.03	0.02	0.01	0.007	0.005	0.003	0.002	0.001	
Moles of solute per 1,000 g of water		21 J		16 - 5 1657 - 1 1657 - 1		150 120 056		10 10 10				
0.10 0.05 0.02 0.01 0.00	4.868 4.884 4.895 4.899 4.902	4. 899 4. 920 4. 934 4. 939 4. 945	4. 927 4. 955 4. 973 4. 980 4. 987	4.956 5.002 5.029 5.039 5.049	$\begin{array}{c} 4.990\\ 5.034\\ 5.068\\ 5.081\\ 5.096 \end{array}$	$\begin{array}{c} 5.\ 021\\ 5.\ 078\\ 5.\ 125\\ 5.\ 144\\ 5.\ 168\end{array}$	5.031 5.093 5.147 5.170 5.199	5.040 5.106 5.166 5.192 5.228	5.048 5.118 5.185 5.219 5.265	$\begin{array}{c} 5.052\\ 5.126\\ 5.197\\ 5.235\\ 5.291 \end{array}$	5.056 5.132 5.208 5.252 5.326	

Series B. Molality of dipotassium phthalate=1.5×molality of acid potassium phthalate

Molality of potas-	Molality of acid potassium phthalate												
sium chloride	0.07	0.05	0.04	0.02	0.01	0.008	0.005	0.004	0.002	0.001			
Moles of solute per 1,000 g of water		CB											
0.10 0.05 0.02 0.01 0.00	$\begin{array}{c} 5.\ 051\\ 5.\ 068\\ 5.\ 079\\ 5.\ 082\\ 5.\ 086\end{array}$	$\begin{array}{c} 5.\ 079\\ 5.\ 101\\ 5.\ 115\\ 5.\ 120\\ 5.\ 126\end{array}$	5.098 5.123 5.140 5.147 5.153	5. 149 5. 186 5. 215 5. 225 5. 236	$\begin{array}{c} 5.\ 185\\ 5.\ 236\\ 5.\ 277\\ 5.\ 294\\ 5.\ 312 \end{array}$	$\begin{array}{c} 5.\ 198\\ 5.\ 249\\ 5.\ 294\\ 5.\ 313\\ 5.\ 334 \end{array}$	$\begin{array}{c} 5.\ 209\\ 5.\ 271\\ 5.\ 325\\ 5.\ 349\\ 5.\ 378\end{array}$	$\begin{array}{c} 5.\ 213\\ 5.\ 278\\ 5.\ 336\\ 5.\ 362\\ 5.\ 396 \end{array}$	$\begin{array}{c} 5.\ 225\\ 5.\ 296\\ 5.\ 364\\ 5.\ 398\\ 5.\ 445 \end{array}$	5. 231 5. 307 5. 382 5. 420 5. 485			

Series C. Molality of dipotassium phthalate=2.0×molality of acid potassium phthalate

Molality of potas-	Molality of acid potassium phthalate									
sium chloride	0.05	0.04	0.03	0.02	0.01	0.005	0.004	0.003	0.002	0.001
Moles of solute per 1,000 g of water										
0.10	5. 186	5. 204	5. 228	5.258	5.299	5.322	5.333	5. 340	5.347	5.354
0.03	5. 204	5. 240	5. 271	5.316	5.382	5. 426	5. 449	5.464	5.482	5. 502
0 01	5. 220	5. 245	5.278	5.324	5.396	5.446	5.472	5.490	5.513	5. 539
0.00	5. 225	5.250	5. 285	5.334	5.412	5.481	5.501	5. 524	5. 554	5. 596

TABLE 14.—Values of the constants $(pH)_{0,\alpha_1,\alpha_2}$, and α_3 in the equation $pH = (pH)_0 + \alpha_1 m_{KC1} + \alpha_2 m^2_{KCL} + \alpha_3 m^3_{KCL}$ which gives the pH of phthalate solutions as a function of the molality of potassium chloride

	acid 1	jotassium phina		
Molality of acid potassium phthalate	(pH)0	<i>—α</i> 1	α2	<i>α</i> 3
Moles of solute	5.1.1231	0.110.800.00		M. Carlos
11,000 g of water		on white	Caline Horas	
0.001	5.326	8.107	115.39	613.2
.002	5. 291	6.116	75.43	381.8
. 003	5.265	5.064	56.20	273.0
.005	5.228	3.792	35.09	159.7
.007	5.199	3.064	23.97	101.4
. 01	5.168	2.499	17.72	74.3
. 02	5.096	1.55	7.46	25.8
. 03	5.049	1.05	3.11	19.3
.05	4.987	0.742	2.63	12.2
.07	4.945	. 609	0.61	8.0
. 10	4.902	. 401	-1.00	3. 5
0.001	Molality of di acid p 5. 485 5. 445	6.956	alate=1.5×mola) late 92.10 56.33	479. 4
0.001 .002 .004 .005 .008 .01 .02 .04 .05 .07	Molality of di acid p 5. 485 5. 445 5. 396 5. 378 5. 334 5. 312 5. 236 5. 153 5. 126 5. 086	potassium phthi otassium phtha 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 .550 .366	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	479.4 479.4 271.9 148.7 123.2 29.0 12.2 5.13 4.20 2.73
0.001 .002 .004 .005 .008 .01 .02 .04 .05 .005 .003 .01 .02 .04 .05 .07 Series C, .01	Molality of di acid p 5. 485 5. 445 5. 306 5. 378 5. 334 5. 334 5. 334 5. 126 5. 086 Molality of di acid	potassium phtha otassium phtha 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 5.50 .366	alate=1.5×molal ate 92.10 56.33 32.87 24.64 12.54 9.36 3.30 1.12 0.502 .101 alate=2.0×molal alate	479. 4 271. 9 148. 7 123. 2 38. 2 29. 0 12. 2 5. 13 4. 20 2. 73 ity of
0.001 .002 .004 .005 .008 .01 .02 .04 .05 .005 .003 .01 .02 .04 .05 .07 Series C, .001	Molality of di acid p 5. 485 5. 445 5. 396 5. 378 5. 334 5. 334 5. 334 5. 236 5. 153 5. 126 5. 086 Molality of di acid p	potassium phtha otassium phtha 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 .550 .366 ipotassium phtha potassium phtha 6.156 6.156	alate=1.5×molal ate 92.10 56.33 32.87 24.64 12.54 9.36 3.30 1.12 0.502 .101 alate=2.0×molal alate	479. 4 271. 9 148. 7 123. 2 29. 0 12. 2 5. 13 4. 20 2. 73 itty of
0.001 .002 .004 .005 .008 .01 .02 .04 .05 .008 .01 .02 .04 .05 .07 Series C, 0.001 .002	Molality of di acid p 5. 485 5. 445 5. 306 5. 378 5. 378 5. 378 5. 378 5. 334 5. 312 5. 236 5. 153 5. 126 5. 086 Molality of di acid p	potassium phtha otassium phtha 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 .550 .366 ipotassium phtha potassium phtha 6.156 4.435 4.435	$\begin{array}{c} \text{alate} = 1.5 \times \text{molal} \\ \text{ate} \\ \hline 92.10 \\ 56.33 \\ 32.87 \\ 24.64 \\ 12.54 \\ 9.36 \\ 3.30 \\ 1.12 \\ 0.502 \\ .101 \\ \text{alate} = 2.0 \times \text{molal} \\ \text{alate} \\ \hline 75.53 \\ 44.23 \\ 24.23 \\ \end{array}$	479. 4 271. 9 148. 7 123. 2 29. 0 12. 2 5. 13 4. 20 2. 73 itty of 383. 0 205. 8
0.001 .002 .004 .005 .008 .01 .02 .04 .05 .07 Series C, .002 .001 .002 .04 .05 .07 .07	Molality of di acid p 5. 485 5. 445 5. 306 5. 378 5. 334 5. 312 5. 236 5. 153 5. 126 5. 086 Molality of di acid p	potassium phtha otassium phtha 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 .550 .366 ipotassium phtha potassium phtha 6.156 4.435 3.611 2.064	$\begin{tabular}{ c c c c c c c } \hline & alate = 1.5 \times molal \\ \hline & 92.10 \\ & 56.33 \\ & 32.87 \\ & 24.64 \\ & 12.54 \\ & 9.36 \\ & 3.30 \\ & 1.12 \\ & 0.502 \\ & .101 \\ \hline & 1.12 \\ & 0.502 \\ & .101 \\ \hline & alate = 2.0 \times molal \\ & alate \\ \hline & 75.53 \\ & 44.23 \\ & 31.62 \\ & 97.7 \\ \hline & 87.7 $	479. 4 271. 9 148. 7 123. 2 38. 2 29. 0 12. 2 5. 13 4. 20 2. 73 ity of 383. 0 205. 8 139. 1
0.001 .002 .004 .005 .008 .01 .02 .03 .04 .05 .05 .07 Series C, 0.001 .002 .003 .004 .005 .005	Molality of di acid p 5. 485 5. 445 5. 306 5. 378 5. 334 5. 334 5. 334 5. 128 5. 086 Molality of di acid p 5. 596 5. 554 5. 554 5. 501 5. 481	potassium phtha otassium phtha 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 .550 .366 potassium phtha 6.156 4.435 3.611 3.064 2.689	$\begin{tabular}{ c c c c c } \hline & alate = 1.5 \times molal \\ \hline & 92.10 \\ 56.33 \\ 32.87 \\ 24.64 \\ 12.54 \\ 9.36 \\ 3.30 \\ 1.12 \\ 0.502 \\ .101 \\ \hline & alate = 2.0 \times molal \\ alate \\ \hline & 75.53 \\ 44.23 \\ 31.62 \\ 23.97 \\ 19.01 \\ \hline \end{array}$	lity of 479. 4 271. 9 148. 7 123. 2 29. 0 12. 2 5. 13 4. 20 2. 73 lity of 383. 0 205. 8 139. 1 101. 4 92. 4
0.001 .002 .004 .005 .008 .01 .02 .04 .05 .07 Series C, .03 .001 .002 .003 .004 .005 .003	Molality of di acid p 5. 485 5. 445 5. 396 5. 378 5. 378 5. 334 5. 312 5. 236 5. 126 5. 086 Molality of di acid p 5. 596 5. 554 5. 524 5. 501 5. 481 5. 412	potassium phtha otassium phtha 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 .550 .366 ipotassium phtha otassium phtha 6.156 4.435 3.611 3.064 2.680	$\begin{array}{c} \text{alate}=1.5\times\text{molal}\\ \text{ate}\\ \hline 92.10\\ 56.33\\ 32.87\\ 24.64\\ 12.54\\ 12.54\\ 12.54\\ 12.54\\ 0.502\\ .101\\ 1.12\\ 0.502\\ .101\\ 1.12\\ 0.502\\ .101\\ \hline \end{array}$	lity of 479. 4 271. 9 148. 7 123. 2 29. 0 12. 2 29. 0 12. 2 29. 0 12. 2 29. 0 12. 2 38. 2 29. 0 12. 2 38. 2 29. 0 12. 3 13. 5 13. 5 14. 20 2. 73 14. 20 2. 73 10. 12. 2 2. 73 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
0.001 .002 .004 .005 .005 .008 .01 .02 .04 .05 .07 Series C, 0.001 .002 .003 .004 .002 .003 .004 .005 .002 .003 .004 .005 .002 .003 .004 .005 .01 .02	Molality of di acid p 5. 485 5. 445 5. 396 5. 378 5. 334 5. 334 5. 334 5. 126 5. 086 5. 086 5. 596 5. 554 5. 554 5	potassium phtha otassium phtha 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 .550 .366 potassium phth potassium phtha 6.156 4.435 3.611 3.064 2.680 1.662 0.985	$\begin{tabular}{ c c c c c } \hline & alate = 1.5 \times molal \\ \hline & 92.10 \\ 56.33 \\ 32.87 \\ 24.64 \\ 12.54 \\ 9.36 \\ 3.30 \\ 1.12 \\ 0.502 \\ .101 \\ \hline & alate = 2.0 \times molal \\ alate \\ \hline & \hline & 5.53 \\ 44.23 \\ 31.62 \\ 23.97 \\ 19.01 \\ 8.39 \\ 3.61 \\ \hline \end{tabular}$	479. 4 271. 9 148. 7 123. 2 38. 2 29. 0 12. 2 5. 13 4. 20 2. 73 ity of 383. 0 205. 8 139. 1 101. 4 83. 0 30. 7 13. 5
0.001 .002 .004 .005 .008 .01 .02 .04 .05 .07 Series C, .002 .001 .002 .002 .003 .003 .004 .005 .01 .02 .03	Molality of di acid p 5. 485 5. 445 5. 306 5. 378 5. 378 5. 334 5. 334 5. 126 5. 086 Molality of di acid 1 5. 596 5. 554 5. 555 5. 555 5. 555 5. 5555	potassium phthai otassium phthai 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 .550 .366 ipotassium phth potassium phthe otassium phthe 6.156 4.435 3.611 3.064 2.680 0.662 0.985 7.756	$\begin{array}{c} \text{alate}=1.5\times\text{mola}\\ \text{late}\\ \hline 92.10\\ 56.33\\ 32.87\\ 24.64\\ 12.54\\ 9.36\\ 3.30\\ 1.12\\ 0.502\\ .101\\ \text{alate}=2.0\times\text{mola}\\ \text{alate}\\ \hline \hline 75.53\\ 44.23\\ 31.62\\ 23.97\\ 19.01\\ 8.39\\ 3.61\\ 2.50\\ \end{array}$	479. 4 479. 4 271. 9 148. 7 123. 2 38. 2 29. 0 12. 2 5. 13 4. 20 2. 73
0.001 .002 .004 .005 .008 .01 .02 .04 .05 .07 Series C, .003 .001 .002 .004 .05 .07 .07	Molality of di acid p 5. 485 5. 445 5. 306 5. 378 5. 334 5. 312 5. 236 5. 086 Molality of di acid p 5. 596 5. 554 5. 524 5. 524 5. 524 5. 412 5. 334 5. 285 5. 285 5. 285	potassium phtha otassium phtha 6.956 5.114 3.629 3.111 2.232 1.916 1.170 0.656 .550 .366 ipotassium phtha otassium phtha 6.156 4.435 3.611 3.064 2.680 1.662 0.985 .756 635	$\begin{array}{c} \text{alate}=1.5\times\text{molal}\\ \text{iate}\\ \hline 92.10\\ 56.33\\ 32.87\\ 24.64\\ 12.54\\ 9.36\\ 3.30\\ 1.12\\ 0.502\\ .101\\ \text{alate}=2.0\times\text{molal}\\ \text{alate}\\ \hline \hline 75.53\\ 44.23\\ 31.62\\ 23.97\\ 19.01\\ 8.39\\ 3.61\\ 2.50\\ 2.10\\ \hline \end{array}$	lity of 479. 4 271. 9 148. 7 123. 2 29. 0 . 12. 2 . 23. 4 . 20. 0 . 12. 2 . 35. 13 4. 20 2. 73 lity of 383. 0 205. 8 139. 1 101. 1 . 30. 7 . 30. 7 . 30. 7 . 40. 7

FIGURE 9.—Plots of the pH values of solutions containing dipotassium phthalate and acid potassium phthalate in unit ratio at 25° C as a function of the molality of potassium chloride.

The curves reading from the top correspond to 0.001, 0.002, 0.003, 0.005, 0.007, 0.01, 0.02, 0.03, 0.05, 0.07, and 0.10 molal acid potassium phthalate.

The curves reading from the top correspond to 0.001, 0.002, 0.004, 0.005, 0.01, 0.02, 0.04, 0.05, and 0.07 molal acid potassium phthalate.

The curves reading from the top correspond to 0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.02, 0.03, 0.04, and 0.05 molal acid potassium phthalate.

Each solution may be used as a standard for pH. It is proposed that they be prepared from the NBS Standard Sample 84a, of acid potassium phthalate, carbonate-free potassium hydroxide, and potassium chloride which meet the specifications of the American Chemical Society, and distilled water of pH 6.7 to 7.3 having a specific conductance of not over 1.0×10^{-6} mho. The solutions may be used to calibrate various types of pH equipment, such as the glasselectrode calomel half-cell assembly.

VI. THERMODYNAMIC QUANTITIES FOR THE PROCESS: ACID PHTHALATE ION \rightleftharpoons HYDROGEN ION + PHTHA-LATE ION

Thermodynamic quantities for the process $HPh \rightarrow H^+ + Ph^-$ can be computed from the equations of Harned and Robinson. The change in free energy, ΔF° ; in heat content, ΔH° ; in entropy, ΔS° ; and in heat capacity, ΔC_{p}° ; for the dissociation of 1 mole of HPh⁻ for the standard state are given respectively in international joules by the equations

$$\Delta F^{\circ} = -RT \text{ in } K_2 = 2.3026 R(A^* + BT + CT^2),$$

=41,647.2-182.8101T+0.4918T², (40)

$$\Delta S^{\circ} = -(d\Delta F^{\circ}/dT) = 2.3026 \ R(-B - 2CT), = 182.81 - 0.9836T \quad (41)$$

$$\Delta H^{\circ} = \Delta F^{\circ} + T \Delta S^{\circ} = 2.3026 \ R(A^{*} - CT^{2}), = 41,647.2 - 0.4918 T^{2}, (42)$$

$$\Delta C_{p}^{\circ} = (d\Delta H^{\circ}/dT) = 2.3026 \ R(-2CT), = -0.9836T, \tag{43}$$

where A^* , B, and C are the same constants as in eq 37. These quantities were calculated in terms of the international joule by using a value of 8.3127 int. j deg⁻¹ mole⁻¹ for R [31] and are given in table 15. They were also calculated in terms of a defined calorie, 1 cal being taken equal to 4.1833 int. j, in accordance with the recommendation of the International Union of Chemistry [32, 33]. These are listed in table 15. Values of ΔH° may also be obtained graphically from a plot of $-R \ln K_2$ against 1/T by reading the tangent to the curve at each temperature, as the van't Hoff equation for the variation of dissociation constants may be written in the form $d(-R \ln K_2)/d$ $(1/T) = \Delta H^{\circ}$. In figure 5, values of $-R \ln K_2$ (darkened circles) are shown plotted against 1/T. The curve passed through a minimum at about 18° C, and therefore ΔH° changes sign at this temperature. Values of ΔH° determined graphically are not as accurate as those determined by eq 42, owing to the difficulty of reading with accuracy the tangent to the curve. The values of ΔC_p° increase slightly with the temperature, as predicted by a semiempirical equation derived by Moelwyn-Hughes [34]. Values of ΔF° and ΔS° also increase with respect to temperature.

Fem- pera- ture	ΔF°		ΔH°		Δ <i>S</i> °		ΔC _p °	
°C	Int. j	cal	Int. j	cal	Int. j	cal	Int. j	cal
0	28, 407	6, 791	4,951	1, 183	-85.9	-20.5	-268.7	-64.2
5	28, 849	6,896	3, 595	859	-90.8	-21.7	-273.6	-65.4
10	29, 315	7,008	2, 215	529	-95.7	-22.9	-278.5	-66.6
15	29,806	7,125	810	194	-100.6	-24.1	-283.4	-67.8
20	30, 321	7,248	-620	-148	105.5	-25.2	-288.4	-68.9
25	30, 861	7,377	-2,074	-496	110.5	-26.4	-293.3	-70.1
30	31, 426	7,512	-3,552	-849	115.4	-27.6	-298.2	-71.3
35	32,015	7,653	-5,055	-1,208	120.3	-28.8	-303.1	-72.5
40	32, 629	7,800	-6,583	-1,574	125. 2	-29.9	-308.0	-73.6
45	33, 267	7,952	-8,136	-1,945	130.1	-31.1	-312.9	-74.8
50	33, 930	8,111	-9,713	-2,322	135.1	-32.3	-317.9	-76.0
55	34, 618	8,275	-11, 314	-2,705	140.0	-33.5	-322.8	-77.2
60	35, 330	8,445	-12,940	-3,093	144.9	-34.6	-327.7	-78.3

 TABLE 15.—Thermodynamic data from 0° to 60° C for the dissociation of the acid

 phthalate ion into hydrogen and phthalate ions

The values of ΔF° are obtained directly from those for K_2 . The errors in K_2 introduce uncertainties in the values of ΔF° of only 0.1 percent, or about 35 int. j or 7.5 calories. The values of ΔH° and ΔC_p° are subject to large error, estimated to be of the order of 100 calories in ΔH° and 3 calories in ΔC_p° . The error in ΔS° is determined by the uncertainties in ΔH° and ΔC_p° and is approximately 0.3 calorie. Unfortunately no calorimetric measurements have been made of the heat of dissociation of the acid phthalate ion, or of the heat capacities of the ions involved in the dissociation of this ion, with which comparisons may be made. However, data are available for two other second dissociation of dibasic acids, namely for oxalic [35] and malonic acids [8], with which comparisons may be made. Values of ΔC_p° at 25° C for oxalic and malonic acids are, respectively, -59 and -61.3 calories, which are of the same order of magnitude as -70.1 found in this investigation and quite different from the average of about -40 calories found for monobasic acids [10, 36]. For the same order of magnitude as -26.4 found in this investigation and some higher than an average value of about -20 calories found for monobasic acids [10, 36].

The similarity in the values of ΔC_p° and ΔS° for these three acids offers indirect confirmation of the reliability of the data obtained in this investigation.

The authors are indebted to Gladys D. Pinching for making a part of the calculations and drawings and to Cyrus G. Malmberg for measuring the conductance of the water used in the preparation of the buffer solutions.

VII. REFERENCES

- W. M. Clark and H. A. Lubs, J. Biol. Chem. 25, 479 (1916).
 W. J. Hamer and S. F. Acree, J. Research NBS 33, 87 (1944) RP1598.

- [3] W. J. Hamer, Trans. Electrochem. Soc. 72, 45 (1937).
 [4] P. Henderson, Z. physik. Chem. [B] 59, 118 (1907); 63, 325 (1908).
 [5] D. I. Hitchcock and A. C. Taylor, J. Am. Chem. Soc. 59, 1812 (1937).
 [6] D. A. MacInnes, D. Belcher, and T. Shedlovsky, J. Am. Chem. Soc. 60, 1904
- (1938).
- W. J. Hamer and S. F. Acree, J. Research NBS 23, 647 (1939) RP1261.
- 181 W. J. Hamer, J. O. Burton, and S. F. Acree, J. Research NBS 24, 269 (1940) **RP1284**.

- [9] W. J. Hamer and S. F. Acree, J. Research NBS 32, 215 (1944) RP1586.
 [10] H. S. Harned and B. B. Owen, Chem. Rev. 25, 31 (1939).
 [11] J. O. Burton, W. J. Hamer, and S. F. Acree, J. Research NBS 16, 575 (1936) **RP895**.
- [12] N. E. Loomis and S. F. Acree, Am. Chem. J. 46, 621 (1911).
- [13] P. Debye and E. Hückel, Physik. Z. 24, 185, 305, 334 (1923).

- [13] F. Debye and E. Huckel, Physik. Z. 24, 163, 505, 505 (1925).
 [14] E. Hückel, Physik. Z. 26, 93 (1925).
 [15] G. Scatchard, Chem. Rev. 19, 309 (1936).
 [16] W. J. Hamer, J. Am. Chem. Soc. 56, 860 (1934).
 [17] E. Güntelberg, J. physik. Chem. 123, 199 (1926).
 [18] H. S. Harned, J. Am. Chem. Soc. 48, 326 (1926); 57, 1865 (1935).
 [19] H. S. Harned and R. W. Ehlers, J. Am. Chem. Soc. 55, 2179 (1933).
 [20] S. Cherstene Introduction to Electrophomistry. p 330 (D. Yan Nostra)
- [20] S. Glasstone, Introduction to Electrochemistry, p.330 (D. Van Nostrand Co., Inc., New York, N. Y., 1942).
 [21] Reference [20], p. 390.

- [22] H. S. Harned and R. A. Robinson, J. Am. Chem. Soc. 50, 3157 (1928).
 [23] H. S. Harned and W. J. Hamer, J. Am. Chem. Soc. 55, 2194, 4496 (1933).
 [24] W. J. Hamer, G. D. Pinching, and S. F. Acree, J. Research, NBS 31, 291 (1943) RP1567.
 [25] M. Kilpatrick, Trans. Electrochem. Soc. 72, 92 (1937).

- [25] M. Kupatrick, Trans. Electrochem. Soc. 72, 92 (1957).
 [26] D. I. Hitchcock, Trans. Electrochem. Soc. 72, 92 (1937).
 [27] C. Morton, J. Chem. Soc. 1401 (1928).
 [28] H. S. Harned and N. D. Embree, J. Am. Chem. Soc. 56, 1050 (1934).
 [29] H. S. Harned and W. J. Hamer, NRL Report No. P-1071 chapter I, p. 10. (Navy Dept. Bur. of Eng., Washington, D. C., 1934).
 [30] H. S. Harned and R. A. Robinson, Trans. Faraday Soc. 36, 973 (1940).
 [31] C. S. Cragoe, J. Research NBS 26, 495 (1941) RP1393.
 [32] First. Report. of the Permanent Commission of Thermochemistry, p. 3.

- [32] First Report of the Permanent Commission of Thermochemistry, p. 3. International Union of Chemistry (1934).

- [33] F. D. Rossini, Chem. Rev. 18, 233 (1936).
 [34] E. A. Moelwyn-Hughes, Trans. Faraday Soc. 34, 91 (1938).
 [35] H. S. Harned and L. D. Fallon, J. Am. Chem. Soc. 61, 3111 (1939).
 [36] K. S. Pitzer, J. Am. Chem. Soc. 59, 2365 (1937).

WASHINGTON, July 4, 1945.