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TRASNFORMATIONS OF THE FUNDAMENTAL EQUATIONS
OF THERMODYNAMICS

By Floyd Buckley

ABSTRACT

A substitution group for generating families of thermodynamic formulas is
derived. The method of derivation is based upon the transformation properties
of a ““group of functions’” under a contact transformation. There exists a char-
acteristic function and a “‘group of functions” for each representation, that is, each
coordinate system, and to each function of the group there is an associated con-
tact transformation which transforms the group into its equivalent in another
representation. The invariance of the functional form of the characteristic groups
of funetions under contact transformations is equivalent to invariance under a
substitution group & * on the space (EHF@)(V—S—TP). The group % *isinde-
pendent of the representation and can be generated geometrically.

There are four contact transformations (including the identity) associated
with each representation. These transformations are equivalent, and from them
families of equations can be found which are invariant under the group &*.
Other families can be found among the transformation formulae for the higher
derivatives.

Formulas deducible by simple operations, for example, differentiation, on the
characteristic group of functions of a given representation provide basic forms for
families invariant under the group @*. The number of members in a family is
1, 2, 4, or 8.
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I. INTRODUCTION

The existence of symmetry relations between certain sets of thermo-
dynamic formulas has been recognized since the classical work of
Gibbs. Nevertheless, Koenig [1] !seems to havebeen the first to exhibit
these relations in the compact form of a substitution group on the
thermodynamic functions ¥, H, F, G and the variables of state V, S,
P, T; N;. The method of derivation was not given, although it
was shown how the group can be generated from the symmetry prop-
erties of a square. The purpose of this article is to present a deriva-
tion of Koenig’s substitution group by making use of the transforma-
tion properties of the fundamental thermodynamic equations. The
transformations employed are the Cylindrical Tangential (Contact)
Transformations studied by Lie.

1 Figures in brackets indicate the literature references at the end of this paper.
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II. THE FUNDAMENTAL EQUATIONS

The necessary assumptions are those given by Caratheodory [2]in
his axiomatic development of the general theory. The followmg
discussion does not require an analysis of these assumptions. Nor
does it require a description of the methods used in establishing the
relation between the general mathematical structure and experimental
thermodynamics, particularly the determination of the characteristic
function associated with a selected set of physical and chemical
variables. It will suffice to recall that in a given description, that is,
with a given choice of variables, there exists a characteristic function
Z appropriate to a given physmal system, which is the solution of an
exact differential equation of the Pfaff type:

dZ_ZdeX«l:O.

Once 7 has been found, the general behavior of the system can be
conveniently described with the aid of auxiliary functions defined in
terms of 7 and its partial derivatives. For example, in a reference
system (description) using V, S; N, as independent variables, all
general thermodynamic formulas, that is, those formulas independent
of an equation of state, are derivable from the characteristic Energy
function, F, and the basic equations

OE
H=E-V3y
FEE—S— ' (1)
G=E—V V—S S~H+F E.

The Energy function is a function only of the state of the system and
satisfies the conditions:

Equilibrium State._______dE=0 V=0 6S=0 6N ,=0.
Reversible Process________ dE=0 V=0 oS =0" LoN=0.
Natural Process .- "% =} dV=0 oS >0 olNL=0.
Unnatural Process________ dEE=0 8V=0 88 >0 ON,=0.

The functions H, F, G are not uniquely defined, but in practical appli-
cation the arbitrariness drops out. Legitimate operations on equa-
tions 1 generate a collection C, of formulas valid in the description

V, S,' Ni
III. THE PROBLEM

Assume a new choice of independent variables V’, 8" (it will hence-
forth be assumed that the chemical variables, NV;, remain unchanged),
that is, mode of description. On physical grounds, there exists a
transformation, t, and its inverse, t-!, such that

(V;S)_)<V,S,7> :t(Vy‘S')
(V",8")—=(V,8) =t (V',8")
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The new variables defined by t:

Lo d o)
§'=g(V,S)

are functionally independent and are therefore soluble for the old
variables as functions of the new.

The functions E, H, F, G, and formulas C will transform into
functions of the new coordinates, which will in general take on new
functional forms. The two modes of description are completely
equivalent and under the transformation, t, formulas must transform
into identities in the new variables.

Anticipating later results, let it be assumed that under the trans-
formation, t, on the physical variables

(V",8")=t(V,S)
and the associated transformation, T, on the functions E, H, F, G:
(E'H'F'@")=T(EHFG)

the form of the fundamental equations remains invariant. Then it is
clear that under the combined transformation Tt on the comple-
mentary sets (LHFG) and (VS), the formulas € also remain in-
variant. The problem can be formulated as follows: If the basic
equations of thermodynamics are written in terms of a particular set
of physical variables of state, what transformation on the dependent
functions and associated transformation on the independent variables,
leave the form of the equations invariant? If it should happen that
the combined transformations Tt constitute a group G, fundamental
formulas will remain invariant under G. All modes of description
associated to G are equivalent and the group G characterizes a
fundamental arbitrariness in the thermodynamic description of all
systems.

The problem is analogous to that encountered in the Relativity
Theory. It is well known that if the electromanetic field vectors
E, H undergo a particular linear transformation and the independent
variables (zyzt) undergo an associated linear transformation (the
Lorentz-Einstein Transformation), the fundamental equations of the
field remain invariant. The arbitrariness of the description (theory)
is characterized by the Lorentz-Einstein Group, and all reference
frames associated to the group are equivalent.

IV. TANGENTIAL TRANSFORMATIONS

The general Tangential Transformation is defined by Lie [3] as
follows:

EVihensZ oy . s Xoe b R e P, are 2n+41 independent
functions of the 2n+1 1ndependent quintities s 2 . s
P1 .. .. Pn such that the equation

dZ—2 P dX=p(dz—2> p.dz)
p7#=0
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is identically satisfied, the transformation

2= Z(Z;??t;Pt)
xj’ :X‘I(Z;xhpi)
Py =Py(2,24,p1)

is a tangential (contact) transformation.”

The test of a given set /7, X;, P;is provided by Lie’s Theorem |3]:
“The necessary and sufficient conditions that

dZ—g'l‘,PidXF p(dz—glp,dx,)
be identically satisfied are
[ZX|]=[XX]]=[P.X)]=[P:P]=0
[P:iXi]=p plZP]=—pP,
provided 7, X;, P; are functionally independent, and

B L R e

i—1

Conversely, p##0 is sufficient for the functional independence of 7,
XAt

The bracket symbol is defined by

o (df o9 dg of
[fg] ‘?’;’(dx; a;lh dx; api y

The equations which suffice to determine the 7, X;, P;, p are 2n-+1 in
number. Hence there will be an arbitrary element in solution unless
some further condition is imposed upon the system. If 7 is specified,
the X;, P; are completely determined. The eclass of Cylindrical
Tangential Transformations is defined by the restriction that the
Xi, P, are independent of z. Application of the conditions of Lie’s
Theorem then requires that

Z=pz+¢ (@1, P2,

where p is a constant.

For the case n=3, the conditions of Lie’s Theorem are not violated
if we choose
i Tz W0z
z=f(xy D=5, =% pz—ay—z,,.
Then
dz' —p/da’ —p)'dy’ = p(dz— z,dx— z,dy) =0,

and if 2’ is chosen as a function of z, 2, ¥, z,, 2, the variables p,’, p,’,
z’, y’ are determined. The transformation insures the exactness of
dz’, and hence 2’ plays the same role in the primed coordinates as z
does in the unprimed.
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V. THE LEGENDRE TRANSFORMATIONS

The thermodynamic transformations between the four equivalent
modes of description in the sets of variables (V,S), (P,S), (V,1), (P,T)
are related to the three Legendreian Cylindrical Tangential Trans-
formations defined by (Z;,,=0Z%,/0x, ete):

(a) Z2=Z1—Z1,1:c1
(b) Zy=17, ——Zmyx (1,)
(C) Z4221—Z1,,1y1:Z2+Z3‘—‘Z1.

Applying the fundamental theorem, it is found that solutions for these
cases are

(a) Zy=2, "_lell'l Z212=II Zzyzzzm 1
p=
Izz—lel Y=
(b) ZSZZI_Zlulyl Zafa—:Z”l Z31/3:_yl
p=1 (2)
L3=1, Ya=2y,
(c) Z4:Zr—Zu111 o Z1y1y1 Z4:‘:x1 Z41/4= ol
xr——-—le; 1/4:Z1y1 A
Under these transformations:
(a) A :ZZ—thzz Zm =iy Zlul :Zzn
p=1
n= Z2:2 =Y
(b) Zy :Z3—Z31/3y3 lel =Zsz;, Ly =Ys
p=1 (3)
T1=x3 y1=—Z1,,3
(C') 21:Z4—Z4x4$4'—Z4y4y4 Z1,1= — Xy Zm=y4 i
p:
Ty ="z, Y=—"Zay,

It is to be observed that:

1. The form of the equation defining the Legendre function is
invariant under the transformation.

2. The transformations are involutory, that is, applied twice in
succession they generate the identity transformation.

3. The Legendre functions defining the inverse transformations can
be obtained by a simple substitution. Thus if:

T, <|ZII]7 IZID‘_’(IZMWIJ [z‘[)i=2,3,4.
(IZW!’ |y1|)“’(]Ziu¢|) |y¢D
then equations 2+3.

The absolute values |z:|, |y4|, |Zw,|, |Z:,| must be taken in order to

compensate for the change in sign occasioned by transposition when
the equations are solved in the usual fashion.



218 Journal of Research of the National Bureaw of Standards

The three simple substitutions carrying equations 2 into 3 can also
be considered as linear transformations on complementary sets of
quantities. Those on &, y1, Zi,,, Z1,;, including the identity, can be
conveniently written in matrix form. They are

o e
lel -tu lel 2222 ———tm lel
\ ZWI} Z”’l)

Z323 :tsl lel Z4z4 “t“ lel’
2 Zy} G ) v J
1000 0018 0 1S 0R0=0 0010
0100 0100 0001 0001
tu= 2= ) ty=
0010 1000 0010 1000
0001 0001 0515050 0100

The matrices t; are operators which carry the space (x1, —1, Ziz,
Zyy,) into any of its equivalents. They also represent simple permu-
tation operators and can be written

where E is the unit matrix (t;;) and the P’s are the permutations on
the rows of £ or the fundamental (1 space).

It can be readily verified that the t; represent an Abelian group t
of transformations isomorphic with the four element permutation
group P(1)(2)(3)(4); P(13)(2)(4); P(1)(3)(24); P(13)(24). These
groups of operators transform the equivalent spaces characteristic to
Zy, Za, Zs, Zy into each other. They have the multiplication tables:

T to ta ta
tu I ty ta ty
to t 1 ty ty
ta ty ty ¥ to
ty ty t; to I
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P(I) P(13) P(24) P(13)(24)
P() I P(13) P(24) |P(13)(24)
P(13) P(13) I P(13)(24)| P(24)
P(24) P(24) |P(13)(24) I P(13)
P(13)(24) |P(13)(24)| P(24) P(13) I

Written in terms of the space (21— Ziz Zyy,), the permutation
group g contains the elements

Bi= (1'1) (”"!/x) (Zln) (Zlyl) €= ($1Z1zl) (—'3/1) (Zm)
2= (1) (Zul) — ?/1Z1u1) g (Ilzm) (—%Zul)

This group is isomorphic to a group of permutations on the vertices
of a square which leave the square invariant. In the figure

I\ o
D \ // D
X <y,
| 17

oL
/7
N /
N
Y
filiiaX
N
h¥
4 Z
Wy N ™
7 N

the transformations, t,, or permutation operators, g;, have the follow-
ing correspondence to the ordinary symmetry operations

gi=1 g.=D g;=D’ g4=R”,

where D, D’ are reflections in the diagonal planes, R’/ is a rotation of
180°, and I is the identity operation (except for notation this group
comprises the V, —8, —P, T part of figure 1(a), 1(g), 1(e), 1(c) of
Koenig’s paper).
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If equations 1/, as a group, are considered in a standard form, then
it is easily shown that this form remains invariant under the group of
contact transformations, t;, provided the functions Z,, Z,, Zs, Z,,
when they occur explicitly are subjected to the associated trans-
formations

A %1 %2 %1 %3 %1 %4 ’%71
Z = b o

2™z \z™z) \z)"\2) \2)""\Z
Zs Zs Zy Zy Zs Zy Z Z;

1000 0100 00
_fo1o0)p_f[1000) 4 foo0
L= 0L0ETE0 209050 SLE el 0

0001 0010 01

These matrices represent permutation operators on the rows of the

unit matrix, or on the space (Z;, Z, Zs Z,)

Tn"’P(l) (2) (3) (4):(;1 T21NP(12) (34):G2
Ty ~P(13)(24)=G; Tua~P(14)(23) =G,

The T, constitute an Abelian group isomorphic to the permutation
group G composed of the G,. The square

v
|
)
|
I
|
|

R NP ._..t__.._._._.___h
|

i
|

is invariant under the group G acting on its vertices. Relabeling the
figure for the space (Z; Z, Z; Z), the group elements of G in terms of
the characteristic functions are

G=(Z,) (%) (Zs)(Zy) Gr=(Z:2,)(ZsZ4)

G=(2.Zs) (Z:24) G —=(%1Z,) (Zs2)
These elements correspond, in order, to the following symmetry
operations:

I=Identity. V=reflection in ».
H=—Reflection in h. R’’=Rotation of 180°.
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and have the multiplication table:

G, G, G; G,

G, I G, G; G,
‘ G, G, I G, G;

G; G; G, I G,

G, G, G; G, I

The preceding results can be condensed into:

Theorem 1.—The fundamental equations 1/, remain invariant under
the Contact Transformations defined by equations 2 and the associated
group G on the Legendre transformation functions, provided absolute
values are taken for the elements of all equivalent spaces (z;v; Zi,, Z4,,).

The restriction to absolute values can be removed if in applying g
and G to equations 1/, numerator and denominator of the partial
derivatives are transformed independently, that is, formally. This
procedure eliminates the use of the contact transformations.

The spaces of G and g are exclusive, and hence the elements G,g;
constitute a group ¥ for the combined space (Zy Zy Zs Zy) (@ —
Zyy, Zyy,). Consequently, Theorem 1 can be written in greater
generality:

Theorem 1’.—The fundamental equations 1’ are invariant under the
substitution group ¢ on the space (Z, Z, Z; Zy) (t1 — Y1 Zay Zvy,)-

In Theorem 1’, except for notation, & consists of elements S, Ss,
Ss, S; of the Koemg group.

The group & can also be generated geometrically. 1t is only neces-
sary to inscribe the square for G within that for g such that the
symmetry planes » and D, b and D’, coincide.
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There results:

N

2

Writing out the fundamental equations 2 and associated contact
transformations in the remaining coordinate systems, the following
theorems are immediately evident.

Theorem 2.—The matrix operators, T, and t;, which, acting on
the function and coordinate space of one representation, transform the
fundamental equations 2 to any other representation with invariant
form, are independent of the coordinate system.

Theorem 3.—If t;; denotes the matrix of a Contact Transformation
in a given representation, then the corresponding transformation for
any other representation is given by the transform t™'t;t (or tt,t™?),
where t corresponds to the contact transformation carrying the old to
the new representation.

Theorem 4.—The permutation group %, which leaves the funda-
mental equations 2 invariant is independent of the coordinate system.
(Theorem 4 is a restatemet of theorem 2.)

The invariance of the four contact transformations (including the
identity) defined by equations 1’ under the group of linear trans-
formations, t; can be extended to invariance under the substitution
group % provided a supplementary rule of signs is introduced. For
general consistency a particular equation must transform into the
same equation whether directly under the substitution operator %
or as an element of a matrix equation under the corresponding ti.
The equation

Z2z2 =T

transforms under ty4 as an element of

—xo Iy

e/ ) e ==
Z22'2 e Z1‘~’1
ZQuz ZlIIl
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and therefore becomes

—Xy T Xy T3
el ) Y1 Ys
ty v taty P S 3 o 2,
Z2v2 Zl!/l Zm Z31/2

(Z2xg =IE])-—> (Z313 :lel) .

Before the substitution operator %, can be applied to the given
equation, the left side must be transformed into the space charac-
teristic of ¢, that is, (1 space). Hence

Z_0(TuZy) _ 2(GaZ)) __
a:I:2 a(tnzl) b(-lel) o

where T.:Z, and tyz; denote the matrix transforms of Z, and ..
Applying ¥ ,.

(32 _ NCG)Z,_d(GCeZy) _ 37y _ 7
f a:l:2 = a(g4zlzi) — al?l = OII_ = 5173

G 1y =le1

0z, B s O
) i G ™)

which is incorrect in sign on the left side. This alternation in sign
will always occur when the transform of z; and its conjugate Zi,,
differ in sign. Hence the rule:

Rule of Signs.—If z; and Z, of a given space transform with
opposite signs, then in transforming Z;,, by substitution, it must be
replaced by Zi,,. If, of course, z; and Z,, transform with the same
sign, then the rule is unnecessary, but if applied, will yield correct
results, provided Z;, always transforms positive. This 1s in fact the
case. There results:

Theorem 5.—The Contact Transformations associated with the fund-
amental equations 2 in any coordinate system are invariant under
the substitution group % characteristic of that coordinate system,
provided Z, is replaced by Zi.,). (This is the origin of Koenig’s
Rule of Signs.)

If equations 1’ are invariant under an extended group & *, La-
granges’ Theorem on the decomposition of a finite group insures the
order of this group to be a multiple of the order of &, that is, 4. The
order of @ * < 24, the order of the complete symmetric group on four
elements, and therefore & * if it exists, must be of order 8 or 12. The

roup % * will include % and its cosets & g, (or g; ¥), where g;=
8¢ 1s an element of ¥* not in & and S, s; operate on (7 7 7 7s)
and (@—Y1 715 Z14,), Tespectively.

and consequently
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Examination of equations 1’ show the basic form to be invariant
under the symmetry operator

g’ =(Zy) (Zs) (ZoZs) (x1—11) (szlzwl) »
which corresponds geometrically to reflection of the generating square

in the plane P (g’ corresponds to S of Koenig’s oroup) The elements
of the coset ¥g’ are

G5=9 18" = (Z1) (Zs) (ZoLs) 01— Y1) L1y Zoryy)
Go=9 8" = (L1227, 25) (t1—Y1Z10:21y,)
G1=9 8" = (21 ZsZsZ) (01 2y Loy — Y1)
Gs=G &' = (ZiZ,) (Zy) (Zs) (012ry;) (— Y1212y

They do not form a group and do not correspond to contact transforma-
tions. They may be considered as formal symmetry operators.

It is easily verified that the eight elements %, constitute a group % *

which leaves the generating square invariant. It is therefore iso-
morphic to the Octic Group and has the multiplication table:

AR PV R T R P

Y, ¥ 4 Gyl Uy | G| 5| Do | Fr | Ys

Y, G, I Y G Y Y G &,

Y 4 Yy N S Y, Y, Y G G

AN

& Y Gy 2 Gs 4 G Gs

g5 g5 g'{ gﬁ

K

gl i e 1T o H

KN

gﬁ gs gs 5 g7 (jz g4 j ga

G4 Y, Gy | Ys Y Y, ¥, G, G

Gy G )y | Gy | Gy iy Gy g g

The general result can be incorporated in theorem 6.
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Theorem 6.—The form of the fundamental equations 1’ is invariant
under the group % *, and this group is the largest permutation group
having this property

An additional proof that %* is the largest permutation group
which preserves the standard form lies in the fact that the Octic
Group is the largest permutation group under which the bilinear
form (a;-+as—x3—2x4g)? is invariant. The last of equations 1’ can

be written
(Z1+Z4 Za) —0

and this must be true under all transformations. Except for nota-
tion, this is the bilinear form invarient under the Octic Group.
Hence the theorem.

The matrix representatives of the new operators g5 . . . gz are
0100 0 1050 0001 0001

t51=1000 tai=120°" OIS0l St =—=ENO= 02 0 1 ity — 105012003
Q0RO 1 0001 0100 0100
0205150 1000 0010 1000

which taken with those representing g; . . . g for a group t* having

a multiplication table in 1-1 correspondence with that of ¥* Contact
transformations are transformed under these operators exactly as
previously described. For example, the transformation defined by
equations 2a is transformed by %, into

2 1 1
t‘”(space) T t“t‘”(space) T t“(space)’

which is equivalent to
( ; ) ( . )
t3l g = 3
pace space

the contact transformation characteristic of Z; expressed in the
coordinates of (2 space). Similar résults are obtained for other
operators. The general result is contained in theorem:

Theorem 7.—The Contact Transformations defined by equations 2
are invariant under the group t* of elements t; 1=1 . 8.
ThThe preceding theorems can now be extended to the larger groups.

us:

Theorem 2'.—The matrix groups T* and t*, under which the funda-
mental equations 1’ are invariant, are independent of the repre-
sentation.

604947—44——6



226 Journal of Research of the National Bureaw of Standards

Theorem 4’.—The permutation group % * which leaves the funda-
mental equations 1’ invariant is independent of the representation.

Theorem 5’.—The Contact Transformations associated with the
fundamental equations 2 in any representation are invariant under
the substitution group % * characteristic of that representation
provided Zy,, is replaced by Zi,,|.

A consequence of the invariance of the contact transformations
under the substitution group % * is the existence of characteristic
families of equations also invariant under %* Families having
important correlatives in general thermodynamic theory are contained
in the following theorems. Given an equation of the form expressed
in the theorem, the group % * generates the entire family, provided
the contact transformations themselves are employed to reduce the
symbolism.

Theorem 8.—The family of four differential forms
0Z; Z, %
Zi_(bx, )ytdxi—(b—xi>zidy¢—0

is invariant under the substitution group % *.
Theorem 9.—The eight member family of the form

azi> s
bx,; 1/4_ I]

is invariant under the group & *.
Theorem 10.—The four equations of the form

(G
Cxi 1/]_ bx, vi

constitute a family invariant under the characteristic group 4 *.

Theorem 11.—The family of eight identities
oz, 3z
axiayi_ Dyiaxi

is invariant under % *.

The invariance of the fundamental equations yields theorems 12,
13, and 14:

Theorem 12.—The family of eight equations of the form

£ oz
2=2-5~(5.),

is invariant under the group % *.

Theorem 13.—The four equations of the form

SIS, 4L S ?é)
i fd i ox; )3/1 Yi oY /%;

constitute a family invariant under the group %*.
Theorem 14.—The equation

(ZI+Z4) T (Z2+Z3) =0
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is invariant under the group % *.

Other families of formulas invariant under % * are deducible from
the fundamental equations 1’ by the application of operators such
as 0/dz, 0/dy, d.

The transform of a formula obtained by applying the operator O to
one of the fundamental equations is derived by applying the group
operator g; to both O and f in the equation

Of=0.
For example, from the equation
bZ
4= 3>373

ay;;
or

e
Zh—Zs+ys b_ya)xa_ 0,

the operator 0/dx; yields

d BTN
wlz—ztu(32), -0

and the substitution operator %; gives

b i La 9&3 ’_'
S (tns) @’[Z‘ Zo v 3y, ) o

where the transform t;; is obtained from the matrix equation
( 4 >—>t31t71< 1 >:t51( % >>
space space space

o LY
dxs oYy

so that

and the transformed equation becomes:

S CYRE

The reversal in order of the product of the matrices t;; and tz in the

transform follows from the fact that % * is non-Abelian and that % *

is written in terms of (1 space). This method yields theorem 15.
Theorem 15.—Equations of the form

w, (o h =5, -G iz
Yy )z \Oi/n OY; Jui \OYs'/u 0x;0y 0,0y
constitute a four-member family invariant under the substitution

group Z*.
Theorem 16.—The eight equations of the form

YA azz,)

b—y—, 7 oy

comprise & family invariant under the substitution group %*.
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Theorem 17.—The eight member family of form

) e AN )
Zj afl‘i vi, ay{ Ty

(G vas(or)d
___\ozi /v Y/

aZ,>
zy

is invariant under the substitution group % *.

Transformation formulas for the second derivatives can be obtained
by elementary calculation from the four sets of Contact Transforma-
tions corresponding to the four equivalent representations. They
give the following theorems:

Theorem 18.—The eight equations of the type

=il
Zys =7
Eat Zia:i:ti

form a family invariant under the substitution group %*.
Theorem 19.—The family of eight equations of form

—Zivg,

s

is invariant under the substitution group %*, provided the following

Rule of Signs is applied.
Rule.—The conjugates Z,,,;, Z, must be taken with absolute signs

wherever they occur in the transform of z; y; in the basic form.
% * is expressed in (1 space).
Theorem 20.—The eight equations of form

2
b Z-zm Z"mZiww
V277 Zixizt

ijjVj:

iy

constitute a family invariant under the substitution group & *
Theorem 21.—KEquations of the form

7. Zil/ﬂ/i
szrj Zz

=
24U§ Zia:ixiziyw"

constitute an eight membered family invariant under the substitution
gronp
Theorem 22.—The four equations of the type

138 Zizﬁ/{
ZjIjllj_ZZ

77 77
Vi Aiz;z‘éwgw

form a family invariant under the substitution group %*, provided
the Rule of Signs given in Theorem 19 is applied.

The Legendre transfoimation functions characteristic of a given
representation are simply related to Lie’s [4] theory of a “group of
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functions.” A set of n functions »; . . . v, constitute a group of
order n if they satisfy the two conditions:

1. v, are algebraically independent.

2. Every combination (v,) of the set is expressible in terms of the
set and

Y a’l)i bv, av, an)'
W) E oxy 0P OPy O
Any other function % which has the property that all (vu) are
expressible in terms of the »; belongs to the group. If all the (vu)
are zero, then u is said to be in involution to the group and is called an
indicial function (ausgezeichnete Funktion) of the group.

Lie |5] has given a number of theorems on the properties of a group
of functions of which the two following are of particular interest in
connection with the preceding results.

Theorem 25L.—A group of functions in the variables ;, p; possesses
only two properties which are invariant under all contact trans-
formations of the form

Z' =Z+Q(xp) z/ =X(xp) pi = Py(xp).

The first is the order of the group and the second the number of
independent indicial functions of the group.

Theorem 26L.—I1f the r independent functions U; . . . U, in the
variables ; . . . @, p1 . . . p, form a group of functions of order 7,
and the functions V; . . . V,in the variables2," . . . @/, pi/ . . . p)

likewise a group of order r, then there exists a contact transformation
of the form

Z'=Z+Q@p) x=X.@p) pi=Pizp),

transforming U; . . . U, into the corresponding V; . . . V,, if and
only if, every combination (U,U;) is expressed in terms of Uy . . . U,
in the same way as the corresponding (V;V)) in terms of the V; . . .
Vs
It is easily verified that each of the sets of Legendreian functions:

Z2 Z] Z4 Z2
Z3 Z4 Z1 Z3
Z4 Z3 Z2 Zl

characteristic of the fundamental equations 1’ in the four equivalent
representations, constitute a group of functions according to the Lie
definition. Each group is of order three and possesses one indicial
function. They are

Zn—2Z,4

__Zg‘_‘Zg _Z4"'Z1 S _Z‘Z'—ZIJ
g e U U S s A Lt ey

and the set can be generated by the substitution group G on any one
of them. Hence theorem 23.

Theorem 23.—The indicial functions associated with the group of
Legendreian functions characteristic of the four representations con-
stitute a four member family invariant under the substitution sub-
group G of @ *.
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An elementary calculation shows that each of the characteristic sets
given above satisfies the conditions of Lie’s Theorem 26, and hence
are transformable into each other by a cylindrical tangential trans-
formation. The transformations in the representation of (1 space)
are those given in equations 2. The equivalent transformations in
any other representation can be obtained by applying Theorem 3.

VI. THERMODYNAMIC FORMULAS

If the following correspondences are made, the preceding results are
directly interpretable as general thermodynamic relations.

ZIZE ZZZH Z3=F Z4=G
(@,y1) = (V,8) (@3,Y5) = (@1,21,) = (V,T)
(@2yy2) = (—lepyl) =(P,S) (@4,ys) = (@2,y5) = (P, T)

Under this correspondence equations 1’ transform into the funda-
mental equations 1 and the group %* becomes identical with the
Koenig substitution group in the representation of (1 space). The
generating square coincides with figure 1(a) of Koenig’s paper.

The generation of a family of formulas by the action of the substi-
tution 4 * on a basic form is of course subject to the rules of signs
given in the preceding section. Moreover, since a family of formulas
can be expressed either in terms of the thermodynamic functions and
their derivatives, or in a reduced form in terms of V, S, P, T and
E, H, F, G, the application of a rule will be determined by the character
of the basic form. The general result can be expressed in the theorems:

Theorem 24.—If a basic form is deducible from the fundamental
equations 1, or equivalent in another representation, by the action of
an operator O followed by algebraic rearrangement, the substitution
group % * generates an invariant family of 1, 2, 4, or 8 members.

Theorem 25.—If a basic form of Theorem 24 is transformed by the
use of the equations of the contact transformations, then the substitu-
tion group % * generates an invariant family of 1, 2, 4, or 8 members,
provided one of each conjugate pair of variables in every term of the
new basic form is enclosed in the absolute sign.

The following table is a condensation of the theorems given in the
preceding section on families of equations invariant under the substi-
tution group @ *.

Order of
family

o) o)
Theorem 8§______ 4 dE “(5%:)3 dV— (5%);; dS=0

dE+|P|dV—|T|dS=0

Origin Equivalent basic forms

Theorem 9______ 8 (al V1)
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Order of

Origin family Equivalent basic forms
OF o)
Theorem 10_____ 4 ( YV )s_(STI—DT'
O*E O*E
Theorem 11____. 8 SVoS— 3501
(al VI) <OIS )
gt OF
Theorem 12_____ 8 H—FE— V<3‘7 :
H=E+|P|V
eyl 0K
Theorem 13_____ 4 G=E— V(W S——S<O—S ?
G=E+|P|V—|T|S
Theorem 14_____ 1 (E+G)— HA+F)=0.
o %G O*F
Theorem 15_____ 4 < ) ( _— T{<5T2>p—<b_T2 :
il *G O'F
£ OTOP dTOV
i T(M) (21.’3
oT /p\ o1 )+
0 o4
Theorem 16_____ 8 (b_?’)P: i T(W"’

-o(3F),
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Origin (?;gfi'i;f Equivalent basic forms
Theorem 17_____ 8 (g—;) =—(g—1E/>T/<g—§)
E vV
i [ QF Aol O*F
R oV I beTl
e
o8l e
P—T(a—P
<a|Vl - (
01/
oI?
Theorem 18.____ 8 QP E)ZE
O*E
. 9oL
Theorem 19_____ 8 bgbzill’l: = %YEDS -
(57),
QRE _(b“’E) (sz
Theorem 20__. __ e O*HY _0oVdS \oV?/s\ o§*
082 )p <02
Qe
(az_E
2 2
Theorem 21_____ 8 ( SP G) 3E 6% 3K
<bSbV <b > 083/,
O*E
o*@ OVBS
Theolem 22_____ 4 JPPRIT'™ [ *E OEN (FE\
s57) —(s7){5),
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There are of course several equivalent expressions for a basic form
involving second-order derivatives of the thermodynamic functions
when expressed in terms of V, S, 7', P. Since this paper is not con-
cerned with providing a catalog of all such formulas they have been
omitted. In fact, from the theoretical point of view, all formulas
should remain implicitly contained in the general relations between
the thermodynamic functions and their derivatives. Such a pro-
cedure would effect a considerable condensation of necessary formulas
without entailing excessive effort in the deduction of a required
relation.

Relations connecting the second-order derivatives of V, S, T, P,
can be deduced from transformation formulas for the third-order
derivatives of the characteristic functions. The relations are not
complex, but there are many of them. In light of the results of this
study, it is very probable that these equations can be grouped into
families invariant under the substitution group % *, thereby eliminat-
ing an extensive catalog of formulas.

"The writer is particularly indebted to A. C. Lunn, of the University
of Chicago, for his inspiring lectures on group theory and theoretical
physics and to F. O. Koenig, of Stanford University, for a criticism
of an earlier derivation of the group G.
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Mathematical Society, October 1942.) 5 pages, with cover, 25 cents.

MT19. O~ tae Funcrion H (m, a, x)=exp (—ix) F (m+1—ia, 2m+2; ix); with table of the
confluent hypergeometric function and its first derivative. (Reprinted from J. Math. Phys.,
December 1942.) 20 pages, with cover, 25 cents.
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MT20. TaBLE OF INTEGRALS J(;xfo(t)dt and Jo Yo(t)dt. (Reprinted from J. Math., Phys.,
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MT21. TaBLE OF ]io(x)zf J"—?)dt AND Revatep Funcrions. (Reprinted from J. Math. Phys.,
x
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MT?22. Tasre or Coerricients INn NuMericAL INTeGrRATION FormuLAe. (Reprinted from J. Math.
Phys., June 1943.) 2 pages, with cover, 25 cents.

MT23. Tasce or Fourier Corerricients. (Reprinted from J. Math. Phys. Sept. 1943.) 11 pages,
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cover, 25 cents,

MT29: TasLe or COEPFICIENTS FOR INVERSE INTERPOLATION WITH ADVANCING DIPFERENCES.
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