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AXIAL RIGIDITY OF PERFORATED STRUCTURAL
MEMBERS

By Martin Greenspan

ABSTRACT

Formulas are derived for computing the over-all lengthening (or shortening)
of a tension (or compression) member having a uniform gross cross section and a
series of similar perforations of circular, elliptical, or ‘“ovaloid”” shape uniformly
distributed along the length.

Tests made on strips having circular perforations show that the applicable
formula gives good results over the practical range of the variables.
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I. INTRODUCTION

The work reported in this paper is part of an investigation at the
National Bureau of Standards on perforated cover plates. The results
of tests on a large number of columns having perforated cover plates
have been reported [1].! From these results may be computed a value
for each perforated column of an “axial rigidity factor”’, K, which is
the ratio of the axial rigidity of the column to the axial rigidity of an

1 Figures in brackets indicate the literature references at the end of this paper.
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unperforated, but otherwise similar, column. The axial rigidity, R,
of a tension or compression member of length L is defined from

(B
C== R )

where P is the axial load and e the lengthening or shortening of the
member, and PJe is constant. For a member of uniform cross-sec-
tional area A,y R=FA,, where E is Young’s modulus of elasticity.

In this paper are derived formulas for computing the axial-rigidity
factor of & member having a uniform gross cross section and a series of
similar perforations of circular, elliptical, or ‘‘ovaloid”’ shape uniformly
distributed along the length. Such formulas may find application
whenever information concerning displacements in a structure having
perforated members is required. Examples are the analysis of in-
determinate structures and the computation of the camber of trusses.

The results of some tests on tension members having circular
perforations are reported and compared with the values computed
from the applicable formula.

II. A REDUCTION OF THE PROBLEM

Consider a long tension (or compression) member of uniform gross
cross section, containing a series of similar perforations spaced uni-
formly along the length. The member is supposed subjected to an
axial load, P, and it is desired to study the over-all deformation in the
axial direction produced by the load.

For this purpose the member is considered divided into similar
bays of length 2/, each bay containing one perforation. If the per-
foration has symmetry about an axis perpendicular to that of the
tension member, the analysis may be confined to a half-bay of length .
The problem is now to determine the over-all extension of the half-bay
when subjected to a load, P, distributed over the net area, A,, on
one end, and over the gross area, 4,, on the other end, in such a manner
that these ends remain plane (fig. 1, a).

With the z-axis taken parallel to the outer elements of the member,
and the origin of coordinates on the transverse axis of the perforation,
the problem is to find the displacement, u;, of the end z=I, that of the
end z=0 being taken as zero. The z-components of the displacements
gf points on the bounding surface of the perforation will be denoted

Y Up.

Consider, in addition, a state of stress in the member consisting of a
uniform normal stress ¢,=P/A, throughout, all other stresses being
zero (fig. 1, b). This stress could be maintained by surface loads
+ P/A, per unit of projected (on the yz-plane) area, positive on the
right end and negative on the left end, of the member. The displace-
ment of the end z=1is Pl/A,E.

To these two states of stress, namely (a) that prevailing in the
original problem, and (b) that characterized by a uniform stress,
the reciprocal theorem # may be applied. This theorem states that
the work done by the external forces which correspond to the first state
acting through the displacements which correspond to the second
state is equal to the work done by the external forces which corre-

2 See p. 173 of reference [2].



Awial Rigidity of Perforated Structural Members 307

spond to the second state acting through the displacements which
correspond to the first state. Hence

1 1EER 12
& “"‘ﬁf A de=3 g
or
Bl
u,=m+z—;fu,dydz, (1)

' where the integration is to be taken over the projection on the yz-
plane of the bounding surface of the perforation.

Y
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(b)

Ficure 1.—Two states of stress in a half-bay of the member.
(a) The cross sections z==0 and z==I remain plane; (b) uniform stress, in the axial direction, throughout.

In an unperforated member of the same gross dimensions and
subjected to the same load as the perforated half-bay, the displace-
ment, ¥’;, of the end z=1is

P i1
bella 5 o
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The ratio of the axial rigidity of the perforated member to that of
the unperforated member is the same as the ratio of these displace-
ments. Hence
w’ T2ty 1

R Plfu,,dydz

Equation 2 enables the computation of K, provided the values of
u, can be determined. If the problem be restricted to the case ,
where the perforation occurs in a relatively thin plate of constant
thickness, ¢, then the material in the neighborhood of the perforation
may be considered to be in a state of generalized plane stress. Then
for certain shapes of perforation, such as circular and elliptical, u,
can be estimated by assuming, at least for values of / and of the width
of the plate sufficiently large in comparison with the dimensions of
the perforation, that w, has the same value as in an infinite plate
having one perforation and subjected to a uniform load at a large
distance from the perforation.

A )

III. CIRCULAR AND OVALOID PERFORATIONS

1. KIRSCH’S PROBLEM

(a) THE DISPLACEMENTS

The problem of a small circular hole in a plate subjected to a uniform
tension, S (fig. 2), in the (say) z-direction at a large distance from the

y

L S e
S —X
o B N ]

Ficure 2.—Circular hole in plate subjected to uniform lemsion in one direction.

hole was solved by Kirsch [3] for the case of plane strain. It is con-
venient to solve for the displacements in the case of plane stress by a
method?® depending on a knowledge of the Airy stress function, ¢.
The function, ¥, defined, in the absence of body forces, by
oYy ¢ +02¢>
ordy  Ox?

with ¢ adjusted by means of the arbitrary functions of integration (of

Vo,

3 See p. 130 of reference [4].
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the form f,(z) +£.(y)), so that V=0, is called the displacement func-
tion. The z-component of the dlsplacement is given by

where v is Poisson’s ratio.

The solution to Kirsch’s problem is given by the stress function *

2___2)2
¢=§[12—2a2 log r— @ ) cos 20] 4)
where @ is the radius of the circle (fig. 2), so that

V2¢_ax_61/—s(1 =1 cosQf)) S[l 2a® 2+y2)2]

From which

g-—xy 2a? tan™ +c(w2—y2)+dx+ey+f, (%)
and
2,
}gg‘yp z+ ?j_z —2cy+-e. (6)

The primitive of ¢ is harmonic, so that the arbitrary functions of
integration represented by the last four terms in eq 5 are merely the
most general harmonic function of the form f;(z)+71.(y).

From eq 4
06 S 2 LY — 0

I =g G B @)

Substitution of d¢/0y from eq 6 and d¢/dz from eq 7 in eq 3 gives
2
—1%[”“2“—952—26%6 L e 23 < 3y —x2):|

vty E+yy
The condition u=0 for 2=0 gives ¢=e¢=0, so that finally,
=gty Gy e | o
For points on the circle 2’+13*=a?, eq 8 becomes
u,=2p% ©)

Equation 9 gives the value of u, that should be used in eq 2 to
obtamn KA.

(b) THE LOAD

It remains to determine the value of P in eq 2. Consider the strip
bounded by the lines y=tna. If ¢ is the thickness of the plate, the

4 See p. 484 of reference [4].
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total load carried by the strip is P’ =2 J; oddy. This load is a func-

tion of x/a, and will vary along the length of the strip from 2=a to z=1.
However, this variation is small for sufficiently large n, as is easily
shown. From eq 4

_ 0% 5a2 a?(2y*43a?)
== 15t T

_4ad*y’ (2y*+-3d%) £ 12a%y* ]

R R R

and with the notation, z=ma,

g A 3 3 1 o 4m241 2m? !
/& —QJ; o tdy=2Snat I:l i) 2(m2+n2)2+(m2+n2)3:| (10)

From eq 10 it may be computed that for given n, P’/2Snat will vary
from its value at m=0 by not more than 2 percent for the following
values of n» and m:

9, m%6
4, mX%13
5

n
n
n=5, any m.

Vil

Hence P’ may be taken as its value at m=0, that is, as the load
transmitted by the strip across the minimum cross section, or

i e BT R Y
P --2S'nat<l——2n2 ok

P’ may be used for P in eq 2 if n be interpreted as

LT Ay

Ag/2at—Ax_A”:

hence

1 1

P=SAg(1—W—ﬁ A ] 1)

say. C(n) may be considered to be a correction factor depending on n.

2. AXIAL RIGIDITY FOR CIRCULAR PERFORATIONS

Substitution of %, from eq 9 and P from eq 11 in eq 2 gives
1

g e :
l—l-m A—glfxtdy

The integral above is one-half of V, the volume of the perforation,
and A,l is one-half of V,, the gross volume of one bay of the tension
member. Hence

K
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1
5, (12)
4+om 7,

K=

3. AXIAL RIGIDITY FOR OVALOID PERFORATIONS

An “ovaloid” perforation is one having the shape of a rectangle with
a semicircle erected on each end. Consider a tension member having
an ovaloid perforation with dimensions as shown in figure 3 and with

Y.

(s sl
N e

———— e
A
Ficure 3.—Owaloid hole in plate subjected to uniform tension parallel to long azis
of ovalord.

the long axis of the perforation in the direction of the load. As an
approximation, %, may be taken as its value in Kirsch’s problem plus
PlL|ALE, that 1s,

Pl :3Pa=l) « Bk, 3
W=, BT Om)A,EEA, J‘*Wz)(’”'l‘)]‘

Substitution of this value of u, in eq 2 gives

1
1+f%glf[§—ill+0—25(z—ll)]tdy.

As before, A,l is one-half of V,, the gross volume of one bay;
S litdy is one-half of V,, the volume of the rectangular portion of the
perforation; and S (z—U)tdy is one-half of V., the volume of the
circular portion of the perforation. Hence

K:

K 1 : (13)

i 3
+Z’ +m

<1l<
<>S
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IV. ELLIPTICAL PERFORATIONS
1. GENERAL

The problem of a small elliptical hole in a plate subjected to uniform
tension, S, in any direction at a large distance from the hole was
solved by Inglis [5]. The method of Inglis amounts to assuming
expressions for the displacements in the case of plane strain and deter-
mining constants to satisfy the state of stress at the boundary. The
solution as given is not directly applicable to the determination of the
displacements in the case of plane stress; hence it is proposed to repeat
the solution using expressions for the dlsplacements suitable for plane

stress.
2. CURVILINEAR COORDINATES

If two sets of curves are defined by
fl (m7y)=a) fg(x,y)=6, (14)

then a pair of values («, 8) defines the points at which the correspond-
ing curves (14) intersect, and (e, B) are curvilinear coordinates in the
z, y-plane. As a specml case, the functions of eq 14 may be obtained
by equating real and imaginary parts of both sides of

w=F(2), (15)

where w=a+1i8 and z=z-+1y. In this case the transformation from
the w- to the z-plane is conformal, and the two families of eq 14 are
orthogonal. The expression

d d
; uz) o', (16)

defines the “‘stretch ratio,”” 1/A, of the transformation,-and gives ¢, the
inclination of the curve, B=constant, to the z-axis. :
If u, and ug are the components of the displacement in the directions

a-Increasing, B-increasing, respectively, and
W=zl v=1ug/h, 17)
the components of strain are

bu+u Oh? v Oh? )
2 da 2 bﬁ

o, v Oh? u OR?

h2

Gﬂzh“’%‘*'g 'FB—'Z— o (18)
Oh? bh
and the surface dilatation is
e=cot =1 3e4 30 ) (19)
The rotation is
o= (aa aﬁ (20)
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For plane stress and in the absence of body forces, ¢/(1—») +1w is a
function of z, and hence of w, or

1 Hie=/ @). (21)

The stresses are related to the strains by Hooke’s law, which for
plane stress is

]

Oa™ ITVQ(Ga + Véﬁ) )
E

op=1_ 2 (e vea), (22)

ST
T4 =5 (1 +5) '

/

where £ is Young’s modulus of elasticity, and » is Poisson’s ratio.

3. ELLIPTICAL COORDINATES
Elliptical coordinates are obtained by writing for eq 15
z=c cosh w, (23)
from which
x=c cosh « cos B, y=c sinh « sin B. (24)
Elimination of B8 from eq 24 gives

22 4 e X
¢ cosh? o ' ?sinh?> o™ 7’

(25)

a family of confocal ellipses with foci at (4¢, 0) and with semiaxes
¢ cosh a and ¢ sinh « (fig. 4). Elimination of « from eq 24 gives
x? y2

Feosf B Fsin® B

L,

a family of hyperbolas confocal with and orthogonal to the ellipses of
eq 25 (fig. 4).

For large «, the elliptical coordinates (a, 8) approach the polar
coordinates (7, #) in the following manner:

Lot
lim —ex=r,

a=00 2
lim g=#.

Eq 16 becomes

g%)=%e“=c sinh w

from which
2

:cz(cosh 2a—cos 2p)

k2 (26)
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and
tan ¢=coth « tan B. (27)
Also,
Oh? 4 sinh 2«
da ¢ (cosh 2a—cos 2B)? (28)
oW _ 4 sin 2 (29)
08  ¢* (cosh 2a—cos 28)*
d
Ym Y
¢ 97
i % m
55 4
V)
20 \
(0]
- X
AN &G
5
S Err
3
3 ”
Fi1cure 4.—Elliptical coordinates.
Denote by a=aq, the ellipse
xz 2
=1 (30)
Then on the ellipse (eq 30), from eq 24 and 25,
¢ cosh apy=a, ¢ sinh ay="b,
cos ﬁ=g; sin ,8=%,
L g 2r (31)
CcOoSs 2ﬂ=a'72—py sin 2B=—J§£;
242 b
cosh 2a0=a j; ’ 62"0=th)
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and from eq 27 and 31,

cos ¢=h03-:c, sin ¢=h(,%y, (32)

where A, is the value of 2 on a=q,.

4. INGLIS’ PROBLEM FOR PLANE STRESS

The conditions of this problem may be satisfied by taking eq 21 as

ibpi e (33)
Y=o, 2T 9% Bnhwp

where 7 is any integer and ¢, is a real constant for any n. Substitution
in eq 33 of the expressions for ¢ and w given in eq 19 and 20 gives,

upon equating real and imaginary parts,

g_"_‘i_l_@ M{e—(n “Dagos(n+-1) f— e~ @Vacos(n—1) ],

gi gz cen[—e" " Vesin(n+1)B+e "asin(n—1) B].

(34)

The solution of eq 34 is

U=a,[(n+p)e~"Vecos(n+1) B+ (n—p)e~"ecos(n—1) fl+¢,
v=a,[(n—p)e~ " Vesin(n+1) B+ (n+p)e”"Vesin(n—1) f]+ ¢,
where
e’
o
@y 18 constant for any n, and u=¢, v=y, is the solution of the homo-

geneous equation corresponding to eq 34. Suitable values of ¢ and ¢
are

¢=>b,.6~™cos mp, Yy=bne ™sin mp,
where m is any integer and b,, is constant for any m. Hence

U=a,[(n+p)e""Pecos(n+1) B+ (n—p)e~ *tecos(n—1) ]
+b..e"™=cos m},

v=a,[(n—p)e~""Vesin(n+-1) 8+ (n+p)e~ "esin (n—1) ]
~+b e~ ™sin mp. J

(35)

The strains may be calculated from eq 35 by means of eq 18.
These are given by

c?(cosh 2a—cos 28)%.=na,{ (n—2+p)e~"Vecos(n+3)B

+ (n+2—p)e~"+tVecos(n—3) B
—[(n+p)e--9=4-2(p—1)e~**elcos(n+1) 8
—[(n—p)e~**9=—2 (p—1)e~*Velcos(n—1) g}
__.bm{ [(m+ 1)e"'("l—2)a+ (m__ l)e-(m+2)a]cos mﬂ

— (m—+1)e ™2cos(m—2) B— (m— 1)e~™*cos(m+-2) 8},
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c*(cosh 2a—cos 2B)%*s=na,{ — (n—p)e~"Vecos(n+3)p
L (n+p)e—(n+l)acos(n_3)ﬂ
+(n+2—p)e” " Ve—2(p—1)e~**Ve]cos(n+1)
+[(n+-24-ple-"P=L:2(p—1)e"* elcos(n—1) 8}
Fbn{[(m—+1)e~m=2et (m—1)e~ " De]cos mp
— (m~+1)e~™ecos(m—2) B— (m—1)e~"cos(m+2) B},

2
%(cosh 2a—c0s 2B)*vag=na,{ (n—1)e""Desin(n+3) B

+ (n41)e~"*Vegin (n—3) B
—(m41)e="degin(n+1)B— (n—1)e~"*asin(n—1) B}
—bn{[(m+1)e~mDat (n—1)e~ ™ Desin mpB
— (m—1)e~™esin(m—+2) B— (m+1)e~"esin (m—2) B}.
Substitution of these expressions in eq 22 gives for the stresses
(cosh 2a—cos 2B)%c,=A,{ (n+1)e~ " Veacos(n+3) B
+ (n—1)e~@tVecos(n—3) B
——[(n—l—3)6‘("‘3’“+4e‘("+”“]cos (n+ 1) B
-, [(n_3)e~(n+3)a_4e—(n—l)a]cos(n_ 1) B}
+Bu{—[(m+1)e” "D+ (m—1)e="*]cos mB
+ (m—+1)e~™cos(m—2)B
+ (m—1)e""=cos(m+2)B}, (364)

(cosh 2a—cos 28)%0p=A,{ — (n—3)e~"Decos(n+3)B
— (n+3)e~®ecos(n—3) B
+[l(n— 1)e“””3)“—4e‘(”“’“]cos(n—l— 1B
+[(n+1)e~®Deaf g~ Dajcos(n—1)B}
{[(m+1)e (m—2)a+ (m 1)6 (m+2)a]cos mp
— (m-+1)e ™ecos(m—2)B
— (m—1)e ™ecos(m-+2)B}, (36b)

(cosh 2a—cos 2B8)*rs=A,{ (n—1)e~ " Desin(n+3)B
+ (n+1)e®Vesin(n—3) B
—(n+1)e®deasin(n+1)B
—(n—1)e~"*eagin (n—1) B}
+Bn{—[(m+1)e- ™22+ (m—1)e~™+De[sin mp
+ (m—+1)e ™esin(m—2) B

+ (m—1)e”"esin(m+2) B}, (36¢)
where
A,=———=a. B,= s . 37)
" (1+ )c2 " aen

This solution can be adapted to the case of an elliptical hole (eq 30)
in a large plate subjected, at a large distance from the hole, to the
uniform stresses o,=S,, a,,-—S,,, 7,=0. The boundary conditions in
elliptical coordinates are

Ta=7as=0, (a=ap);
o S—l—S +S S 4 25
38
el S—I—S SZSOZB, (38)
T,,p=—Sz_S"sin 28, (a=w).
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These conditions can be satisfied by summing the solutions (eq 36)
for n=1, —1; m=2, 0, —2; with values for 4,, B,

2a 1 1
A= —8) A8, Aa=—3(5.+8),
h 2
By=—(8.—5) +952%(5, 4 8,), (39)
A et B _1
2—_'—8"_(81_‘81/): —-2_§(Sz"‘Sy)-

The stresses are given by

8,8,
8

(cosh 2a—-cos 2p8)%0,= { —[e?*—2¢e% -} e2P=~)] cos 48

+[ete—4e*lagta |- 3(e'%1-1) —4e% (@ |- g4(ey=@] cos 28
—ePat-4e*%— (3e*%+2)e 2226320 }

+S +S”(cosh 2a—cosh 2ay) sinh 2¢, (40a)

(cosh 2a—cos 2ﬁ)205=S’g {[e?e+2¢%%+ €%~ ] cos 48

—[et*+3 (et2+1) + 8e2(xy~ +-¢4(=, @] cos 28
e 42yt (3¢, 2)e 2ot 26220 )

—I-S +S”(cosh 2a+cosh 2ap—2 cos 26) sinh 2«, (40b)

(cosh 2a—cos Zﬁ)zrag=8’g U [e*ee?*@4~)] gin 48
—[eteJ-2¢%agtea) —Zgtay— ] |-2¢2(ay~a) —ghla~a)] gin 28}
+6~Y’g—%’(cos}1 2a—cosh 2ap) sin 2. (40c¢)

From eq 37 and 39, ‘
(1 + u)c

G = (11—220 [2¢ 2o (S, — Sy)— (Sz+Su)]’ 1= (Ss +S”)’

bo=(le”E)“ [4 cosh 2a(S,+8,) —4(S:—S,)], (21)
2

bgz = (11—{(;2’6 264‘!0(82:‘—81/): b—z—" (ll_gg)'c 2 (S SV) ¥

Substitution of the constants (eq 41) into eq 35 gives, in con-
sideration of eq 17, for the displacements

%ua= (S;—38,) {4e2% cos 2—2(1—p)etag=

+(14+9)[(¢—e0e)cos 26—2]} it
—2(S,+8S,)[2 cos 28— (1—»)cosh 2a— (1+v)cosh 2a0], (42&)
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8= — (8.~ 8)(2(1—v)eteo (1) [0 L] }sin 26, (42b)

On the boundary a=a, the displacements %, and %3 of eq 42 assume
the values

ua=gch-2[(S,—S,,) (€% cos 28—1)+ (S:+S,) (cosh 2a,—cos 28)],
: 3)
tp=— (S, — S, sin 2.

The components of the displacement along the z- and y-axes are
obtained from eq 43 by the simple resolution

Up="U, COS ¢—Ug SIN @,
) (44)
Uy="Ueq SIN d-+Ug COS .

Substitution in eq 44 of the values of %, and %z from eq 43 and of

sin ¢ and cos ¢ from eq 32 gives, after reduction effected by means
of eq 31

w2 s.-5)+25.45) |5 (45)
Uy=— #(S;-—Su) _%(Sz‘i‘sv)]%' (46)

These are the rectangular components of the displacement on the
bounding ellipse a=ay, or (2*/a?) 4 (y?/b%) =1.

5. AXIAL RIGIDITY FOR LOAD PARALLEL TO MAJOR AXIS OF
ELLIPSE

In this case the value to be substituted for u, in eq 2 is the value of
u, from eq 45 with S,=0, that is,

u,=(1+23)s—lj:x- 7
It has been shown ® that the correction factor to be applied to the
load P of eq 2 is approximately independent of the shape of the

elliptical hole. Hence, for most practical cases, P is given by eq 11
(derived for a circular hole), i. e.,

1 1
P=S,A,(1—§——17}—2—7L4)=S,A,C(n),

where

5 See p. 545 of reference [4].
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Equation 2 becomes

K= 42 1 (48)
1+2— 1+2
a 'V,
1+ —~~ o) f:ctdy 14+—+— o) :

where V; is the volume of the perforation and Vg is the gross volume
of one bay of the tension member.

6. AXIAL RIGIDITY FOR LOAD PARALLEL TO MINOR AXIS OF
ELLIPSE

In this case the load is in the direction of the y-axis, and dy in eq 2
should be replaced by dz. The value of u, is that of u, from eq 46

with S;=0, i. e.,
()
Again,
1 1
P—S,,Ag<1——é—m—2—4 —8,4,0(n),
where
LAY PREGY Y
2at- A, —A,
and eq 2 becomes, finally,
e g 49)
. +1+ 3 v,
Cny V,
V. TESTS ON TENSION MEMBERS HAVING CIRCULAR
PERFORATIONS
1. GENERAL

The approximations employed in the derivation of eq 12, 13, 48,
and 49 may be expected to introduce appreciable error if the per-
forations are too wide or if the spacing of the perforations is too small.
Hence it was considered desirable to make some tests which would
indicate the limits of the ranges of variables over which the formulas
give satisfactory results.

Time for an extensive experimental investigation was not available;
Eh(le work therefore was confined to the verification of eq 12 for circular

oles.

For the case of a thin rectangular strip of width w and thickness ¢,
with a series of circular holes of diameter d at midwidth and spaced
uniformly [ on centers, eq 12 becomes

v (1)
( %“27» }
where n=w/d.

It is easy to see that eq 50 will fail for sufficiently low l/d. The
perforated strip cannot have an axial rigidity as low as that of an

(50)



320 Journal of Research of the National Bureau of Standards

unperforated strip of width w—d, that is, K must be greater than
(n—1)/n. Yet eq 50 gives K less than (n—1)/n for

l 2.3562
B e 2 R (51)
It toptes

The lower limit of //d (as a function of n) for which eq 50 is satis-
factory is perhaps best determined by experiment. The same is
true of n, since it is to be expected, from the method of derivation
of eq 12, that eq 50 will fail for sufficiently low n.

2. DESCRIPTION

Tests were made on strips, 26 in. long, % in. wide, and 0.079 in.
thick, of aluminum alloy 24ST. There were four strips, one corre-
sponding to each of the following values of n: 5.84, 3.87, 2.92, 1.94.

The axial rigidity of each strip was measured before any holes had
been made in 1it. Holes were then subdrilled in each strip and reamed
to give the proper value of n. The holes were at midwidth of the
strip and uniformly spaced along the length so that there were an
integral number of bays in a 10-in. gage length. The axial rigidity of
the perforated strip was measured, and then additional holes were
made to halve the value of //d, and so on successively until five tests
had been made on each strip. The values of I/d follow.

n=5.84, ljd= =, 11.11, 5.56, 2.78, 1.39
n=3.87, ljd= =, 12.92, 6.46, 3.23, 1.61
n=2.92, l/d= =, 12.97, 6.49, 3.24, 1.62
n=1.94, l/d= =, 12.95, 6.48, 3.24, 1.62

The stretch in a 10-in. gage length due to increasing the load from
about 50 1b. to about 550 b was measured for each value of [/d. For
a given n, the stretch for the unperforated strip (I/d= «) divided by
the stretch for a perforated strip gives the value of K for the perforated
strip.

The strips were held in Templin grips and loaded by dead weights
(the same initial and final weights were used throughout) raised and
lowered with the jack of an Amsler vertical hydraulic testing machine.
The stretch was measured using a pair of 10-in. gage-length Tucker-
man optical strain gages provided with either 0.2-in. or 0.5-in.
lozenges.

The permanent set produced by the 550-1b load was negligible in
each case.

The test setup is shown in figure 5.

3. RESULTS

The results of the tests and a comparison of the observed with
the theoretical values of K are shown in figure 6.

For l/d greater than about 3, the error in the theoretical K increases
with decreasing n and is about 0.02 to 0.03 for n about 2.

For small //d, the theoretical K is too low. especially for large n.
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F1GUurE 5.—General view of test setup.
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These results indicate that eq 50 can be relied upon to give K
within 0.03 for n>>2, I/d>>2, and within perhaps 0.015 for n>>3, [/d >3

VI. SUMMARY

Approximate formulas have been developed for the computation of
the axial rigidity of a long tension or compression member containing
a plate of constant thickness uniformly perforated with a series of
circular, elliptical, or ovaloid holes. :

1.0 [T
}
| L ] —— n=584
== SsmmmE=S=Rofl
P /"’/‘ /"_’——--'(f'—' !
> = — l”ﬂ'9 e ]
9 A ///
CER S %/ ]
Q| 1
/ o
o | tf 2 L
x V4
i B A
¢ Koo 2 /
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i 3 N 4
3 /
3 /
sHIL
/
05
2 4 6 8 10 12 14 16

Ratio of hole spacing to hole diameter, I/d

Ficure 6.—Variation of K with n and l/d
The curves show the theoretical values (eq 50), the circles the observed values.

The axial-rigidity factor K is defined so that KEA, is the rigidity
which should be used in place of EA4, in the ordinary formula for
computation of the extension of the member.

The formulas for K are:
for circular holes,

1

A
1 e R
Tom 7,
for elliptical holes of semimajor axis @ and semiminor axis b,
1

b
1+2E A

0w V.,

ol

J oo

2

557611—43——3
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if the load is parallel to the major axis, and

I e

1+2% v,
1+ T v,

g 'i,he load is parallel to the minor axis of the ellipse; and for ovaloid
oles

e 1

AL W BV
AV tTm 7
In these formulas,
Ag,=the gross, and A, the net cross-sectional area of the

member,
LT
n_Ag—A,,,
1 1
O(n) =]l —‘2—#—%7

Vo=the volume of the perforation,

V,=the gross volume of one bay of the member,

V,=the volume of the rectangular, and

V.=that of the circular, portions of the ovaloid perforation.

Tests show that the formula for circular holes gives good results
over the practical range of the variables.
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