U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

RESEARCH PAPER RP1590

Part of Journal of Research of the National Bureau of Standards, Volume 32, Iune 1944

STUDIES OF PORTIONS OF THE QUATERNARY SYSTEM SODA-LIME-SILICA-WATER AT 25° C

By George L. Kalousek

ABSTRACT

A study has been made of portions of the system soda-lime-silica-water at 25° C. A study has been made of portions of the system soda-lime-silica-water at 25° C. The only solid phases found were $Ca(OH)_2$ and a four-component gel of variable composition. The boundary, $Ca(OH)_2$ —soda-lime-silicate gels, was determined and the compositions of the gels along this boundary shown to vary from 0.003Na₂O:2.0CaO:1.OSiO₂:xH₂O (at 0.2 g of Na₂O per liter) to about 0.25Na₂O:-1.0CaO:1.OSiO₂:xH₂O (at 20 g per liter and extending to 101 g per liter of Na₂O). In regions off the boundary, at selected constant concentrations of Na₂O but with increasing concentrations of SiO₂ in solution, the Na₂O:SiO₂ molar ratio of the gels varied only slightly from 0.2 in most cases; the CaO:SiO₂ molar ratio, however, decreased to values approaching 0.1 at the maximum concentrations of SiO₂ used. Interpretations pertaining to relations between the composition of of SiO₂ used. Interpretations pertaining to relations between the composition of the gels and solutions are given.

CONTENTS

	Page
I. Introduction	285
II. Materials	286
III. Procedure	286
1. Preparation and filtration of mixtures	286
2. Methods of chemical analyses	287
IV. Results and discussion	287
1. Preliminary observations	287
2. Boundary, Ca(OH) ₂ —soda-lime-silicate gels	288
(a) Compositions of soda-lime-silicate gels	289
(b) Relation between compositions of gels and solutions	
along boundary	293
3. Regions of higher silica concentrations	296
V. Applications of the results of the study to concrete	298
VI. Summary	301
VII. References	302

I. INTRODUCTION

The role of the alkalies, soda and potash, in hydrating cements is not fully understood. Information on how these constituents alter the chemical composition of the lime silicate hydrates and of other products in hydrating cements should be highly useful in explaining the mechanism of the various hydration processes involved. Also, a knowledge of the compositions of the alkali solutions in which the hydrated cement compounds are stable should prove helpful in elucidating the effects of the alkalies on hydrating cements in the presence of "reactive" aggregates.

The present investigation was accordingly designed for obtaining a portion of such data and was concerned with the effects of Na₂O on the compositions of the lime silicate hydrates and of the aqueous phase in which they are stable. The investigation was essentially a study of portions of the quaternary system soda-lime-silica-water at 25° C.

II. MATERIALS

The starting materials were solutions of sodium silicate and sodium hydroxide of known compositions, crystals of $Ca(OH)_2$ and distilled water.

The sodium silicate solution was a reagent-quality product containing not more than 0.2 percent of CO_2 and having a molar ratio of $1.00Na_2O:3.34SiO_2$. Sodium hydroxide was freed of carbonate by preparing a saturated solution. The clear supernatant liquid was drawn off and diluted as required.

Calcium hydroxide of reagent quality and having a particle size of less than 1 micron was used for most of the experiments. Also, $Ca(OH)_2$ crystals of varying sizes, prepared by adding solutions of NaOH to saturated solutions of $Ca(OH)_2$, were used in a number of exploratory preparations.

III. PROCEDURE

1. PREPARATION AND FILTRATION OF MIXTURES

A few tentative mixtures of the standard solutions and the $Ca(OH)_2$ were made in order to establish the amounts required to produce the desired quantities (about 0.5 to 1.0 g) of the precipitates in mixtures having a volume of 200 ml. Most of the mixtures were made by adding a solution of sodium silicate to a well-agitated suspension of fine-grained $Ca(OH)_2$ in a solution of NaOH. The resulting preparations in tightly stoppered ceresin-lined flasks were stored in an air bath maintained at $25 \pm 0.05^{\circ}$ C until filtered at ages ranging from 2 to 18 weeks. During the first 5 to 8 hours after mixing the preparations, they were shaken about once each hour, and then once daily after the first day. Although this was the general procedure followed, it will be necessary, as required in certain sections of this report, to give more specific details.

The time allowed the mixtures to "age" was selected arbitrarily. It may be mentioned, however, that neither the solid phase nor solution underwent any determinable changes in time periods of from several weeks to several months. It is recognized that this steady state may be displaced by eventual crystalization of the solid phase, a process which, however, appears to proceed exceedingly slowly at room temperature.

The mixtures were filtered through a medium-textured sintered glass crucible by application of suction. The residue on the filter during the last stages of filtration was firmly compacted with a rubber plunger, and as much of the solution was withdrawn as permitted by the retentivity of the gelatinous precipitate. The precipitate was next redispersed in a small amount of wash solution (ethyl alcohol and water or water if the filtrate contained more than 70 g of SiO₂ per liter) and the solution again filtered off. The most suitable ratio of alcohol to water for each wash solution was determined by testing a

few milliliters of the original filtrate and selecting the maximum alcohol content which just failed to produce a suspension. Four to five successive washings were made with solutions of progressively increasing alcohol content, then four to five washings with 95-percent ethyl alcohol, and finally four to five washings with ethyl ether. In the course of each washing, the precipitate was redispersed and during filtration, compacted on the filter. After being washed the precipitate was left in the laboratory air for 1 day and then stored in a tightly stoppered vial.

2. METHODS OF CHEMICAL ANALYSES

Standard procedures of chemical analyses were followed. All of the solutions and most of the precipitates were analyzed for soda, lime, and silica. The "hydrate" water of the precipitates was determined by difference.

by difference. The amounts of Na_2O in the filtrates containing relatively small amounts of SiO_2 (1 percent or less of the total solids) were determined by titrating the solutions with HCl, using methyl red as indicator. Allowance was made for the $Ca(OH)_2$ present, which was determined gravimetrically. The errors in the results were not greater than 1 percent of the amount of Na_2O , as determined occasionally for check purposes by precipitation. In all the other determinations, the Na_2O , after removal of SiO_2 , was precipitated and weighed as sodium zinc uranyl acetate hydrate.

Calcium was precipitated as oxalate, ignited, and weighed as CaO. However, when the filtrates contained over 50 g of Na₂O per liter the CaO was precipitated as phosphate, converted to sulfate, and reprecipitated as oxalate according to the method described by Hillebrand Lundell [1].¹ In the analysis for SiO₂ the solutions were dehydrated twice with HCl. The combined residues were ignited to constant weight and treated with HF. The loss in weight was reported as SiO₂.

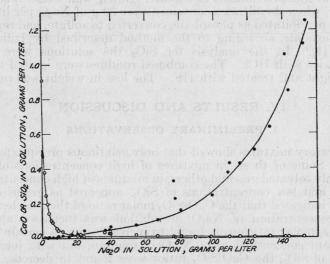
IV. RESULTS AND DISCUSSION

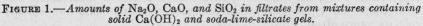
1. PRELIMINARY OBSERVATIONS

Exploratory mixtures showed that only gelatinous precipitates were formed. Some of these, in mixtures of high concentrations of SiO₂, were highly solvated gels and others, in mixtures of high concentrations of Na₂O and low concentrations of SiO₂, appeared as grains of gel. Analyses indicated that the CaO:SiO₂ molar ratio of the gels decreased as the concentration of Na₂O in solution was increased and the Na₂O:SiO₂ molar ratios were found to increase up to a certain value. At constant concentrations of Na₂O in solution, but with increasing amounts of SiO₂, the CaO:SiO₂ ratios were found to decrease. The four-component gelatinous products are referred to as soda-lime-silicate gels, or, more often, simply as gels.

The shifts in the compositions of the gels could not be followed microscopically as the changes in the indices were small and appeared to be affected by aging. The presence or absence of small amounts of fine-grained crystals of $Ca(OH)_2$ could not be ascertained reliably by means of the microscope. Large crystals of $Ca(OH)_2$ could not be

Figures in brackets indicate the literature references at the end of this paper.


used as they were converted but slowly to the siliceous products owing to the formation of gelatinous deposits around the crystals.


2. BOUNDARY, Ca(OH)2-SODA-LIME-SILICATE GELS

Considerations based on the preliminary results indicated that the best initial procedure to follow in studying the system would be to ascertain the compositions of the aqueous phase in contact with $Ca(OH)_2$ and the soda-lime-silicate gels. Accordingly, the mixtures for establishing this boundary were prepared, only a moderate excess of crystalline $Ca(OH)_2$ being used. The concentration of Na₂O was varied from 0.2 to 152 g per liter. After 2 to 7 weeks, the mixtures were filtered and the filtrates and precipitates analyzed.

All the data pertaining to the mixtures, filtrates, and precipitates are reported in table 1, the compositions of the solutions being given in grams per liter of Na₂O, CaO, and SiO₂. The table shows that the amount of CaO in solution decreased from 0.92 to about 0.02 g per liter as the concentration of Na₂O was increased from 0.2 to about 20 g per liter. Simultaneously, the concentrations of SiO₂ increased from 0.002 to about 0.020 g per liter. In the range of concentrations of Na₂O from 20 to 152 g per liter, the amounts of CaO in solution remained nearly constant at a value of about 0.010 g per liter, but those of SiO₂ increased from 0.02 to over 1.1 g per liter.

Figure 1 shows the g per liter of CaO and \tilde{SiO}_2 found in solution at the different concentrations of Na₂O.

O = CaO

	Compo tures in	sition o grams p		Age		grams	of solu- per liter	Molar compositions of mixed solids							
No.	Na ₂ O •	CaO	SiO2	in weeks	Na ₂ O	CaO	SiO2	Computed	From direct analyses						
			interaction (El 1934)	1. 201		, Le		CaO:SiO2	Na ₂ O	CaO	SiO ₂	H ₂ O			
1 2 3 4	2.0 3.5 4.5 6.5	1.864 1.490 1.248 1.116	$\begin{array}{c} 0.\ 655\\ .\ 655\\ .\ 655\\ .\ 655\\ .\ 655\end{array}$	4 4 7 4	$ \begin{array}{r} 1.69 \\ 3.16 \\ 4.00 \\ 6.17 \end{array} $	0.380 .195 .140 .090	$\begin{array}{c} 0.\ 001 \\ .\ 001 \\ .\ 006 \\ .\ 002 \end{array}$	2.43 2.12 b 1.83 1.69	$0.03 \\ .05 \\ .05 \\ .12$	2. 42 2. 09 1. 69 1. 60	1.00 1.00 1.00 1.00				
5 6 7 8	9 13 16 18	$\begin{array}{c} 0.932\\ .745\\ .947\\ .655\end{array}$.655 .655 .655 .640	4 4 7 4	8.74 12.00 15.30 17.8	.055 .037 .029 .019	002 .011 .008 .015	$1. 43 \\ 1. 18 \\ 1. 52 \\ 1. 09$.13 .18 .18 .22	$\begin{array}{c} 1.38 \\ 1.18 \\ 1.49 \\ 1.09 \end{array}$	$\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00 \end{array}$	3.3 3.0 3.3			
9 10 11 12	21 25 37 '40	$\begin{array}{r} .618\\ .596\\ 1.490\\ 0.945\end{array}$.640 .655 1.310 0.655	$\begin{array}{c} 4\\ 4\\ 6\\ 2 \end{array}$	20. 6 24. 3 36. 5 39. 0	.013 .009 .038 .028	.026 .043 .046 .048	1.06 1.03 1.23 b 1.63	. 22 . 23 . 23 . 23 . 29	$\begin{array}{c} 1.03 \\ 1.02 \\ 1.25 \\ 1.31 \end{array}$	1.00 1.00 1.00 1.00	2.9 3.1 2.9 3.6			
13 14 15 16	40 55 68 77	$\begin{array}{r} .851 \\ 1.490 \\ 1.490 \\ 0.605 \end{array}$.655 1.310 1.310 0.655	. 5 6 2	$\begin{array}{c} 39.\ 6\\ 54.\ 5\\ 67.\ 0\\ 76.\ 2\end{array}$.025 .018 .011 .008	.065 .071 .106 .325	1.40 1.24 1.32 b 1.93	.26 .25 .23	1.26 1.34 1.08	1.00 1.00 1.00	3.2 3.0 3.0			
17 18 19 20	78 82 100 110	. 606 1. 490 1. 490 0. 932	.655 1.310 1.310 1.310 1.310	5 6 7	77.4 80.8 99.0 108.1	.004 .010 .004 .006	227 . 157 . 241 . 377	1.51 1.38 b 1.49 1.07	. 25 . 24 . 27	$ \begin{array}{r} 1.37 \\ 1.36 \\ 1.02 \end{array} $	1.00 1.00 1.00 1.00	3.0 2.9 2.7			
21 22 23 24	110 116 125 135	.756 .932 .932 .932 .932	$\begin{array}{c} 1.\ 192 \\ 1.\ 310 \\ 1.\ 310 \\ 1.\ 310 \\ 1.\ 310 \end{array}$	2 6 6 6.	109 115.0 123.5 132.5	.004 .008 .010 .006	$\begin{array}{r} .\ 428\\ .\ 424\\ .\ 501\\ .\ 633\end{array}$	$1.05 \\ 1.09 \\ 1.22 \\ 1.46$. 24 . 29 . 25	$\begin{array}{c} 1.\ 06\\ 1.\ 12\\ 1.\ 26\\ 1.\ 43 \end{array}$	$\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00 \end{array}$	3.0 2.7 3.2 3.2			
25 26 27 28	144 145 155 155	. 380 . 932 . 932 . 530	$1.310 \\ 1.638 \\ 1.965 \\ 1.310$	3 5 5 5	$141. 6 \\ 143. 5 \\ 152. 0 \\ 153. 1$.005 .006 .097 .00	$\begin{array}{c} 1.058\\ 0.845\\ 1.131\\ 1.250 \end{array}$	1.60 1.27 1.18	. 19 . 26 . 26	1.55 1.26 1.16	$1.00 \\ 1.00 \\ 1.00$	2. 9 2. 6			

TABLE 1.—Compositions of solutions in contact with crystalline $Ca(OH)_2$ and sodalime-silicate gels and the compositions of the mixed solids

The amount of Na₂O added is approximate in these preparations.
 Ca(OH)₂ separated partly from mixture of solids.

(a) COMPOSITIONS OF SODA-LIME-SILICATE GELS

The precipitates obtained in the mixtures used for locating the boundary, although containing Ca(OH)₂, were suitable for ascertaining the Na₂O:SiO₂ molar ratios of the soda-lime-silicate gels.

The compositions of the precipitates, assigning a value of unity to the mols of SiO_2 , are given in table 1 (last four columns) as the molar ratios of Na₂O:CaO:SiO₂:H₂O. Thus, the column under Na₂O gives the molar ratio of Na₂O:SiO₂ of the gels.

The molar ratios of CaO to SiO_2 of gels along the boundary could not be determined reliably by preparing mixtures, computed to be removed just slightly off the boundary so as to avoid the presence of $Ca(OH)_2$, and analyzing the precipitates. Because of this difficulty, the following procedure for determining the composition of the gel coexisting with crystalline $Ca(OH)_2$ at constant concentration of Na₂O was selected as the most expedient and the one likely to give reliable results.

Series of 5 to 10 mixtures each were prepared at Na₂O conceptrations (or levels) of 0.2, 2.4, 5.5, 9.2, 11.6, 22.3, 51, 75, and 101 g per liter. (See table 2.) The total quantities of $Ca(OH)_2$ and SiO_2 added as sodium silicate, were estimated from the amounts needed for the solutions as shown in figure 1, plus the approximate amounts required for the precipitates as indicated by results on exploratory

289

TABLE 2.—Data pertaining to the CaO: SiO_2 molar ratios of soda-lime-silicate gels coexisting with $Ca(OH)_2$ and solutions containing between 0.19 and 101 g of Na_2O per liter

and and a second		in gran		Age,		sition o in grai		Composition of precipitates molar ratios							
	Na ₂ O	CaO	SiO2	in weeks	Na ₂ O	CaO	SiO2	Computed CaO:SiO ₂	Direct analyses						
								CaO: 5102	Na ₂ O	CaO	SiO ₂	H ₂ O			
	$\begin{array}{c} 0.\ 205 \\ .\ 200 \\ .\ 205 \\ .\ 205 \end{array}$	$ \begin{array}{c} 1.891\\ 1.968\\ 1.968\\ 2.042 \end{array} $	$\begin{array}{c} 0.\ 655\\ .\ 655\\ .\ 655\\ .\ 655\\ .\ 655\end{array}$		0. 195 . 190 . 195 . 195	0. 862 . 888 . 858 . 886	0.002 .002 .002 .002	$ \begin{array}{r} 1. 69 \\ 1. 90 \\ 1. 82 \\ 1. 90 \end{array} $							
5 6 7 8	. 205 . 205 . 200 . 200	2.119 2.192 2.270 2.420	.655 .655 .655 .655		. 195 . 190 . 186 . 188	. 912 . 894 . 915 . 911	.003 .002 .002 .002	1.982.132.232.48	0. 003	1.94	1.00	3.2			
9 10 11 12 13	*2.5 2.5 2.5 2.5 2.5 2.5	$1.058 \\ 1.135 \\ 1.210 \\ 1.285 \\ 1.361$.655 .655 .655 .655 .655 .655	55555	2. 37 2. 38 2. 36 2. 38 2. 38 2. 38	.193 .237 .240 .243 .243 .245	. 003 . 003 . 003 . 003 . 003	$1.42 \\ 1.47 \\ 1.59 \\ 1.71 \\ 1.83$. 04	1.41	1.00	3.3			
14 15 16 17 18	5.8 5.8 5.8 5.8 5.8 5.8	0. 525 . 600 . 675 . 750 . 826	.655 .655 .655 .655 .655 .655	55555	$5. 40 \\ 5. 42 \\ 5. 42 \\ 5. 42 \\ 5. 42 \\ 5. 46$.002 .010 .022 .041 .063	. 039 . 015 . 009 . 005 . 005	0.92 .99 1.08 1.17 1.24	. 18 . 15 . 13 . 12 . 11	0.90 .98 1.07 1.15 1.21	$ \begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00 \end{array} $	2.60 2.68 2.80 3.00 3.06			
19 20 21 22 23	5.8 5.8 5.8 5.8 5.8 5.8	. 900 . 975 1. 050 1. 125 1. 200	.655 .655 .655 .655 .655 .655	5 5 5 5 5 5 5 5	$5.46 \\ 5.46 \\ 5.46 \\ 5.46 \\ 5.46 \\ 5.52$.100 .099 .101 .097 .103	005 . 003 . 002 . 003 . 003	$1.32 \\ 1.44 \\ 1.55 \\ 1.69 \\ 1.80$.07 .08 .08	1. 30 1. 41 1. 52	1.00 1.00 1.00	2.98 (3.10 (3.35			
24 25 26 27 28 29	9.5 9.5 9.5 9.5 9.5 9.5 9.5	0. 522 . 596 . 671 . 745 . 820 . 894	$ \begin{array}{r} .655 \\ .655 \\ .655 \\ .655 \\ .655 \\ .655 \\ .655 \\ .655 \\ \end{array} $	6 6 6 6 6 6	9. 14 9. 15 9. 17 9. 15 9. 14 9. 14	$\begin{array}{r} .011\\ .015\\ .025\\ .039\\ .046\\ .044\end{array}$.060 .038 .017 .012 .007 .006	$\begin{array}{c} 0.92 \\ 1.01 \\ 1.08 \\ 1.18 \\ 1.27 \\ 1.40 \end{array}$. 14	1. 13	1.00	2.9			
30 31 32 33 34	12. 0 12. 0 12. 0 12. 0 12. 0 12. 0	. 530 . 606 . 682 . 757 . 833	.655 .655 .655 .655 .655 .655	5 5 5 5 5 5 5	$\begin{array}{c} 11.\ 55\\ 11.\ 53\\ 11.\ 56\\ 11.\ 56\\ 11.\ 56\\ 11.\ 60\end{array}$. 003 . 007 . 023 . 036 . 036	.060 .025 .014 .008 .008	0. 95 1. 02 1. 05 1. 19 1. 315	. 19	1.05	1.00	2.7			
35 36 37 38 39	22. 0 22. 0 22. 0 22. 0 22. 0 22. 0	.373 .466 .559 .652 .746	.655 .655 .655 .655 .655 .655	5 5 5 5 5 5 5	22. 11 22. 11 22. 30 22. 28 22. 28	$\begin{array}{c} . \ 002 \\ . \ 003 \\ . \ 016 \\ . \ 024 \\ . \ 027 \end{array}$	$\begin{array}{r} .\ 236\\ .\ 149\\ .\ 071\\ .\ 033\\ .\ 019\end{array}$	$\begin{array}{c} 0.\ 95\\ .\ 98\\ 1.\ 00\\ 1.\ 08\\ 1.\ 20\\ \end{array}$. 21	0.94	1.00	2.6			
40 41 42 43 44	$51. 0 \\ 51. 0 \\ 51. 0 \\ 51. 0 \\ 51. 0 \\ 51. 0$	$\begin{array}{c} 1.\ 092\\ 1.\ 390\\ 1.\ 688\\ 1.\ 985\\ 2.\ 273 \end{array}$	$\begin{array}{c} 1.\ 705\\ 1.\ 705\\ 1.\ 705\\ 1.\ 705\\ 1.\ 705\\ 1.\ 705\\ 1.\ 705\\ \end{array}$	8 8 8 8 8	50. 8 50. 9 50. 7 50. 5 50. 5	. 01 . 01 . 01 . 01 . 01	.488 .178 .105 .074 .070	$\begin{array}{c} 0.\ 95\\ .\ 97\\ 1.\ 13\\ 1.\ 30\\ 1.\ 48 \end{array}$. 22	. 95	1.00	2.7			
45 46 47 48 49	75. 2 75. 2 75. 2 75. 2 75. 2 75. 2	$\begin{array}{c} 0.993\\ 1.242\\ 1.490\\ 1.737\\ 1.985 \end{array}$	$\begin{array}{c} 1.\ 772\\ 1.\ 772\\ 1.\ 772\\ 1.\ 772\\ 1.\ 772\\ 1.\ 772\\ 1.\ 772\\ \end{array}$	4 4 4 4 4	75. 4 75. 2 75. 3 75. 5	.01 .01 .01 .01 .01	.752 .420 .220 .121 .106	$\begin{array}{c} 1.03\\ 0.98\\ 1.03\\ 1.12\\ 1.28\end{array}$. 24	. 95	1.00	2.9			
50 51 52 53 54	101. 5 101. 5 101. 5 101. 5 101. 5 101. 5	0.993 1.242 1.490 1.737 1.985	$1.772 \\ 1.77$	4 4 4 4	101. 2 100. 6 100. 8 101. 0 100. 8	.01 .01 .01 .01 .01	.721 .498 .320 .289 .350	$1.00 \\ 1.04 \\ 1.10 \\ 1.25 \\ 1.49$. 25	. 99	1.00	2.6			

* The amount of NaO2 added is approximate in preparations 9 to 54.

mixtures. The CaO:SiO₂ ratio was varied systematically in each series so that, after reaction, about half of the mixtures contained $Ca(OH)_2$ and the remainder none. After 4 to 18 weeks the mixtures were filtered and the filtrates analyzed. The computed CaO:SiO₂

molar ratios,² representing the differences between the amounts of CaO and SiO₂ in the mixtures and the amounts found in solution, are used for the graphical presentation of the data. Most of the precipitates in the series containing 5.4 to 5.5 g of Na₂O per liter were analyzed for check purposes, and in each series those having compositions nearest to the boundary curve were also analyzed. The results are given in table 2.

The CaO:SiO₂ molar ratios of the precipitates at the different Na₂O levels are plotted in figure 2 against the amounts of CaO or SiO₂

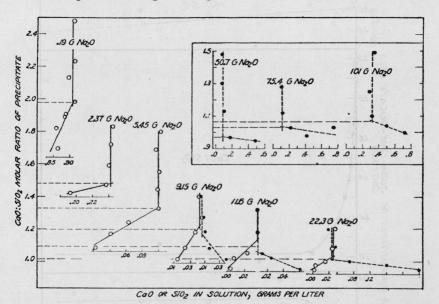


FIGURE 2.—Plots of the CaO:SiO₂ molar ratios of precipitates against the amounts of CaO or SiO₂ in solution for each of nine series of mixtures of varying CaO and SiO₂ contents but of constant Na₂O concentrations.

O---O=CaO. ●----●-SiO₁.

(or both) in grams per liter of solution. The CaO:SiO₂ molar ratios of the gels coexisting with $Ca(OH)_2$ at different Na₂O levels are those corresponding to the "breaks" in the curves shown in figure 2. These breaks were quite sharp except for the series of mixtures containing small amounts of CaO or SiO₂ in solution. This may be due to the experimental errors in the determination of these small quantities and therefore, to obtain as nearly a representative value as possible, the respective concentrations of both constituents were plotted. The average CaO:SiO₂ ratio of the two was selected as being more accurate than either one.

The approximate water content of the gels, as moles of H_2O per mole of SiO₂, is given in table 2. However, in table 1 the water content

² Both the computed and observed CaO:SiO₂ molar ratios were determined, and are given in table 1 for the purpose of indicating the reliability of the former. With a few notable exceptions, in which the observed ratios were markedly lower than the computed ratios, the two agreed within a few hundredths of a mole. Such small differences are not serious, and knowing the cause for the exceptions, the computed ratios only were used in some of the following parts of the study. The marked exceptions, which occurred in the earlier experiments, were due to a partial separation of the solid phases, the Ca(OH)₂ adhering firmly to the ceresin lining of the flasks. In subsequent mixtures such separation was prevented by using a finely crystalline Ca(OH)₂ and vigorously shaking the mixture during preparation and also at frequent intervals during the first day. The resulting suspensions did not cake in the bottom of the flasks.

of the precipitates showing a CaO:SiO₂ molar close to 1 (the precipitates being mostly gel) also indicates approximately the water content of the gels.

The molar ratios of Na₂O:SiO₂, CaO:SiO₂, and H₂O:SiO₂, representing the compositions of the gels along the boundary, $Ca(OH)_2$ —soda-lime-silicate gels, are presented graphically in figure 3. This

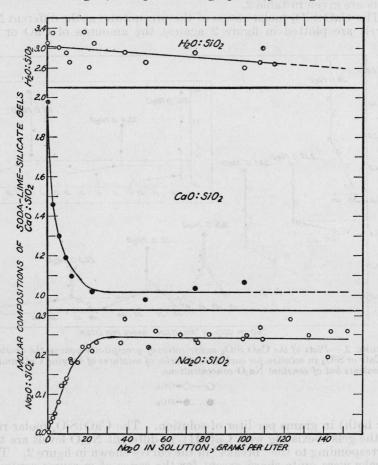


FIGURE 3.—Relations between the concentrations of Na₂O in solution and the compositions of corresponding soda-lime-silicate gels expressed in molar ratios of H₂O:SiO₂, CaO:SiO₂, and Na₂O:SiO₂.

figure, based on data from tables 1 and 2, and figure 2, shows that the $Na_2O:SiO_2$ molar ratio increased from a value of 0.003 to a value of about 0.23 as the concentrations of Na_2O in solution were increased from 0.2 to about 20 g per liter and them remained nearly constant at this value for all higher concentrations of Na_2O , up to 152 g per liter.

The CaO:SiO₂ molar ratios of the gels, as shown by figure 2, decreased from 1.98 to 1.00 as the concentration of Na₂O was increased

from 0.2 to 22.3 g per liter. At the higher concentrations of Na_2O used the ratio remained nearly constant at a value of about 1.0.

The $H_2O:SiO_2$ molar ratios varied between 2.5 and 3.3. This spread in the results is rather large, but not surprising, considering the nature of the materials.

(b) RELATION BETWEEN COMPOSITIONS OF GELS AND SOLUTIONS ALONG BOUNDARY

In order to show the relation between the compositions of the gels and solutions along the boundary, the data for mixtures 5, 10, 19, 27, 32, and 37 in table 2 were computed as mole percent of Na₂O, CaO, and SiO₂, the water being disregarded. These results are plotted in

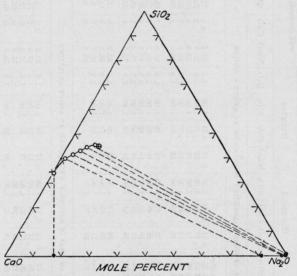


FIGURE 4.—Compositions of gels coexisting with $Ca(OH)_2$ and of the contact solutions. The results are expressed in mole percent of Na₄O, CaO, and SiO₂ (anhydrous basis).

figure 4. It should be noted that gels and solutions obtained at Na_2O concentrations above 22 g per liter had an average composition, in mole percent, almost identical with that of mixture 37 table 2, and therefore would fall nearly on the same point.

Figure 4 shows that the amounts of SiO_2 in solution along the boundary were relatively small throughout the entire range. It is seen, however, that the decreases in the amounts of CaO in solution caused large changes in the compositions of the gels. But, once the CaO concentrations attained an approximately constant value, the compositions of the gels remained nearly constant.

	Cor	Composition of		Composition of	Composition of		omposition of mixtures		Composition of mixtures		Composition of		omposition of		Composition of		omposition of mixtures		Composition of mixtures		Composition of mixtures			Composition of solutions				Molar composition of precipitates							Composition of solutions (in		Composition of precipitates (in mole percent)					
No.		mixture	8	Age	S	olution	.9	C	omput	eđ	Observed			mole percent)			Computed			Observed		d																				
	Na ₂ O	CaO	SiO ₂		Na ₂ O	CaO	SiO ₃	Na ₂ O	CaO	sio:	Na ₂ O	CaO	SiO2	H ₂ O	Na ₂ O	CaO	SiO2	Na ₂ O	CaO	SiO ₂	Na ₂ O	CaO	SiO:																			
					CONCI	ENTRAT	ION OF	Na ₂ O IN	solu	TION M	AINTA	NED A	T ABOI	JT 6 G	LITER																											
	<i>g/liter</i> 7. 29 7. 02 6. 74 6. 14 6. 47	g/liter 1. 117 1. 117 1. 117 1. 117 1. 117 1. 117	<i>g/liter</i> 23. 43 19. 52 15. 62 12. 16 11. 72	Weeks 11 11 11 5 7	g/liter 6. 61 6. 37 6. 25 5. 66 6. 00	g/liter 0.02 .04 .08 .05 .05	g/liter 17. 25 14. 92 12. 08 9. 76 8. 82	0. 11 . 14 . 14 . 18 . 16	0. 19 . 25 . 32 . 47 . 39	1.00 1.00 1.00 1.00 1.00	0.15 .21 .21 .16 .18	0. 21 . 19 . 25 . 36 . 35	1.00 1.00 1.00 1.00 1.00	1.5 1.8 1.7 1.8 1.9	27.7 29.8 33.9 36.6 40.3	0.1 .2 .4 .3 .3	72.3 70.0 65.6 63.1 59.4	8.5 10.0 9.5 11.0 10.5	14.5 18.0 22.0 28.5 25.0	77.0 72.0 68.5 60.5 64.5	11.0 14.5 14.5 10.5 12.0	15.513.517.023.523.0	73.5 71.0 68.5 66.0 65.0																			
		$\begin{array}{c} 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\end{array}$	$\begin{array}{c} 10.\ 25\\ 9.\ 62\\ 8.\ 98\\ 7.\ 81\\ 3.\ 91 \end{array}$	5 5 11 11	5.56 5.59 5.63 5.71 5.56	.10 .03 .02 .01 .01	7. 92 7. 18 6. 61 5. 34 2. 06	. 23 . 21 . 19 . 19 . 24	.47 .48 .50 .48 .64	1.00 1.00 1.00 1.00 1.00	.18 .19 .16 .18 .18	$ \begin{array}{r} .38 \\ .39 \\ .42 \\ .50 \\ .65 \end{array} $	1.00 1.00 1.00 1.00 1.00	1.9 2.0 2.0 2.2 2.3	41. 0 43. 7 45. 9 51. 6 72. 8	.7 .2 .2 .1 .1	58.3 56.1 53.9 48.3 27.0	11.5 12.5 11.5 11.5 13.0	$\begin{array}{r} 24.5\\ 28.5\\ 29.5\\ 28.5\\ 34.0\\ \end{array}$	64.0 59.0 59.0 60.0 53.0	11.5 12.0 10.0 10.5 10.0	$\begin{array}{c} 24.5\\ 24.5\\ 26.5\\ 30.0\\ 35.5\end{array}$	64.0 63.5 63.5 59.5 54.5																			
	- 6. 03 - 5. 53 - 5. 53 - 5. 53	$1.117 \\ 0.746 \\ .746 \\ .746 \\ .746$	2.89 1.92 1.60 1.28	5 5 5 5 5	5. 62 5. 30 5. 30 5. 30 5. 30	5.62 .002 1.21 5.30 .003 0.829 5.30 .003 .544		. 24 . 20 . 21 . 22	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.00 1.00 1.00 1.00	.18 .18 .19	. 69 . 71 . 73	1.00 1.00 1.00	2.5 2.3 2.2	82. 2 86. 5 90. 7 95. 4	.0 .0 .0	17.7 13.5 9.3 4.6	12.5 10.5 11.0 11.5	36.5 36.0 36.5 37.0	51.0 53.0 52.5 51.5	9.5 9.5 10.0	37.0 37.5 38.0	53. 0 53. 0 52. 0																			
					CONCE	NTRATI	ON OF 1	Na ₂ O IN	SOLUI	MON M	AINTAI	NED AT	ABOU	T 13 G	LITER							6.																				
	- 14.03 - 13.48	1. 117 1. 117 1. 117 1. 117 1. 117 1. 117	48. 86 43. 78 39. 05 31. 23 23. 43	86 88 8	13. 57 14. 95 13. 20 12. 72 12. 23	.005	40. 72 38. 56 34. 30 27. 12 19. 68	0. 12 . 17 . 17 . 18 . 18	0. 18 . 20 . 25 . 29 . 32	1.00 1.00 1.00 1.00 1.00	0. 17 . 22 . 18 . 20	0. 18 . 15 . 23 . 31	1.00 1.00 1.00 1.00	1.6 1.6 1.6 	25. 0 27. 9 27. 8 31. 9 38. 3	0.0 .2 .0 .0 .0	75.0 71.8 72.2 68.1 61.7	9.0 12.5 12.0 12.0	14.0 14.5 17.5 22.0	77.0 73.0 70.5 68.0	12.5 16.0 13.0 13.0	13. 5 11. 0 16. 0 20. 5	74. 0 73. 0 71. 0 66. 5																			
	- 15.84 - 15.83 - 12.38 - 15.85 - 15.85	1. 117 1. 117 1. 117 1. 117 1. 117 1. 117	19. 45 17. 02 15. 62 14. 59 12. 16	8 8 8 8	14. 95 15. 05 11. 75 15. 35 15. 40	.02 .01 .02	17. 01 14. 44 12. 72 12. 48 10. 00	.35 .29 .21 .23 .20	.47 .46 .41 .56 .54	1.00 1.00 1.00 1.00 1.00	.22 .21 .20 .21 .22	.39 .41 .42 .46 .52	1.00 1.00 1.00 1.00 1.00	1.8 1.9 1.9 1.9 2.2	46.7 51.0 48.0 55.1 60.6	.2 .1 .0 .1	53. 2 48. 9 52. 0 44. 8 39. 3	19.0 16.5 13.0 13.0 11.5	25.526.525.531.031.0	55.0 57.0 61.5 56.0 57.5	14.0 13.0 12.5 12.5 12.5	24. 0 25. 0 26. 0 27. 5 30. 0	62. 0 62. 0 62. 0 60. 0 57. 5																			

TABLE 3.—Data showing the effects of varying concentrations of SiO2 on the compositions of the soda-lime-silicate aels formed at constant con-

25 26 27 28		1. 117 1. 117 0. 746 . 746	$\left \begin{array}{c} 7.81\\ 3.85\\ 1.92\\ 1.28\end{array}\right $	8 5 5 5	$11.\ 30\\11.\ 16\\11.\ 25\\11.\ 32$.01 .01 .01 .01	$\left \begin{array}{c} 5.52\\ 2.17\\ 0.871\\ .300\end{array}\right $. 23 . 28 . 37 . 29	$\left \begin{array}{c} .52\\ .72\\ .70\\ .76\end{array}\right $	$\left \begin{array}{c} 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ \end{array}\right $	$\left \begin{array}{c} .19\\ .21\\ .19\\ .21\\ .21\end{array}\right $. 59 . 65 . 71 . 77	$ \begin{array}{c}1.00\\1.00\\1.00\\1.00\\1.00\end{array} $	2.1 2.4 2.2 2.5	$\left \begin{array}{c} 67.2\\ 83.8\\ 92.8\\ 97.5\end{array}\right $	0. 0. 0.	$\left \begin{array}{c} 32.8\\ 16.3\\ 7.2\\ 2.5\end{array}\right $	13.0 14.0 18.0 14.0	30. 0 36. 0 34. 0 37. 0	57.0 50.0 48.0 49.0	$ \begin{array}{c}10.5\\11.0\\10.0\\10.5\end{array} $	33. 0 35. 0 37. 5 39. 0	56.5 54.0 52.5 50.5
14.2.2.					CONC	ENTRAT	ION OF	Na ₂ O II	SOLU	TION M	AINTAI	NED A	T ABOU	JT 50 0	/LITER								. IN
29	50. 0 50. 0		158.7134.5115.496.276.9	7 7 7 7 7 7	48.7 49.2 49.3 49.4 49.6	0.00 .00 .00 .00 .00	152. 2 126. 1 106. 3 91. 0 70. 3	(a) (a) (a) (a) (a)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00 \end{array} $	$\begin{array}{ c c c c } 0.22 \\ .22 \\ .21 \\ .22 \\ .20 \\ \end{array}$	$\begin{array}{c} 0.\ 09 \\ .\ 15 \\ .\ 19 \\ .\ 27 \\ .\ 35 \end{array}$	$\begin{array}{c} 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00 \end{array}$	$1.6 \\ 1.8 \\ 1.9 \\ 1.8 \\ 1.9 \\ 1.9$	$\begin{array}{c} 24.\ 2\\ 28.\ 1\\ 31.\ 7\\ 35.\ 2\\ 41.\ 4 \end{array}$	0.0 .0 .0 .0	75.871.968.364.858.6				17. 0 16. 0 15. 0 15. 0 13. 0	$7.0 \\ 11.0 \\ 13.5 \\ 18.0 \\ 22.5$	76.0 73.0 71.5 67.0 64.5
34 35 36 37 38	50.0	$\begin{array}{c c} 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\end{array}$	$\begin{array}{c} 48.\ 05\\ 34.\ 00\\ 29.\ 13\\ 24.\ 28\\ 19.\ 42 \end{array}$	7 5 5 5 5 5	49.5 49.1 49.9 49.9 49.9 49.9	.00 .00 .00 .00 .00	$\begin{array}{r} 42.\ 60\\ 31.\ 28\\ 25.\ 58\\ .\ 22.\ 90\\ 17.\ 83\end{array}$	(a) (a) (a) (a) (a)	$\begin{array}{c} .21\\ .43\\ .34\\ .86\\ .74\end{array}$	$\begin{array}{c} 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00 \end{array}$.17 .16 .17 .17 .17 .16	.52 .57 .59 .61 .64	$\begin{array}{c} 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00 \end{array}$	$2.2 \\ 2.0 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2$	$53.8 \\ 61.2 \\ 66.1 \\ 68.5 \\ 73.6$.0 .0 .0 .0 .0	$\begin{array}{r} 46.\ 2\\ 38.\ 8\\ 33.\ 9\\ 31.\ 5\\ 26.\ 4\end{array}$				$10.0 \\ 9.0 \\ 9.5 \\ 9.5 \\ 9.0 \\ 9.0 \\$	$\begin{array}{c} 31.\ 0\\ 33.\ 0\\ 33.\ 5\\ 34.\ 0\\ 35.\ 5\end{array}$	59.0 58.0 57.0 56.0 55.5
39 40 41 42 43 44	50. 0 50. 0 50. 0 50. 0 50. 0	$\begin{array}{c} 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\\ 1.\ 117\end{array}$	$\begin{array}{c} 14.56\\ 9.71\\ 4.86\\ 3.85\\ 2.56\\ 1.28 \end{array}$	5 5 5 5 5 5 5	49.8 49.7 49.2 49.9 49.4 49.8	.00 .00 .00 .00 .00 .00	$\begin{array}{c} 13.\ 03\\ 8.\ 50\\ 3.\ 58\\ 2.\ 43\\ 1.\ 34\\ 0.\ 21 \end{array}$	(a) (a) (a) (a) (a) (a)	.77 .98 .93 .97 .97 1.01	$\begin{array}{c} 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00 \end{array}$	$ \begin{array}{r} .17 \\ .15 \\ .16 \\ .19 \\ .22 \\ .19 \end{array} $.67 .71 .77 .77 .82 .93	$\begin{array}{c} 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00\\ 1.\ 00 \end{array}$	2.4 2.2 2.3 2.7 2.8 2.7	79.3 85.4 93.3 95.4 97.5 99.6	$ \begin{array}{c} 0 \\ $	$20.7 \\ 14.6 \\ 6.7 \\ 4.6 \\ 2.5 \\ 0.4$				$9.0 \\ 8.0 \\ 8.5 \\ 9.5 \\ 11.0 \\ 9.0$	$\begin{array}{c} 36.5\\ 38.0\\ 40.0\\ 39.5\\ 40.0\\ 44.0\\ \end{array}$	54.554.052.051.049.047.0
					CONC	ENTRAT	ION OF	Na20 II	N SOLU	TION M	AINTAI	NED A	T ABOU	T 96 C	/LITER								
45 46 47 48 49		1.1171.1171.1171.1171.1171.1171.117	76. 9 38. 5 19. 23 9. 78 3. 92	6 6 6 6 6	96. 0 95. 9 95. 8 95. 8 96. 1	0.00 .00 .00 .00	37.17 18.85 8.76 2.88	(a) (a) (a) (a) (a) (a)	(a) (a) (a) (a) (a)	(a) (a) (a) (a) (a)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0. 49 .63 .64 .82 .92	1.00 1.00 1.00 1.00 1.00	2.0 2.0 2.0 1.7 2.7	71.0 83.0 91.0 97.0	0.0 .0 .0 .0	29.0 17.0 9.0 3.0				15.0 12.0 6.0 8.5 13.0	18. 0 34. 0 37. 0 41. 0 42. 0	57. 0 54. 0 57. 0 50. 5 45. 0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
--

• Not computed because of small differences between the amounts in mixtures and those found in solution.

3. REGIONS OF HIGHER SILICA CONCENTRATIONS

The effect of the SiO₂ contents of the solutions on the compositions of the gels was studied by maintaining the concentrations of Na₂O at approximately 6, 13, 50, and 96 g per liter, and increasing the concentrations of SiO₂ in each series to a value of 3.3 moles of SiO₂ per mole of Na₂O. These mixtures contained insufficient Ca(OH)₂ to saturate the solutions.

Both the solutions and solids were analyzed and the results are given in table 3. The compositions of the gels were computed only for the 6- and 13-g Na₂O levels, since the computations for the 50- and 96-g Na₂O levels would be subject to large errors due to the relatively small amounts of constituents that precipitated compared to the amounts that remained in solution. The occasional large difference between computed and observed compositions at the 6- and 13-gram Na₂O levels may be due to the same cause.

The last nine columns of table 3 give the compositions of the gels and solutions in mole percentages of Na₂O, CaO, and SiO₂. It may be mentioned that the compositions of the gels computed to mole percent of the four constituents showed that the H₂O content was nearl Λ constant at a value of 55 \pm 3 mole percent for all but two of the gels at the different Na₂O levels. It is evident, therefore, that presenting the data for the gels as a ternary system is in reality showing the 55 mole percent H₂O-level of the quaternary system.

The results for the 6-g and 13-g Na₂O levels are plotted in figure 5, and those for the 50- and 96-g Na₂O levels in figure 6. The effect of Na₂O on the compositions of the solids is readily ascertained by comparing the diagrams in the two figures. In order to facilitate the comparison, the amounts of SiO₂ in solution, in grams per liter, are given in the diagrams to the right of the points representing the compositions of the solutions.

Both the computed and observed compositions of the solids are plotted in figure 5. Considering the highly solvated nature of the gels, which made filtration and washing difficult, and that small analytical errors caused large errors in the computed results, the differences between the two sets of values are not to be regarded as significant. The trends of both, however, are about the same, and the averages may be taken as representative of the true compositions of the gels. Figure 5 shows that as the SiO₂ in solution was increased, the mole percent of Na₂O in the gel did not vary greatly, but that of CaO decreased markedly. A comparison of the two diagrams in figure 5 indicates that the gels in contact with solutions of the same mole percent composition have about the same compositions. Noting that a given mole percent of SiO₂ at the two Na₂O levels does not represent the same concentration of SiO_2 in solution, it follows, therefore, that the ratio of SiO₂:Na₂O (or Na₂O:SiO₂), in solution governs greatly the compositions of the gels.

About the same remarks apply to figure 6 as were made for figure 5 except that the curve for the 50-g level, above 65 mole percent of SiO_2 in solution, is displaced slightly further to the right than those at the 6- and 13-g Na₂ O levels. Whether this is an actual shift in compositions or is due to an incomplete washing out of the Na₂ O and SiO_2 in the solution associated with the gel is not known. The mixtures at the 96-g Na₂ O level, having SiO_2 concentrations in excess

of 90 g per liter, contained exceedingly fine-grained precipitates which passed readily through the filter even after 7 weeks of aging and, therefore, only a few filtrates were available for analysis. The few results available at this level do not show as smooth a relation as those at the other levels.

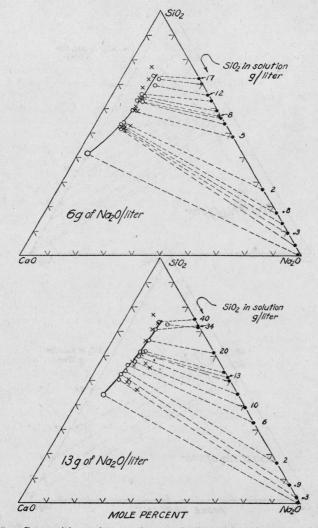


FIGURE 5.—Compositions of two series of solutions containing 6 and 13 g of Na₂O per liter, respectivel, y and of the corresponding gels in mole percent of Na₂O, CaO and SiO₂ (anhydrous basis).

)=Gel, analyzed. (=Gel, computed.)=Solution, analyzed.

V. APPLICATIONS OF THE RESULTS OF THE STUDY TO CONCRETE

This investigation has shown that gels coexisting with crystalline $Ca(OH)_2$ and with solutions containing between 0.0 and 100 g of

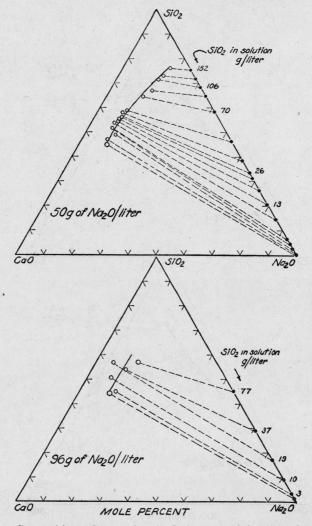


FIGURE 6.—Compositions of two series of solutions containing 50 and 96 g of Na₂O per liter, respectively, and of the corresponding gels in mole percent of Na₂O, CaO, and SiO₂ (anhydrous basis). $\bigcirc = \operatorname{Gel.}_{\bullet} = \operatorname{Solution.}$

 $Na_2 O$ per liter have compositions that range between about $2CaO.1SiO_2.xH_2O$ and $0.25Na_2O.1CaO.1SiO_2.xH_2O$. If similar relations prevail in a completely hydrated cement, the approximate compositions of the gel and solution may be deduced as follows:

For purposes of illustration, a cement containing 20 percent of SiO_2 and 1 percent of Na_2O is used. The extent of combination of Na_2O and SiO_2 as a soda-lime-silicate gel will depend on the extent to which the Na₂O-bearing compounds and the two lime silicates have hydrolyzed. Because of this the simplest deductions, as follows, are those for a completely hydrated cement. If all of the Na₂O combined with SiO₂ as soda-lime-silicate gel, the Na₂O:SiO₂ molar ratio of the gel would be 0.05. As shown in figure 3, a gel of this Na₂O:SiO₂ ratio is stable in contact with a solution containing 3 g of Na₂O per liter. Since this amount ³ of Na₂O in solution is only 2 percent of the total, it may be disregarded in calculating the composition of the gel. Figure 3 also shows that a soda-lime-silicate gel coexisting with a solution containing 3 g of Na₂O per liter has a CaO:SiO₂ molar ratio of 1.4. A combination of the two ratios gives the following composition for the gel, 0.05Na₂O:1.4CaO:1SiO₂:xH₂O. The solution in contact with this gel would contain about 3 g of Na_2O , 0.1 g of CaO, and 0.005 g of SiO₂ per liter.

It is recognized that the above calculations are not entirely valid. For example, it is probable that a portion of the silica in a completely hydrated cement is present in combinations other than soda-limesilicate gel. Also the composition of the gel may be altered by the prolonged aging required to bring about complete hydration of the cement.

In a partially hydrated cement, the compositions of the gel and solution will differ from those given above. It is known that the dicalcium silicate in a cement paste is only slightly hydrated at 28 days, but the tricalcium silicate in the same time may approach a state of complete conversion to its hydration products. Since, on the average, about one-third of the SiO₂ in a cement is combined as dicalcium silicate, it would follow that the gels formed during the earlier periods would contain more Na₂O than those prevailing at complete hydration, providing the Na₂O-bearing compounds react with water at rates comparable to that of tricalcium silicate. Also the solution would be richer in soda. Making allowance for the average value of SiO₂ combined as dicalcium silicate, calculations indicate that the gels formed during the earlier periods may have Na₂O:SiO₂ molar ratios as high as 0.1, and the contact solution may contain as much as 10 g of Na₂O per liter.

The different values reported in the literature for the compositions of the silicate gels in hydrated cements may be related to the alkali contents of the cements as indicated by the following considerations. Bogue and Lerch [2], in a study of the alkali-free lime silicates, came to the conclusion, from results of free-lime determinations, that the hydrated products had compositions approaching a value of 2CaO: $SiO_2:xH_2O$. This result is in accord with that obtained in studies of the system line-silica-water reported by Flint and Wells [3] and Bessey [4]. Using cements that contained between 0.6 and 1.5 percent of total alkalies, Bessey [5] concluded from calorimetric results and free-lime determinations that the hydrous silicates formed in the pastes had a composition of about $3CaO:2SiO_2:xH_2O$. This value of the CaO:SiO₂ ratio is in fair agreement with that computed

³ In making these computations, the C/W ratio was selected as 2.86 by weight, and it was assumed that the "fixed" water amounted to 30 percent by weight of the cement. No allowance was made for water gained or lost by the paste.

in this study for hydrated cements containing about 1 percent of Na_2O .

Concretes made from high-alkali cements and aggregates containing opal or certain other active siliceous materials have been shown by numerous investigations to be unsound. A gelatinous product formed in such concrete is generally associated with this unsound state. Analyses of some of these gels show them (see table 4) to consist largely of silica, alkalies, and water (ignition loss), together with

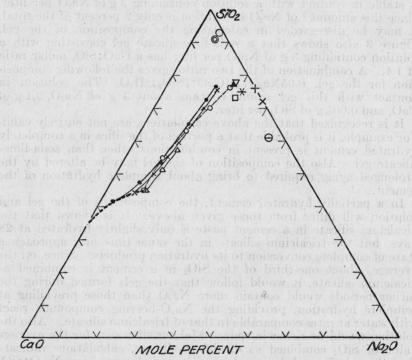


FIGURE 7.—Compositions of synthetic gels and of gels found in concretes showing expansion and cracking

The results are expressed in mole percent of Na2O, CaO, and SiO2 (anhydrous basis).

Composition of gels, solution containing 6 g of Na2O/liter	119
X-X Composition of gels, solution containing 13 g of Na ₂ O/lite	r.
OO Composition of gels, solution containing 50 g of Na ₂ O/lite	r.
$\Delta \Delta$ Composition of gels, solution containing 96 g of Na ₂ O/lite	г.
Composition of gels coexisting with Ca (OH) ₂	

COMPOSITION OF GELS FROM CONCRETE

*=Average of above.

 $\Box = Meissner.$ X = Blanks. + = Meissner. $\Theta = Hanna.$

smaller quantities of CaO, R_2O_3 , MgO, and SO₃. The data computed to mole percent of Na₂O (the K₂O being counted as Na₂O), CaO, and SiO₂ are presented in figure 7. Since some of the constituents were disregarded in these computations, the results are to be considered as only approximating the true ratio of Na₂O to CaO to SiO₂ of the gels. Giving consideration to this and the fact that the gels were

obtained from different sources under different circumstances, the spread in the data is not surprising. The average of these compositions is given in figure 7 for facilitating comparisons between the synthetic gels and those found in concrete. The compositions of the gels shown in figure 7 are those previously given in figures 4, 5, and 6.

 TABLE 4.—Percentage oxide compositions of gels found in or on concretes containing "reactive" aggregates

Number	SiO ₂	R ₂ O ₃	CaO	MgO	SO3	Na ₂ O	K20	Loss	Reported by-
12 a 34 d	$\begin{array}{r} 81.9\\ 85.0\\ 53.4\\ 53.9\end{array}$	0.7 2.2 7.8 6.8	$1.1 \\ 2.0 \\ 2.6 \\ 2.9$	0.8		4.0 4.4 12.8 12.9	2.0 1.9 b b	10.5 16.1 • 16.7 • 22.4	Meissner [6] Coombs [7] Stanton [8] Do.
5 6 7 8	53.4 58.7 51.2 50.0	1.5 .5 .5	4.7 0 2.8	.0 .0 .2	0 0 0 2.6	$12.7 \\ 19.9 \\ 16.8 \\ 24.7$	4.5 6.5 b 8.2	20.5 13.8 11.0	Meissner [6] Blanks [9] Meissner [6] Hanna [9]

Analysis of water soluble portion of gel amounting to 90.9 percent of total (ignited basis)- loss on ignia Marysis of water counter portion of get and and the portion of get and the portion of the portion of

Because large amounts of Ca(OH)₂ are present in concrete, it might seem that the compositions given in table 4 should approximate those of the gels which coexist with $Ca(OH)_2$, as determined in this study. An examination of figure 7, however, shows that the reported compositions of the gels in concrete are notably and consistently lower in CaO and either higher or lower in Na₂O than those along the boundary.

A theory advanced recently by Hansen [10] to account for expansion of concretes containing "reactive" aggregates and alkalies also appears to explain why such low-lime alkali silicates may be present This theory postulates that a membrane, permeable to in concrete. sodium and hydroxyl ions and water but impermeable to silicate ions, is formed around the "reactive" aggregate particles. As a result of the transfer of the alkali hydroxide solution, an osmotic pressure great enough to cause expansion is produced. Also there occurs a reaction between the alkali hydroxide and the siliceous aggregate forming alkali silicates.

VI. SUMMARY

The only solids found, in the foregoing study of portions of the system soda-lime-silica water at 25° C, were Ca(OH)2 and a fourcomponent gelatinous product of variable composition. In contact with crystalline Ca(OH)₂ and solutions of increasing Na₂O contents, this gel showed a composition varying between 0.003 Na₂O:2.0 CaO:1.0SiO₂: xH_2O (at 0.2 g of Na₂O per liter) and $0.25Na_2O$:1.0 CaO:1.0SiO₂: xH_2O (at 20 to 101 g of Na₂O per liter). By increasing the concentrations of SiO₂ in solution, at fixed Na₂O levels (6, 13, 50, and 96 g per liter), the Na2O:SiO₂ molar ratio of the gel was shown to increase to a value of about 0.2 and remain approximately constant at this value. The CaO:SiO₂ molar ratio, however, decreased at all Na₀O levels.

The compositions of gels from concrete containing "reactive" aggregates are compared with those of the synthetic gels.

It is shown that the low-lime gels formed in concrete approximate in composition those in the study in contact with solutions the SiO_2 : Na₂O ratio of which approaches a value of 3.

VII. REFERENCES

- W. F. Hillebrand and G. E. F. L. Lundell, Applied Inorganic Analysis (John Wiley & Sons, Inc., New York, N. Y., 1929).
 R. H. Bogue and W. Lerch, Ind. Eng. Chem. 26, 837 (1934).
 E. P. Flint and L. S. Wells, J. Research NBS 12, 751 (1934) RP687.
 G. E. Bessey, Symposium on the Chemistry of Cements, p. 377 (Stockholm 1992)

- 1938).
- [5] G. E. Bessey, Symposium on the Chemistry of Cements, p. 285 (Stockholm, 1938).

- [6] H. S. Meissner, Proc. Am. Concrete Inst. 37, 549 (1941).
 [7] H. A. Coombs, Am. J. Sci. 240, 288 (1942).
 [8] T. E. Stanton, Trans. Am. Soc. Civ. Eng. 107, 54 (1942).
 [9] Private Communication (Sept. 1943).
 [10] W. C. Hansen, J. Am. Concrete Inst. 15, 213 (Jan. 1943).

WASHINGTON, April 4, 1944.