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ABSTRACT 

Formulas are derived for computing the over-all lengthening (or shortening) 
of a tension (or compression) member having a uniform gross cross section and a 
series of similar perforations of circular, elliptical, or "ovaloid" shape uniformly 
distributed along the length. 

Tests made on strips having circular perforations show that the applicable 
formula gives good results over the practical range of the variables. 
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1. INTRODUCTION 

The work reported in this paper is part of an investigation at the 
National Bureau of Standards on perforated cover plates. The results 
of tests on a large number of columns having perforated cover plates 
have been reported [1).1 From these results may be computed a value 
for each perforated column of an "axial rigidity factor", K, which is 
the ratio of the axial rigidity of the column to the axial rigidity of an 

1 Figures in brackets indicate the literature references at the end of this paper. 
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unperforated, but otherwise similar, column. The axial rigidity, R, 
of a tension or compression member of length L is defined from 

PL, 
e=R' 

where P is the axial load and e the lengthening or shortening of the 
member, and Pie is constant. For a member of uniform cross-sec­
tional area A q, R=EAq, where E is Young's modulus of elasticity. 

In this paper are derived formulas for computing the axial-rigidity 
factor of a member having a uniform gross cross section and a series of 
similar perforations of circular, elliptical, or "ovaloid" shape uniformly 
distributed along the length. Such formulas may find application 
whenever information concerning displacements in a structure having 
perforated members is required. Examples are the analysis of in­
determinate structures and the computation of the camber of trusses. 

The results of some tests on tension members having circular 
perforations are reported and compared with the values computed 
from the applicable formula. 

II. A REDUCTION OF THE PROBLEM 

Consider a long tension (or compression) member of uniform gross 
cross section, containing a series of similar perforations spaced uni­
formly along the length. The member is supposed subjected to an 
axial load, P, and it is desired to study the over-all deformation in the 
axial direction produced by the load. 

For this purpose the member is considered divided into similar 
bays of length 2l, each bay containing one perforation. If the per­
foration has symmetry about an axis perpendicular to that of the 
tension member, the analysis may be confined to a half-bay of length l. 
The problem is now to determine the over-all extension of the half-bay 
when subjected to a load, P, distributed over the net area, An, on 
one end, and over the gross area, A g , on the other end, in such a manner 
tha t these ends remain plane (fig. 1, a). 

With the x-axis taken parallel to the outer elements of the member, 
and the origin of coordinates on the transverse axis of the perforation, 
the problem is to find the displacement, UI, of the end x=l, that of the 
end x=O being taken as zero. The x-components of the displacements 
of points on the bounding surface of the perforation will be denoted 
by Up. 

Consider, in addition, a state of stress in the member consisting of a 
uniform normal stress u:r;=P/A g throughout, all other stresses being 
zero (fig. 1, b). This stress could be maintained by surface loads 
±P/Ag per unit of projected (on the yz-plane) area, positive on the 
right end and negative on the left end, of the member. The displace­
ment of the end x=l is Pl/AgE. 

To these two states of stress, namely (a) that prevailing in the 
original problem, and (b) that characterized by a uniform stress, 
the reciprocal theorem 2 may be applied. This theorem states that 
the work done by the external forces which correspond to the first state 
acting through the displacements which correspond to the second 
state is equal to the work done by the external forces which corre-

• See p. 173 of reference [2J. 
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spond to the second state acting through the displacements which 
correspond to the first state. Hence 

1 lfP 1 P2l 
2Pu1 -"2 rpdydz=2 A E' 

g II 

or 

(1) 

• where the integration is to be taken over the projection on the yz­
plane of the bounding surface of the perforation. 

- p X=-­
Ag 

lJ=lJz 

~I·--------z--------~ 

lJ=Q 

(0) 

- P ds X=-- -
Agdy 

- p X=­Ag 

lJ= ..E.l.. 
AgE 

l-------I 

(b) 

FIGURE l.-Two states of stress in a half-bay of the member. 

-x 

-x 

(a) The cro!S sections r=O and =1 remain plane; (b) uniform stress, in the arinl direction, throughout. 

In an unperforated member of the same gross dimensions and 
subjected to the same load as the perforated half-bay, the displace­
ment. u' h of the end x=l is 

, Pl 
u,=--' AgE 
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The ratio of the axial rigidity of the perforated member to that of 
the unperforated member is the same as the ratio of these displace­
ments. Hence 

K=U'z= 1 . 

Uz 1 + ffzf updydz 
(2) 

Equation 2 enables the computation of K, provided the values of 
Up can be determined. If the problem be restricted to the case . 
where the perforation occurs in a relatively thin plate of constant 
thickness, t, then the material in the neighborhood of the perforation 
may be considered to be in a state of generalized plane stress. Then 
for certain shapes of perforation, such as circular and ellip tical, Up 

can be estimated by assuming, at least for values of l and of the width 
of the plate sufficiently large in comparison with the dimensions of 
the perforation, that Up has the same value as in an infinite plate 
having one perforation and subjected to a uniform load at a large 
distance from the perforation. 

III. CIRCULAR AND OVALOID PERFORATIONS 

1. KIRSCH'S PROBLEM 

(a) THE DISPLACEMENTS 

The problem of a small circular hole in a plate subjected to a uniform 
tension, S (fig. 2), in the (say) x-direction at a large distance from the 

lJ 

s 

s -x 

FIGURE 2.- Circular hole in plate subjected to uniform tension in one direction. 

hole was solved by Kirsch [3] for the case of plane strain. It is con­
venient to solve for the displacements in the case of plane stress by a 
method 3 depending on a knowledge of the Airy stress function, cp. 
The function, if!, defined, in the absence of body forces, by 

02 if! 02cp 02cp 
oxoy = Ox2 + oy2= V2cp, 

with if! adjusted by means of the arbitrary functions of integration (of 
3 See p. 130 of reference [41. 



A xial Rigidity of Perforated Structural Members 309 

the formjl(x)+j2(y», so that \721/;=0, is called the displacement func­
tion. The x-component of the displacement is given by 

l[O1/; OtPJ U= - --(l+v)- , 
E 0Y ox (3) 

where v is Poisson's ratio. 

The solution to Kirsch's problem is given by the stress function 4 

S[ (r2 a2)2 ] tP=4 r2-2a2 log r- -;2 cos 2fJ , (4) 

where a is the radius of the circle (fig. 2), so that 

(5) 

and 

1 o1/; 2a2x 
-S~=x+-y--+ 2 - 2cy+e. (6) uy x y 

The primitive of if; is harmonic, so that the arbitrary functions of 
integration represented by the last four terms in eq 5 are merely the 
most general harmonic function of the formjl(x)+j2(Y) ' 

From eq 4 

(7) 

Substitution of a1/;/ay from eq 6 and atP/ax from eq 7 in eq 3 gives 

_ S[ 2a2x 1 +v 2 X2+ y2_a2 2 2 ] 
U-Jj; x+ x2+ y2-2cy+e - T a x( X2+ y2)3 (3y -x) . 

The condition u = o for x=O gives c=e=O, so that finally, 

S[ 2a2x l+v X2+y2_a2 ] 
u=Jj; x+ X2+y2--2-a2x (x2+y2)3 (3y2_X2) . 

For points on the circle x2+y2=a2, eq 8 becomes 

3Sx 
uP=E' 

(8) 

(9) 

Equation 9 gives the value of Up that should be used in eq 2 to 
obtain K. 

(b) THE LOAD 

It remains to determine the value of P in eq 2. Consider the strip 
bounded by the lines y= ±ria. If t is the thiclmess of the plate, the 

• See p . 484 of referen ce [4] . 
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totalload carried by the strip is P' = 21na 
0" "tdy. This load is a func­

tion of x;ja, and will vary along the length of the strip from x=a to x=l. 
However, this variation is small for sufficiently large n, as is easily 
shown. From eq 4 

02</> [ 5a2 a2(2y2+3a2) 
O"Z=Oy2=S 1-2 (x2+y2) + 2(X2+y2)2 

4a2y%(2y2+3a2) 12a4y' ] 
- (X2+y2)3 + (x2+y2)4 ' 

and with the notation, x=ma, 

From eq 10 it may be computed that for given n, P' /2Snat will vary 
from its value at m=O by not more than 2 percent for the following 
values of nand m: 

n=3, 
n=4, 
n;;:5, 

m~6 
m~13 
anym. 

Hence P' may be taken as its value at m=O, that is, as the load 
transmitted by the strip across the minimum cross section, or 

P' =2Snat(l- _1 __ ~). 
2n2 2n4 

P' may be used for P in eq 2 if n be interpreted as 

A g/2at Ag. 
Ag-A,,' 

hence 

(11) 

say. O(n) may be considered to be a correction factor depending on n. 

2. AXIAL RIGIDITY FOR CIRCULAR PERFORATIONS 

Substitution of up from eq 9 and P from eq 11 in eq 2 gives 

1 
K= 3 1 f . 

1 + O(n) AJ xtdy 

The integral above is one-half of Va the volume of the perforation, 
and Aul is one-half of V q , the gross volume of one bay of the tension 
member. Hence 
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3. AXIAL RIGIDITY FOR OVALOID PERFORATIONS 

An ~'ovaloid" perforation is one having the shape of a rectangle with 
a semicircle erected on each end. Consider a tension member having 
an ovaloid perforation with dimensions as shown in figure 3 and with 

y 

-x 

I, 

~---Z----I 

FIGURE 3.-0I/aloid hole in plate subjected to uniform tension parallel to long axis 
of ovaloid. 

the long axis of the perforation in the direction of the load. As an 
approximation, Up may be taken as its value in Kirsch's problem plus 
Pl1/A"E, that is, 

Substitution of this value of Up in eq 2 gives 

As before, ADl is one-half of VD, the gross volume of one bay; 
fljtdy is one-half of V r , the volume of the rectangular portion of the 
perforation; and f (x-lj)tdy is one-half of Ve, the volume of the 
circular portion of the perforation. Hence 

(13) 
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IV. ELLIPTICAL PERFORATIONS 
1. GENERAL 

The problem of a small elliptical hole in a plate subjected to uniform 
tension, S, in any direction at a large distance from the hole was 
solved by Inglis [5). The method of Inglis amounts to assuming 
expressions for the displacements in the case of plane strain and deter­
mining constants to satisfy the state of stress at the boundary. The 
solution as given is not directly applicable to the determination of the 
displacements in the case of plane stress; hence it is proposed to r epeat 
the solution using expressions for the displacements suitable for plane 
stress. 

2. CURVILINEAR COORDINATES 

If two sets of curves are defined by 

jl(x,y)=a, j2(X,y) = {3, (14) 

then a pair of values (a, (3) defines the points at which the correspond­
ing CUTves (14) intersect, and (a, (3) are cUTvilinear coordinates in the 
x, y-plane. As a special case, the functions of eq 14 may be obtained 
by equating real and imaginary parts of both sides of 

w=F(z), (15) 

where w=a+i,B and z=x+iy. In this case the transformation from 
the w- to the z-plane is conformal, and the two families of eq 14 are 
orthogonal. The expression 

(16) 

defines the "stretch ratio," l /h, of the transformation, and gives c/>, the 
inclination of the curve, {3 =constant, to the x-axis. 

If U a and Up are the components of the displacement in the directions 
a-increasing, (3-increasing, respectively, and 

u=ua/h, v=u#/h, (17) 

the components of strain are 

au U oh2 v oh2 

~a=h2oa +'2 ~a -'2 o{3' 

Ov v oh2 U oh2 

~~=h20,B+'2 - o{3-"2 Oa' 

and the surface dilatation is 

2(OU OV) e=~a+ ~~=h Oa +O{3 . 

The rotation is 

(18) 

(19) 

(20) 
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For plane stress and in the absence of body forces, e/(l-p) +iw is a 
function of z, and hence of w, or 

_e_+iw=j (w). 
1-1' 

(21) 

The stresses are related to the strains by Hooke's law, which for 
plane stress is 

(22) 

E 
Taf3 2 (1 + 1') 'Ya f3, 

where E is Young's modulus of elasticity, and I' is Poisson's ratio. 

3. ELLIPTICAL COORDINATES 

Elliptical coordinates are obtained by writing for eq 15 

z=c cosh w, 

from which 

x=c cosh a cos {3, 

Elimination of {3 from eq 24 gives 

y=c sinh a sin (3. 

x2 y2 
c2 cosh2 a + c2 sinh2 aI, 

(23) 

(24) 

(25) 

a family of confocal ellipses with foci at (±c, 0) and with semiaxes 
c cosh a and c sinh a (fig. 4). Elimination of a from eq 24 gives 

x2 y2 
c2 cos2 {3 c2 sin 2 {3 

1, 

a family of hyperbolas confocal with and orthogonal to the ellipses of 
eq 25 (fig. 4). 

For large a, the elliptical coordinates (a, (3) approach the polar 
coordinates (r, (J) in the following manner: 

Eq 16 becomes 

from which 

Ii c m -ea=r, 
a=OO 2 

lim {3=(J. 
a =00 

(26) 
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and 

Also, 

". 

tan If>=coth a tan fJ. 

oh2 4 sinh 2a 
-=--~ , 
Oa c2 (cosh 2a-cos 2(3)2 

oh2 4 sin 2{3 
?i{3= -(;2 (cosh 2a-cos 2fJ)2" 

d 
I lj 
2" 

~" 2 

.55 

.20 

2c 

FIGURE 4.-Elliptical coordinates. 

Denote by a=ao the ellipse 

r y2_ 
(i2+b2-1. 

Then on the ellipse (eq 30), from eq 24 and 25, 

c cosh ao=a, 

x 
cos fJ=-, a 

x2 y2 
cos 2fJ=(i2-b2' 

a2+b2 
cosh 2ao=--2-' c 

c sinh ao=b, 

. y 
sm fJ=1j' 

• 2xy 
sm 2fJ=(i])' 

a+b 
e2ao=--b' a-

P 
\ 
0 

(27) 

(28) 

(29) 

X 

(30) 

(31) 
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and from eq 27 and 31, 

b 
cos cp=ho-x, 

a 

where ho is the value of h on a=ao. 

. h a sm cp= oty, 

4. INGLIS' PROBLEM FOR PLANE STRESS 

(32) 

The conditions of this problem may be satisfied by taking eq 21 as 

e. e-ntD 

-l-+~W=Cn ------h ' -v SIn w (33) 

where n is any integer and C~ is a real constant for any n. Substitution 
in eq 33 of the expressions for e and w given in eq 19 and 20 gives, 
upon equating real and imaginary parts, 

Ou + Ov = c2(1- v)cn[e-(n-Ilacos(n+ 1) (3- e-(n+llacos(n-1) {3] 
Oa O{3 2 ' 

ov _ 0u=c2c [-e-(n-llasin(n+1){3+e-(n+llasin(n-1){3] Oa O{3 n . 

The solution of eq 34 is 

u=an[(n+p)e-(n-Ilacos(n+ 1){3+ (n-p)e-(nHlacos(n-1) (3] + 4>, 
v=an[(n-p )e-(n-Ilasin(n+ 1) {3+ (n+p )e-(nHlasin(n-1) (3] + 1/1, 

where 
3-1' 

P=l+v' 

(34) 

an IS constant for any n, and u=cp, v=1/I, is the solution of the homo­
geneous equation corresponding to eq 34. Suitable values of cp and 1/1 
are 

where m is any integer and bm is constant for any m. Hence 

u=an[(n+p)e-(n-llacos(n+ 1) {3+ (n-p)e-(n+llacos(n-1) (3] 1 
+bme-macos m{3, 

v=an[(n-p)e-(n-1lasin(n+ 1) {3+ (n+p)e-(n+llasin(n-1) {3] (35) 
+bme-masin m{3. J 

The strains may be calculated from eq 35 by means of eq 18. 
These are given by 

c2(cosh 2a-cos 2 (3)2Ea = nan { (n-2+p)e-(n-llacos(n+3) {3 

+ (n+2-p)e-(n+llacos(n-3){3 
-[(n+p)e-(n-3la+2 (p-1)e-(nHla]cos(n+ 1){3 
-[ (n_p)e-(n+3la_2 (p-l)e-(n-lla]cos(n-1) {3} 
-bm { [(m+ 1)e-<m-2la+ (m-l)e-(m+2la]cos mfJ 
- (m+ l)e-.. acos(m- 2) fJ- (m-l)e-macos(m+ 2) fJ}, 
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c2(cosh 2a-cos 2 /3) 2E,s = nan { - (n-p )e-(n-l)"cos(n+3) /3 
- (n+p)e-(n+l)"cos(n-3) (3 
+ [(n+2-p)e-(n-3)"' -2(p-1)e-<n+l )"']cos(n+ 1) (3 
+ [(n-2+p)e-<n+3)"'+2(p- 1)e-(n-l)"']cos(n-1) (3} 
+bm { [(m+ l)e-(m-z),,+ (m-1)e-(m+2),,]cos m(3 
- (m+ 1)e-macos(m-2) (3- (m-1)e-macos(m+2) (3}, 

~(cosh 2a-cos 2/3)2Ya,s=nan { (n-1)e-(n-l)asin(n+3) (3 

+ (n+ 1)e-(n+l)asin(n-3) (3 
- (n+ 1)e-(n-3)asin(n+ 1) (3- (n-1)e-(n+3)asin(n-1) (3} 
- bm { [(m+ 1)e-(m-2)a+ (m-1)e-(m+2)a]sin m(3 
- (m-1)e-masin(m+2) (3- (m+ 1)e-masin(m-2) (3}. 

Substitution of these expressions i,n eq 22 gives for the stresses 
(cosh 2a-cos 2/3)20",,=An{ (n+1)e-(n-l)acos(n+3)/3 

+ (n-1)e-(n+l)"cos(n-3) (3 
- [(n+3)e-(n-3)"+4e-(n+l)"]cos(n+ 1) (3 
- [(n-3)e-(n+3)a-4e-(n-l)"]cos(n-1) (3} 

+Bm{ -[(m+ 1)e-(m-2),,+ (m-1)e-(m+2),,]cos m(3 
+ (m+1)e-macos(m-2)(3 
+ (m-1)e-m"cos(m+2)(3}, (36a) 

(cosh 2a-cos 2 /3)20"/l=A" { - (n-3)e-(n-l)"cos(n+3) (3 
- (n+3)e-(n+l)acos(n-3) (3 
+[(n-1)e-(n-3:"-4e-(nH)"]cos(n+ 1) (3 
+[(n+ 1)e-(n+3)a+4e-(n-l)a]cos(n-1) (3} 

+ Bm{ [(m+ 1)e-(m-2)a+ (m-1)e-(m+Z)a]cos m(3 
- (m+1)e-macos(m-2)(3 
- (m-1)e-macos(m+2)(3}, (36b) 

(cosh 2a-cos 2/3)2-Ta/l=An {(n-1)e-(n-l)asin(n+3)(3 
+ (n+ 1)e-(n+l)asin(n-3) (3 
- (n+ 1)e-(n-3)"sin(n+ 1) /3 

where 

- (n-1)e-(n+3)asin(n-1) (3} 
+Bm{ -[(m+1)e-(m-Z)a+(m-1)e-(m+2)a]sin m(3 

+ (m+ 1)e- masin(m-2)(3 
+ (m-1)e- masin(m+2)(3}, (36c) 

nE E 
An (1 + lI)CZan' Bm= (l+lI)czbm· (37) 

This solution can be adapted to the case of an elliptical hole (eq 30) 
in a large plate subjected, at a large distance from the hole, to the 
uniform stresses O"x=Sx, O"v=Su, Txv =O. The boundary conditions in 
elliptical coordinates are 

O"a=Ta/l=O, (a=ao); 

_Sx+Sv+Sx-Sv 2(.1 
O"a- 2 2 cos tJ, 

O"R=SX+SV_SX-SVCOS 2(.1 
~ 2 2 tJ, 

(38) 

SX-SII· ( ) Ta{J=--2-sm 2(3, a=oo. 
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These conditions can be satisfied by summing the solutions (eq 36) 
for n= 1, -1; m=2, 0, -2; with values for An, B m, 

e2ao 1 1 
A 1= 8(Sx-Sv)-I6(Sx+Sv), A_1=-I6 (Sx+Sy) , 

Bo=-i(Sx-Sy)+~os~ 2ao(S,,+Sy) , (39) 

e4ao 1 
B 2= - S(Sx- Sy), B_2=g(Sx-Sy). 

The stresses are given by 

(cosh 2a-cos 2 (3)2IJa=SX;Sy{ -[e2a"':"'2e2ao+e2(2ao-a)] cos 4{3 

+ [e4a-4e2(ao+a1 +3 (e4ao+ 1) -4e2 (ao-a1 +e4(ao-a1] cos 2{3 
-e2a+4e2ao- (3e1ao+2)e-2a+2e2(ao -2a1 } 

+ S"tSV(cosh 2a-cosh 2ao) sinh 2a, 

S-S (cosh 2a-cos 2(3)21J~=~{[e2a+2e2ao+e2(2ao-a1] cos 4{3 

-[e4a+3(e4ao+I)+8e2(ao-a)+e4(ao-a1] cos 2{3 
+e2a+4e2ao+ (3e4ao+2)e-2a+2e2(ao-2a1} 

(40a) 

+S"tSY(cosh 2a+cosh 2ao-2 cos 2(3) sinh 2a, (40b) 

S-S . (cosh 2a-cos 2(3)2Ta~=~{[e2a-e2(2ao-a1l sm 4{3 

- [e4a+2e2(ao+al-3e4ao- I +2e2(ao-a1-e4(ao-a1] sin 2{3} 

+ SX~SV(cosh 2a-cosh 2ao) sin 2{3. (40c) 

From eq 37 and 39, 

(41) 

Substitution of the constants (eq 41) intoeq 35 gives, m con­
sideration of eq 17, for the displacements 

8E . . 
c2h ua= (S,,- Sy) {4e2ao cos 2 {3-2 (1.,-,v)e2(ao--a1 

+ (I + v) [(e2a - e2(2ao -(1)cos 2{3-2]) 

-2(S.,+Sy)[2 cos 2jJ-(I-v)cosh 2a-(I+v)cosh 2ao], (42a) 
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On the boundary a= ao the displacements Ua and Ufl of eq 42 assume 
the values 

The components of the displacement along the x- and y-axes are 
obtained from eq 43 by the simple resolution 

Ux=ua cos rp-U.fl sin rp'j 

Uv=Ua sin rp+Ufl cos rp. 
(44) 

Substitution in eq 44 of the values of Ua and Ufl from eq 43 and of 
sin rp and cos rp from eq 32 gives, after reduction effected by means 
of eq 31 

(45) 

(46) 

These are the rectangular components of the displacement on the 
bounding ellipse a= ao, or (x2/a2) + (y2/b2) = 1. 

5. AXIAL RIGIDITY FOR LOAD PARALLEL TO MAJOR AXIS OF 
ELLIPSE 

In this case the value to be substituted for Uz, in eq 2 is the value of 
u", from eq 45 with S,=O, that is, 

uP=( 1+2~)S:, (47) 

It has been shown 5 that the correction factor to be applied to the 
load P of eq 2 is approximately independent of the shape of the 
elliptical hole. Hence, for most practical cases, P is given by eq 11 
(derived for a circular 4ole), i. e., 

P=SxA~ 1-2~2-2~~)=S%A,O(n), 
where 

• See p. 545 of reference [41. 



Awial Rigidity 01 Perforated St'lWtwral Members 319 

Equation 2 becomes 
1 1 

1+2E - 1+2~ 
+ af d aVo 

1 O(n) xt y 1+ O(n) V/ 

K 
(48) 

where Vo is the volume of the perforation and V. is the gross volume 
of one bay of the tension member. 

6. AXIAL RIGIDITY FOR LOAD PARALLEL TO MINOR AXIS OF 
ELLIPSE 

In this case the load is in the direction of the y-axis, and dy in eq 2 
should be replaced by dx. The value of Up is that of u. from eq 46 
with S%=O, i. e., 

Again, 

where 

and eq 2 becomes, finally, 

A A n= - g= --g-, 
2at Ag-An 

1 K=----
a 

1+2li Vo 
1+ O(n) V g 

(49) 

V. TESTS ON TENSION MEMBERS HAVING CIRCULAR 
PERFORA TIONS 

1. GENERAL 

The approximations employed in the derivation of eq 12, 13, 48, 
and 49 may be expected to introduce appreciable error if the per­
forations are too wide or if the spacing of the perforations is too small. 
Hence it was considered desirable to make some tests which would 
indicate the limits of the ranges of variables over which the formulas 
give satisfactory results. 

Time for an extensive experimental investigation was not available; 
the work therefore was confined to the verification of eq 12 for circular 
holes. 

For the case of a thin rectangular strip of width wand thickness t, 
with a series of circular holes of diameter d at midwidth and spaced 
uniformly I on centers, eq 12 becomes 

(50) 

where n=wld. 
It is easy to see that eq 50 will fail for sufficiently low lid. The 

perforated strip cannot have an axial rigidity as low as that of an 
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unperforated strip of width w-d, that is, K must be greater than 
(n-1) In. Yet eq 50 gives K less than (n-1) In for 

l<l< 2.3562 . 
d 1 +.!.+~ +_1 (51) 

n 2n2 2n3 

The lower limit of lid (as a function of n) for which eq 50 is satis­
factory is perhaps best determined by experiment. The same is 
true of n, since it is to be expected, from the method of derivation 
of eq 12, that eq 50 will fail for sufficiently low n. 

2. DESCRIPTION 

Tests were made on strips, 26 in. long, % in. wide, and 0.079 in. 
thick, of aluminum alloy 24ST. There were four strips, one corre­
sponding to each of the following values of n: 5.84, 3.87,2.92, 1.94. 

The axial rigidity of each strip was measured before any holes had 
been made in it. Holes were then subdrilled ill each strip and reamed 
to give the proper value of n. The holes were at midwidth of the 
strip and uniformly spaced along the length so that there were an 
integral number of bays in a 10-in. gage length. The axial rigidity of 
the perforated strip was measured, and then additional holes were 
made to halve the value of lid, and so on successively until five tests 
had been made on each strip. The values of lid follow. 

n=5.84, lld= co, 11.11, 5.56,2.78, 1.39 

n=3.87, lld= co, 12.92, 6.46, 3.23, 1.61 

n=2.92, lld= co, 12.97, 6.49, 3.24, 1.62 

n=1.94, lld= co, 12.95,6.48,3.24, 1.62 

The stretch in a lO-in. gage length due to increasing the load from 
about 50 lb. to about 550 lb was measured for each value of lid. For 
a given n, the stretch for the unperforated strip (l/d= co) divided by 
the stretch for a perforated strip gives the value of K for the perforated 
strip. 

The strips were held in Templin grips and loaded by dead weight!! 
(the same initial and final weights were used throughout) raised and 
lowered with the jack of an Amsler vertical hydraulic testing machine. 
The stretch was measured using a pair of 10-in. gage-length Tucker­
man optical strain gages provided with either 0.2-in. or 0.5-in. 
lozenges. 

The permanent set produced by the 550-lb load was negligible in 
each case. 

The test setup is shown in figure 5. 

3. RESULTS 

The results of the tests and a comparison of the observed with 
the theoretical values of K are shown in figure 6. 

For lid greater than about 3, the error in the theoretical K increases 
with decreasing n and is about 0.02 to 0.03 for n about 2. 

For smalllJd. the theoretical K is too low. especially for large n. 
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FlGURE 5.- General view oj lest sei1!p. 
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These results indicate that eq 50 can be relied upon to give K 
within 0.03 for n>2, l/d>2, and within perhaps 0.015 for n> 3, l/d> 3 

VI. SUMMARY 

Approximate formulas have been developed for the computation of 
the axial rigidity of a long tension or compression member containing 
a plate of constant thickness uniformly perforated with a series of 
circular, elliptical, or ovaloid holes . 

. 1.0 I I 
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l- i- ~n'3.87 
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FIGURE 6.-Variation of [( with n and lid 
The curves show the theoretical values Ceq 50), the circles the observed values. 

The axial-rigidity factor K is defined so that KEAg is ' the rigidity 
which should be used in place of EAg in the ordinary formula for 
computation of the extension of the member. 

The formulas for K are: 
for circular holes, 

K 1 . 
3 Vo' 

1+0 (n) V~ 
for elliptical holes of semimajor axis a and semiminor axis b, 

557611-43-3 

1 K = ------,--, 
1+2~ 

aVo 
1+ O(n) V g 
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if the load is parallel to the major axis, and 

1 K= , a 
1+27) Vo 

1+ O(n) V g 

if the load is parallel to the minor axis of the ellipse; and for ovaloid 
holes 

In these formulas, 
Ag=the gross, and All the net cross-sectional area of the 

member, 

Ag 
nAg-A,.' 

1 1 
O(n)=1-2n2-2n4' 

Vo=the volume of the perforation, 
Vg=the gross volume of one bay of the member, 
V,=the volume of the rectangular, and 
Vc=that of the circular, portions of the ovaloid perforation. 

Tests show that the formula for circular holes gives good results 
over the practical range of the variables. 
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