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ABSTRACT 

This paper is the second of a series dealing with the motion of flood waves and 
other waves of translation in open channels. The first paper considered waves 
controlled solely by inert ia forces; the present one is an analysis of the combined 
effects of turbulent frict ion and inertia. The basic equation of motion for gradu­
ally varied unsteady flow in prismatic channels is derived from fundamental 
principles. The effect of the velocity distribution in the original undisturbed 
current on the motion of short waves is investigated, and the effects of wave 
height, curvature of profile, and fluid friction on the celerity of a wave-volume 
element is analyzed in detail. The deformation of a straight s loping front and the 
change of height of an abrupt wave front is treated. Special emphasis is laid on 
disturbances of negligible curvature and practical methods of handling engineering 
problems arising in connection with the operation of locks or hydroelectric canals 
are given. 
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LIST OF SYMBOLS 

Symbols used in only one section are omitted unless they are of general signifi­
cance. Important quantities in hydraulic equations are indicated as functions 
of x and t. All equations are valid in any consistent set of units. The significance 
of barred variables is explained in section II-I. 
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cross-sectional area of channel. 
width of free surface. 
exponential function. 
base of natural logarithms. 
arbitrary functions, determined by boundary conditions. 
substitution variable, (3wo-5Uo)gi/3Uo(wo- Uo). 
substitution variable, Xo/4 or - Xo/4. 
acceleration of gravity. 
depth of water. 
undisturbed depth of water. 
increase of depth due to disturbance. 
slope of channel bed. 
substitution variable, 1-3Uo/wo . 
substitution variable, 1- Uo/wo. 
direction cosines. 
pressure. 
atmospheric pressure. 
generalized stress components. 
discharge per unit width of channel. 
turbulent stress components. 
hydraulic radius. 
viscous stress components. 
time. 
mean velocity in channel cross section. 
undisturbed mean velocity. 
increase in mean velocity due to disturbance (sections 1II-3, If.). 
x-component of velocity (mostly before section III-3). 
velocity fluctuation due to turbulence. 
y-component of velocity. 
velocity fluctuation due to turbulence. 
z-component of velocity. 
velocity fluctuation due to turbulence. 
Cartesian coordinate, specifically, parallel to channel in bottom 

plane. 
Cartesian coordinate, specifically, lateral to channel in a hori­

zontal plane. 
Cartesian coordinate, specifically, drawn upward with origin at 

bottom of channel. 
Boussinesq coefficient of velocity distribution. 
eddy viscosity . 
coefficient of channel friction. 
coefficient of channel friction, H=Ho. 
viscosity. 
density. 
partial volume of wave per unit width. 
partial volume of wave per unit width. 
mean shear per unit area on channel wall . 
arbitrary function. 
wetted perimeter. 
arbitrary functions . 
velocity of a wave-volume element. 
velocity of a short wave, moving without change of form. 

I. INTRODUCTION 

This paper is the second of a series dealing with the motion of flood 
waves and other waves of translation in open channels. The purpose 
of the series is explained in the introduction to the first paper [1].1 

1 Figures in brackets indicate the literature referonces at the end of this paper. 
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Many of the significant properties of translation waves may be ob 
tained by assuming that the motion of fluid particles due to the wave 
disturbance is irrotational [1]. Experimental observation of these 
properties indicates that they are in good agreement with theoretical 
predictions, provided that the waves are moving in still water. If, 
on the other hand, the disturbances are produced in a liquid which 
is initially in motion, as in actual currents in an open channel, some 
disparity will be seen between observation and theory. Bazin's ex 
periments on the velocity of propagation of a solitary wave in still 
water or in a running current demonstrate these points [2]. 

The divergence between observation and theory, when the wave 
is moving in a current, can be explained in two ways. First, irrota­
tional or potential theory supposcs that the original undisturbed 
motion is such that all the particles in a cross section move with the 
same constant velocity, Uo, which may of course be zero. This 
condition is not fulfilled for flow in actual channels, and it thus be­
comes necessary to investigate the effect of the distribution of velocity 
in a cross section on the velocity of propagation of waves. An analysis 
of this effect has been carried through in great detail by Boussinesq [3]. 
With a view to simplifying the presentation and the solution of the 
problem, the authors give a new derivation (section III-5). Al­
though the results arrived at here are different in form from those of 
Boussinesq, it is believed that the difference has a qualitative rather 
than quantitative importance. 

This difference is due to two distinct forms of the equation of 
motion of unsteady flow in a channel, one adopted by Boussinesq and 
the other by the authors. The present method applies the theory of 
Reynolds stresses to the problem of the unsteady mean flow in a 
chalmel, without assuming any specific relation between the stresses 
and the velocity rates existing at points within the channel cross 
section. The effect of these stresses is evaluated in terms of the total 
friction at the wall, which is the important concept for mean flow in 
open channels and is usually available from observations on uniform 
flow. Boussinesq's method on the other hand is an extension of his 
own theory of turbulent flow, and specific relations between the 
turbulent stresses and the space-rates of the local velocities are as­
sumed and introduced into the derivations. As the concept of 
Reynolds stresses is the starting point of the present analysis, the 
theory of these stresses is given in considerable detail (section II-I). 
The equation of motion of a perfect fluid is the point of departure in 
interpreting the relation between the stresses and velocity fluctuations. 
This novel procedure simplifies the presentation considerably. It is 
hoped that the equation of motion for gradually varied unsteady flow 
in prismatic channels derived in this paper, eq 47, is sufficiently 
rigorous to merit the attention of river engineers. 

In the second place, the irrotational theory of translation waves 
ignores the effect of turbulence, which is one of the forces controlling 
the motion of the waves. Consider a short intumescence moving in a 
current. In the initial stages of motion the behavior of the wave is 
not affected by turbulence, since the wave is assumed to be short. 
When the wave has traveled a considerable distance the cumulative 
effect of friction becomes appreciable, particularly at the rear of the 
wave. In fact, experience shows that the front of the wave will 
travel with a velocity characteristic of irrotational waves, wherea(at 
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the other end of the wave, the volume elements will move with a 
smaller velocity, the exact law of which is not as yet clearly understood. 
The wave thus flattens out considerably at the posterior end, with a 
consequent elongation. The tendency of short waves to deform in this 
manner is clearly demonstrated in Horton's experiments [4]. 

17Vhen the motion of the waves is controlled principally by friction, 
as in the quasipermanent regimes of rivers, the corresponding theory 
of translation waves is simple. But when it is supposed that the fric­
tion and inertia effects are of like magnitude, analysis is confronted 
with a difficult task. The change of shape of a short intumescence 
during the entire journey of the wave in a current would be accurately 
described if a complete solution were available, which is not the case. 
However, some progress in this direction is possible if it is assumed that 
the effect of turbulence is small, requiring only a secondary correction. 
Such a theory has been worked out by Boussinesq, who assumed that 
the velocity of the wave-volume elements differs little from the theo­
retical velocity of waves without friction [3]. The main purpose of this 
paper is to consider this theory and the corresponding solutions for 
waves of negligible curvature. In giving Boussinesq's solution, slight 
changes have been made, since it was desired to adopt Manning's law 
of friction in open channels [5]. Favre has employed the Boussinesq 
integrals to describe the motion of waves occurring during the opera­
tion of locks [6]. Because of the engineering significance of the problem 
we have also reproduced these applications (section IV-9 and IV-12). 

The applications of the theory are presented in sections III and IV, 
which have been entitled first-order and second-order theories of 
wave propagation. The first-order theory neglects the vertical acceler­
ation of the water particles and assumes that the combined effect of 
friction and velocity is small. It is found that this assumption requires 
that the waves be short. The second-order theory considers the effects 
of vertical acceleration but neglects the variat.IOns of the horizontal 
velocity components. As in Boussinesq's investigations, the concept 
of the velocity of a wave-volume element plays a very basic role. 
Equation 116 is the general expression for this velocity. Using this 
same formula, the authors have been able to study the gradual de­
formation of a straight sloping front and also to compute the reduction 
of height of an abrupt wave front. 

II. FUNDAMENTAL PRINCIPLES 
1. REYNOLDS EQUATIONS OF MEAN MOTION 

In the Reynolds theory of turbulence [7; 8, p. 638; 9, p. 364; 10, 
p. 191] the velocity components u, v, W, in the directions x, y, z, 
respectively, are regarded as fluctuating functions of the variables 
x, y, z, t. The fluctuations are frequent and rapid, and the periodicity 
of the changes is irregular. Denoting the mean values of u, v, W by 
-iL, V, W, and the mean value of the pressure, p, by p, we have for the 
instantaneous values 

u=u+u', 
v=;+v', 
w=w+w', (1) 

and 

p=p+p', 
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where u' , v', w', and p' are the fluctuations whose mean values u' , v', 
w', p' are equal to zero. The mean values may be temporal i that is, 
taken at a given point (x, y, z) over an interval of time of duration 
~ti thus, for example, 

- 1 (t+l>.t 
u=t:tj t udt. 

Or again the mean values may be spatial i that is, taken 
instant t over a space of volume ~ Vi thus, for example 

u= ~ ~ f l>.V udV. 

(2) 

at a given 

(3) 

For the present it will be supposed that the averages are temporal. 
A difficulty arises when taking temporal means in unsteady flow. In 
such cases it is necessary to make the time interval ~t long enough to 
include a great number of fluctuations, but short enough to exclude 
all but negligible variations of it, V, w, p. 

There are certain rules for taking the averages. Expressed sym­
bolically [9, p. 366] 

and 

ab =a b, 

a+b=a+b. 
= -a=a, 

oa 0-
08 = os(a) , 

(4) 

where a and b are functions of x, y, z, t; s represents anyone of the 
independent variables, and a bar over a quantity represents an average 
of the kind just described. These rules are based upon assumptions 
that are not exactly applicable to the flow of liquids. The errors, 
however, are negligible when the fluctuations within the time interval 
t:.. t are sufficiently numerous. 

The specific contribution of Reynolds' analysis is the idea of in­
terpreting the dynamic effects of the fluctuations u' , v', w', as apparent 
tractional forces or stresses. The nature and the magnitude of these 
stresses can be readily obtained starting with the equations of motions 
of a perfect fluid. The dynamic equations in question are 

du op 
P(Jj=-ox +pX, 

dv_ op 
P([t--oy +pY, 

pri'l!!.= _ op +pZ 
dt oz ' 

where the operator didt, in terms of the local variations, is 

(5) 

d 0 0 0 0 
dt=6t+~ +voy +~z· (6) 
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Together with these, there is the equation of continuity, assummg 
that the liquid is incompressible, 

au + ov +ow =0 (7) 
ox oy oz . 

The liquid will always be assumed to be incompressible, in this paper. 
In eq 5, p is the pressure, p the density of liquid, and X, Y, Z the 
components of the force of gravity per unit mass of liquid in the 
direction of x, y, z. These relations are valid at any instant of time 
independent of the fact that the quantities, u, v, W, and p are fluc­
tuating functions of time, provided that the velocities are not dis­
continuous, and if discontinuities exist, they occur only occasionally 
during the time interval D.t. 

Replacing u, v, w in eq 7 by their respective values from eq 1, 
averaging each term, and using the last three relations in eq 4, together 
with the fact that u' =v' =w' = 0, we obtain 

ou+~+ow=O (8) 
ox oy oz ' 

which states that the dilatation of the mean values of the velocity 
components vanish. It then follows from eq 1, 7, 8 that 

OU' OV' ow' 
ox +oy +oz =0. (9) 

The equations of motion, eq 5, are treated in a similar manner. 
We use 6, substitute for u, v, w their values from eq 1, multiply eq 9 
by pu' f pv', pw', respectively, and add to the left-hand side of each 
equation. Each term is then averaged in accordance with eq 4, 
assuming p to be constant, that is, that the fluid is homogeneous, 
obtaining 

where, in this case, 
d 0 -0 -0 -0 
dt 5j+uc5X+vi51/+wcfz' 

and 
R -, '. R R -, ') xx=-P:":, xu = yx= -pu v, 

Rvv=-pv'V'j Rxz=Rzx=-pu'w', -- -R .. = - pw'w' j Rv.=Rzv = - pv'w'. 

(10) 

(11) 

(12) 

We may refer to eq 10 as the Reynolds equations of motion for 
turbulent flow. 
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To interpret the above results we write the general equations of 
motion of a deformable continuum under the action of the external 
b~dy forces X, Y, Z and surface tractions of an unspecified physical 
ongm: 

du= X+oPXX +OPlIX+OPZX, 
Pdt P ox oy 02 

0!!.= y+oPXll +OPVlI +OPZlI, 
Pdt P ox oy 02 (13) 

dw= Z+oPX,+OPlI'+OPZZ, 
Pdt P ox oy 02 

where the operator dfdt is the one defined in eq 6. 
It should be noted that these equations are merely Newton's law of 

motion as appli ed to any deformable continuum, and thus they apply 
to a wide range of phenomena. The left-hand members represent 
components of the rate of change of momentum per unit volume of the 
medium, whereas the right-hand members represent the components 
of the forces acting per unit volume. The nature of the medium 
determines the functional relation between the nine stress components, 
Pxx, PYX, ..... , and the other variables occurring in the equations 
and the intrinsic properties of the medium. Hydraulic equations 
established by integrating these equations over a cross section of the 
fluid normal to the flow are frequently referred to as momentum 
equations. 

The nine stress components completely determine the forces acting 
on a small surface dS at the point (x, y, 2) . If a normal is drawn to dS 
away from the body of which dS forms a part of the surface, and if l, 
m, n are the direction cosines of the normal to dS, then the X-, y-, 2-

components of the surface tractions on the body at the point (x, y, z) are 

and 

Fx = lpxx+ mpvx+npzx, 

FlI=lpxll+mplIlI+npm 

F.=lpxz+mpllz+npzz' 

Comparing eq 10 and 13, we see that 

Pxx= -p+Rxx, PXll=PlIx=RLlI=Rvx;) 

PlIv=-p+RlIy, Pxz=Pzx=Rxz=Rzx ; 

p,,= -p+RzZ) PZy=PlIz=Rzv=RlIZ ; 

(14) 

(15) 

and thus the turbulent mean flow may be treated as ordinary stream­
line flow where the stresses PXX, p'V .... , are identified with the 
stresses R xx, RXlI . . . .. These apparent stresses of turbulence are 
called Reynolds stresses, and represent mathematically the transport 
of momentum across a surface caused by the velocity fluctuations 
[10, p. 192]. 

If the flow instead of being turbulent is viscous in character, the 
stresses are of molecular origin. The stresses P;z, PXII' . . , are then 
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identified with the viscous stresses S"x, Sxv, ... in the following 
manner, 

Px,,= -P+Szx, PX7I=P1/X=SXII=S1/X; I 
PlIlI= -P+SYII' Pxz=Pzx=Sxz=S.x; 
pzz= -P+S .. , PIIZ=PZlI=SIIZ=S'li' 

If the liquid is incompressible, these viscous stresses become 

OV 
SlIv=2J.1.oy' 

ow 
S.,=2J.1. oz' 

( OV OU) . 
Sxv=Svx=/l ox +oy , 

where J.I. is the viscosity of the liquid. 

(16) 

(17) 

It is perfectly feasible to carry through the derivation of the Reyn­
olds equations of motion, eq 10, usin~ the viscous-flow interpretation 
of eq 13 as a starting point, and finally neglecting the viscous stresses 
in comparison with the Reynolds stresses, which is justifiable on the 
basis of experimental evidence [11 , p. 186]. We have not adopted 
this method, since the results are identical with those obtained here 
by initially assuming a perfect liquid, that is, by neglecting the vis­
cous stresses at the beginning rather than at the end, and since it is 
more complicated than the method used here. 

Later, in sections III-l and IV-I, we shall derive hydraulic equa­
tions for mean flow in open channels, using eq 10 as a starting point. 
For this purpose, it is sufficient merely to suppose that R xx, RX1/ . . . . 
exist, there being no necessity for determining them as functions of the 
mean velocity gradients, because when the Reynolds equations of 
motion are integrated over the cross section of the channel, the 
quantities Rxx, Rxll, ... either disappear or are expressed in terms 
of the wall friction, TO, which is defined in connection with eq 45. 
Boussinesq, however, expressed Rxx, Rx1l, ... in terms of the velocity 
gradients. He simulated eql7, merely replacing Su, SXII' ... by 
H xx, R x1l , ... ; u, v, w by u,v,"U;; and /l by E. The quantity E was 
called the coefficient of internal friction by Boussinesq [3, p. 46]; 
present usage seems to favor the term eddy viscosity, since E has the 
same dimensions as /l [11, p. 185] . 

When the channel is rectangular, Boussinesq assumed that E is 
constant for every point in a given cross section, but in a channel of 
constant roughness, directly proportional to the product of the wall 
velocity and the depth of the liquid. Such assumptions form the 
foundation for the developments in his "Essay." The validity of his 
theory is thus open to question, since the assumptions concerning E 

are widely at variance with present experimental knowledge. 
Having established the basic partial differential equations governing 

turbulent flow in open channels, we now turn our attention to the 
boundary conditions. Consider first the condition to be satisfied at a 
fixed solid wall, which we shall suppose is covered with uniform 
asperities of height k. A pillbox is erected on the surface, with height 
h, just sufficient to clear the asperities, and radius r, large with respect 
to 2h. (See fig. 1.) 
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FIGURE I.-A pillbox enclosing the asperities on a channel wall. 

Since the liquid is incompressible, the net rate of flow across the 
surface of the pillbox must be zero. We neglect tilc discharge from 
the cylindrical side of the pillbox, since its area is small compared with 
that of the circular end. There must be at least one point on the end 
of the pillbox for which 

lu+ mv+nw=O, 

where l, m, n are the direction cosines of the outward-draw'} normal. 
Averaging the terms in this equation and assuming that ii, V, w vary 
slowly in an interval of length r, we have for all points on the fixed 
surface 

(18) 

which is the desired boundary condition for a fixed solid wall. If the 
wall is smooth, the argument is repeated, replacing the height of the 
asperities by the thickness of the laminar boundary layer. 

Next we consider a boundary condition which applies to the free 
surface. Let F (x,y, z,t) =0 be the equation of the free surface. As 
before in the case of the velocity components and the pressure (eq 1), 
the surface is considered to fluctuate rapidly and irregularly about 
a mean value, and we write 

F=F+F', (19) 

where F is the mean value of F, and F' is the fluctuation whose tem­
poral mean value }t" is zero. 

Since particles on the surface remain there, we have the condition 

of of of of 
6t+usox + VSoy +wsoz = 0, 

where u., v,, Ws are tIle velocity components at the free surface. If 
we replace Us, Va, w. by expressions obtained from eq 1 r.nd F by its 
value from eq 19 and average the terms, the result is 

of -oF -01' -oF 
ot +u'ox +v'8Y +w'(5Z= O, (20) 

provided we neglect the terms' u',(oF'/ax), .. These products 
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may be ignored, since either the correlation between u'., of'IOx, 
etc., is zero or the term is small in comparison with those retained. 
On the basis of this assumption, the above equation is a boundary 
condition obtaining at the free surface of turbulent flow. 

In order to simplify the notation from this point on, u, v, w, p, 
etc., will be written for u, ;, w, p, etc. Any further use of the bar to 
indicate all average will be in the macroscopic, rather than the 
microscopic, sense. 

2. EQUATION OF CONTINUITY FOR MEAN FLOW IN CHANNELS 

Up until this point we have derived equations which are valid for 
turbulent flow in general. We now derive an equation which applies 
to any tube of flow with a cross section which varies both in space and 
in time. This tube is assumed not to close on itself, and since it is a 
mathematical representation of a flowing channel, it is drawn as such 
in figure 2. The cross-sectional area of the channel, normal to x, will 
be represented by A=A(x,t), the average value of u over the cross 
section by U = U(x,t). 

FIGURE 2.-Surjace configurations at two different times in an open channel. 

The positive sense of x is chosen so as to make U positive. The 
actual direction of x is arbitrary, but for convenience it should approxi­
mate the direction of the channel. 

The flow into the stretch ~x during the time ~t is 

i tO+dt 
U(xo,t)A(Xo,t)dt, 

to 

while the flow out of the same stretch is 

l tO+dt 
U(xo+~x,t)A(xo+~x,t)dt. 

to 
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Furthermore, the volume of liquid contained within the stretch at 
time to is 

lXO+~X 

A(x,to)dx, 
Xo 

while the volume in the stretch at time to+t.t is 

lxo+~x 

A(x,to+t.t)dx. 
Xo 

Since the fluid is incompressible, net outflow plus increase of volume 
equals zero, or 

po+t>.t 
JIO [U(xo+t.x,t)A(xo+t.x,t)- U(xo,t)A(xo,t)]dt 

lxo+~x 

+ [A(x,to + t.t) -A(x,to)]dx= O. 
Xo 

If we apply the theorem of the mean for integrals, divide by t.xt.t 
and then let t. x and t.t approach zero, we obtain 

o oA 
ox(UA)+~=O, 

(21) 

which is the equation of continuity for mean flow in challllels. Since 
no assumptions have been made regarding the shape of the challllel, 
this equation applies to open channels in all generality. 

III. F IRST-ORDER THEORY OF WAVE PROPAGATION 

1. THE EQUATION OF MEAN FLOW IN PRISMATIC CHANNELS 

Consider a prismatic channel and select as the origin of a right­
handed system of Cartesian coordinates tbe lowest point of any con­
venient CI oss section (see fig. 3). T ake the x-axis as the line parallel 
to the channel (not necessarily horizontal), with positive sense in the 

z 

/ 

x 

I 
I 

I --~u 

FIGURE 3.-System of coordinates in a prismatic channel. 

direction of flow, the y-axis as the horizontal lin e, and the z-axis 
positive upward (not necessarily vertical). The chanuel slope, i , is 
the tangent of the angle (j from the positive direction of the x-axis to 
the horizontal, measured in the counterclockwise direction, viewed in 
the direction of increasing y; in other words, a positive slope is down­
hill. These conventions will be adhered to thronghout the paper. 
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We assume that the angle of slope of the channel is so small that 
sin () is sensibly equal to tan () and cos () to unity, hence X and Z in 
eq 10 are gi and -g, respectively. 

Again, in order to simplify the three equations of motion, eq 10, 
we make two distinct sets of assumptions, the first involving the 
terms on tbe left-band side and the second involving the terms on the 
right-hand side. First, we assume that the second derivatives of the 
cross section, A, and of the mean velocity, V, and the squares and 
products of their first derivatives, may be neglected in comparison 
with the first derivatives. Such a flow is referred to by Boussinesq 
as gradually varied [3, p. 242]. In general, this requires that the 
sides of the channel be not much flatter than a 1:1 slope, that the slope 
of the wave profile be small compared to unity, and that the curvature 
of the wave profile be small compared to (l/V)(oV/"Ox) or (1/U2) 
(aU/at). As !1result of these restrictions, dv/dt and dw/dt are small 
with respect to du/dt, and the left-hand sides of the last two of eq 
10 vanish. 

Secondly, we make certain assumptions concerning the Reynolds 
stresses: (1) u'u'=v'v'=w'w' hence Rxx=Rvv=R .. ; (2) since u is the 
predominant velocity component, the derivative of the correlation 
between the fluctuations v', w' may be neglected in comparison with 
the derivatives of the correlations between u', v', and u', w', which is 
to say, that the derivatives of Rtv may be neglected; (3) since the flow 
is gradually varied, the x-derivatives of RXII and Rxz may be neglected. 

On the basis of these two sets of assumptions, then, eq 10 reduce to 

au au au ou . 1 a 1 a 1 a 
At+1.l~+V~+~=(1'/,-- c;;:- (p-Rxx) +-c;;:- R vx+- c;;:-R.x, (22) u ux vy vz' p ux puy p uz 

(23) 

and 

1 a 
0=- ~(:P-Rxx) +(1. 

p uz 
(24) 

The simultaneous solution of eq 23 and 24, with the dynamical 
boundary condition p=pa at z=H, is 

p-Rxx=Pa+ pg(H- z) , 

where H, a function of x and t only, is the z-coordinate of the free 
surface, and pa is the atmospheric pressure. These symbols will be 
consistently used to refer to these quantities. According to the above, 
in gradually varied flow the pressure is hydrostatic everywhere. 
Differentiating the above equation, it is found that 

oH 
pgox' (25) 

Each term in eq 22 is to be integrated over the cross section A at x' 
In this way, the resulting equation of motion will involve only the 
mean flow, V, the cross-sectional area, A , and certain other quantities 
to be given later. We thus eliminate the variables y and z from con­
sideration, since all of the quantities occurring in the final result will 
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be functions of x and t only. Such an equation is called a hydraulic 
equation, and bears the same relation to circuit equations in electricity 
as the general equations 10 do to the electromagnetic field equations. 

Let us first evaluate the integrals arising from the terms in the left­
hand side. The mean flow, U, in a cross section, is implicitly defined 
by 

UA= r udA. JA (26) 

We write the above as a double integral 

fu H IV' UA= dz udy, 
o -VI 

where Yz and -YI are the y-coordinates of the two points on the wetted 
perimeter having the common distance z from the x, y-plane (see 
fig. 4). Obviously, Yz and -Yl are functions of z only, for a given 
prismatic channel configuration. Differentiating both sides of the 
above equation with respect to t, we obtain 

o(UA) IOU OHfb2 ot A6tdA+~ _b~,dy, 

where bz and -bi are the y-coordinates of the two points on the wetted 
perimeter at the distance H from the x, y-plane. 

z 

H 

______ ~--__ ~ __ ~~ ______ ~~----L-~y 

-y 
I 

FIGURE 4.- Double integration with respect to y and z; cross section, looking upstream· 
524;:;86-43-4 
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We now define u. to be the mean value of the surface velocities, 
U" over the width b=b2+bl of the free surface: 

- Jb' usb= u.dy, 
-In 

(27) 

and the next to the last equation becomes 
o f au -oA 
o/UA)= A otdA+ Us 1)t , (28) 

since b (oHjot) =oAjot. Introducing the velocity coefficient ai, implic­
itly defined by 

(29) 
eq 28 may be written 

J ou OU oA 
AolA=A<5t- al U ot· (30) 

We now turn our attention to the second term on the left of eq 22. 
We define another coefficient of velocity distribution a, as the ratio 
of the mean of the square of velocity to the square of its mean, both 
means being taken over the cross section, thus 

aU2A= JA u2dA. (31) 

This coefficient is the only one which appea,rs in the final equation, 
and was originally introduced by Boussinesq. It also plays an 
important role in the equation of steady flow in open channels [12] 
and must not be confused with the so-called Coriolis coefficient, which 
is frequently denoted by a. Assuming that a does not depend on x, 
and differentiating both sides with respect to x, in the same manner 
as was done in obtaining eq 28, we have 

a~(U2A)=f o (u2)dA+ OHfb' u s2d . 
ox A Ox ox -bl y 

Defining u; to be the mean value of the squares of the surface veloc­
ities_over the width, b, of the free surface, 

- Jbl u/b= us2dy, 
-bl 

(32) 

then the previous equation becomes 

a;x(U2A) = JAO~~2) dA+u/~~, 
since b(oHjax) = oAjox. Introducing a third coefficient of velocity 
distribution a2, defined by 

a22 U2=u/-aU2, (33) 
we obtain from the last two relations, 

f u9...udA=aUA°ll.-a U2 0A. 
A ox ox 2 Ox (34) 

N ext consider the integrals of the third and fourth terms of the 
left-hand side of eq 22. For the third term we write 

v:;;-dA= dz V'5\dy, f au ScI-I IV' ou 
A uy 0 -VI UY 



Translation Waves in Open Ohannels 475 

where the notation is the same as that used in the above two integrals 
(see fig. 4). The integral with respect to y is integrated by parts, 
obtaining 

(35) 

where Vo and Uo are the velocity components at the wetted perimeter 
and the subscripts 1 and 2 indicate the two sides of the channel, that 
is, the points (-Yl,Z) and (Y2,Z), respectively. 

-b 
I 

Z 

__________ -= __ +-~ __ ~ __ ~~ ______ L_ __ ~y 

y 
FIGURE 5.-Double integration with respect to z and y; cross section, looking upstream. 

Again, for the fourth term 

I ou fb' IF! au w- dA= dy w- dz, 
A az -b" , az 

where Zl is the z-coordinate of a point on the wetted perimeter at the 
distance y from the x,z-plane (see fig. 5). This time the integral 
with respect to z is integrated by parts, obtaining 

J au fb' f ow w-;,;-dA= (w.u.-wouo)dy- u~dA, 
A u Z -b, u Z 

(36) 

where Wo, Uo are now evaluated at the point (y,ZI). 
If dx denotes an elementary arc of the wetted perimeter, x, measured 

in the counterclockwise direction, and the direction cosines of the 
inward-drawn normal are 0, m, n (figs. 4 and 5) then dy=ndx and 
dz= -mdx, and~eq 35 and 36 become 
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(37) 

and 

(38) 

We add these two equations together, noting that as a result of eq 18 
the integrals with respect to X vanish, and combine the integrals in the 
extreme right by means of eq 8 and 34 obtaining 

i au i au Jb' aU oA v~dA+ w~dA= w.usdy+aUA;;;:- -a2 U2;;;-· (39) 
A uy A u Z -b, uX uX 

Furthermore, since the equation of the free surface is 

F(x,y,z,t) =z-H(x,t) =0, 

and since oA/ot= b(oH/ot) andoA/ox=b(oH/ox), the surface boundary 
condition, eq 20, becomes 

oA oA 
bWs=ot +USaX • 

Replacing Ws in eq 39 by its value from the above equation, recalling 
that A is not a function of y, evaluating the integrals by means of 
eq 26 and 32 and eliminating aU/ax by means of eq 21, we have 

f ou f au - oA - oA v-dA+ w- =(u -aU)- +(u 2-aU2-a2 U2) - . 
A oy A OZ S at S OJ" 

Introducing a final coefficient of velocity distribution, 

Ua3=u..- a U, 

the previous equation becomes, using eq 33, 

(40) 

(41) 

We have now succeeded in evaluating all the terms on the left 
of eq 22 in terms of functions of x and t only, and proceed to the 
terms on the right. In view of eq 25, the first two terms become 
merely 

gii dA-.li~(p-R )dA=giA-gAOH, (42) 
A P AOX X7 • ox 

since H is not a function of y or z. 
The integral of the last two terms in eq 22 is transformed by Green's 

theorem into a line integral around the periphery of the cross section: 



Translation Waves in Open Ohannels 477 

Expressing the line integral in terms of X as was done for eq 37 and 38, 

Comparison with eq 14 and 15 shows that the integrand of the line 
integral is the x-component of the force which the fluid exerts on the 
channel walls and the free surface. If we denote this shearing force 
by T, and assume that the shear on the free surface is zero, and define 
TO to be the mean shear of the fluid on the cha,nnel walls and bottom 

(43) 

then we have 

(44) 

Our choice of axes makes TO positive, since TO h:1s the same direction as 
U. We now define A the channel coefficient of friction, 

and eq 44 becomes 

pU2 
To = AT ' 

!f [~u +~R. ]dA=- 'A U 2X. 
P ') '. " (} z _ l 2 

(45) 

(46) 

Collecting the results of eq 30, 34, 41, 42, 46, and dividing them by 
A, the desired integral of eq 22 is 

(47) 

where R=A/x is the hydraulic radius of the channel. This is the 
desired hydraulic equation of motion for gradually varied unsteady 
flow in prismatic channels. It will be noted that only one coefficient 
of velocity distribution enters into the final equation, the one related 
to the distribution of the squares of velocities in a cross section. 

This equation was derived on the basis of the assumption that the 
flow was turbulent, which is the case usually met with in practice. 
Nevertheless, the equation also applies to viscous laminar flow, since 
the dynamical equations of motion, eq 13, are the same for both types 
of flow, except that in laminar flow the quantities Pxx, .. . , are re­
placed by Sx<, ... ,rather than by R xx, . . .. It is tacitly assumed 
that the flow pattern is such that the assumptions made concerning 
the Reynolds stresses in deriving eq 22, 23, 24 are also true for the 
viscous stresses. Finally, in laminar flow a and A become quantities 
that may be calculated rather than ones that must be experimentally 
determined. 

2. COEFFICIENT OF RESISTANCE AS A FUNCTION OF H 

If it is assumed that the coefficient A defined by eq 45 is a function 
of H only, and is therefore independent of a u/at and a u/ax, then A can 
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be evaluated from the ordinary parameters of uniform flow. Since, 
when the flow is uniform, U and H are constants, we have from eq 47 

. }..U02 

g~= ')R ' 
~ 0 

or 

(48) 

where Uo and Ro, respectively, are the mean velocity and hydraulic 
radius, for uniform flow. 

We assume further that the propagation of the waves is restricted 
to that type of turbulent flow in which the friction is determined by 
the surface asperities independently of the Reynolds number. The 
resistance law is then represented adequately by Manning's formula 
in the following form [5, eq 61, 80]: 

Uo (Ro)1/6 
-JgiR~=8.12 ks ' (49) 

where ks is the equivalent sand roughness [5, p. 713] of the channel 
surfaces. 

Equating the right-hand members of eq 48 and 49, we obtain 

}"=0.0303(~:}/3. 

DifferentIating with respect to Ho, the value of H for undisturbed 
flow, we have 

(50) 

since Ro is a function of Ho. For a wide rectangular channel, R=H, 
and 

3. VELOCITY OF PROPAGATION OF SHORT WAVES WITH 
NEGLIGIBLE CURVATURE 

(51) 

Assuming an initial condition of uniform flow in a very wide 
rectangular channel, let Ho be the depth of the liquid and Uo be the 
mean velocity of flow in a cross-section. If the flow is disturbed, this 
can be expressed by writing: 

and 
H(x, t)=Ho+h(x, t)'1 

U(x, t) = Uo+u(x, t), 
(52) 

for the depth and for the mean velocity. The quantity u will, in 
general, henceforth signify the variation from Uo, the undisturbed 
value of U, and h the variation from Ho, the undisturbed value of H. 

We replace H a,nd U in eq 47 by thei.r values froUl eq 52. Since the 
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channel is rectangular, A is a linear function of H; since it is wide, 
R=H; and Ho and Uo are constants, hence eq 47 and 21 become 

Ok au au Uo+uah. A(UO+U)2 
gax +g+a(Uo+u)ax + (I-a) Ho+h ot=g~- 2 (Ho+h) , (53) 

oh ou oh 
c5t+ (Ho + h)ox +(Uo+u)()x =0. (54) 

We now introduce two restrictions of a different kind. First, we 
assume that a is very nearly equal to unity and hence the term con­
taining I-a may be neglected. Secondly, we assume that 

OU OU 
(I) uox ~ot ' (55) 

(II) 

(III) 

. AU2 OU 
g~- 2H~ot' 

oh OU oh 
u- +h-~-· 

ox ox ot 

On this basis eq 53 and 54 reduce to 

Ok OU OU 
gox +ot+Uoox= O, 

oh + FL OU + U. oh =0 
ot °ox °ox . 

(56) 

(57) 

(58) 

(59) 

We differentiate eq 58 with respect to x and eliminate the terms 
containing U by means of eq 59. This gives 

o2h o2h o2h 
o t2+ 2 Uobxot+ (U02-gHo)ox2 = 0. (60) 

A particular solution of this is 

h= F(x-l.JJot), 

where F is an arbitrary function, provided l.JJo is a root of 

l.JJo2-2UoI.JJ0+ U02-gHo=0. 

The two roots are 

(61) 

(62) 

and it is evident upon inspecting eq 61 that the wave is propagated 
without change of form with the celerity, or velocity of propagation, 
Wo in the positive x-direction, since at time t+ (D.x/wo) , the wave profile 
is displaced by D. X from its position at time t. When an observer is 
moving with the current, that is, moving with the velocity Uo, a wave 
may be moving either downstream or upstream with respect to the 
observer. In the first case, Uo<wo, and the wave is descending; in 
the second case, Uo>wo, and the wave is ascending. Accordingly, 
the larger root of Wo gives the celerity of a descending wave and the 
smaller root the celerity of an ascending wave. In all formulas 
containing an ambiguous sign the upper sign will pertain to descending 
waves and the lower sign to ascending waves. 
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It is now a simple matter to determine the function u. From eq 
61, we have 

011, oh 
ot = -wo ox' (63) 

Substituting this value of oh/ot in eq 59, it becomes 

ou+ Uo-wo oh_O 
ox -----u;- ox - , 

whose integral is 

u+ Uliwoh+j(t) =0. 

Since for any time t, at h=O, u=O, then since the liquid is undisturbed 
at infinity jet) =0, and 

(64) 

or in view of eq 62 

(65) 

which states that the excess of the mean velocity of the particles in a 
cross section under the wave is proportional to the wave height h. 

It will be noted that the above equation for the celerity of waves, 
eq 62, is the same as that developed for the motion of irrotational 
waves in still water [1, eq 56], except that a constant velocity of flow, 
vo, is superposed on the wave velocities relative to the water, ..jgHo. 
This would appear to indicate that the friction due to turbulence 
which is inherent in the undisturbed flow, vo, has no effect on the 
propagation of waves. In general, the effect of turbulence cannot be 
neglected, but in this case the assumptions made in deriving eq 62 
restrict the size of the wave in such a way that the effect of turbulence 
is negligible. 

The physical significance of these mathematical assumptions will 
now be investigated. Consider first 

(III) 
oil, ou 011, 
u- +h--«~. 

ox ox ot 

Replacing u by its value from eq 64, and Oh/ot by its value from eq 63' 
we have 

Consider secondly 

(I) uou«ou. 
ox ot 

Using the samB relations as before, we hav!' 

~«~. 
Ho Uo-wo 

Obyiollsly, the first condition is sufficient for the second. 

(66) 



Translation Waves in Open Ohannels 481 

Both of these restrictions have no bearing on the fact that the 
undisturbed flow is controlled by friction. They are necessary but 
are not sufficient conditions for a wave to move without change of 
form. A more significant restriction arises from the assumption that 
the right-hand member of eq 53 is negligible: 

. A(UO+U)2 OU 
(II ) m- 2 (Ho+h) «sr 

Expressing the left-hand side in terms of u/Uo and h/Ho, and replacing 
A by its value from eq 48, we obtain, since Ro=Ho, 

gi~(1-2 ul-J.r:_(~)2Ho) 
. flo Uoh Do h ou 

h « ot' 
1+-Ho 

Eliminating u via eq 64, and transforming the right-hand side by 
means of eq 63, we have 

. ( 2wo (wo )2 h ) 
g~Ho 3-U;;- flo- I Yo (A )«~. 
- wo(wo-Uo)(l +~J Ho ox 

In contrast to conditions (1) and (II), where we obtained an 
inequality comparing h/Ho with a constant term which is determined 
by the characteristics of the channel, we find in this case that both 
sides of the inequality are functions of h. We are also confronted with 
the fact that oh/ox generally vanishes at the apex of the wave profile, 
and hence the inequality cannot be satisfied at that point even if the 
left-hand member also vanishes. 

In order to arrive at a workable criterion for determining whether 
the theory is applicable, we integrate both sides of the inequality 
with respect to x, thus obtaining an average condition: 

It is not feasible to integrate the left-hand side of this inequality unless 
the function h(x,t) is given. It is therefore necessary to assume that 

(IV) cwo )2 h 2wo 
Uo- 1 H~«3-Uo' (68) 

and 

(V) (69) 

and eq 67 reduces to 

(70) 
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where 

B . TT 2wo-3 Uo 
=tgno U. ( U. ) Wo 0 wo- ° 

If the wave profile is such that (IV) and (V) are not both satisfied, 
then eq 70 does not apply, and the integral on the left of eq 67 must 
be evaluated. Assuming that the wave profile has a unique maxi­
mum height hm, that oh/ox is everywhere finite, that L is the length 
of the wave, and that h is always positive, then eq 70 becomes 

(71) 

where .i is a fraction such that the volume of the wave per unit width 
of channel above the undisturbed surface is jhmL. This last inequality 
is the desired average condition, one which r estricts the length of the 
wave. Waves fulfilling this condition will be referred to as short 
waves. 

In addition to this restriction on the length of the wave, we still 
have the three conditions on the maximum height of the wave, 
expressed by eq 66, 68 and 69; the first being derived from the ori­
ginal restriction (III), and the other two from the approximations 
used in obtaining eq 71. Each of the first two restrictions states 
that the maximum height of the wave must be small with r espect to 
a constant determined by the channel parameters. For convenience 
we shall express these constants in terms of Uo/.J gHo. 

For descending waves, Wo= Uo+.JgHo, and eq 66, 68, 69 become 

(IlIa) 

(IVa) 

and 

For ascending waves, Wo= Uo-.J gHo, 
and the same three equations become 

(IIIb) 

(IVb) 

and 

These relations are made more intelligible by means of figures 6 
and 7. The quantity h/Ho must be small with respect to all of the 
quantities plotted in the figure, . that is, small with respect to the 
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least of them. It will be noted that the theory breaks down com­
pletely for ascending waves in water of critical depth, that is, it does 
not apply to the ease of the hydraulic jump. The fact that it breaks 

2 

h 11 

Ho 

4 6 

FIGURE 6.-Limitations on height of short descending waves moving without change 
of form. 

2 

o 4 6 

FIGURE 7.- Limitations on height of short ascending waves moving without change 
of form . 

down for Uo/-JgHo=2 when the wave is descending is due merely to 
the approximation used in deriving eq 71, and is not inherent in the 
theory. 
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Our three original assumptions thus indicate that if a wave is short 
and of small height, and moving in a wide rectangular channel where 
the undisturbed current is controlled by friction, the waves move 
without change of form, and their velocity is constant. It was also 
assumed in deriving eq 47 that the surface curvature is negligible, 
and this restriction is still in force. The simple theory thus gradually 
loses its applicability as the waves become larger and larger. This 
case will be treated in the later sections. 

4. PROPAGATION OF DISCONTINUITIES OF SLOPE 

One of the simplest types of wave profiles which we can imagine 
superposed on the initial uniform flow in a wide rectangular channel 
is one which is polygonal in form, such as a triangle. We shall inves­
tigate the motion at a vertex of such a polygon, where the slope of 
the wave is discontinuous. 

We assume that at t=to, the discontinuity of the slope Oh/ox is 
located at the point X=Xo, and the water surface is represented by 
two straight lines (see fig. 8). The mean velocity, V, and the depth, 
H, will each be described by two distinct functions; downstream from 
xo, we write V = VI and H =HI, and upstream from Xo, we write 
U= V2 and H=H2. We assume that both HI and H2 have negligible 
curvature, and that the channel is rectangular. Under these condi­
tions, eq 47 applies to each pair of functions, and we write, putting 
IX equal to unity: 

oHI+oVI+VOV1 _ ._AV12 
g Ox ot 1 Ox - g~ 2HI ' 

(72) 

(73) 

-

FIGURE S.-Motion of a discontinuity in surface slope. 

In a similar manner, we obtain from eq 21, since A is proportional 
toH, 

OHI+VoHI+ HoVI=O ot lOX lOX ' 
(74 

(75) 
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Following Hadamard [1 3, p. 83], we introduce the following nota­
tion for the change in value of a derivative as the discontinuity is 
traversed: 

Subtracting eq 73 from eq 72 and eq 75 from eq 74, we have, since 
H, U, and X are continuous, 

[OI-lJ+[OUJ+ u[oUJ=o g ox ot ox ' 
(76) 

[OI-lJ+ U[oHJ+H[OUJ=O at 0.'); ox ' 
(77) 

where Hand U are evaluated at x=:ro, t=to. Since four disconti­
nuities are involved, we need two more relations. 

In figure 8 the displacement of the discontinuity during the time 
interval At is indicated. If AU1 and AU2 are the changes in the 
mean velocities, then 

AUI=OO~IAX+ °O~IAt, 

AU2=00~2AX+ °i//At, 

Similarly, if AHI and AH2 are the changes in the height, then 

AHI = 0c!l AX+ 0:;1 At, 

AH2= oH2 AX+ oH2 At. Ox ot 
Subtracting eq 79 from 78 and 81 from 80, 

O=[~~JAX+[Oo~JAt, 

O=[~~JAX+[Oo~JAt, 

(78) 

(79) 

(80) 

(81) 

since U and H are continuous. We denote the velocity of propagation 
of the discontinuity, 6x/l\t, by Q. Thus the last two equations become 

Q[O UJ+[O UJ-o ox ot . - , 
(82) 

[oHJ [oR] 
Q :ox~ + ~ot . =0. 

(83) 
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We now have a system of four homogeneous linear equations, eq 
76, 77, 82, 83, in the four unlmown discontinuities. Since the dis­
continuities do not vanish, the determinant of the coefficients must 
vanish, and this relation gives 

(84) 

The velocity at the front of a descending wave, as shown in figure 
9, will now be considered. In this case, Q is positive, and we see from 
eq 83 that [oH/ox] and [oH/ot] have opposite signs, and since in front 
of the wave, oHdot= O, oHt/ox=O, then behind the front of the wave, 
oH2/ot > O, oH2/ox<O. Now, U= Uo and H=Ho at the discontinuity, 
and the velocity of the wavelfront is 

(85) 

the positive sign is selected, since Q>O, regardless of the magnitude 
of Uo and Ho. We thus see from eq 62 that at the front of such a 
wave Q=wo. This analysis fails to give any information concerning 
the change in the magnitude of the discontinuity. Such information 
may be obtained by using Boussinesq's equation for the velocity of 
propagation of a wave-volume element. A typical case is discussed 
in section IV-6, page 498. 

FIGURE 9.-The front of a descending wave. 

5. EFFECT OF VELOCITY DISTRIBUTION ON THE CELERITY OF 
SHORT WAVES 

In the derivation of the celerity of short waves, given in section 
III-3, page 478, it was assumed that I-a is a small fraction that 
may be neglected. This is generally true in practice, but we now 
drop this restriction and thereby consider the effect of the velocity 
distribution on the celerity of short waves. Retaining ex and using 
the assumptions of section III-3, eq 55,56,69, the equation of motion, 
eq 53 now _-becomes 

Oh+ou+ U,ou+(I_ )Uo+uoh=O 
gox ot a 0 ox a Ho ,ot . (86) 

Even though 1-a is not negligible, it is still true that in practice 
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a is of the same order of magnitude as unity. From eq 69 we 
have therefore 

(l-ato- Uo M ~4!;:.wo- Uo M . 
Ho at Ho Ho at 

Using the relation between hand u obtained in the previous analysis, 
eq 64, this inequality reduces to 

and eq 86 thus becomes 

u M au 
(1- a) Ho at 4!;:.at ' 

ah au au Uo M 
gax +at +aUoax + (l-a) Ho at =0. 

Differentiating with respect to x, assuming that a does not vary 
with x, and eliminating the terms containing u by means of eq 59, we 
find 

o2h a2h 2 o2h 
at2 + 2aUooxat+ (aUo -gHO)ax2=0. 

A particular solution of this is, as before, 
h=F(x-wot), 

where F is an arbitrary function, provided wo is one of the roots of 
w02-2aUowo+ (aU02-gHo) =0. 

The two roots are 

wo = (1 + TJ ) Uo± -J gHo + (TJ+TJ2) U02, (87) 

where TJ =a- l. (88) 

This is the formula giving the celerity of short waves when the 
effect of the velocity distribution is considered. It will be seen that 
TJ is the excess over unity of the ratio of the mean of the velocities 
squared, taken over the different points of a section, to the square of 
the mean velocity. A corresponding expression is given by Bous­
sinesq [3, p. 285, eq 265], which differs from the above only in the 
values of the coefficients. 

It is preferable that the value of TJ for a given case be ascertained by 
observation. 1£ this is not feasible, a value may be obtained by 
considering the r elation which exists between 7J and Uo and Um, the 
latter being the maximum velocity occurring at the surface of a wide 
channel. A relation of this kind can be derived if it is assumed that 
in a channel of great width the "velocity defect, " that is, the dif­
ference between the maximum velocity Urn and the velocity u at a point 
whose height above the bottom is z, depends only on the so-called 
"shear velocity" [5, p . 709] and the relative depth of the water, and 
is independent of the character of the asperities on the channel 
bottom. Mathematically speaking, 

um-u=u*fCt), (89) 

where t=z/Ho, and u* is the shear velocity, 

u*=-JigHo. (90) 



488 Journal of Re8earch of the National BU1'eau of Standard8 

l!i. MUltiplying both sides of eq 89 by dt, integrating from z=O to 
z=Ho that is, from 0 to 1, putting 

and recalling that the mean value of u is Uo, we obtain 

(91) 

Squaring both sides of eq 89, we obtain in a similar manner, using 
eq 88, 31, 26, 

(92) 
where 

Sal f(r)2dt=Nz• Eliminating the shear velocity, u*' between eq 91 

and 92, and solving for 7], we obtain 

(93) 

which is the desired relation expressing 7] in terms of U m and Uo• 
To determine the numerical values of Nl and N2 we make use of 

some of Nikuradse's experimental results concerning the velocity dis­
tribution in sand-coated circular pipes [14, p. 18- 19J. The data in 
table 1 were obtained by selecting three determinations of the velocity 
distribution for each of six relative roughnesses. In Nikuradse's 
paper the data for each relative roughness are given in a separate 
table, and the three determinations on the extreme right of each table 
were selected, except in Zahlentafel (table) 13, where the first one and 
the last two were chosen. In each case, velocity-defect ratios were 
computed for each value of y/r, which corresponds to zJHo in our 
notation, and the mean of these 18 determinations was entered in 
table 1. Plotting curves for f(t) and [f(n] 2 from these data and in­
tegrating numerically, it is found that in circular pipes, Nl =2.52 and 
N z= 12.29. Since the "velocity defect" relation is the same both for 
circular pipes and for open channels of great width these values of 
Nl and N2 may be substituted in eq 93, which becomes 

(Um )2 7]=0.94 Uo -1 . (94) 

An expression for 7] in terms of). may also be derived. Eliminating 
Urn bptween eq 91 and 92, we have 

7]= (Nz-NJ2) 'do:' 
Eliminating u* and Uo via eq 90 and 48: 

7]= (N2-NIZ)~, 
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which become.s, when we replace N2 and Nt by their numericul values 

71 = 2.97>-. (95) 

TABLE 1.-V elocity def ect as a function of dtstance jTom channel bottom. 

z ~ Z um-u 
ffi 'N; --u. u. 

0.00 12. 78 0.50 l. 75 
. 02 9. 52 .60 l. 23 
. 04 8.09 .70 0.81 
. 07 6.84 .80 . 45 
. 10 5.90 .90 .189 
. 15 5.03 .96 .067 
.20 4.29 .98 .030 
.30 3. 21 l. 00 . 000 
. 40 2.37 

It will be recalled that in deriving eq 62 of section I- 3 it was 
assumed that a is nearly unity, that is, that 71 is small, and that this 
restriction was removed in deriving eq 87. By comparing these two 
equations we can establish an approximate relation~which~will show 
how small 71 must be in order that eq 62 may be used . .,:;5 " 

Equation 87 may be approximated by 

1-( 71 + 71 2 U02) Wo= (1 + 71)Uo± -vgHo 1+- 2- gHo ' 

and this reduces to eq 62 if 

71 + 71 2 U02 1_ 
71 UO±- 2- ..jgHo«Uo±-VgHo. 

Dividing by Uo , neglecting 712 with respect to 71, using eq 48, this 
becomes 

{1 +~~~J«I+~~' (96) 

or, replacing 71 by its value from eq 95, 

[ 1 /2iJ I}: 
2.97>- 1+2-V~ « 1+-V 2i' (97) 

Bazin's inexhaustible store of experimental data furnishes an 
example [15] of the improvement obtained by using eq 87 instead 
of eq 62. The observed values, together with the results of the two 
formulas, eq 62 and eq 87 are shown in table 2. These experiments 
were conducted in the discharge channel of the Grosbois reservoir . 
This channel was constructed of masonry, with the steep slopes of 
0.101 in the upper part and 0.037 in the lower part. Before entering 
the channel, the water drawn from the reservoir flowed over an apron 
11.20 m wide just below the gates, and which narrowed down to 1.80 
m (the width of the channel). The axis of the apron described an 
arc of 90°, with a radius of 40.50 m, in order to join with the channel. 
As a result of the narrowing of the cross section and the change of direc­
tion of the apron, the flowing water was subjected to various reflec­
tions at the walls and these complex movements set up waves which 
passed rapidly down the channel at fairly regular intervals of about 2 

524586--43-5 
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sec (31 per minute). These waves were rather small in height, but 
their transit was easily observed owing to the slight noise which 
accompanied them. 
~ The observed values of We given in the table 2 are the averages of 
six individual observations, the ± term representing the standard 
deviation. The values of 1J are computed from eq 94. The table 
shows that the values of We computed by the simple formula, eq 62, 
are considerably in error, whereas the values of Wo obtained from 
eq 87 compare reasonably well with the experimental values. 

r ;~ _ ,TABLE 2.-Experimental and calculated values of Wo for torrential flow 

Experimental data (U=9 .81 m /sec ') 

i H. U. Um .,. 
m misec m/sec m/sec 

0.101 0; 110 3.785 5.51 6.25 ± . 07 
.037 .150 2.744 3.49 4.32 :bOS 
.037 .235 3.481 4. 55 5.75 ± . 06 

Computed values eq 62 Computed values eq 87 

w. Error ~ "'. Error 

m/sec % m/sec % 
4.82 -22.9 0.195 6.G3 +6.1 
3.96 -8.3 .070 4.36 +0.9 
5.00 -13.0 . 089 5.65 -1.7 

IV. SECOND-ORDER THEORY OF WAVE PROPAGATION 

1. EQUATION OF MEAN FLOW WITH APPRECIABLE VERTICAL 
ACCELERATION 

Assuming that the liquid is flowing in a wide rectangular channel 
(v=O, and Rux=O), that the variation with z of the x-component, u, 
of the local velocity is negligible, or U= U(x, t) and that the assump­
tions made in section III-l regarding the Reynolds stresses and the 
orientation of the axes still hold, then the Reynolds equations for 
turbulel\t flow, eq 10 become 

aU+UaU = i-~ a(p-Rxx)+~ aR.r , 
at ax g p ax p '02 (98) 

o 
and 

g. (99) 

We shall eliminate p from the eq 98 with the aid of eq 99, and then 
,eliminate z by integrating over the cross section. 
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We begin by evaluating w in terms of the other variables. Since 
tL= U and V=O, the condition of continuity eq 8 reduces to 

'Ow oU 
oz=-~· 

Integrating with respect to z, we have, since w=O when z= O, 

oU 
w=-z~, 

which, using a condition of continuity of mean flow, derived from eq 21 
on the basis of the assumption that A is proportional to H, 

reduces to 

oH+U'OH+HoU_O 
ot 'Ox Ox - , 

y'OH 0'H\ 
w=R\~+Uox/ 

(100) 

(101) 

Replacing w in eq 99 by its value from eq 101 and neglecting squares 
and products of the first derivatives of Hand U compared with the 
second derivative, we obtain, since Hand U are functions of x and 
t only, 

o (P-Rxx) pz[j2('02H 2 02H 1 02ll'\ 
'Oz =- pg- H ox2 + U oxot+ U2 of! f 

Multiplying by dz and integrating, 

[j2H( Z2)('02H 2 02H 1 02!!,\ 
p-Rxx =Pa+ pg(H- z)+ P- 2- 1-H2 Tx2+U OXOt+U2 or), 

since at z=H, p-Rxx=Pa. We now differentiate the above equation 
with respect to x, again neglecting the products of the lower deriva­
tives as compared with the higher derivatives, and the value thus 
obtained for o (P-Rxx)/ox is inserted in eq 98. The resulting equation 
is multiplied by dz and integrated from z=o to z=H. Since (Rxz)z~o 
equals TO, the shear on the channel bottom, and (Rx.)Z=H is zero, we get 

oU oU 'OH HU2('03H 2 03H 1 03H ) . }.U2 
N+Uox+g~+-3- OX3+Uox20t+U20X'Ot2 =g~-2H' (102) 

upon replacing TO by its value from eq 45. 
This is the equation of mean flow for a wide rectangular channel 

where the vertlCal accelerations are not negligible but the horizontal 
velocities in a section are practically uniform. 

2. HEIGHT OF WAVE AS A FUNCTION OF x AND t 

Replacing 'OU/'Ox in eq 102 by its value obtained by solving eq 100, 
and multiplying through by H, we obtain 
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We again introduce the expressions 

and 
H(x, t)=Ho+h(x, t)'1 
U(x, t) = Uo+u(x, t). 

Substituting in eq 100, we have 

oh +nou + u,Gh +hoU +uGh=O 
ot °ox °ox ox ox ' 

while eq 103 becomes 

OU oh 2 oh OU oh oh 
Ho ot- UOot + (gHo- Uo )ox +h~-u()t + (gh-2Uou)ox 

(52) 

(104) 

(105) 

when u2 is neglected with respect to U02, and in the term containing the 
third derivatives, U and h are neglected in comparison with U and H. 
Various assumptions as to the nature of the right-hand member will 
be made in later sections. 

The terms of small order in the left-hand members of the above 
equations, that is, the last two in eq 104 and the last four in eq 105, 
are simplified by introducing values from the first approximate solu­
tion: 

U=wo-Uoh 
Ho ' 

and 
oh oh 
ot=-woox' 

From the latter and eq 61, we obtain the further relation 

o2h o2h 
ot2 = w02 ox2' 

For the sake of brevity, we introduce the new variables 

k1=1-3Uo 
(1)0 

and 

and we also make use of the equation 

gHo= (wo- UO)2, 

(64) 

(63) 

(106) 

(107) 

which is derived from eq 62. On the basis of the above relations, then 
eq 104 and 105 becomr. 
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(108) 

and 

HoOU _ UoOh + (gHo- U02) oh +wo(wo- Uo)~(!0 ~ 
ot ot ox ox 2 Do 

+ k2H02 o2h)=gHi_~U2. 
3 ox2 2 

(109) 

We now differentiate eq 108 with respect to t. In differentiating 
the last term, which is of the second order, we use the relation 

(110) 

since these small terms may be treated as functions of x--wot [1, p. 73]. 
We next differentiate eq 109 with respect to x, and subtract this equa­
tion from the one obtained from eq 108. The result is 

o2h o2h o2h 
ot2 +2Uooxot- (gHo- U02)OX2 

02(2 + kl(h2) lC2Ho202h) 0(. A ) -wo(wo-UO)ox2 -2- Ho + -3- -ox2 =-ox gH~-2UZ , (111) 

which is the fundamental equation for determining h as a function of 
x and t. 

This equation, which was derived from eq 102, has the same range 
of validity, namely, it applies to flow in wide rectangular channels 
where the horizontal velocities in a section are practically uniform. 
This equation takes account of vertical accelerations, finite wave 
heights, surface curvature, and friction. 

3. CELERITY OF A WAVE· VOLUME ELEMENT 

In order to integrate eq 111 , the concept of celerity oj a wave-volume 
element, an essential simplification due to Boussinesq [3, p. 451], is 
introduced. To define tIlls concept, we consider the volume of the 
wave per unit width of channel, above the undisturbed primitive level 
of the liquid and between x, an arbitrary point, and 0), for a descending 
wave, and between x and - 0), for an ascending wave. D enoting 
this volume by u, we have 

u= f "'hdx and u=fz hdx, Jz -CD 

for descending and ascending waves, respectively. Recalling the 
convention of signs introduced in section III-3, the above equations 
become 

f± '" 
u=± Jz hdx. (112) 

Imagine a plane, normal to the channel axis at the point x, and which 
moves in such a way that the wave volume in front of it, u, remains 
constant. This velocity is the celerity of the volume element u, and 



~~---~-----------------~- ------ -

494 J oU1'nal of Research of the National Bureau of Standards 

is denoted by w=w(x, t). Differentiating eq 112 with respect to t, 
we have 

(±"'bh 
0= ± Jr otdx~hw, 

since by definition dx/dt=w, 0" remains constant, and we assume that 
the surface of the liquid is undisturbed at infinity, that is, h vanishes 
at ± co. Differentiating the above equation with respect to x, we 
have, regardless of choice of sign, 

(113) 

which gives the relation obtaining between wand h. 
We now introduce the value of oh/ot from eq 113 into the first two 

terms of eq 111, thus obtaining 

02 02 o2h 
- oxot(hw) -2UOOX2 (hw) - (gHo- U02) ox2 

02(2+kl h2 k2H0202h) 0(. A 2) -wo(wo- Uo)- - - = +- - -- = - - gH~--U . ox2 2Ho 30x2 ox 2 

This equation is immediately integrable once with respect to x. The 
arbitrary function of integration vanishes as a result of the previous 
assumption that the surface of the liquid is undisturbed at infinity. 
We thus have 

o 0 2 oh 
at (hw) +2 Uo ox (hw) + (gHo- Uo) Ox 

+wo(wo- Uo)~(2+kl h2 + k2H02 o2h)=gHi_~U2. (114) 
ox 2 Elo 3 ox2 2 

We next transform eq 114 into a form which can be integrated. 
In this process it is necessary to operate only on the first three terms 
in the left-hand member. If we assume that w/wo is near to unity, 
we may write as an approximation 

w=wo(1+o(X,t». (115) 

Substituting this value of w in the terms under consideration, we obtain 

Now using eq 113 and 107 we obtain 

Applying eq 115 again to the first term and eq 110 to the second term 
(which can be done because ho is a small quantity), and cancelling 
terms, we obtain 

- 2w02 ~x(hO) +2woUo~x(ho), 
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which can be written 

H ence eq 114 transforms into 

which, when integrated, gives 

_ 2+k1 h k2H02 o2h 1 IX (IF AU2)d 
0--4 - Ho +""""""(j"h ox2-2hwo(wo- Uo) ±'" g ~-2 x, 

and hence from eq 115 

~=1+ 2+k1 .!!:... + k2H02 o21~+ 1 i±"'(gHi-~U2)dx. (116) 
Wo 4 Ho 6h ox 2hwo(wo- Uo) x 2 

This is a general expression for determining the effects of wave 
height, curvature of the wave profile, and friction, on the celerity of a, 
wave-volume element. The integral containing the friction term:_ 
requires further consideration before the actual wave profile can be: 
determined as a function of time. 

It remains to evaluate that part u of the velocity Uunder the wave 
in eq 52. Transforming the equation of continuity, eq 100, by means 
of eq 52, 

The result of subtracting eq 113 from the above is 

Integrating, and using the boundary condition at x= ex:> , for all times 
t, h=O, and u=O, we have 

or 

(Uo+u) (Ho+h) -hw= UoHo, 

(117) 

4, DEFORMATION OF THE WAVE PROFILE, ASSUMING 

8Hi-~U2=O 
2 

A natural assumption, in proceeding from eq 116, is that the right­
nand member (gHi- A U2j2) is negligible. From eq 56 this implies that 
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the waves are short, as described in section III-3. 
116 becomes 

On this basis, eq 

(118) 

or when we introduce the values of kl' k2' and Wo from eq 106 and 62, 

-( 3h H02 (ih) 
w-Uo=±-JgHo I+4Ho+67L {)x2 • (119) 

Comparison with an earlier paper [1, eq 112] shows that this expres­
sion is equivalent to that for the propagation of an irrotational wave 
relative to the mean velocity of flow, Uo. The assumption that 
gHi-}..U2/2 is equal to zero is thus tantamount to assuming that the 
only effect of friction and slope is to superpose a constant velocity Uo 
on the wave, which itself is propagated without any change of shape 
due to frictional damping or to the x-component of gravity. 

The deformation of the wave profile, in a short time interval, is 
determined by using eq 119. Equation 113 can be written 

For small values of t, the integral of the above equation is 

(120) 

In verifying this solution, we must use eq 110 when differentiating the 
second term on the right, which necessitates assuming that this term 
is small compared with the first term. In other words, the magni­
tude of the time interval in which this approximation is permissible 
varies inversely with ()[h(w-wo)]/{)x. Clearly, since at t=O, we have 
h j(x), the function.f represents the wave profile at the fiducial 
instant. Finally, using eq 119 and 62, eq 120 can be thrown into the 
form 

(121) 

For a discussion of the deformation of a wave of negligible curvature, 
propagated without damping, the reader is referred to the earlier paper 
[1, p. 89]. All the formulas on the page cited are directly applicable, 
provided the expression.J gH(I + ... ) is replaced by Uo ± -J gHo(1 + ... ), 
wherever it occurs. This, again, is merely equivalent to superpos­
ing the velocity of flow Uo, on the velocity of propagation of the 
wave-volume element. 

5. EFFECT OF FRICTION AND SLOPE OF BED ON THE PROPAGATION 
OF WAVES 

In the above solution of eq 116, the term gHi- }..U2/2 was ignored. 
If the wave is short, the influence of this term is negligible, as explained 
in section 1II-3. For long waves, however, these effects become 
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appreciable at distances sufficiently removed from the head of the 
wave. The problem of determining these effects is considered sepa­
rately for the two cases, (I) i>O and Uo>O, and (II) i=O and Uo=O. 
The first case will now be considered. 

From eq 52, we have, after neglecting u 2 in comparison with U02, 

(122) 

Considering the first two terms of the Taylor expansion of A= A (II) 

at HOJ (dA) 
A= AO+ dH h, (123) 

where Ao= A (Ho) , and dA/dH is evaluated at H=Ho. Replacing A by 
the above value, and neglecting the small hu term, eq 122 becomes 

From eq 48 we have 
TT' AOU,2 0 

gilo~-2 0 = , (124) 

that is, in uniform flow the effects of slope and friction are in equilib­
ri urn, and thus 

Evaluating dA/dH by means of eq 51 and 124, and introducing the 
value of u from the first approximation, eq 64, the above equation 
becomes 

where 
3wo-5Uo . 

jl 3 Uo(wo- Uo)g~ · 

Since from eq 112, du/dx= =r-h, eq 125 can be written 

• AT72 u,)d(ujl) glh--u-= ±2woCwo- 0 - - • 
2 dx wo 

Substituting this in eq 116, we have 

(125) 

(126) 

(127) 

(128) 

or introducing the values of kl and k2 from eq 106, and using eq 62 

(129) 
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This integral of eq 116 is due to Boussinesq [3, p. 451], except that the 
value of j! given above is new, being based on Manning's quadratic 
law of resistance developed in section III-2. 

We now consider the sign of the quantity ujI/h. If the intumescence 
is everywhere positive or everywhere negative; that is, for all x, h ~ 0 
or h;;;;. 0, then u has the same sign as h, and u/h is positive. At the head 
of the wave this ratio vanishes, since u is of higher order than h, and it 
increases toward the rear of the wave. Sincej! is constant for a given 
channel and depth of water in uniform flow, the absolute value of the 
term varies in the manner just described, and its sign is the same as that 
of A Upon examining eq 126 we find thatf! is positive if (1) Uo>w(} 
or (2) Uo<wo and 3wo>5Uo, and negative if (3) Uo<wo and 3wo<5Uo. 
Comparison with eq 62 shows that (1) applies to all descending waves, 
(2) to descending waves where U02< (9 J4)gHo, (3) to descending waves 
where U02> (9J4)gHo. Thus, except in the last case, the combined 
effect of friction and slope on the damping of the wave is to cause a 
diminution of the absolute value of the velocity of propagation with 
respect to the velocity of flow of the various parts of the intumescence, 
the effect increasing with increasing distance from the head of the 
wave. The last case is of special interest. It has been shown else­
where [16] that if U02> (9J4)gHo, the waves become unstable, a 
phenomenon which is apparently closely related to the origin of roll 
waves. 

6. DEFORMATION OF A STRAIGHT SLOPING FRONT 

We suppose that the wave is descending (fig. 10). Denoting the 
slope of the front by (3, (3= -tan cp. Since we are only considering 
waves whose profiles lie above the free surface, (3 is always positive. 
Denoting, at t=O, the position of the front of the wave by xo, and the 
value of the slope by (30, the equation of the wave profile is thus, 

h=(3o(Xo-x), 
h=O, 

Equation 112 then becomes 

(30 (Xo-X)2 
u= 2 ' 
u=O 

x;;;;'Xo, t=Oj 
x~Xo, t=O. 

x;;;;'xo, t=o;! 
x~xo, t=O. 

(130) 

Introducing the equation for the velocity of propagation of a wave 
volume element, eq 128, we obtain from the above equations 

w=wo[l+e4t:!(3o-{~)(xo-x)} x;;;;'xo, t=O. 

If we write 

(131) 

then the last equation becomes 

w-wo=80 (xo-x), x;;;;'xo, t=O. (132) 
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FIGURE lO.-Defonnation of the linear front of a descending wave. 

Ho 

Now let the position of the front of the wave at i=t:..t be xo' (fig. 10) .. 
The section which at time t= O had the volume (J" in front of it has 
moved from x to x', and the height has changed from h to h'. Since 
the wave front moves with the velocity Wo (section III-4), while the 
section at x moves with velocity w, we have 

xo'-x' = (wo-w)t:..t+ (xo-x), x<xo, t=O. 

Using eq 132, we obtain 

xo'-x'= (1-00t:..t) (Xo-x) , x<xo, t=O. (133) 

But the volume (J" in front of x is equal to the volume (J"l in front of x', 
and thus we have from eq 130 and 133 

(J"l = ~O(xo' -x')2(1 +20ot:..t). 

Comparison with eq 130 shows that during the time t:..t the linear 
character of the wave front is preserved, but the slope has changed 
from {30 to {3', 

{3' = (1 +20ot:..t) {30. (134) 

Putting 

{3'={3o+~t:..t, 
we have from eq 134 

(135) 

which enables us to determine the variation of the slope. Since {30 
is positive, we find that if 00> 0, the wave is becoming steeper, if 
00=0, the slope remains constant, if 00<0, the wave is flattening out. 
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It is desirable to translate these conditions into relations involving 
flo. i, and A. Using eq 106, 126, 62, and 48, eq 131 becomes 

3 jg 
Oo= ':P~ Ho (fJu-I) , (136) 

where I=i (i~~-~} Since g, Ho, and {30 are positive, we thus find 

that if fJo> I, 00>0; if fJo=I, 00 =0; and if {3o<I, 00 <0. Accordingly, 
we find that, 

{30>(i~A/2i-~}, the wave is becoming steeper; 

{3o~(i~ A/2i-~}, the slope remains constant; 

fJo«i~ A/2i-~}, the wave is flattening out. 

We now derive an expression for fJ as function of time. Since it 
has been demonstrated that the wave front conserves its linear char­
acter, eq 135 holds for any value of t, and we obtain, using eq 135 
and 136 and discarding the subscript which refers to t=O, 

d{3=~ jg(fJ2-I{3) (137) 
dt 2-Y Ho . 

The solution of this differential equation for the initial condition 
fl= fJo at t=o is 

{3= {3oI • 

3~g {30- ({3o-I) exp - - It 
2 Ho 

(138) 

If 1=0, the solution of eq 137 becomes 

{3= {30 , 

3~g 1-- - {3ot 
2 Ho 

(139) 

and the slope continually increases. 
We next suppose that the wave is ascending (fig. 11). Denoting 

the slope of the front by {3, {3=tan cpo We again suppose that the 
wave profile lies above the free surface, which makes (3 positive. 
Using the same method of reasoning as in the above, we obtain cor­
responding to eq 135 and 136, 

d{3 
dt =200{3o, 

Oo=!~-k(-J+{3o), 

where J=(i~~i+~}' 
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Thus, if (3o>(*~ ~ +~}, the wave is becoming steeper; 

(3o=(~~~+~}, the slope remains constant; 

{3o« ~~~+~}, the wave is flattening out. 

t = ~t 
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FIGURE l1.-Deformation of the linear front of an ascending wave. 

The expression for (3 as function of time, becomes 

(3 
(140) 

and if J =O, which for ascending waves can only be the case if the 
slope, i, vanishes, the latter reduces again to 

{3= {3o , 

3~g 1-- --'-{3ot 
2 Ho 

(141) 

and the slope of the wave is c(;mtinually increasing. 
If it is desired to express {3 as a function of the distance xo' -Xo tra­

versed by the wave, this is obtained by introducing (xo' -xo) /wo in 
place of t in the various expressions giving (3 as a function of t, since 
the head of wave is traveling with the velocity woo 

7. CHANGE OF HEIGHT OF AN ABRUPT WAVE FRONT 

In a wave having an abrupt wave front there is a discontinuity of 
height at the wave front (fig. 12) . If for some considerable distance 
behind the front, the height is constant, the change of height with 
time, or preferably with the displacement of the front, can be readily 
determined, using the Boussinesq formula for the velocity of prop­
agation of a volume element. 
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FIGURE 12._Deforrnation of an abrupt wave front 

It is thus assumed that at t=O, in the initial portion of the wave, 
h is constant, and the wave is descending, that is, 

h=ho, x~ xo, t=O; 
h=O, x~ xo, t=O. 

Since the wave is descending, eq 112 becomes 

The velocity of propagation of a wave-volume element is thus from 

eq 128, 106, 62 
_ [1+~~gHo~+ (X-XO)flJ < t-O w-Wo 4~ TT ' x=Xo, - . 

Wo no Wo 

(142) 

From this it follows that the velocity of the wave front, Wh is 
(143) 

Since the height is constant behind the wave front, oh/ox=O, and we 
(144) 

have 

and from eq 113 (145) 
Oh ow 
ot= -ho ox' x<xo, t=O. 

Differentiating eq 142 with respect to x, ow/Ox 11) and eq 145 now 

becomes dh (146) 
dt= -fiho, x<XQ, t=O. 
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We consider two distinct values of x at t= O, both behind the wave 
front, denoting them by Xl and X2, and write hl=h(Xl), h2=h(X2). 
After an interval of time At, let the height of the corresponding wave 
elements be h/ and h2' • Now 

nnd 

Since hl=h2=ho, we see that h/=hz'. This shows that the con­
stancy of height of the wave front is preserved. Replacing ho by 11, in 
eq 143, we see that the velocity of the wave front WI is 

(147) 

Again replacing 11,0 by 11" eq 146 now becomes 

(148) 

Integrating this equation, and using the initial condition h=ho at 
t=O, we obtain h as a function of t 

(149) 

If it is desired to determine h as a function of the distance Xo'-:to 
traveled by the wave front, we write from eq 147 and 148 

dh,= -.Mf 1-~ -JgHo ~J' 
dxo Wo -L 4 Wo Ho (150) 

slllce dxo' /dt=wI; and 3h-J gHo/4woHo is required to be small with 
respect to unity. The solution of this differential equation for the 
initial condition h= ho, at xo' =Xo is 

h 
ho 

(151) 

8. SOLUTION OF THE WAVE EQUATION WHEN SLOP E AND FRICTION 
ARE NOT NEGLIGIBLE 

The significance of introducing w, the celerity of a wave-volume 
element, lies in the fact that the integration of the wave equation, eq 
111 becomes equivalent to solving 

(113) 
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where w is given by eq 116, or in this particular case by eq 128. 
Although the general solution is complicated, if it be assumed that 
o2h/ ox2 is negligible, compared to 6h/Ho2k2 , the problem is consider­
ably simplified. This assumption requires that the curvature of the 
wave profile be small. We thus obtain from eq 129 and eq 62: 

wh=hUo+ (wo- Uo)( 1 + 43~o)h=f (Jill 

and eq 113 becomes 

(152) 

(153) 

since o(Jjox= =f h. The general solution of this differential equation is 

(154) 

where q, is an arbitrary function. This integral is due to Boussinesq 
[3, p. 457, eq 392] and Favre speaks of it as one of the Boussinesq 
integrals [6, p. 106]. 

In determining the arbitrary function q" two cases are of particular 
interest; (1) the channel is infinite in both directions, and (2) the 
channel has an entrance and is infinite in only one direction. In the 
first case, if for t=O, h is a known function of x, -co <x<co, then q, 
can be obtained directly. Let the function be h='l!(x), t=O. Put­
ting t=O in eq 154, we have x=if?(h), t=O, hence in this case q, is 
simply the inverse of 'l!. In the second case, q, is determined from 
the boundary condition h=1{;(t) at the channel entrance x=O, but in 
this case the evaluation is indirect and tedious. At x=O, eq 154 
gives 

""(h f ') - -[ + ( - U.)~ eXP (flt-1)]t 
'.i' e 1 - Wo Wo 0 2Ho i1 t . (155) 

In general, the form of the equation does not permit solving explicitly 
for either t or h, hence it is necessary to evaluate q, numerically. By 
considering values of t in the range - co to + co, and the corresponding 
values of h at the entrance, using h=1{;(t), the magnitude of the 
independent variable can be computed. Corresponding values of q, 
are obtained from the right-hand member of eq 155 by inserting the 
same values of hand t used to evaluate he'll. 

9. INTUMESCENCES PRODUCED BY OPERATING LOCKS IN A CANAL 
CARRYING WATER 

We now consider a practical example of case (2) above which can be 
treated by a simpler method. In many cases the canals leading to 
and from hydroelectric plants are also used for navigation, and a 
lock is provided to bridge the difference in head utilized by the plant. 
Whenever this lock is emptied, a positive wave is produced in the 
downstream canal, and, whenever it is filled, a negative wave is pro­
duced in the upstream canal. The former, of course, travels down­
stream, whereas the latter travels upstl~eam. 
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Because of such design considerations as the possibility of over­
topping the embankments, it is desirable to predict by computation 
the magnitude and deformation of these waves. Ordinarily the 
discharge from the lock is a continuous function of time, the exact 
relation being obtained from computation or model experiments. The 
waves produced by operating the lock are small in height and long 
enough so that the curvature is negligible, and thus eq 154 is applicable. 

As far as this analysis is concerned, the lock constitutes a termina­
tion of the canal, and the boundary conditions of case (2) apply. 
The complications of this case are eliminated by a method due to 
Favre [6, p. 112], which is based on the fact that the distance traveled 
by the wave is very large compared to its length. The initial shape of 
the wave is computed for the initial time t= O, in the form h= 'II(x), 
assuming that the effect of friction is negligible during the short time 
interval required for the formation of the wave. This function is then 
used to determine <I>. 

Let the discharge at the lock per unit width of channel be represented 
by the function 

q jet), x=O. (156) 

As a result of the above, we may also write 

t=F(q), x=O. (157) 

It follows from eq 154 that the form of the wave at the moment 
it is produced and shortly thereafter, neglecting the effect of friction 
during the genesis of the wave, is represented by 

(158) 

1. From eq 52 and 117 the mean velocity 

in a cross section beneath the wave is 

W-Uo 
U= Uo+ Ho+hh. (159) 

Neglecting the effects of friction and curvature in eq 129, this becomes, 
using eq 62 

U= Uo+ (wo- Uo)( 1 + 4~)Ho~h· (160) 

The discharge per unit width at x=O is thus 

q=HU=Uo(Ho+h)+(w-Uo)(1+4~)h jet), x=O. 

Comparing this equation with eq 157 we have 

t=F(Uo(Ho+h) + (wo- Uo)( 1+ 4~)h), x=O, (161) 
524586-43-6 
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which expresses h as a function of t for x=O, and thus serves to deter­
mine the arbitrary function <I> in eq 158. Placing x=O in that equa­
tion, we have 

<I> (h) = - [ wo+ (wo- UO)2~Jt, (162) 

and from eq 161 

<I>(h)=-[ wo+ (wo- Uo\~~JF(Uo(Ho+h)+ (wo- Uo)( 1+ 4~)h). (163) 

Since the function <I> in eq 158 is the same as the function <I> in eq 154, 
we write for the second term in the right-hand member of this equation, 

(164) 

The solution of a typical .problem will now be described in detail. 
It is desired to find the wave profile in the canal at any instant t when 
the discharge is given as a function of time, Q/b=q j(t), b being the 
width of the free surface of the canal. We shall assume that the 
discharge first increases and then decreases, as shown in figure 13. 
This will create a positive surge in the discharge canal and a negative 
surge in the supply canal. The origin in figure 13 is conveniently 
chosen to correspond to the instant of maximum discharge. The 
abscissa t is, of course, expressed in seconds, and the ordinate, q, in 
any convenient unit of discharge per unit width, such as square feet per 
second. In eq 154 and 164, upon which the solution depends, Uo and 
Wo will have to be expressed in corresponding units of velocity, such 
as feet per second. 

q 

I 
til t 

FIG. 13.-Discharge from supply canal as a junction oj time: Q/b=q=j(t), eq 156. 
or t=F(q), eq 157. 

The positive surge in the discharge canal will now be considered. 
The quantities Uo, Ho, Ro and i are determined from measurements of 
the steady flow. The coefficient of friction, hO, is then determined from 
eq 48. All the quantities needed to determine Wo from eq 62, and jl 
from eq l26 are thus available. Note that the positive sign in eq 62. 
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is selected, since the wave will be moving downstream. A small posi­
tive value of h is now selected, which we shall denote as hl' The argu­
ment of the function Fin eq 164 is computed, using the value of t 
corresponding to the instant for which the wave profile is desired. As 
is seen from eq 157, this gives a corresponding value of q, which we shall 
call ql. If ql is greater than the maximum value of q which is actually 
obtained, this signifies that hl was higher than any point of the intu­
mescence. It will be advisable to select hl very small at first and then 
increase it until the top of the curve in figure 13 is attained. The values 
of t corresponding to hl will be denoted by tll and tl2 since, there will 
generally be two of these, the first positive and the second negative. 
This is clearly indicated in figure 13. These two values, tll and t12, are 
thus the desired values of the function F occurring in eq 164, and the 
two values of the double-valued function cI> can now be obtained by 
replacing h in the coefficient of F by the quantity hl. Turning now to 
eq 154, replacing h by hl and t by the value corresponding to the instant 
for which the wave profile is desired, we obtain two values for x, cor­
responding to the original value hlJ which we shall denote by Xu and 
Xl2. These are the abscissas of the points on the profile having the 
height hl (see fig. 14). The whole process is repeated for greater 
heights, h2' ha, ... , until sufficient points are determined to estab­
lish the contour of the wave. 

The process for determining the negative surge in the supply chan­
nel is exactly the same, except that in eq 62 the minus sign is chosen, 
since the wave is traveling upstream. The quantities hl, .. , " fl.nn 
Xll, Xl2, ••. , will be negative, as shown in figure 15. 

x .... 
FIGURE l4.- Profile of descending wave in discharge canal. 

10. EFFECT OF FRICTION ON WAVES WHEN THE SLOPE OF THE 
BED VANISHES 

We now consider case (II) of section IV-5, i=O and Uo=O. The 
determination of the positive sense of the x-axis on the basis of the con­
ventions in section III-l fails, since there is no flow. Furthermore, 
the terms "ascending" and "descending" waves explained in section 
III-3 fail to have any significance, since we have no method of dis­
tinguishing the upstream from the downstream direction. We thus 
are forced to make an arbitrary choice of the positive x-direction, and 
consider downstream to be in this direction, A descending wave thus 
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x ... 
FIGURE I5.-Profile of ascending wave in supply canal. 

becomes one for which wo>O, and an ascending wave one for which 
wo<O, that is to say, a descending wave is propagated in the positive 
x-direction, and an ascending wave is propagated in the opposite 
direction, since our hypothetical observer is stationary and the down­
stream direction coincides with the arbitrarily chosen positive sense 
of the x-axis. 

Since i=O and Uo=O, it follows immediately from eq 52 that 

(165) 

It has previously been tacitly assumed that U was always positive, 
that is, u was smaller than Uo, so that U and Uo had the same sign. 
Since in this case Uo=O, this assumption is no longer valid. The 
sense of the friction is always opposite to that of the velocity, and thus 
if u is negative, the sign of the right-hand member of the above 
equation must be changed, since we wish to keep A positive, regardless 
of the sign of TO. From the first approximation, eq 64, u=woh/Ho, and 
thus the velocity must have the same sign as wok. We introduce the 
new parameter 

(166) 

and obtain from eq 165 

gHi-~[J2= -2wo2(~)f2. (167) 

The difference between AOU2 and AU2 is a quantity of the order being 
neglected in this analysis. If we introduce the quantity 

(168) 
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then since du'/dx= =F hz, we can write eq 167 in the forID 

gHi-~UZ= ±2WO:t2:xC~2} (169) 

Substituting t his in eq 116, we have for the velocity of propagation 
of a volume element 

w=wo(1 + 2+k1 ~ + kzl-foZ ()2~=F ~ U'j2Z) ' (170) 
4 Ho 6h Ox wo - Uo hlI-o 

Since in this case Uo=O, we see from eq 106 that kl =kz= 1, and thus 

( 311, Hoz oZh U'f2) 
W=Wo 1 + 4Ho + 611, oxz=F hl-foZ . (17 1) 

Consider the sign of wo<fzlhH02, which equals w02cr'12/wohH02. Since 
from eq 168, u' is always positive, it follows that the sign of the above 
is the same as that of 12/Woh. But from eq 166 j2 has the same sign as 
woh, hence the original term is always positive. In accordance with 
the convention of choice of signs for descending and ascending waves, 
the choice in eq 171 is always opposite to that of the sign of woo There­
fore, the effect of friction on the celerity W when i=O, Uo=O , is to 
diminish its absolute value by an amount which increases with the 
distance from the head of the wave. 

11. SOLUTION OF THE WAVE EQUATION WHEN THE SLOPE 
VANISHES BUT FRICTION IS CONSIDERED 

As in section IV -3, the problem is to solve 

oh 0 
(5t+ Ox (hw) = 0, (113) 

where w is given by eq 116 or, in this particular case, by eq 171. For 
the reasons mentioned in the same section, we assume that oZh/or is 
negligible. Equations 171 and 113 thus become 

( 3h U'f2) (172) 
W= Wo 1 + 4Ho =F hH02 ' 

and 
oh ( 3h ) oh ( h ) 2 
ot+ wo 1+2Ho ox=-1zwo Ho ' 

(173) 

respectively, since du' /dx= =F h2• Assuming that th e wave is every­
where positive or everywhere negative, then 12 is constant, and the 
general integral of the above differential equation is 

where <I> is an arbitrary function. This is Boussinesq's second integral 
[3, p. 454 eq 393]. 

Regarding the determination of this arbitrary function, we consider 
the same two cases as in section IV-8: (1) the channel is infinite in 



510 Journal of Research of tlw National Bureau of Standards 

both directions, and (2) the channel has an entrance which is infinite 
in only one direction. In the first case, if for t=O, h is a known func­
tion of x, - <Xl <x< OJ, then <P can be obtained directly. Let the func­
tion be h='JI(x), t=O·. Putting t=O in eq 174 we have x=<p(h), t=O, 
hence in this case <P is simply the inverse of 'JI. In the second case, <P 
is determined from the boundary condition h=y; (t) at the channel 
entrance x=O; but in this case the evaluation is indirect and tedious. 
At x=O, eq 174 gives 

<P =-Wo 1+- t. (
h) [3h log ( l-i~ht) l 

1-i~ht 2Ho fitht J (175) 

In general, the form of the equa,tion does not permit solving explicitly 
for either t or h, hence it is necessary to evaluate <P numerically. By 
considering values of t in the range - <Xl to + <Xl, and the corresponding 
value of h at the entrance, using h= y;(t) , the magnitude of the inde­
pendent variable can be computed. Corresponding values of <P are 
obtained from the right-hand member of eq 175 by inserting the same 
values of hand t used to evaluate 

h 

1~2WOht· 
H02 

These methods are precisely analogous to those discussed in connection 
with eq 155. 

12. INTUMESCENCE PRODUCED BY OPERATING LOCKS IN AN 
ORDINARY CANAL 

In contrast to canalized rivers and hydroelectric canals, such as 
discussed in section IV-9, ordinary canals contain still water except 
when disturbances are set up by the operation of the locks. The 
general considerations at the beginning of section IV- 9 (through eq 
157) also apply to this case, except that i = O and Uo=O, and hence 
we must consider case (2) of eq 174. 

The discharge per unit width at the lock is again represented by 

q= J(t), x=O, (156) 

or by the inverse function 

t=F(q), x=O. (157) 

Neglecting the effect of friction during the formation of the wave 
and shortly thereafter, we obtain from eq 174 

(176) 

smce 
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For the mean velocity in a cross section beneath the wave, eq 52, 
117, 171 give 

( 3h) h 
U=wo 1+ 4Ho Ho+h' (177) 

since Uo=O, and friction and curvature are neglected. 
per unit width at x=O is, therefore, 

The discharge 

q=HU=wol{l+ 43;), x=O. (178) 

Substituting this value of q in eq 157, we obtain 

t=F( woh( 1 + 43;). x=O. (179) 

But from eq 176 

(180) 

or from eq 179 

~ (h) = - waC 1 + 2~)F ( woh( 1 + 4~) )- (181) 

Since this function ~ in eq 176 is the same as the function ~ in eq 
174, we have for the right-hand member of this equation, 

~(I_~ht)=-wo[H 2H.(1~:r,."ht)J 
H02 0 H02 

F(I_~ht[l+ 4H.(1~~h,)J). (182) 
H02 0 H02 

Equations 174 and 182 are used to determine the wave profile at 
any instant t, as is described in section IV-9. 

13. LIMITATIONS OF BOUSSINESQ SOLUTIONS 

It is necessary to emphasize the fact that the second-order theory, 
which is based on the concept of the velocity of propagation, w, of a 
volume element, is subject to certain important restrictions. The 
most general expression for w is given in eq 116. In deriving this 
equation, the important assumption was made that w/wo is nearly 
equal to unity. 

We shall now turn our attention to the specialized equations derived 
from eq 116. These are eq 118, 128, 171. Examination shows that 
in each case, w/wo= 1 + (correction terms). The restriction on the 
theory thus requires that these terms shall be . small compared to 
unity. The first term, which is common to all equations, is (2+k1)h 
j4Ho. This merely requires that h«4Ho!(2+k1 ). The second term, 
which expresses the effect of curvature, requires that (o2hjox2)!h 
«6/Ho2k2 • We see from this, that (o2hjor) must vanish to a higher 
order than h. 

The third term, which appears only in eq 128 and 171, expresses the 
effect of friction. These two equations are applicable only whe~ 
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uit/woh or U~f2/hHo2, respectively, is small. But u and u' can be made 
as large as we please merely by considering longer and longer intumes­
cences, and if the intumescence has a finite volume, h approaches zero 
at the tail whereas u and u' remain finite. This shows that the term 
under consideration may be large, or even infinite. In view of this 
fact, it may be expected that these solutions will give correct values 
only in the frontal portion of the wave where u/h and u' /h are small . 
It should be noted that this remark applies with equal force to the 
Boussinesq integrals, eq 154 and 174. 
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MT13. TABLE OF SINE AND COSrNB INTEGRALS FOR ARGUMENTS FROM 10 TO 100: 
(1942) XXXIH 185 pages, bound in buckram, $2.00. 

MT14. TABLES OF PROBABrLlTY FUNCTIONS, VOLUME II: 
Values of these functions to 15 places of decimals from 0 to 1 at intervals of 0.0001 and from 

1 to 7.8 at intervals of 0.001. 
(1942) XXI+344 pages; bound in buckram, $2.00. 

MT15. The hypergeometric and Legendre functions with applications to integral equations of 
potential theory. By Chester Snow, National Bureau of Standards. Reproduced from original 
handwritten manuscript. 

(1942) VII+319 pages; bound in heavy paper cover. $2.00. 
MT16. TABLE OP ARC TAN X: 

Table of inverse tangents for positive values of the angle in radians. Second central differences 
are included for all entries. 

Interval between 
Range of x successive arguments 
o to 7 0.001 
7 to SO .01 

SO to 300 .1 
300 to 2,000 1 

2,000 to 10,000 10 
(1942) XXV+169 pages; bound in buckram, $2.00. 

MT17. Miscellaneous Physical Tables: 
Planck's radiation functions (Originally published in the Journal of the Optical Society of 

America, February 1940); and 
Electronic functions. 
(1941) VI + 58 pages, bound in buckram, $1.50. 

MT18. Table of tbe Zeros of the Legendre Polynomials of Order 1-16 and the Weight Coefficients 
for Gauss's Mechanical Quadrature Formula. 

(Reprinted from Bull. Amer. Mathemical Society, October 1942.) 
5 pages. 25 cents. 

Payment is required in advance. Make remittance payable to the "National 
Bureau of Standards," and send with order, using the blank form facing page 
3 of the cover. 

The prices are for delivery in the United States and its possessions and in 
countries extending the franking privilege. To other countries the price of 
MTl is 65 cents; that ofMT2 to MTl6, inclusive, is $2.50 each; MTl7, $1.75; 
MT18, 30 cents; remittance to be made payable in United States currency. 

Copies of these publications have been sent to various Government depositories 
throughout the country, such as public libraries in large cities, and colleges and 
universities, where they may be consulted. 

A mailing list is maintained for those who desire to receive announcements 
regarding new tables as they become available. 
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