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LAMINAR FLOW AT THE INTERFACE OF TWO LIQUIDS
By Garbis H. Keulegan

ABSTRACT

The velocity distribution in the laminar boundary layers at the interface of
two liquids in relative rectilinear motion, the thickness of the layers, and the
stress at the interface are determined. Numerical results are given for nine cases
of liquids in contact, including identical liquids and liquids with varying degrees
of dissimilarity in characteristics. The evaluation of the desired quantities is
based on Prandtl’s boundary-layer theory, and is carried out by a method of suc-
cessive approximations. The numerical results are those given by the second
approximation.
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I. INTRODUCTION

When a liquid of given density is flowing over a liquid of greater
density, theciatter being at rest, three successive forms of the inter-
face are discernible as the velocity of the moving liquid is increased.
To take a concrete example, let us assume that the flow takes place
in a closed rectangular channel with a lower pool; the upper liquid
is fresh water and the lower liquid is a solution of salt or sugar in
water. First, at small velocities, the surface of separation is sharp
and distinet, indicating, since the indices of refraction of the liquids
are different, that the densities are discontinuous at the interface
and the flow at the interface is laminar. The flow in the central
part of the upper liquid, on the other hand, may be laminar or turbu-
lent, depending on the size of the channel. Secondly, if the velocity
of the upper liquid is gradually increased, at some critical velocity
the smoothness of the separating surface first disappears, and then the
surface becomes covered with surface waves traveling in the direction
of the current and with a velocity slightly smaller than the velocity
of the upper current. When the waves first appear, they are long-
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crested, that is, the length of the crests normal to the direction of
motion is greater than the spacing between the crests. The crest
lines are parabolic, concave upstream, and highest at the center of
the channel, but flattening out toward the channel wall. At this
stage of the flow—and this perhaps is significant—the waves are
stable and show no tendency to break. The waves travel with
practically no deformation, except the tendency to grow slightly
larger during their motion. Finally, when the velocity of the upper
current exceeds the critical velocity, the waves become sharp-crested
and the crests shorter. The waves no longer are stable; that is,
portions of the crests break away from the waves and are thrown into
the upper current. These portions move forward and upward. In
fact, this is the manner by which the mixing of the lower liquid with
the moving liquid is brought about. When the velocity of the
current is increased, still further within certain limits, the rate of
mixing increases. At this stage of the flow, and this also is perhaps
significant, the wave length is not affected by changes of velocity.
These are the main results of observations made in a laboratory channel
here the depth of the upper current is not over 10 centimeters and
the length of the channel is not over 10 meters.

A detailed explanation of these phenomena is lacking. A theoretical
approach supplementing experimental knowledge should prove help-
ful. A theoretical investigation should begin with a study of the
stability of the interface on the basis of the actual conditions in the
neighborhood of the interface. One of these conditions is a discon-
tinuity of density at the surface of separation. Another is a pair of
laminar boundary layers on the two sides of the surface of separation.
In this paper the thicknesses of these boundary layers and the velocity
distributions within them are determined by means of successive
approximations, on the assumption that the interface is a smooth,
plane surface.

II. FORMULATION OF THE PROBLEM

A liquid of indefinite height and having initially a uniform velocity,
U, meets and flows over a still liquid of indefinite depth. In general,
the two liquids have different physical characteristics; that is, their
viscosities and densities are not the same. It will be assumed that
the lower liquid has the greater density. If the pressure is everywhere
hydrostatic, the interface or surface of separation is a horizontal
plane. When U is sufficiently small the narrow region on both sides
of the interface is a region of viscous laminar flow. Thus, the acti-
vating forces at the point where the moving liquid comes first in con-
tact with the lower liquid are tangential and act in the horizontal
direction; there is no normal force acting on the interface and hence
the interface remains horizontal. Every particle of liquid on the
interface moves with a constant velocity, u,. The thickness of the
viscous boundary layers in the two liquids is initially zero and increases
with the length downstream (see fig. 1). In the upper layer the
velocity in a vertical section increases from w, to U; in the lower
layer it decreases from %, to 0. It is proposed to evaluate the variation
of the thickness of the laminar layer with the length of the interface,
the variation of velocity in the two layers, the shearing stress at the
interface and the dependence of these quantities on the physical
characteristics of the two liquids.
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F1cure 1 —Laminar boundary layers at the interface of two liquids.

III. PRANDTL’S BOUNDARY-LAYER EQUATION

In order to avoid negative values of ordinates two distinct sets of
axes will be used, x, y for the upper liquid and 2, ¥’ for the lower
liquid. See ﬁgure 1. The z-axes of the two sets coincide and lie
in the plane of separation of the two liquids, the positive sense being
in the direction of . The point at which the two liquids first come
into contact will be taken as the origin. In the upper liquid, positive
9 is directed upward; in the lower liquid, positive ¥’ is directed down-
ward. The density, the viscosity, and the kinematic viscosity of the
upper liquid will be denoted by p, p and », respectively, and the
corresponding properties of the f(’)wer liquid by p’, ¢/, and v/, respec-
tively. The parameter, 7, defined as

r=~/[w'p’ [up], (1)

is of special significance in this analysis, as will be seen subsequently.

The basis of these computations is the boundary-layer equation
of Prandtl for the two-dimensional flow of an incompressible fluid [1].!
This equation with the law of hydrostatic pressure and the equation
of continuity, when expressed in terms of the upper liquid, becomes

dw 10p

’ua—*- by_vmf a; (2)
10p
by+g 0, 3)
ou , ov
Sto=0 4)

where u and » are the components of velocity in the » and y direc-
tions, respectively, and p is the hydrostatic pressure.

! The figures in brackets indicate the literature references at the end of this paper.
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In view of the two-dimensional equation of continuity of an incom-
pressible fluid, eq 4, the stream function, ¥, may be introduced:

RS s,
s, 717 ek (%)
Since, in the present case 0p/0z=0, eq 2, in terms of the stream
function, becomes

oy v vy Oy :
Oy dxdy T oz Of oyt (6)

This can be changed into an ordinary differential equation by choos-
ing appropriate new variables. The physical basis for the ordinary
differential equation is the similarity of flow in two vertical sections.
A necessary condition for the similarity of flow is that the velocity
at the interface %, and the velocity at large values of y be constant.
These conditions are fulfilled if the pressures are hydrostatic, which
has already been assumed. Adopting a characteristic length 8,
which is to be regarded as a function of z only, the new dimensionless
variables for ¥ and the stream function are

ﬂ:ny/5, (7)
and

H(n)=—y/|Us, (8)

where 7 is a dimensionless numerical constant as yet not specified.
These variables are dimensionless. In terms of these, eq 6 now
becomes

ds ., d*H v PH

Thus, if we select & to satisfy the relation

(3. s
&'
or

8=2n 7 (10)

then, from eq 9, we have

¢H d’H

which is Blasius’ equation for the laminar boundary layer when the
pressure is independent of z [2].

In eq 10 the dependence of § on 2 is given except for the numerical
value of n. We determine this by considering the velocity at large
values of y. Now,

B a2
R a—y —nl} %)
hence if we specify that dH/dn=1 for large values of 7, and this is a

boundary condition for the upper fluid, we must then take n=1.
These values we now adopt.
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Summarizing, we have for the upper liquid

a*H

L(ﬂ)—dn +H ‘d';i—o’ (12)
where
H=—}o =1, (13)
and
o= %’” (14)

A similar set of equations may be established for the lower liquid by
using primes to distinguish the variables,

dAEl! da*H’ :
L) =G0+ H Ii_o, (15)
where
AINRRY. 4 y’
and

__\/21/ z a7

_The actual velocities and their first derivatives in terms of the
dimensionless variables are

el ‘fiH (18)
o Ud*H
for the upper liquid; and
Hl
~v%, 20)
o) Uhdr
bZ _/ d i) (21)

for the lower liquid.

For the simultaneous solution of the two basic differential equa-~
tions, eq 12 and 15, six boundary conditions are needed. These we
now consider. In the upper liquid, w equals U for y=<; in the lower
liquid, %" vanishes for y’=w. Accordingly,

—CE:l, NSy (22)
and

e T e (23)
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The stream function, ¥, may be interpreted as the flux per unit width
between a point ¥ of the upper liquid and the interface; and ¢’ as the
flux per unit width between a point %’ of the lower liquid and the
interface. As we have supposed that the interface is the horizontal
plane y=v’=0, we must have

H=0, n=0; (24)
and
Il — 0N (25)
The velocities are continuous at the interface; hence
dH _dH’
d’? d 7 D=9 '=0. (26)
Again, the shearing forces are continuous at the interface; hence
ou ou’
“b—y: —#"527/’ y=y =0,
s+ ¢H v IH e
 dg? x/v d'z"'7 g
or, using eq 1, y d
2H ZH/
d—172 dﬂ, )t e '=0. (27>

These are the six boundary conditions of the problem.

IV. APPROXIMATE EXPRESSIONS FOR THE STREAM
FUNCTIONS

To solve the differential equations, eq 12 and 15, we shall resort to
a method of approximations which is a modification of the method
used by Pohlhausen for the solution of the Blasius plate problem [3].

In this method certam approximate boundary conditions for large
values of n and »’ are required. First, consider the upper moving
liquid. Select the value », of 4 such that

1—%{-? é €, if WZ Nsy (?8)

where ¢ is a small quantity, say 1/100 or any other smaller fraction.
Denote the value of H corresponding to #, by H,. Now, writing
eq 12 in the form

¢H_ 1 d&°H
d* —  H do’

and integrating between n=n, and =, we have

1_<dH> | d3H
d . H dnp
Integratmg the right-hand member by parts, and neglecting the

term multiplied by ¢, and making an obvious substitution from eq 29,
using eq 28, we obtain

d 1 BH
= };I) ,,ﬁ o Hdp O

(29)
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Treating the integral in the right-hand member again in the same
manner, we obtain

(@)~ (@) am)-2 ) w5

If e is sufficiently small, that is, if 77, is sufficiently large, the integral
in the latter equation may be dlscarded leaving

1‘( ) (dZH x'(H [1> @9

This is the approximate relation which exists between the first and
second derivatives of H when n=n,.
If we now suppose that H; is so large that 1 can be neglected com-
Eared to the square of Hj, then, in view of eq 28, 29, and 30, we must
ave

dH
dn =1— € N="s,
(%2{:6[1-\" N="Ns, (31)
*H :
;7:_5[]32) N="ns.

Consider now the lower still liquid. We select the value 5y of %/,
such that

dH’ 3
g7 s¢,if 29/, (32)

where ¢ has the same general meaning as e. Denote the value of
H' corresponding to n,” by Hy’. For values of n" larger than 7,/, eq
15 may be written in the form

PH H
dn/;s = }Is d 72
Obviously, then
dH’ ’ ’
d"l =¢ Yool =Sty
PIT ,
W:_E Hs,y 77’:773 ) (33)
¢*H’ S

d"l,3 —G,Hs’zy N s=Ne:

Now, in the method employed here, the end conditions for the
large values of 7 and »’ will be taken from eq 31 and 33 after assigning
definite values to e and ¢’. The values assigned to e and ¢’ have a
bearing on the accuracy of the approxnnatlon and also govern the
course of the computations. If e and " are assigned values different
from zero, the accuracy of the approximation is increased, but the anal-
ysis becomes more complicated. Inorder to simplify computations,we
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shall take e=¢’=0 and adopt the following end conditions. For the
upper liquid, we have

dH d’H *H
-(E———l, 'dn—2=0, Wzoy N="Ns, (34)

and for the lower liquid,

dH’ d?H’ d*H’ AR
& =0 Tr =0 e =0 7= 5

These now replace the conditions implied by eq 22 and 23. With
this choice of the end conditions, n, and »,” have simple geometric
interpretations. Let y, and 9" be the values of the distance from the
interface corresponding to 7, and 5./, respectively; that is, let

ys:'ﬂsV/(ZVx/U); (36)
and
¥’ =n,'v/(2v'z]0), (37)

then 7, and ¥, are the thicknesses of the two laminar boundary
layers at the interface.

We shall also need the following end conditions from eq 24, 25, 26,
for the upper liquid,

dH

HZO! —(i_,':’;=a07 7720) (38)
and for the lower liquid,
=0, :%I,—=ao’, o (39)

where
Qo= a/(), = uO/ U.

We are now ready to develop the general expressions for the stream
functions H and H’. Since from eq 15 and 34, d®H/d»* vanishes at
n=0 and n=1,, then it must be possible to express this function of H
as a summation of polynomials where each polynomial vanishes for
7=0 and n=mn,. Suitable polynomials may be selected in various
ways. In order to extend Pohlhausen’s computations [3], we select
the following oscillating algebraic functions as the expansion poly-
nomials for this analysis:

Ni=—ala—1)=a—0a?
No=—+ala—1)2a—1)=2a—3a*+a,
Ni;=—ala—1)Ba—1)(Ba—2)=2a—11a*+18a—9a*,
and, in general,
N,=(—1)"a(a—1)(na—1)(na—2) (na—3)( . . . )(na—n-+1),
where
a=n/ns.
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- Using only the first three functions, we put

A’ _a,

dn’ 1,

Here ay, 15, k2, and k; are constants to be determined. Integrating
once with respect to 7, we have

2
%Zax(Jl+k2Jz+kaJs), (41)

(— 6N+ 32k, N, —30k;N;). (40)

where J;, J, and J; are functions of a:
J1=l-3a2—|—2a3,
,=160>—32a°+ 160",
J3=1—30a%+110a*—135a*-} 54 a5.
It must be remarked that oJ; is derived from N, by integrating with
respect to 7 and selecting the constant of integration so that J;=0
for a=1, and similarly for J, and J;. Equation 41 thus obviously

satisfies the second end conditions in eq 34. Integrating eq 41 with
respect to n, we have

c2_5[=‘10+ a5 (G +kaGot ks Gs), (42)

where G, G, and G are functions of a:

Gi=a—d® -}——12—04‘,

Gﬁ-:—‘

1
; 1360:3— 80(4—{-—59(15,

3, 95 4 5 6
Gi=a—10a —I—Ea —27a°+9a’.

In this case, @, is derived from J; by integrating the latter with re-
spect to 5 and selecting the constant of integration so that G;=0
when =0, and similarly for G, and G;. The constant a, is intro-
duced in order to satisfy the second end conditions in eq 38. Inte-
grating eq 42 with respect to 7, we have

H=amFo+am:(F+kFo1-k;Fy), (43)
where Fo, I, F,, and F; are functions of a:
Foz o,

1 1 1
Fl=—2-a—-za4—|-1—0a5,

4 8 8
F2=§a4——5-a5+1—5a6,

1
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where F; is derived from G; by integrating the latter with respect to
n and selecting the constant of integration so that F;=0 when =0,
and similarly for F,, F, and F; It is obvious that the first of the
end conditions in eq 38 is satisfied. The functions N, J, @, and F
are tabulated in tables 1, 2, 3, and 4.

TaBLe 1.—Values of the N functions

i CNi@ | Na@X10 | Na@X10
0.00 0. 0000 0. 0000 0. 0000
.05 . 0475 . 4275 . 7030
10 . 0900 . 7200 1.0710
15 L1275 . 0925 1. 0869
.20 . 1600 . 9600 0. 8960
.25 . 1875 L9375 . 5859
.30 . 2100 . 8400 . 2310
.35 . 2275 . 6825 —. 1081
.40 . 2400 . 4800 —. 3840
.45 L2475 L2475 —. 5631
.50 . 2500 — —. 6250
.55 L2475 —. 2475 —. 5631
.60 . 2400 —. 4800 —. 3840
.65 . 2275 —. 6825 —. 1081
.70 . 2100 —. 8400 . 2310
L75 . 1875 —. 9375 . 5859
.80 . 1600 " . 8960
.85 L1275 —. 8925 1. 0869
.90 . 0900 —.7200 1.0710
.95 0475 —. 4275 0. 7030
1.00 . 0000 = .

TaBLE 2.—Values of the J functions

@ Ji(e) Ja(a) J3(a)
0.00 1. 0000 0. 0000 1. 0000
.05 0. 9929 . 0344 0. 9451
.10 .9720 . 1296 . 7971
.15 . 9393 . 2632 . 6312
.20 . 8960 . 4096 . 4842
.25 . 8437 . 5624 . 3690
30 7840 . 7056 3075
35 7183 . 8280 2979
40 6480 . 9216 3366
45 5747 . 9800 4105
50 1. 0000 5001
55 4253 0. 9800 5904
60 3520 . 9216 6633
65 2817 . 8280 7008
70 . 2160 . 7056 6942
75 . 1563 . 5624 6309
80 .1040 . 4096 5280
85 . 0607 . 2632 3675
90 . 0280 . 1296 2037
95 .0073 . 0344 0615
1.00 . 0000 & 0000
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TasrLe 3.—Values of the G functions

a G (o) G (@) @3 ()
0.00 0. 0000 0. 0000 0. 0000
.05 . 0499 .0011 . 0480
.10 . 0990 . 0045 . 0927
.15 . 1469 .0144 1270
.20 .1928 .0299 . 1569
.25 . 2363 . 0552 . 1760 |
.30 L2770 . 0869 . 1942 ‘
.35 . 3146 L1254 . 2093
.40 . 3488 . 1691 . 2255
.45 .3793 . 2168 . 2444
.50 . 4062 . 2669 . 2641
.55 . 4294 . 3165 . 2932
.60 4488 . 3640 3244
65 4646 . 4077 3590
70 4771 . 4464 3937
75 4863 . 4781 4272
80 4928 . 5024 4559
85 4969 . 5191 4783
90 4990 . 5288 4925
95 4999 . 5326 4999
1.00 . 5333 5000

TasLe 4.—Values of the F functions

a F (a) F3 (a) | F3 ()
0.00 0. 0000 0. 0000 0. 0000
.05 L0012 . 0000 . 0012
.10 . 00560 . 0001 . 0047
.16 .0112 . 0006 . 0106
.20 . 0196 . 0016 L0176
.25 . 0303 . 0037 . 0261
.30 . 0432 L0073 . 0351
.35 . 0580 L0127 . 0449
.40 . 0746 . 0200 . 0556
.45 . 0928 . 0297 . 0692
.50 L1125 . 0415 . 0807
.55 L1334 . 0562 . 0995
. 60 L1554 . 0733 . 1096
.66 .1782 . 0925 . 1267
.70 L2018 . 1138 . 1457
.75 . 2258 L1370 . 1661
.80 . 25056 . 1618 . 1881
.85 . 2753 . 1874 . 2118
.90 . 3001 . 2134 . 2357
.95 . 3750 . 2398 . 2608
1.00 . 3500 . 2666 . 2857

In these expressions there appear two types of constants.

313

The

constants k, and k; are of one type and may be referred to as the ex-
pansion constants, since these are introduced because of N, and Nj.
The constants @, @,, and », are of the other type and may be referred
to as the basic constants, since a, relates to the interfacial velocity
1o, @y, to the local shear and #, to the thickness of the laminar boundary

layer in the upper liquid.

Reasoning in a similar manner, we have for the lower, still liquid,

%I%c% (— 6N, +32k,’ N, — 30ks' Ny),
EH'

E,I’iz':al, (Jx +k2’J2—{—k3’J3),

dH’

W = =ay a0 (Gi+ky Go+-ky' Gs),

and

H'=ay'ns Fo+ a0 (Fy+k' Fo+- ks Fy),

(44)
(45)
(46)

(47)
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where IV, J, @, and F are the same functions as before but now depend
on the independent variable of o/=7"/n,’. Again, k,’ and ks’ are the
expansion constants, and a,’, ¢/, and 5,’ are the basic constants for
the laminar boundary layer in the lower, still liquid.

Equations 43 and 47 are the approximate expressions for the stream
functions H and H’. The unknown elements are the basic and expan-
sion constants, which we now proceed to determine.

V. EVALUATION OF THE CONSTANTS

There are a total of six basic constants and four expansion constants
in the expressions for H and H’, and thus 10 relations are required for
their determination. Four such relations are obtained immediately
by considering the first of the end conditions in eq 34 and 35 and the
continuity conditions, eq 26 and 27. These give, first,

Ayt Ao= 1, (48)
where
1 1 %
A0=§(1 +Tg k2+k3>’ (49)
second,
a0'+a1'773'A0'=0, (50)
where
Ao’=%<1+% k2’+lc3'); 1)
third,
a=0ay’; (62)
and fourth,
a=—ra,/ M; (53)
where
M=Q14k)[A+ks), 7= 0")/(up). (54)

The remaining six relations may be obtained from eq 12 and 15 by
using one of two methods.

In the first method the left-hand members of eq 12 and 15 are mul-
tiplied successively by N;, N, and N;, and integrated with respect to
a or o between the limits 0 and 1 and set equal to zero, since L is
identically equal to zero. That is, putting

d*H d’H
= d—773 - H d_"lz’ (55)
and
d*H’ a?H’

L'=W+H' Gy (56)
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the desired six relations are

e NS o= (=2 3} (57, 58, 59)
and
SALL'N,do’=0, (i=1, 2, 3). (60, 61, 62)

A simpler method would be to use @y, @, and @; instead of Ny, N,
and Nj, where

le—*—l’ OéaOI‘ a'él;
Q:=+1, 0<aor o’ <1/2;
Q=—1, 1/2<aor a’=1;
Q:=-+1, 0Zaor a'<1/3;

h=—1, 1/3Zaor o’=2/3;
Q=-+1, 2/3<aor a=1.

The second method, which is the more familiar one, utilizes the
following six relations [4]:

S5 Lda=0; (63)
S L'da=0; (64)
dL
717':0; N="s; (65)
dL
E=0, n=0; (66)
dL’
=0, 7=n; (67)
ar’
—d;,ZO, 17’:0. (68)

The constants of the present problem have been determined, by
using both of the above methods, and the results agreed to the same
order of accuracy. The résults obtained from eq 63 to 68 will be
given here.

From eq 40, 41, and 43, we find from eq 55,

L(n) =‘§1 (— 6N, 432, N, — 30k, Ny)

+ @y (J1F0+k2J2Fo+k3J3Fo)
+anE (1 Fy+ko[ o Fy+ Fo )+ ks J3 Fy + FyeJ1])
+ar?n (k2o o+t kokes[Jo Fs+ FoJ3) 4 ki3 Fy).

Substituting in eq 63 and integrating, we find that .
a*= A1a0a:’n 3+ A0, ) (69)
where
A= (an+ aoks+apks) /(1 +ks), (70)
and

Ay = (an+ aroka+ arsks+ ook - agskekes +-assks®) [ (1+Fs). (71)
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The values of the coefficients with the double subscripts occurring
in eq 70 and 71 are

a01=0.15000, (L11=0.029365, (L22=0.0308,
(1/02:0.26667, o= 0.07619, a23=0.0758,
4 =0.21425,  @;3=0.07625, 53=0.0400.

By treating eq 64 in a similar manner, we find that

a1’2=Alfaolalﬂ"lslz+A2’a1l3")s,3’ (72)
where
A = (ap+ Aoy’ +aosks’) [ (1+-k3'), (73)

and

Ay = (an+aks’ +aks +a22k2'2+a23kz’k3' +033k3'2)/(1 +ky'). (74)

Since from eq 55
dL d*H | dH d*H ¢H

& dnt Ty TH @
and
dy -, ANy o ANy LA 1%
g il DL e e S
we find from eq 65
%(6+32k2+60k3) =0, (75)
and from eq 66
%(—6+32k2—60k3)=—-a0a1(1+k3). (76)

Adding eq 75 to eq 76, we have
64k, = —agn;*(L+ks). (77)
Since 7, is finite and a; does not vanish, we have, from eq 75,
60k, — — 6—32k,. (78)

We have from eq 77, using eq 48, the relation

O —@"—(al—j“—")z[(1 4 /(1 +£k2+k3)2]; (79)

where n, does not appear. It may be emphasized that eq 78 and 79
are two relations expressing the expansion counstants 4, and ks in
terms of the basic constants a, and a,.
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In a similar manner we obtain from eq 67 and 68 the two relations

60]('3,: —6—32k2,, (80)
73] 2
ek =— 22T (i) (1 g+ ) | (81)
i

Equations 48, 50, 52, 53, 69, 72, 78, 79, 80, and 81 are the desired 10
relations for determining the 10 constants appearing in the expressions
for H and H’ given by eq 43 and 47, respectively. In principle the
determination of the constants in a direct manner is possible, but
since this is tedious, it may be carried out by successive approxima-
tions. The successive approximations to the values of the constants
give the successive approximations to the present boundary-layer
problem.

VI. FIRST APPROXIMATE SOLUTION FOR THE LAMINAR
BOUNDARY LAYERS

In the first approximate solution it is assumed that the expansion
constants ks, ks, ky', and k3’ are zero.
Consider the relations

ao+an,Ap=1, (48a)
ay +ay'n' Ay’ =0, (50a)
(IrQ:(LQ/, (523)
a=—ra/M, b= 'o")/(up)], (530)
a’=A1a0t:*n 4 Asa’nd, (69a)
and
(L1'2:All(lol(ll’277s’2+A2,a1,377s/3- (723],)

Here the constants Ay, 4y, M, A, A/, A, and A, are functions of ks,
ks, k', and k3’ and may be determined from eq 49, 51, 54, 70, 71, 73,
and 74. For ky, ks, ky’, and k3" all equal to zero, we obtain

A()-_—'A(), :0.50000,
AIZAI/ :015000,
A2:A‘_)’ 20023936,
M=1.

Now, the determination of the unknown quantities a,, @, n, and
ay, @, ny/ from the above six relations, 47a to 72a, is an easy task
once a specific value is assigned to . Separate determinations were
mage by selecting nine values for », namely, »*=0.00, 0.01, 0.10, 0.3162,
1,8.162, 10.0, 100, and co. The results are shown in table 5.
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TABLE 5.—First approximale values of the constants ao, a1, @', 7, and »,’
ri=(u'p")/ (up)

r? ay a’, ao or ay’ s ' H, H
!

{151,103 38 b de 1 T 0. 6038 T 000> [ o0t s 8280952 2N = 0. 995
.01 0. 0540 . 5402 0.9285 2. 611 3.433 2. 552 . 959
.10 . 1388 . 4390 . 8085 2. 744 3.678 2. 582 893
. 3162 . 2031 . 3614 . 7100 2. 845 3.923 2. 595 838

1.0 . 2727 L2724 . 5910 2. 995 4.331 2.616 772

3.162 . 3397 L1911 . 4646 3. 146 4.851 2.630 679

10 . 3916 .1238 L3479 3.324 5. 605 2.672 590
100 . 4494 . 0449 L1773 3. 6556 7.844 2.750 423
oo 4839 | ... . 000 TP T e SRS | 2,884 | 551550

The expressions for H and H’ from eq 43 and 47, respectively,
wherein the constants £ and &’ are put equal to zero and the values
of the basic constants are taken from table 5, constitute the first
approximate solution of the laminar boundary layers at the interface
of two liquids, one of which is still and the other moving. More
specifically, in the upper liquid

dH
H=agm.Fo(n/ns) +acnFi(a/ng), g-=aotamGi(a/n),
and in the lower liquid

’ 7’ ’ ’ 7’ dH, ’ / ’ ’
H' =ay'n/ Fo(n' [n') +a."*n"*Fi (0’ [ns"), d—n':aO +an' G (0’ [n").

The numerical values of F,, F;, and @G, are given in tables 3 and 4.

It may be of interest to note that the case 7= can be physically
interpreted as representing the case in which the lower liquid has
an infinite viscosity, which is obviously the case for a liquid flowing
over a plate. The solution obtained here for 7= is identical with
Pohlhausen’s fourth approximation. In the present analysis this con-
stitutes only the first approximate solution.

VII. SECOND APPROXIMATE SOLUTION OF THE LAMINAR
BOUNDARY LAYERS

Inserting the first approximate values of a,, @i, and @, a,” from
table 5 in eq 78, 79, 80, and 81, we obtain a set of values for k,, ks,
ko', and ky’, after discarding the squares and the higher powers of
these constants. The results are given in table 6 for the various
values of 7%

TaBLE 6.—Second approzimate values of the expansion constants ki, ks, ko', and ks’

r2=(u'p")/(up)

r ka k3 ky! k3’ M

[ FL T R IS EN0S W YO 1 SR i —0. 2600 =£0. 0B8R2 (| el L
01 —0.1354 —0.0278 —. 2600 +. 0382 1. 0681
10 —.1259 —. 0328 —. 2600 +. 0382 1.0737
3162 —. 1162 —. 0380 —. 2600 +. 0382 1.0816
1.0 —.1037 —. 0446 —. 2600 +. 0382 1. 0869
3.162 —. 0897 —. 0522 —. 2600 +. 0382 1.0956
10 —.0734 —. 0608 —. 2600 +. 0382 1. 1057
100 —. 0429 —.0771 —. 2600 +. 0382 1.1252
=) . 0000 Er: (1) ! SO GO PR S (o e O L
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With these, corresponding values of the coefficients A,, A’, A4,
Ay, Ay, Ay, and M are computed. The results are shown in table 7.
With the values of the coefficients thus known, the second approxi-
mate values of the basic constants are determined by the same
equations as for the first approximate solution, that is, eq 48a to 72a,
inclusive. The results of this determination are given in table 8.

Expressions for H and H’ from eq 43 and 47, respectively, where
the expansion constants are given in table 6 and the basic constants
are given in table 8, constitute the second approximate solution of
the laminar layers boundary problem for the interface between two
liquids.

TaBLE 7.—Second approzimate values of the auailiary constants Ay, Ay, Az, Ay, Ay,
and Ay’

r2=(p/'p")/(up)

72 Ao A Az Ad Ay Ao
O e b ety nd o E5 0 S onBR e S e 0. 3806 0. 08562 0.01336
.01 0. 4139 0. 1110 0. 01830 . 3806 . 08562 . 01336
.10 . 4164 . 1131 . 01871 . 3806 . 08562 . 01336
. 3162 . 4190 . 1155 . 01917 . 3806 . 08562 . 01336
1.00 . 4224 L1181 . 01970 . 3806 . 08562 . 01336
3.162 . 4260+ L1212 . 02038 . 3806 . 08562 . 01336
10 . 4304 . 1250 . 02107 . 3806 . 08562 . 01336
100 . 4382 .1321 . 02245 . 3806 . 08562 . 01336
0 . 4600 . 1427 FOZA00 " ke S lenl et SEE SR P S A

TaBLE 8.—Second approximate values of the basic constants ay, a1, @', 15, and g

r2=(u'p’)/(up)

r? a a ag or ay’ Ns nd H, H/
(000 18 3 | S e —0. 5906 10000 Al oo 4. 449 3.012 1.041
401 0. 05667 —. 5329 0. 9282 3. 069 4. 576 3.004 0.993
10 . 1456 —. 4287 . 8082 3.163 4,953 2,991 . 936
3162 2144 —. 3627 . 7088 3.241 5. 280 2. 990 .875
1.0 . 2899 —. 2668 . 5888 3.358 5. 793 2.991 .798
3.162 L3611 —. 1854 . 4619 3. 498 6. 545 2. 996 L707
10 L4174 —.1194 . 3446 3. 648 7.582 3.016 .602
100 . 4817 —. 0428 L1739 3.913 10. 672 3. 055 .434
o . 5196 L i . 0000 0 eSS RS TP, £ R S e

VIII. QUALITY OF THE APPROXIMATIONS

The quality of the approximations may be studied conveniently by
substituting the approximate expressions for A and H’ and for their
derivatives into the differential equations, eq 12 and 15, and then
considering the magnitude of the remainders. Let the remainders
be denoted by AL and AL’:

_@H | . @H
AL—d—ns +Hdd_712’

MY=Gm+H g

AL/(@*H [dn®) max and AL’ [(@*H’ [dn'?) max

and

If the ratios



320 Journal of Research of the National Bureaw of Standards

become smaller in the successive approximations, the magnitude of
decrease is a measure of the improvements in the approximations.
We have computed these remainders only for the two extreme

0.24

/xgmcf (Dryiden)
018 /
\—Z“d - app.

Sieroie A / =
|

N app.

2

o

.‘IF?

BT 0.0

R

| 2 & 4 5
Fiaure 2—Remainders of the first and of the second approximations for the case
r#=o00,

-0.06

030
7-<\ st app.
0.24 / \<

AR

T \\\
il G ¢

15t app. /{\
2nd qgpp.
o Pl

o |

-0.12 ?
o

1 2 3 4 5
Ficure 3—Remainders of the first and of the second approzimations for the case
r*=0,

cases represented by r’=w and 7?=0. The values of the remainders
together with the values of the third derivatives of H and H’, are
given in figures 2 and 3, respectively. The case of a liquid of finite
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viscosity moving over a liquid of infinite viscosity is represented by
r*=o. As mentioned before, this is mathematically identical with
the Blasius problem of flow over a plate. In examining the curves
in figure 2, we see that the amplitude of the oscillation of the remainder
in the second approximate solution is only about half aslarge as in the
first approximation, indicating that the improvement in the second
approximate solution is appreciable. In the second approximate
solution, the maximum value of the remainder is 0.027; the maximum
value of the third derivative, 0.25. It is thus seen that the remainders
are relatively small. In this same figure we give also the curve of the
third derivative of H from the exact solution by Dryden [5]. The
agreement between the second approximate solution and the exact
solution is rather close. The velocity gradient at y=0, from the
second approximate solution, is

1 ou

U oy
In the exact solution the corresponding coefficient has the value
0.3320, thus indicating that the error in the value of this quantity
from the second approximate solution is only 0.39 percent.

A liquid of infinite viscosity moving over a liquid of finite viscosity
is represented by 7’=0. Physically, it would seem that this is the
case of a solid surface moving in a still liquid. The curves in figure 3
also show that in this case the remainder of the second approxi-
mate solution has been reduced and has become about half as large as
the corresponding quantity in the first approximate solution. But the
accuracy obtained is not as satisfactory as in the case 7= «, since
the remainders are relatively larger. Apparently to obtain the same
degree of accuracy as was obtained in the case 7°= «, and with the

second approximation it will be necessary to introduce the expansion
functions kN, and k;NVs.

=0.3307+/U/(vx).

IX. PHYSICALLY SIGNIFICANT QUANTITIES OF THE
LAYERS

Among the quantities of the laminar layers at the interface of the
two liquids, one at rest and the other moving over it, the following
are of practical significance: (1) The intensity of the viscous stresses
at the surface of separation, (2) the thickness of the layers, and (3)
the distribution of the velocities in the layers. The computation of
these quantities will be made, using the second approximate solution
of the analysis.

1. LOCAL STRESS AT THE SURFACE OF SEPARATION

The stress in question is determined from the velocity gradient of
the upper liquid at the surface of separation:

=3 -
0/ =0

vl dli)
e I 3 d‘ﬂz 0:

From eq 19
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2y d? e
=t )5 U
Substituting from eq 14,

—(@H\ (Ur\~*%
A g

If we use the velocity gradient of the lower liquid, we obtain in the

same manner,
s EH (Us\ %
=== () 5 U

or

Putting
-~ d*H =
»V/z( T )=V +k) =
and
~ﬁ(‘“ﬁﬁ) SR g A
dn’" /o
we have the local stresses
T\~ ¥
=) o, (s2)
or
T\l
7:8(%5) o U (83)

The computed values of s and s’ as functions of 7* are given in
table 9.

Tarre 9.—Values of the constants s and s’ in the expressions of the local stress
at the interface, eq 82 and 83

r2=(u'p’)/(up)

r? 8 s

(001, Tongte S i ST kP, 0. 8672

01 0. 0782 . 7825

10 . 1992 6295

3162 . 2917 5178

0 3917 3918

3. 162 4840 2722

10 . 5543 1753

100 . 6287 0628
@ i1 R (e S

2. THICKNESSES OF THE LAYERS

Since the velocities in the laminar boundary layers approach the
limiting values in an asymptotic manner, the definition of the thick-
ness of the layers becomes a matter of convention. Of particular
utility are the following definitions. See figure 4.

2 f " (U—w)dy=(U—uty, (84)
0
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!/ :

!

¥

Y

F1aurE 4.—The gradient thicknesses of the interfacial laminar boundary layers.
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and
v
2J; w'dy’ =ud,’, (85)

the first applying to the upper moving liquid and the second to the
lower still liquid. It will be appropriate to speak of 6; and of §,” as
the gradient thicknesses. Like the displacement thicknesses, the
values of §; and 8, would not be affected very much by the approxi-
miltions, and this obviously, can not be said of %, and y,’. Using the
relations

y=mn3, y'=n'¥,

b=+2w[U,  &=+2v2[U,

w=UdH [dn, w' =UdH’ |dv/,
we find from eq 84 and 85 that

o fons—Hs [v
61—2\/5 1—0/0 U
and b
Hoiw s
A s Lt
61 .——2-\/5 o U
Putting
ot o sHY
n=2+/2 T e =242 s
we have for the gradient thicknesses,

51=n\/%) and &, =n’ Ezi—;; (86)

The values of # and »” are given in table 10 as functions of 2. We
obtain for the boundary thicknesses, introducing the expressions

m= \/iﬂsy m'= '\/5773,:

va

vr i re
Ys=m _U" Ys =m U (87)

The values of the coefficients m and m’ as functions of 7% are given in
table 10.

TasLE 10.—Values of the consiants n and n’ in the expressions of the gradient thick-
ness and m and m’ in the expressions of the boundary thicknesses of the two lam-
nar layers, eq 86 and 87

ri=(u'p")/(up)

r? n n’ m m’
0500 V] - ied 20480 oot 6. 291
01 2. 270 3.026 4.339 6. 470
10 2.344 3.304 4.472 7.003
3162 2.428 3.493 4,582 7. 466
1.0 2.531 3.831 4.748 8.191
3.162 2. 664 4.328 4.946 9. 255
10 2.813 4.940 5.158 10. 721
100 3.071 7.083 5.533 15.090
@ (07T ) L (41" A
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3. DISTRIBUTION OF THE VELOCITIES IN THE LAYERS

These velocities are determined from eq 42 and 46. The results of
the computations for the upper liquid are given in table 11, where
/D is tabulated as a function of 4/y, for various values of 72. Similar
results for the lower liquid are given in table 12.

TaBuE 11.—Velocity distribuiion in the interfacial laminar layer of the upper,
moving liquid
The boundary thickness y, is given by eq 87
r2=(u'p")/(1p)

\ r2 a8
Ults \ 0.010 0. 100 0.316 1. 000 3.16 10 100
u/U
0.0 0. 9282 0. 8082 0. 7088 0. 5888 0.4619 0. 3446 0.1739 0. 0000
o . 9449 . 8521 . 7747 . 6807 . 5808 . 4862 . 3466 . 1994
N . 9602 . 8929 . 8363 . 7667 .6917 . 6204 .5122 . 3935
.3 L9735 . 9279 . 8892 . 8412 . 7891 . 7387 . 6609 .5723
.4 . 9838 . 9557 . 9316 . 9015 . 8685 . 8359 . 7850 L7271
A . 9913 . 9758 . 9626 . 9457 . 9273 . 9089 . 8797 . 8440
.6 . 9961 . 9889 . 9826 . 9747 . 9660 . 9573 . 9432 . 9252
& . 9988 . 9962 . 9933 . 9910 . 9878 . 9848 . 9801 L9727
.8 . 9998 . 9991 . 9985 . 9980 .9973 . 9966 . 9960 . 9938
.9 . 9999 . 9999 . 9998 . 9998 . 9997 . 9996 . 9996 . 9995
1.0 1. 0000 1. 0000 1. 0000 1. 0000 1.0000 1. 0000 1. 0000 1. 0000

TaBLE 12.—Velocity distribution in the interfacial laminar layer of the lower,
stzll liquad

The boundary thickness ¥, is given by eq 87
1= 'p")/(up)

o N0
BN 0.00 0.010 0.100 0.316 1. 000 3.16 10 100
By
U

0.0 1.0000 | 0.9282 | 0.8082 | 0.7088 | 0.5888 | 0.4619 | 0.3446 | 0.1739
51 7337 6811 5930 5200 .4320 3389 2527 1276
9 4980 4624 4023 3530 . 2032 2301 1716 0866
.3 3121 2897 2524 2213 .1838 1441 1075 0542
4 1765 1639 1427 1250 .1039 0814 0608 0306
.5 0886 0822 0717 . 0628 . 0522 0404 0305 0154
.6 0369 0343 0298 . 0262 L0217 0171 0131
il 0119 0112 0098 0092 . 0070 0055 0041 0020
48 0026 0025 0022 0021 . 0016 0011 0009 0004
.9 0007 0006 0005 0004 . 0003 0002 0001 0001

1.0 0000 0000 0000 0000 . 0000 0000 0000 0000

A more suggestive picture of the velocity distribution is obtained
by plotting u/U against y/y,, ¥ now being the distance from the surface
of separation to a point, above or below the surface, and y, being the
boundary thickness of the layer situated in the upper liquid. Figure
5 gives the velocities for identical liquids, p=py’ and p=p’. Figure 6
gives the velocities for »"=7.85» and p’=1.14p. This case will be
realized if we take water for the upper moving liquid and aqueous
solution of 56 percent glycerol for the lower, still liquid, both being at
20° C. These two figures demonstrate the very large influence that the
increased viscosity of the lower liquid has on the velocity distribution.
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Ficure 5.—Interfacial laminar velocity distribution for the case r?=1,
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Fi1cure 6.—Interfacial laminar velocity distribution for the case r*=10.

X. TRANSVERSAL VELOCITIES OF THE LAYERS

The expressions of the transversal velocities, » and ¢/, in terms of
H and 7, may be derived conveniently from the condition of continuity
eq 4. Since at the interface, » and »” vanish, we have

v ou
vz—ﬁ ady.
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This yields, using eq 13, 14, and 18, the relation

o_ ("¢H d
. P dn? nan.
Integrating by parts and noting that /=0 when n=0, we obtain
o dH
T=a, " H, (88)

which is the expression for the transversal velocities at the point

(n, 0). :
The corresponding expression for the lower fluid is

ol idH S 5
Thus, at the points of the lower liquid and in the region outside of the
layer, ' >z, there is a weak current moving normally upward
toward the interface. The strength of the current is given by

’ v'H,' 5

e (90)

In a sense, the boundary layer of the upper liquid acts as a pump,
raising the small portions of the lower liquid to the level of the inter-
face, then causing these portions to move horizontally. So long as
these motions as required by the theory are not interfered with, the
steadiness of the layer will be assured.

The author acknowledges gratefully the editorial assistance in the
preparation of this paper furnished by George W. Patterson, and
also the valuable suggestions offered by Galen B. Schubauer.
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Logarithms of the decimal numbers from 5.0000 to 10.0000, to 16 places of decimals.
(1941) XXII4-506 pages; bound in buckram, $2.00.
MT13. TaBte or SiNe AND CosINE INTEGRALS FOR ARGUMENTS FROM 10 To 100:
(1942) XXXII+-185 pages; bound in buckram, $2.00.
MT14. Tasies or ProBasiiry Funcrions, Vorume II:
Values of these functions to 15 places of decimals from 0 to 1 at intervals of 0.0001 and from
1 to 7.8 at intervals of 0.001.
(1942) XXI+-344 pages; bound in buckram, $2.00.

[Continued on p. 4 of cover} .
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MT15. The hypergeometric and Legendre functions with applications to integral equations 0f
potential theory. By Chester Snow, National Bureau of Standards. Reproduced from original
handwritten manuscript.
(1942) VII+-319 pages, bound in heavy paper cover. $2.00.

MT16, Tasre or Arc TAN x:
Table of inverse tangents for positive values of the angle in radians. Second central differences
are included for all entries.

x=={0(.001)7(.01)50(.1)300(1)2,000(10)10,000;12D}
(1942) XXV 4169 pages; bound in buckram, $2.00.
MT17. Miscellaneous Physical Tables:
Planck’s radiation functions (Originally published in the Journal of the Optical Society of
America, February 1940); and

Electronic functions.
(1941) VII+58 pages; bound in buckram, $1.50.

MT18. Table of the Zeros of the Legendre Polynomials of Order 1-16 and the Weight Coeflicients
for Gauss’ Mechanical Quadrature Formula:
(Reprinted from Bul. Amer. Mathematical Society, October 1942.)
5 pages with cover. 25 cents,

MT19. On the Function H (m, a, x)=exp(—ix) F (m-+1—ia, 2m-+2; ix); with table of the
confluent hypergeometric function and its first derivative.
(Reprinted from J. Math. Phys., December 1942.) 20 pages, with cover, 25 cents.

MT20. Table of integrals ﬁ Jo(®)dt and J:Yg(t)dt:

Values of the two integrals are given for x=0(.01)10 to 10 decimal places. (Reprinted from
J. Math. and Phys., May 1943.) 12 pages, with cover, 25 cents.

MT21. Table of Jiy(x)= J;wjot:@dt and Related Functions:

Table I: Jiy(x) to 10 decimal places and F(x)= Jis(x)+log.l/2x to 12decimal placesforx=0(.1)3
with even central differences of F(x).
Table II: Jig(x) to 10 decimal places, for x==3(.1)10(1)22 with even central differences up to

x=100.
Table III: “Reduced” derivatives of F(x) for x=10(1)21 and n=0(1)13, to 12 decimal places.
(Reprinted from J. Math. Phys., June 1943.) 7 pages, with cover, 25 cents.

MT22. Table of Coefficients in Numerical Integration Formulae:

The values of B(® ,(1)/n! and B™ , /n! where B(™ ,(1) denotes the ntt Bernoulli polynomial of
the nth order for x=1 and B(®,, denotes the nth Bernoulli number of the ntk order, were com-
puted for n=1, 2, . . . 20. The quantities B(*) ,(1)/n! are required in the Laplace formula of
numerical integration employing forward differences, as well as in the Gregory formula. The
quantities B("), /n/ are used in the Laplace formula employing backward differences.

(Reprinted from J. Math. Phys., June 1943.) 2 pages, with cover, 25 cents.

MT?23. Tasre or Fourier CoEFFICIENTS.
Whenever ¢ (x) is a known polynomial whose degree does not exceed 10, the present table
of the functions

1 1
S(k,n)= ‘I; x¥ sin nwrx dx and C(k,n=£ x¥ cos nrx dx to 10D(1=k=10,1=n==100), will
facilitate the evaluation of the first hundred Fourier Coefficients.
Reprinted from J. Math. Phys. Sept., 1)43.) 11 pages, with cover, 25 cents.

MT24. Corerricients FOR NUMERICAL DirrerENTIATION WiTH CENTRAL DIFFERENCES.

Coefficients are given for derivatives as far as the 52d. For the first 30 derivatives, exact
values are given for coefficients of the first 30 differences, and also exact values are given for some
coefficients of differences beyond the 30th. For the other coefficients, values are given to 18
significant figures.

(Reprinted from J. Math. Phys., Sept. 1943) 21 pages, with cover, 25 cents.

Payment is required in advance. Make remittance payable to the “National
Bureau of Standards,” and send with order, using the blank form facing page
3 of the cover.

A mailing list is maintained for those who desire to receive announcements
regarding new tables as they become available.
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