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EFFECT OF TURBULENCE AND CHANNEL SLOPE ON
TRANSLATION WAVES

By Garbis H. Keulegan and George W. Patterson

ABSTRACT

This paper is the second of a series dealing with the motion of flood waves and
other waves of translation in open channels. The first paper considered waves
controlled solely by inertia forces; the present one is an analysis of the combined
effects of turbulent friction and inertia. The basic equation of motion for gradu-
ally varied unsteady flow in prismatic channels is derived from fundamental
principles. The effect of the velocity distribution in the original undisturbed
current on the motion of short waves is investigated, and the effects of wave
height, curvature of profile, and fluid friction on the celerity of a wave-volume
element is analyzed in detail. The deformation of a straight sloping front and the
change of height of an abrupt wave front is treated. Special emphasis is laid on
disturbances of negligible curvature and practical methods of handling engineering
problems arising in connection with the operation of locks or hydroelectric canals
are given.
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LIST OF SYMBOLS

Symbols used in only one section are omitted unless they are of general signifi-

cance.
of z and ¢.

Important quantities in hydraulic equations are indicated as functions
All equations are valid in any consistent set of units.

The significance

of barred variables is explained in section II-1.
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cross-sectional area of channel.

width of free surface.

exponential funetion.

base of natural logarithms.

arbitrary functions, determined by boundary conditions.

substitution variable, (3wy—5Uy)g7/3Uy(wy— Uy).

substitution variable, N\o/4 or —Ny/4.

acceleration of gravity.

depth of water.

undisturbed depth of water.

increase of depth due to disturbance.

slope of channel bed.

substitution variable, 1—3Up/cwy.

substitution variable, 1— Upy/wy.

direction cosines.

pressure.

atmospheric pressure.

generalized stress components.

discharge per unit width of channel.

turbulent stress components.

hydraulic radius.

viscous stress components.

time.

mean velocity in channel cross section.

undisturbed mean velocity.

increase in mean velocity due to disturbance (sections I1I-3, ff.).

z-component of velocity (mostly before section IT1-3).

velocity fluctuation due to turbulence.

y-component of velocity.

velocity fluctuation due to turbulence.

z-component of velocity.

velocity fiuctuation due to turbulence.

Carltesian coordinate, specifically, parallel to channel in bottom
plane.

Cartesian coordinate, specifically, lateral to channel in a hori-
zontal plane.

Cartesian coordinate, specifically, drawn upward with origin at
bottom of channel.

Boussinesq coefficient of velocity distribution.

eddy viscosity.

coefficient of channel friction.

coefficient of channel friction, H= H,.

viscosity.

density.

partial volume of wave per unit width.

partial volume of wave per unit width.

mean shear per unit area on channel wall.

arbitrary function.

wetted perimeter.

arbitrary functions.

velocity of a wave-volume element.

velocity of a short wave, moving without change of form.

I. INTRODUCTION

This paper is the second of a series dealing with the motion of flood

waves and other waves of translation in open channels.

The purpose

of the series is explained in the introduction to the first paper [1].

1 Figures in brackets indicate the literature references at the end of this paper.
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Many of the significant properties of translation waves may be ob
tained by assuming that the motion of fluid particles due to the wave
disturbance is irrotational [1]. Experimental observation of these
properties indicates that they are in good agreement with theoretical
predictions, provided that the waves are moving in still water. If,
on the other hand, the disturbances are produced in a liquid which
is initially in motion, as in actual currents in an open channel, some
disparity will be seen between observation and theory. Bazin’s ex
periments on the velocity of propagation of a solitary wave in still
water or in a running current demonstrate these points [2].

The divergence between observation and theory, when the wave
is moving in a current, can be explained in two ways. First, irrota-
tional or potential theory supposes that the original undisturbed
motion is such that all the particles in a cross section move with the
same constant velocity, U,, which may of course be zero. This
condition is not fulfilled for flow in actual channels, and it thus be-
comes necessary to investigate the effect of the distribution of velocity
in a cross section on the velocity of propagation of waves. An analysis
of this effect has been carried through in great detail by Boussinesq [3].
With a view to simplifying the presentation and the solution of the
problem, the authors give a new derivation (section III-5). Al-
though the results arrived at here are different in form from those of
Boussinesq, it is believed that the difference has a qualitative rather
than quantitative importance.

This difference is due to two distinct forms of the equation of
motion of unsteady flow in a channel, one adopted by Boussinesq and
the other by the authors. The present method applies the theory of
Reynolds stresses to the problem of the unsteady mean flow in a
channel, without assuming any specific relation between the stresses
and the velocity rates existing at points within the channel cross
section. The effect of these stresses is evaluated in terms of the total
friction at the wall, which is the important concept for mean flow in
open channels and is usually available from observations on uniform
flow. Boussinesq’s method on the other hand is an extension of his
own theory of turbulent flow, and specific relations between the
turbulent stresses and the space-rates of the local velocities are as-
sumed and introduced into the derivations. As the concept of
Reynolds stresses is the starting point of the present analysis, the
theory of these stresses is given in considerable detail (section II-1).
The equation of motion of a perfect fluid is the point of departure in
interpreting the relation between the stresses and velocity fluctuations.
This novel procedure simplifies the presentation considerably. It is
hoped that the equation of motion for gradually varied unsteady flow
in prismatic channels derived in this paper, eq 47, is sufficiently
rigorous to merit the attention of river engineers.

In the second place, the irrotational theory of translation waves
ignores the effect of turbulence, which is one of the forces controlling
the motion of the waves. Consider a short intumescence moving in a
current. In the initial stages of motion the behavior of the wave is
not affected by turbulence, since the wave is assumed to be short.
When the wave has traveled a considerable distance the cumulative
effect of friction becomes appreciable, particularly at the rear of the
wave. In fact, experience shows that the front of the wave will
travel with a velocity characteristic of irrotational waves, whereas at
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the other end of the wave, the volume elements will move with a
smaller velocity, the exact law of which is not as yet clearly understood.
The wave thus flattens out considerably at the posterior end, with a
consequent elongation. The tendency of short waves to deform in this
manner is clearly demonstrated in Horton’s experiments [4].

When the motion of the waves is controlled principally by friction,
as in the quasipermanent regimes of rivers, the corresponding theory
of translation waves is simple. But when it is supposed that the fric-
tion and inertia effects are of like magnitude, analysis is confronted
with a difficult task. The change of shape of a short intumescence
during the entire journey of the wave in a current would be accurately
described if a complete solution were available, which is not the case.
However, some progress in this direction is possible if it is assumed that
the effect of turbulence is small, requiring only a secondary correction.
Such a theory has been worked out by Boussinesq, who assumed that
the velocity of the wave-volume elements differs little from the theo-
retical velocity of waves without friction [3]. The main purpose of this
paper is to consider this theory and the corresponding solutions for
waves of negligible curvature. In giving Boussinesq’s solution, slight
changes have been made, since it was desired to adopt Manning’s law
of friction in open channels [5]. Favre has employed the Boussinesq
integrals to describe the motion of waves occurring during the opera-
tion of locks [6]. Because of the engineering significance of the problem
we have also reproduced these applications (section IV-9 and IV-12).

The applications of the theory are presented in sections III and IV,
which have been entitled first-order and second-order theories of
wave propagation. The first-order theory neglects the vertical acceler-
ation of the water particles and assumes that the combined effect of
friction and velocity is small. It is found that this assumption requires
that the waves be short. The second-order theory considers the effects
of vertical acceleration but neglects the variations of the horizontal
velocity components. As in Boussinesq’s investigations, the concept
of the velocity of a wave-volume element plays a very basic role.
Equation 116 is the general expression for this velocity. Using this
same formula, the authors have been able to study the gradual de-
formation of a straight sloping front and also to compute the reduction
of height of an abrupt wave front.

II. FUNDAMENTAL PRINCIPLES
1. REYNOLDS EQUATIONS OF MEAN MOTION
In the Reynolds theory of turbulence [7; 8, p. 638; 9, p. 364; 10,
p. 191] the velocity components u, », w, in the directions z, ¥, z,
respectively, are regarded as fluctuating functions of the variables

z, vy, 2, t. 'The fluctuations are frequent and rapid, and the periodicity
of the changes is irregular. Denoting the mean values of u, v, w by

u, v, w, and the mean value of the pressure, p, by p, we have for the
instantaneous values

u=u+’,

v=0+7",

w=w-+w’, (1)
and

P=5+P';
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where «/, ¥’, w’, and »” are the fluctuations whose mean values %/, v’
, b ) b : J

w’, p’ are equal to zero. The mean values may be temporal ; that is,
taken at a given point (x, 7, z) over an interval of time of duration
At; thus, for example,
st 1 t4-At d
== 9
U=7y A uat. 2)

Or again the mean values may be spatial; that is, taken at a given
instant ¢ over a space of volume AV thus, for example

=1y f sy udV. 3)

For the present it will be supposed that the averages are temporal.
A difficulty arises when taking temporal means in unsteady flow. In
such cases it is necessary to make the time interval At long enough to
include a great number of fluctuations, but short enough to exclude

all but negligible variations of u, v, w, p.
There are certain rules for taking the averages. Expressed sym-
bolically [9, p. 366]

ab =ab,
atb=a+b,
s (4)
and _a——a,
08 9=
% 08D’

where @ and b are functions of z, ¥, 2, t; s represents any one of the
independent variables, and a bar over a quantity represents an average
of the kind just described. These rules are based upon assumptions
that are not exactly applicable to the flow of liquids. The errors,
however, are negligible when the fluctuations within the time interval
At are sufficiently numerous.

The specific contribution of Reynolds’ analysis is the idea of in-
terpreting the dynamic effects of the fluctuations v’ »’, w’, as apparent
tractional forces or stresses. The nature and the magnitude of these
stresses can be readily obtained starting with the equations of motions
of a perfect fluid. The dynamic equations in question are

du

o O )
T 2.

dv__ 0p
P?t_ ay'l'PY’ 6)
dw___ Op

where the operator d/dt, in terms of the local variations, is

d. DD ETD D
T oo ey T Yy (©)
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Together with these, there is the equation of continuity, assuming
that the liquid is incompressible,

ou , 0v , ow

ox +by+bz 0 @)
The liquid will always be assumed to be incompressible, in this paper.
In eq 5, p is the pressure, p the density of liquid, and X, Y, Z the
components of the force of gravity per unit mass of liquid in the
direction of z, ¥, 2. These relations are valid at any instant of time
independent of the fact that the quantities, u, », w, and p are fluc-
tuating functions of time, provided that the velocities are not dis-
continuous, and if discontinuities exist, they occur only occasionally
during the time interval At.

Replacing %, », w in eq 7 by their respective values from eq 1,

averaging each term, and using the last three relations in eq 4, together

with the fact that W =v"=w"=0, we obtain

ou ,0v , Ow
a—x'i'a*y"l-a?-(), 8)

which states that the dilatation of the mean values of the velocity
components vanish. It then follows from eq 1, 7, 8 that

ou’  ov'  ow
5 +51] +5'2‘ =0. 9)

The equations of motion, eq 5, are treated in a similar manner.
We use 6, substitute for «, v, w their values from eq 1, multiply eq 9
by pu’, pv’, pw’, respectively, and add to the left-hand side of each
equation. KEach term is then averaged in accordance with eq 4,
assuming p to be constant, that is, that the fluid is homogeneous,
obtaining

di_ op OR,: ,OR,; ,OR.;
do_ op OR,, OR,, OR,,
Pa?"— ay+PY+ b:l)” a,;/m'l' oz ’ (10)

dw_ dp R, ,OR,, OR,,
o R bz+pZ+bx oy Vo

where, in this case,

d 0 ,-0 -0 -0
& of et tayt oy (11)

and
R, ,=—pu'u’; Rzu =Ry;=—pu'v’,

sz_m)/v/; R:quzz:_Pulwly (12)
B G —
R,=—pww;R,,=R,,=—pv'w’.

We may refer to eq 10 as the Reynolds equations of motion for
turbulent flow.
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To interpret the above results we write the general equations of
motion of a deformable continuum under the action of the external
body forces X, ¥, Z and surface tractions of an unspecified physical
origin:

pcgz—pX-i- p”-l- p“-i— p”
d?)_ D2y 410Dy bpzz/
L pY+ "+ bg; + (13)
d OPz: , OPys b -
I e

where the operator d/dt is the one deﬁned in eq 6.

It should be noted that these equations are merely Newton’s law of
motion as applied to any deformable continuum, and thus they apply
to a wide range of phenomena. The left-hand members represent
components of the rate of change of momentum per unit volume of the
medium, whereas the right-hand members represent the components
of the forces acting per unit volume. The nature of the medium
determines the functional relation between the nine stress components,
ks i , and the other variables occurring in the equations
and the intrinsic properties of the medium. Hydraulic equations
established by integrating these equations over a cross section of the
fluid normal to the flow are frequently referred to as momentum
equations.

The nine stress components completely determine the forces acting
on a small surface dS at the point (z, ¥, 2z). If a normal is drawn to dS
away from the body of which dS forms a part of the surface, and if /,
m, n are the direction cosines of the normal to dS, then the T-, Y-, 2-
components of the surface tractions on the body at the point (z, y, 2) are

Fz:lpzx+mpyz+np2n

Fuzlpzu+mpuu+npzu: (14)
and

Fzzlpzz+ mpyz+npzz-
Comparing eq 10 and 13, we see that

Przz= _-Z;‘*‘sz; Poy=Pyp=Rsy=Ry:;
DPy= _E‘FRWH Pee=Pu=R:.=R.; (15)

Pz= _E‘I‘Rzz; Pa=Pp=R:y=Ry;

and thus the turbulent mean flow may be treated as ordinary stream-
line flow where the stresses p,s, p»y . . . . , are identified with the
stresses R,y Ry . . . . . These apparent stresses of turbulence are
called Reynolds stresses, and represent mathematically the transport
E)f momentum across & surface caused by the velocity fluctuations
10, p. 192].

If the flow instead of being turbulent is viscous in character, the
stresses are of molecular origin. The stresses psz, Pzy, - - . ar® ‘then
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identified with the viscous stresses S.;, Sz, . . . in the following
manner,
Pzz=—P+ 8z, P2y=Pyz= 2y =Sz}
Pw=—P+8u, P2e=P2r=8r:=8u; (16)
Pu=—p+8.,, Pye=P2y="S:= .
If the liquid is incompressible, these viscous stresses become
ou. 7w v, Qu\.
S.Ix 2.U~a ‘Srl/—byz ax+aJ
o
Sw=2#a_’ Szz:Srz ar+a'—) (17)
Qw A, Ow\.
Szz_r)ﬂa ) Suz:Szy 62+by

where u is the viscosity of the liquid.

It is perfectly feasible to carry through the derivation of the Reyn-
olds equations of motion, eq 10, using the viscous-flow interpretation
of eq 13 as a starting point, and finally neglecting the viscous stresses
in comparison with the Reynolds stresses, which is justifiable on the
basis of experimental evidence [11, p. 186]. We have not adopted
this method, since the results are identical with those obtained here
by initially assuming a perfect liquid, that is, by neglecting the vis-
cous stresses at the beginning rather than at the end, and since it is
more complicated than the method used here.

Later, in sections ITI-1 and IV-1, we shall derive hydraulic equa-
tions for mean flow in open channels, using eq 10 as a starting point.
For this purpose, it is sufficient merdy to suppose that R,,, B, . .
exist, there being no necessity for determining them as functions of the
mean velocity gradients, because when the Reynolds equations of
motion are integrated over the cross section of the channel, the
quantities R,,, R,,, . . . either disappear or are expressed in terms
of the wall friction, 7, which is defined in connection with eq 45.
Boussinesq, however, expressed R,,, R,,, . . . in terms of the velocity
gradients. He simulated eql7, merely replacing S, Sy, . . . by
R..,, Ryyy . . . ;u, v, wby u, v, w; and u by e. The quantity e was
called the coefficient of internal friction by Boussinesq [3, p. 46];
present usage seems to favor the term eddy wiscosity, since e has the
same dimensions as g [11, p. 185].

When the channel is rectangular, Boussinesq assumed that e is
constant for every point in a given cross section, but in a channel of
constant roughness, directly proportional to the product of the wall
velocity and the depth of the liquid. Such assumptions form the
foundation for the developments in his “Essay.” The validity of his
theory is thus open to question, since the assumptions concerning e
are widely at variance with present experimental knowledge.

Having established the basic partial differential equations governing
turbulent flow in open channels, we now turn our attention to the
boundary conditions. Consider first the condition to be satisfied at a
fixed solid wall, which we shall suppose is covered with uniform
asperities of height k. A pillbox is erected on the surface, with height
h, just sufficient to clear the asperities, and radius r, large with respect
to 2h. (See fig. 1.)
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,7 :
s

Ficure 1.—A pillbox enclosing the asperities on a channel wall.

Since the liquid is incompressible, the net rate of flow across the
surface of the pillbox must be zero. We neglect the discharge from
the cylindrical side of the pillbox, since its area is small compared with
that of the circular end. There must be at least one point on the end
of the pillbox for which

lu+mo-+nw=0,

where I, m, n are the direction cosines of the outward-drawn normal.
Averaging the terms in this equation and assuming that u, », w vary
slowly in an interval of length 7, we have for all points on the fixed
surface

lu+mo+nw=0, (18)

which is the desired boundary condition for a fixed solid wall. If the
wall is smooth, the argument is repeated, replacing the height of the
asperities by the thickness of the laminar boundary layer.

Next we consider a boundary condition which applies to the free
surface. Let F' (x,y,2,t)=0 be the equation of the free surface. As
before in the case of the velocity components and the pressure (eq 1),
the surface is considered to fluctuate rapidly and irregularly about
a mean value, and we write

F=F+F, (19)

where F is the mean value of F, and F” is the fluctuation whose tem-

poral mean value £” is zero.
Since particles on the surface remain there, we have the condition

OF . O 5z OF,
at + va:r—*_@sa +wsa—2:0!

where u,, v, w, are the velocity components at the free surface. If
we replace uy, v5, W, by expressions obtained from eq 1 and F by its
value from eq 19 and average the terms, the result is

~oF bF
L sa£+1sau+ 5= (20)

provided we neglect the terms u/,(0F’/oz), . . . . These products
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may be ignored, since either the correlation between ', 0F’/0z,
etc., is zero or the term is small in comparison with those retained.
On the basis of this assumption, the above equation is a boundary
condition obtaining at the free surface of turbulent flow.

In order to simplify the notation from this point on, u, v, w, p,
etc., will be written for u, », w, p, etc. Any further use of the bar to
indicate an average will be in the macroscopic, rather than the
microscopic, sense.

2. EQUATION OF CONTINUITY FOR MEAN FLOW IN CHANNELS

Up until this point we have derived equations which are valid for
turbulent flow in general. We now derive an equation which applies
to any tube of flow with a cross section which varies both in space and
in time. This tube is assumed not to close on itself, and since it is a
mathematical representation of a flowing channel, it is drawn as such
in figure 2. The cross-sectional area of the channel, normal to z, will
be represented by A=A(x,t), the average value of v over the cross
section by U= U(x,t).

Ficure 2.—Surface configurations at two different times in an open channel.
The positive sense of z is chosen so as to make U positive. The
actual direction of z is arbitrary, but for convenience it should approxi-

mate the direction of the channel.
The flow into the stretch Az during the time Af is

tt-At
[ v,

while the flow out of the same stretch is

tort-At
ﬁ U+ Ax,t) A (zo+ Az, t)dt.
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Furthermore, the volume of liquid contained within the stretch at
time f, is

70+Az
f A(z,ty)dz,
Zo

while the volume in the stretch at time #,-+At is

z04+-Az
f Az, to+At)da.

Since the fluid is incompressible, net outflow plus increase of volume
equals zero, or

J:z.,+At[ U (o4 Az, 1) A (xg+ Dz, t) — U (o, t) A (20,8) 1t
+ f Aot 80— A, t01da=0.

If we apply the theorem of the mean for integrals, divide by AzAt
and then let Az and At approach zero, we obtain

> 24 (21)
5 (UA) +5; =0,

which is the equation of continuity for mean flow in channels. Since
no assumptions have been made regarding the shape of the channel,
this equation applies to open channels in all generality.

III. FIRST-ORDER THEORY OF WAVE PROPAGATION
1. THE EQUATION OF MEAN FLOW IN PRISMATIC CHANNELS

Consider a prismatic channel and select as the origin of a right-
handed system of Cartesian coordinates the lowest point of any con-
venient cross section (see fig. 3). Take the z-axis as the line parallel
to the channel (not necessarily horizontal), with positive sense in the

Z

F1curE 3.—System of coordinales in a prismatic channel.

direction of flow, the y-axis as the horizontal line, and the z-axis
positive upward (not necessarily vertical). The chanuel slope, 7, is
the tangent of the angle 6 from the positive direction of the z-axis to
the horizontal, measured in the counterclockwise direction, viewed in
the direction of increasing y; in other words, a positive slope is down-
hill. These conventions will be adhered to throughout the paper.



472 Journal of Research of the National Bureau of Standards

We assume that the angle of slope of the channel is so small that
sin @ is sensibly equal to tan 6 and cos 6 to unity, hence X and Z in
eq 10 are g7 and —g, respectively.

Again, in order to simplify the three equations of motion, eq 10,
we make two distinet sets of assumptions, the first involving the
terms on the left-hand side and the second involving the terms on the
right-hand side. First, we assume that the second derivatives of the
cross section, A, and of the mean velocity, U, and the squares and
products of their first derivatives, may be neglected in comparison
with the first derivatives. Such a flow is referred to by Boussinesq
as gradually varied [3, p. 242]. In general, this requires that the
sides of the channel be not much flatter than a 1:1 slope, that the slope
of the wave profile be small compared to unity, and that the curvature
of the wave profile be small compared to (1/U)(dU/dz) or (1/U?
(0U/3t). As a result of these restrictions, dv/di and dw/dt are small
with respect to du/dt, and the left-hand sides of the last two of eq
10 vanish.

Secondly, we make certain assumptions concerning the Reynolds

stresses: (1) w'u’=vv =ww’ hence R;;=R,,=R..; (2) since u is the
predominant velocity component, the derxvamve of the correlation
between the fluctuations »’, w’ may be neglected in comparison with
the derivatives of the correlations between u’, »’, and %/, w’, which is
to say, that the derivatives of R, may be neglected; (3) since the flow
is gradually varied, the z-derivatives of R,, and R,, may be neglected.

On the basis of these two sets of assumptions, then, eq 10 reduce to

at+71, +2) + gi (P zx)+ a Rb1+ az 21y (22)

? ax
:a/(p_Rzz); (23)
and
A a 2(27 R..)+g. (24)

The simultaneous solution of eq 23 and 24, with the dynamical
boundary condition p=p, at z=H, is

p—R=potpg(H—2),

where H, a function of z and ¢ only, is the z-coordinate of the free
surface, and p, is the atmospheric pressure. These symbols will be
consistently used to refer to these quantities. According to the above,
in gradually varied flow the pressure is hydrostatic everywhere.
Differentiating the above equation, it is found that

O(p—R..) _ ?
Ok b;r (25)
Each term in eq 22 is to be integrated over the cross section A at z’
In this way, the resulting equation of motion will involve only the
mean flow, U, the cross-sectional area, 4, and certain other quantities
to be given later We thus eliminate the variables y and z from con-
sideration, since all of the quantities occurring in the final result will
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be functions of @ and ¢ only. Such an equation is called a hydraulic
equation, and bears the same relation to circuit equations in electricity
as the general equations 10 do to the electromagnetic field equations.

Let us first evaluate the integrals arising from the terms in the left-
hand side. The mean flow, U, in a cross section, is implicitly defined

by
T4 L bTA: (26)

We write the above as a double integral

H 7]
(Al = f dzf udy,
0 =11

where 7, and —1, are the y-coordinates of the two points on the wetted
perimeter having the common distance z from the x, y-plane (see
fig. 4). Obviously, 7, and —, are functions of z only, for a given
prismatic channel configuration. Differentiating both sides of the
above equation with respect to ¢, we obtain

(UA) [ ou OH (&

ol LhpdtiEg b
where b; and —b, are the y-coordinates of the two points on the wetted
perimeter at the distance H from the &, y-plane.

Z

A

L -b'
25 b2 4
-
A
0,m,n
di
H
X 2EiPdz 7 i
dy .
> Y

Yy

F1curE 4.— Double integration with respect to y and z; cross section, looking upstream*
5H24586—43——4
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We now define u, to be the mean value of the surface velocities,
s, over the width b=0b,+b; of the free surface:

= bs
ub= f udy, 27)
~br

and the next to the last equation becomes
o) — 04
vA) = atdA-I— +5¢ (28)
since b(QH/ot)=0A4/0t. Introducmg the velocity coefficient «;, implic-
itly defined by .t
ayU=u,—U, (29)
eq 28 may be written

dA AOU aanaif- (30)

We now turn our atten’mon to the second term on the left of eq 22.
We define another coeflicient of velocity distribution «, as the ratio
of the mean of the square of velocity to the square of its mean, both
means being taken over the cross section, thus

aU2A=L wdA. (31)

This coefficient is the only one which appears in the final equation,
and was originally introduced by Boussinesq. It also plays an
important role in the equation of steady flow in open channels [12]
and must not be confused with the so-called Coriolis coefficient, which
is frequently denoted by «. Assuming that « does not depend on z,
and differentiating both sides with respect to z, in the same manner
as was done in obtaining eq 28, we have

D g [ D0, OF [
od (U4)= L Daa+Z [* wiay.

Defining u,? to be the mean value of the squares of the surface veloc-
ities_over the width, b, of the free surface,

— by
u b= f : usdy, (32)
then the previous equation becomes

- 0 (u?) — 04
ez (Ud)= 2

dA+us e

since b(0H/ox)=0A4/dx. Introduclng a thlrd coefﬁcient of velocity
distribution az, defined by

a2 UP=ui—al?, (33)
we obtain from the last two relations,
f uldA~ aUAaU U2 (34)

Next consider the integrals of the third and fourth terms of the
left-hand side of eq 22. For the third term we write

f audA f dzf d?,
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where the notation is the same as that used in the above two integrals
(see fig. 4). The integral with respect to ¥ is integrated by parts,
obtaining

ou = ov
Ava_ydAZJ; [ (ugwo)2— (uovo)lldz—fAua"‘?‘/dA; (35)

where v, and u, are the velocity components at the wetted perimeter
and the subscripts 1 and 2 indicate the two sides of the channel, that
is, the points (—,2) and (¥s,2), respectively.

z

A

5

dzt

g

y

Ficure 5.—Double integration with respect to z and y; cross section, looking upstream.

Again, for the fourth term

ou by H 2y
waa—sz= f_bldy f “w3dz,

where 2, is the z-coordinate of a point on the wetted perimeter at the
distance % from the z,z-plane (see fig. 5). This time the integral
with respect to z is integrated by parts, obtaining

d ba d
Awé’dA: f_bl(wsu,—wouo)dy—f ua—Z’dA, (36)

where w,, %, are now evaluated at the point (y,2,).

If dx denotes an elementary arc of the wetted perimeter, x, measured
in the counterclockwise direction, and the direction cosines of the
inward-drawn normal are 0, m, n (figs. 4 and 5) then dy=ndx and
dz=—mdy, andleq 35 and 36 become



476 Journal of Research of the National Bureau of Standards

ou v
L Shaa—— f upgndx— [ ustda, 37)
and
i DR St i ow :
AwaftrdA—f_blususdy fx wouondx—Luaz dA. (38)

We add these two equations together, noting that as a result of eq 18
the integrals with respect to x vanish, and combine the integrals in the
extreme right by means of eq 8 and 34 obtaining

ou ou ba oU 0A
§ gAaAydA—{— v b_sz: f_blwsusdy—l— « UA—D_:E —a U'%? - (39)

Furthermore, since the equation of the free surface is
F(a,y,2,t) =2—H(,t)=0,

and since 0.4/0t=>b(0H/0t) anddA/ox="b(dH [0x), the surface boundary
condition, eq 20, becomes
0A, 04
bw, =5t T
Replacing w, in eq 39 by its value from the above equation, recalling
that A is not a function of y, evaluating the integrals by means of
eq 26 and 32 and eliminating 0U/dx by means of eq 21, we have

QU 0A

2 e e
Ava—ZdA—l— Pas=—allz;+ @l —alP— el

Introducing a final coefficient of velocity distribution,
Uagza—-aU, (40)
the previous equation becomes, using eq 33,

ou ou_ 04 70A
AvaydA—i-waazmasU St + U ¥ (41)

We have now succeeded in evaluating all the terms on the left
of eq 22 in terms of functions of  and ¢ only, and proceed to the
terms on the right. In view of eq 25, the first two terms become
merely

] 1o ! OH ;
ngA dA— ;J\AE (p—R.r) dA=giA—g St (42)

since /1 is not a function of y or z.
The integral of the last two terms in eq 22 is transformed by Green’s
theorem into a line integral around the periphery of the cross section:

1 o 0 1
4 L [b—yRy,—%—a—ZR,, da=; FﬁR,ﬂdz—R,zdy.
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Expressing the line integral in terms of x as was done for eq 37 and 38,

1 0 257 1 ]
;LI:B?/RW _f“a_ZRzz]dA = — = § [mR” ST 'nRu]dX-

Comparison with eq 14 and 15 shows that the integrand of the line
integral is the 2-component of the force which the fluid exerts on the
channel walls and the free surface. If we denote this shearing force
by 7, and assume that the shear on the free surface is zero, and define
7o to be the mean shear of the fluid on the channel walls and bottom

1
Toz—fT(lX, (43)
XJx
then we have

5 A R T,
pJ.:xI:a?/R“—'LC“IZR”]GZA‘”~ P we

Our choice of axes makes 7, positive, since 7, has the same direction as
U. We now define A the channel coefficient of friction,

2
o= x%, (45)
and eq 44 becomes
1 (0 0 AU ,
o (St 5o Jia= 20 (46)

Collecting the results of eq 30, 34, 41, 42, 46, and dividing them by
A, the desired integral of eq 22 is

OH oU oU Uods - .. \lE
g5o+3r+also+(1—a) 5 5= @7)

Aot TRrgR?

where R=A/x is the hydraulic radius of the channel. This is the
desired hydraulic equation of motion for gradually varied unsteady
flow in prismatic channels. It will be noted that only one coefficient
of velocity distribution enters into the final equation, the one related
to the distribution of the squares of velocities in a cross section.
This equation was derived on the basis of the assumption that the
flow was turbulent, which is the case usually met with in practice.
Nevertheless, the equation also applies to viscous laminar flow, since
the dynamical equations of motion, eq 13, are the same for both types
of flow, except that in laminar flow the quantities p,., . . ., are re-
placed by S.., . . . ,rather than by R,,, . . .. Itis tacitly assumed
that the flow pattern is such that the assumptions made concerning
the Reynolds stresses in deriving eq 22, 23, 24 are also true for the
viscous stresses. Finally, in laminar flow « and X become quantities
that may be calculated rather than ones that must be experimentally
determined.
2. COEFFICIENT OF RESISTANCE AS A FUNCTION OF H

If it is assumed that the coefficient A defined by eq 45 is a function
of H only, and is therefore independent of 6U/dt and dU/0z, then \ can
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be evaluated from the ordinary parameters of uniform flow. Since,
when the flow is uniform, U and H are constants, we have from eq 47
AU
2R,’

’I:=

or

Uy R
B \/ N (48)
where U, and R,, respectively, are the mean velocity and hydraulic
radius, for uniform flow.

We assume further that the propagation of the waves is restricted
to that type of turbulent flow in which the friction is determined by
the surface asperities independently of the Reynolds number. The
resistance law is then represented adequately by Manning’s formula
in the following form [5, eq 61, 80]:

1/6
v%:s.m(%:) ) (49)

0

where k, is the equivalent sand roughness [5, p. 713] of the channel
surfaces.

Equating the right-hand members of eq 48 and 49, we obtain

N\
)\=O.0305<ZTO>

Differentiating with respect to H,, the value of H for undisturbed
flow, we have

Eﬁ():_ﬁ—o m) (50)

since R, 1s a function of H,. For a wide rectangular channel, B=F
and

d\ A

b1 Ay 61y

3. VELOCITY OF PROPAGATION OF SHORT WAVES WITH
NEGLIGIBLE CURVATURE

Assuming an initial condition of uniform flow in a very wide
rectangular channel, let ; be the depth of the liquid and U, be the
mean velocity of flow in a cross-section. If the flow is disturbed, this
can be expressed by writing:

H(ZII, t) =H0+ h((l?, t))
and (52)
U(x; t) o U0+u(xx t);

for the depth and for the mean velocity. The quantity » will, in
general, henceforth signify the variation from U, the undisturbed
value of U, and h the variation from H;, the undisturbed value of H.

We replace H and U in eq 47 by their values from eq 52. Since the
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channel is rectangular, A is a linear function of H; since it is wide,
R=H; and H, and U, are constants, hence eq 47 and 21 become

oh 0 : 2
g&+§+a(Uo+u)gl;+(1—a)zgl(;’—i}?%l;=g@_}z_((%%, (53)
oh ) oh
b_t+ (H0+h)§‘;+(Uo+u)az=0. (54)

We now introduce two restrictions of a different kind. First, we
assume that « is very nearly equal to unity and hence the term con-
taining 1—a may be neglected. Secondly, we assume that

2 (55)
S NU2 O
Oh , ,0u _Oh
(III) Uso _H”a«b_t' (57)
On this basis eq 53 and 54 reduce to
oh ou o}
g+ 5+ Ung= =0, (58)
ol ou oh
5+ Hog, + Uss - =0. (59)

We differentiate eq 58 with respect to z and eliminate the terms
containing % by means of eq 59. This gives

o%h 0%h 0%h
a—tz‘{‘? Uo%t+(U02_gHo)a2:0- (60)

A particular solution of this is
h=F(@— wt), (61)
where F'is an arbitrary function, provided w, is a root of
w?—2 Uywy+ Ut —gHy=0.
The two roots are
wo= Uy~ gH,, (62)

and it is evident upon inspecting eq 61 that the wave is propagated
without change of form with the celerity, or velocity of propagation,
wo In the positive a-direction, since at time ¢4 (Az/w,), the wave profile
is displaced by Az from its position at time . When an observer is
moving with the current, that is, moving with the velocity U,, a wave
may be moving either downstream or upstream with respect to the
observer. In the first case, Uy<lwp, and the wave is descending; in
the second case, Uy>w,, and the wave is ascending. Accordingly,
the larger root of w, gives the celerity of a descending wave and the
smaller root the celerity of an ascending wave. In all formulas
containing an ambiguous sign the upper sign will pertain to descending
waves and the lower sign to ascending waves.
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It is now a simple matter to determine the function . From eq
61, we have
oh__ o,
ot “ox
Substituting this value of 04/dt in eq 59, it becomes

(63)

au/ Z/ro— Wy ah_
ot H, o

whose integral is

u-|— “’%+f(t) 0.

Since for any time ¢, at A=0, =0, then since the liquid is undisturbed
at infinity f(¢) =0, and

/
or in view of eq 62
u== Jg_E,IThIO, (65)

which states that the excess of the mean velocity of the particles in a
cross section under the wave is proportional to the wave height A.

It will be noted that the above equation for the celerity of waves,
eq 62, is the same as that developed for the motion of irrotational
waves in still water [1, eq 56], except that a constant velocity of flow,
U, is superposed on the wave velocities relative to the water, +/gH,.
This would appear to indicate that the friction due to turbulence
which is inherent in the undisturbed flow, U,, has no effect on the
propagation of waves. In general, the effect of turbulence cannot be
neglected, but in this case the assumptions made in deriving eq 62
restrict the size of the wave in such a way that the effect of turbulence
is negligible.

The physical significance of these mathematical assumptions will
now be investigated. Consider first

bu ah
(I1T) b +Iz <57
Replacing u by its value from eq 64, and bh/bt by its value from eq 63’
we have
h 1 Wy
H—()<<§<Uo—wo>. (66)
Consider secondly
ou __ou
Using the same relations as before, we have
h (O
E)<< Uo— Wo

Jbviously, the first condition is sufficient for the second.
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Both of these restrictions have no bearing on the fact that the
undisturbed flow is controlled by friction. They are necessary but
are not sufficient conditions for a wave to move without change of
form. A more significant restriction arises from the assumption that
the right-hand member of eq 53 is negligible:

NU+u)? _du.

2(H,+h) ot

Expressing the left-hand side in terms of w/U, and h/H,, and replacing
\ by its value from eq 48, we obtain, since Ry=H,,

( ol ( )2110)
9y Uoh A ou,

b!
1-|—H0

(IT) gi—

Eliminating « via eq 64, and transforming the right-hand side by
means of eq 63, we have

G D A
—wo(wo—Uo)<1+ > \Ho><<_

In contrast to conditions (I) and (II), where we obtained an
inequality comparing h/H, with a constant term which is determined
by the characteristics of the channel, we find in this case that both
sides of the inequality are functions of h. We are also confronted with
the fact that 0h/0x generally vanishes at the apex of the wave profile,
and hence the inequality cannot be satisfied at that point even if the
left-hand member also vanishes.

In order to arrive at a workable criterion for determining whether
the theory is applicable, we integrate both sides of the inequality
with respect to z, thus obtaining an average condition:

=2 o< I3

It is not feasible to integrate the left-hand side of this inequality unless
the function A(z,?) is given. It is therefore necessary to assume that

3 —2 —-—1

T]O U
1+~

110/ h
\H,

dr. (67)

Iv) "T’ﬂo— 1)21%«3 —27“;" (68)
and
U3t (69)
0
and eq 67 reduces to
f f 12-;” dz (70)
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where

2(.00 (TRE 3 Uo :
woU, (wo i Uo)

If the wave profile is such that (IV) and (V) are not both satisfied,
then eq 70 does not apply, and the integral on the left of eq 67 must
be evaluated. Assuming that the wave profile has a unique maxi-
mum height A, that 0k/0x is everywhere finite, that L is the length
of the wave, and that k is always positive, then eq 70 becomes

L_2
a,55B

where j is a fraction such that the volume of the wave per unit width
of channel above the undisturbed surface is jh,,L. This last inequality
is the desired average condition, one which restricts the length of the
wave. Waves fulfilling this condition will be referred to as short
waves.

In addition to this restriction on the length of the wave, we still
have the three conditions on the maximum height of the wave,
expressed by eq 66, 68 and 69; the first being derived from the ori-
ginal restriction (III), and the other two from the approximations
used in obtaining eq 71. Kach of the first two restrictions states
that the maximum height of the wave must be small with respect to
a constant determined by the channel parameters. For convenience
we shall express these constants in terms of Uy/+/gH,.

For descending waves, wo=U,~++/gH,, and eq 66, 68, 69 become

e 1 by )
M) e 2( Tty

il bl )
F

B=igH,

(71)

and
(V) —h—0<<1.

For ascending waves, wo= Uy—+/gH,,
and the same three equations become

(ITTh) [%«; :/g% i 1)
0

(IVb) <<ng - H0+ )

V) Igo<<1

and

These relations are made more intelligible by means of figures 6
and 7. The quantity h/H, must be small with respect to all of the
quantities plotted in the figure, that is, small with respect to the
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least of them. It will be noted that the theory breaks down com-

pletely for ascending waves in water of critical depth, that is, it does
not apply to the case of the hydraulic jump. The fact that it breaks

2
M

IMa Va

¥y

h
o

oy

Uo llch

FiGure 6.—Limitations on height of short descending waves moving without change
of form.

4 6

2

b I b

bl =
b

2
U°///g_H:

Fi1curE 7.—Limitations on height of short ascending waves moving without change
of form.

down for Uy/+/gH,=2 when the wave is descending is due merely to
the approximation used in deriving eq 71, and is not inherent in the
theory.
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Our three original assumptions thus indicate that if a wave is short
and of small height, and moving in a wide rectangular channel where
the undisturbed current is controlled by friction, the waves move
without change of form, and their velocity is constant. It was also
assumed in deriving eq 47 that the surface curvature is negligible,
and this restriction is still in force. The simple theory thus gradually
loses its applicability as the waves become larger and larger. This
case will be treated in the later sections.

4. PROPAGATION OF DISCONTINUITIES OF SLOPE

One of the simplest types of wave profiles which we can imagine
superposed on the initial uniform flow in a wide rectangular channel
is one which is polygonal in form, such as a triangle. We shall inves-
tigate the motion at a vertex of such a polygon, where the slope of
the wave is discontinuous.

We assume that at t=t,, the discontinuity of the slope 0h/0z is
located at the point z=ux,, and the water surface is represented by
two straight lines (see fig. 8). The mean velocity, U, and the depth,
H, will each be described by two distinct functions; downstream from
xy, we write U=U, and H=H,, and upstream from z, we write
U=U, and H=H,. We assume that both A, and H, have negligible
curvature, and that the channel is rectangular. Under these condi-
tions, eq 47 applies to each pair of functions, and we write, putting
a equal to unity:

2
bIIl+bU,+UlbUl : ;gl ; (72)
1
bHo aUg Z)U . )\UQZ
iy 5 ennel Ui=— S ey - (73)
i =1,
| t=to+4at .

|
|

Uz | Y

e | ——te

Halx,t) Hy(x,t)
] :
' !

Ly &y,

M= =7 ==\ "‘J"—\ =
///f i 7/ 2\ ‘“’/’J s tlﬂ?’:‘/é/: = \\"/‘//: \"’/—1/—:—”

N
S\eZ7 EWNES=
=

FicgurE 8.—Motion of a discontinuity in surface slope.

In a similar manner, we obtain from eq 21, since A is proportional
to H,

Z)Hl L laHl Ul

by oo g 20 (74

E)H 2 0H, o) Uz

= v T (75)



Translation Waves in Open Channels 485

Following Hadamard [13, p. 83], we introduce the following nota-
tion for the change in value of a derivative as the discontinuity is
traversed :

OH, bH] bH oU, bU1
or or

Subtracting eq 73 from eq 72 and eq 75 from eq 74, we have, since
H, U, and X\ are continuous,

ol o I el ]-o &
[DH]+ U|:6H:]+H[b(/:|_ (77)

where H and U are evaluated at x=wr,, t=t,. Since four disconti-
nuities are involved, we need two more relations.

In figure 8 the displacement of the discontinuity during the time
interval At is indicated. If AU; and AU, are the changes in the
mean velocities, then

2 bUlA +balt]1 (78)
A bUzA _l_bgz (79)

Similarly, if AH, and AH, are the changes in the height, then

bIL OH, (80)

AH,= A +—-Af;

bH2 OH, (81)

AH,= A -I—-wAt

Subtracting eq 79 from 78 and 81 from 80,

oU oU
Z[a]m“f[ﬁ i

OH oH
Zl:b—i A$+|:W At

since U and H are continuous. We denote the velocity of propagation
of the discontinuity, Az/At, by . Thus the last two equations become

R
Bl
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We now have a system of four homogeneous linear equations, eq
76, 77, 82, 83, in the four unknown discontinuities. Since the dis-
continuities do not vanish, the determinant of the coefficients must
vanish, and this relation gives

o— U=+ J7m. (84)

The velocity at the front of a descending wave, as shown in figure
9, will now be considered. In this case, @ is positive, and we see from
eq 83 that [0H/dz] and [0 /0t] have opposite signs, and since in front
of the wave, 0H,/0t=0, 0H,/0z=0, then behind the front of the wave,
0H, /0t >0, 0H,/0x<0. Now, U=U, and H=H, at the discontinuity,
and the velocity of the wave.front is

Q= Uy++/gH;; (85)

the positive sign is selected, since >0, regardless of the magnitude
of U, and H,. We thus see from eq 62 that at the front of such a
wave Q=w,. This analysis fails to give any information concerning
the change in the magnitude of the discontinuity. Such information
may be obtained by using Boussinesq’s equation for the velocity of
propagation of a wave-volume element. A typical case is discussed
in section I'V-6, page 498.

v

—

Fi1cUuRre 9.—The front of a descending wave.

5. EFFECT OF VELOCITY DISTRIBUTION ON THE CELERITY OF
SHORT WAVES

In the derivation of the celerity of short waves, given in section
111-3, page 478, it was assumed that 1—a is a small fraction that
may be neglected. This is generally true in practice, but we now
drop this restriction and thereby consider the effect of the velocity
distribution on the celerity of short waves. Retaining « and using
the assumptions of section I11-3, eq 55, 56, 69, the equation of motion,
eq 53 now becomes

oh , du QU Ut dh__
95 51 Tl t (1—‘1)—;]0— _’aT‘O' (86)

Even though 1—a is not negligible, it is still true that in practice
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o is of the same order of magnitude as unity. From eq 69 we
have therefore

=T dh b _ao— Tyl

(s RS O, o
Using the relation between h and u obtained in the previous analysis,
eq 64, this inequality reduces to

% Oh _Ou
(l—a)H—o a<<a)

and eq 86 thus becomes

ol 0 0 U, oh
ga—x+§—;+angg+(1—a>F§ S7="-

Differentiating with respect to z, assuming that a does not vary
with z, and eliminating the terms containing % by means of eq 59, we
find

0%h 0%h o%h
F +20£U°555—t+ (OtUoz"gHo)a—xz=0-

A particular solution of this is, as before,
h=F(z— wt),
where F' is an arbitrary function, provided w, is one of the roots of
we'—2aUywy+ (aUy*—gH,) =0.
The two roots are

wo=(1-+n) Uoi1/9H0+(ﬂ+ﬂ2)Uoz; (87)
where n=a—1. (88)

This is the formula giving the celerity of short waves when the
effect of the velocity distribution is considered. It will be seen that
7 1s the excess over unity of the ratio of the mean of the velocities
squared, taken over the different points of a section, to the square of
the mean velocity. A corresponding expression is given by Bous-
sinesq [3, p. 285, eq 265], which differs from the above only in the
values of the coefficients.

It is preferable that the value of » for a given case be ascertained by
observation. If this is not feasible, a value may be obtained by
considering the relation which exists between » and U, and u,, the
latter being the maximum velocity occurring at the surface of a wide
channel. A relation of this kind can be derived if it is assumed that
in a channel of great width the ‘“velocity defect,” that is, the dif-
ference between the maximum velocity u,, and the velocity « at a point
whose height above the bottom is z, depends only on the so-called
“shear velocity” [5, p. 709] and the relative depth of the water, and
is independent of the character of the asperities on the channel
bottom. Mathematically speaking,

Un— =1y f (£, (89)
where {=z/H,, and u, is the shear velocity,

Uy =~1gH,. (90)
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¥ Multiplying both sides of eq 89 by df, integrating from z=0 to
z=H, that is, from 0 to 1, putting

|, reyis=n,

and recalling that the mean value of u is U, we obtain
Um— U= Nytuy. (91)

Squaring both sides of eq 89, we obtain in a similar manner, using
eq 88, 31, 26,

Um?—2Um Up+ (149) Ug*=Nyu,?, (92)
where

j: F(©)*d¢=N,. Eliminating the shear velocity, wu,, between eq 91

and 92, and solving for , we obtain

which is the desired relation expressing 7 in terms of u, and U,

To determine the numerical values of N, and N, we make use of
some of Nikuradse’s experimental results concerning the velocity dis-
tribution in sand-coated circular pipes [14, p. 18-19]. The data in
table 1 were obtained by selecting three determinations of the velocity
distribution for each of six relative roughnesses. In Nikuradse’s
paper the data for each relative roughness are given in a separate
table, and the three determinations on the extreme right of each table
were selected, except in Zahlentafel (table) 13, where the first one and
the last two were chosen. In each case, velocity-defect ratios were
computed for each value of y/r, which corresponds to z/H, in our
notation, and the mean of these 18 determinations was entered in
table 1. Plotting curves for f(¢) and [f({)] 2 from these data and in-
tegrating numerically, it is found that 1 circular pipes, N;=2.52 and
N,=12.29. Since the ‘“velocity defect’” relation is the same both for
circular pipes and for open channels of great width these values of
N, and N, may be substituted in eq 93, which becomes

U g
n=0.94(v—0—1> ; (94)

An expression for n in terms of A may also be derived. Eliminating
U, between eq 91 and 92, we have

2
n=— N7y

Eliminating v, and U, via eq 90 and 48:
1= N:—N2)3,
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which becomes, when we replace N, and N, by their numerical values

n=2.97X\. (95)
TasLe 1.—Velocity defect as a function of distance from channel bottom.
z A=l 1 Unsty
Hy Uy Ho Uy
0.00 12.78 0. 50 1.75
.02 9.52 .60 1.23
.04 8.09 .70 0.81
.07 6.84 .80 .45
.10 5.99 .90 .189
.15 5.03 .96 . 067
.20 4.29 .98 .030
.30 3.21 1.00 . 000
.40 2.37

It will be recalled that in deriving eq 62 of section I-3 it was
assumed that « is nearly unity, that is, that » is small, and that this
restriction was removed in deriving eq 87. By comparing these two
equations we can establish an approximate relation;which will show
how small 7 must be in order that eq 62 may be used. s ,

Equation 87 may be approximated by

2 2 2
wo=(1-n) Uoi\/gH0<1+7]+2—n g_IJOO ’

and this reduces to eq 62 if

: Uy -
"ot 75T o < Uyt Vil

Dividing by U,, neglecting n* with respect to », using eq 48, this

becomes
1 /24 4
n[l—l—ﬁ\/x]«l—l—‘v/é—%; (96)

or, replacing g by its value from eq 95,

2.97>\[1+%\/-2%]<< 1+\/%-- 97)

Bazin’s inexhaustible store of experimental data furnishes an
example [15] of the improvement obtained by using eq 87 instead
of eq 62. The observed values, together with the results of the two
formulas, eq 62 and eq 87 are shown in table 2. These experiments
were conducted in the discharge channel of the Grosbois reservoir.
This channel was constructed of masonry, with the steep slopes of
0.101 in the upper part and 0.037 in the lower part. Before entering
the channel, the water drawn from the reservoir flowed over an apron
11.20 m wide just below the gates, and which narrowed down to 1.80
m (the width of the channel). The axis of the apron described an
arc of 90°, with a radius of 40.50 m, in order to join with the channel.
As a result of the narrowing of the cross section and the change of direc-
tion of the apron, the flowing water was subjected to various reflec-
tions at the walls and these complex movements set up waves which
passed rapidly down the channel at fairly regular intervals of about 2

524586—43—b5
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sec (31 per minute). These waves were rather small in height, but
their transit was easily observed owing to the slight noise which
accompanied them.

i The observed values of w, given in the table 2 are the averages of
six individual observations, the 4 term representing the standard
deviation. The values of 7 are computed from eq 94. The table
shows that the values of w, computed by the simple formula, eq 62,
are considerably in error, whereas the values of w, obtained from
eq 87 compare reasonably well with the experimental values.

£ _TaBiLe 2.—Ezperimental and calculated values of wy for torrential flow
Experimental data (¢=9.81 m/sec 2)
i Hy Uo Um w0
m m/sec m/sec m/sec
0.101 0.110 3.785 5. 51 6.25 +.07
.037 . 150 2.744 3.49 4.32 4,08
.037 . 235 3.481 4.55 5.75 +.06
Computed values eq 62 Computed values eq 87
o Error n wo Error
mfsec % m/sec %
4.82 —22.9 0.195 6.63 +6.1
3.96 —8.3 . 070 4.36 +0.9
5.00 —13.0 . 089 5. 65 -L7

1IV. SECOND-ORDER THEORY OF WAVE PROPAGATION

1. EQUATION OF MEAN FLOW WITH APPRECIABLE VERTICAL
ACCELERATION

Assuming that the liquid is flowing in a wide rectangular channel
(=0, and R,,=0), that the variation with z of the 2-component, u,
of the local velocity is negligible, or u=U(z, t) and that the assump-
tions made in section III-1 regarding the Reynolds stresses and the
orientation of the axes still hold, then the Reynolds equations for
turbulent flow, eq 10 become

2U, , AU _ . 13(p—R.)  12R,
“aTJrUH—-‘”_ p o s p 0z (98)
O_O(p—Rn)
b
and
ow 0w dw  13@+R) -
S Ua—l'w“a;— pyaTE i (99)

We shall eliminate p from the eq 98 with the aid of eq 99, and then
eliminate z by integrating over the cross section.
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We begin by evaluating w in terms of the other variables. Since
u="U and »=0, the condition of continuity eq 8 reduces to

w__oU
D75 S Ox
Integrating with respect to z, we have, since w=0 when z=0,
w=— zy
AN

which, using a condition of continuity of mean flow, derived from eq 21
on the basis of the assumption that A is proportional to Z,

OH OH oU
_DT'*‘ Ua—x‘I‘H'b?:O; (100)
reduces to e
-4
w= _a—t+ U—a—x h (101)

Replacing w in eq 99 by its value from eq 101 and neglecting squares
and products of the first derivatives of H and U compared with the
secolnd derivative, we obtain, since  and U are functions of z and
t only,
d(p—R,,) _p2U%H 2 OH., 1 o'H
% T H\E TTUxu o)
Multiplying by dz and integrating,

UH, D L
p_Rzz:pa+Pg(II_z)+PT 1"‘7%)(‘%2‘*'7]‘ W+U§ Tﬁ y

since at z=H, p—R,,=p,. We now differentiate the above equation
with respect to z, again neglecting the products of the lower deriva-
tives as compared with the higher derivatives, and the value thus
obtained for o0(p—R,,)/0z is inserted in eq 98. The resulting equation
is multiplied by dz and integrated from z=0 to z=H. Since (R,.).-o
equals 7, the shear on the channel bottom, and (R,,)._x is zero, we get

ol o7 OH K HU?*3H,K 2 OH 1 oH . U6 aNU#
a0t T3\ T ozt o2 asoe)=% 2’ (102)

upon replacing 7, by its value from eq 45.

This is the equation of mean flow for a wide rectangular channel
where the vertical accelerations are not negligible but the horizontal
velocities in a section are practically uniform.

2. HEIGHT OF WAVE AS A FUNCTION OF x AND ¢

Replacing dU/dz in eq 102 by its value obtained by solving eq 100,
and multiplying through by H, we obtain

QU OH O0H H*U?*/O*H
i Gt i it +T(w

20H . 1 OH
+ voroit tiaror

):gHi—%‘U”. (103)
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We again introduce the expressions

H(x; t) =H0+ h(x: t):
and (52)
Uz, t)=U,1+-u(z, t).

Substituting in eq 100, we have

oh ou Oh , ,ou , Oh

b_t+H°a_x+ U°$c+ha7c+“a_x=0’ (104)
while eq 103 becomes

du_ .. oh dh . du Ok oh
Hy3,— Ussi+ (gHy— U 5, +hsr—ugy + Gh—2Um)

H2UM O 2 R, )k Oh\,_ 470 A
+ 3 (550‘3 ﬁobﬁbt-l_beat“’)‘qu’—EUz’ (%)

when %2 is neglected with respect to Uy?, and in the term containing the
third derivatives, » and A are neglected in comparison with U and H.
Various assumptions as to the nature of the right-hand member will
be made in later sections.

The terms of small order in the left-hand members of the above
equations, that is, the last two in eq 104 and the last four in eq 105,
are simplified by introducing values from the first approximate solu-
tion:

wo— UL
U==2 i °h, (64)
and
oh oh
ST et (63)
From the latter and eq 61, we obtain the further relation
o*h 0%
oz
For the sake of brevity, we introduce the new variables
i
wy
and (106)
TR
=1——
Wy

and we also make use of the equation
gHy= (wo— U,)?, (107)

which is derived from eq 62. On the basis of the above relations, then
eq 104 and 105 become
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SIS+ Tdh+ (— T2 (77)=0; (108)
and
o /k R
Hobt ant (gHo UO)D +wo(wo UO)E)Z 27;
+k2H0 bh —gHi —U"- (109)

We now differentiate eq 108 with respect to ¢. In differentiating
the last term, which is of the second order, we use the relation

Br-+2)

since these small terms may be treated as functions of z-—wt [1, p. 73].
We next differentiate eq 109 with respect to z, and subtract this equa-
tion from the one obtained from eq 108. The result is

oth o*h
St H 20— OB UN S

24k, ko Hy? Ol o) N
e R e - (-1 ) I CREY

Whlcél is the fundamental equation for determining 4 as a function of
T and £.

This equation, which was derived from eq 102, has the same range
of validity, namely, it applies to flow in wide rectangular channels
where the horizontal velocities in a section are practically uniform.
This equation takes account of vertical accelerations, finite wave
heights, surface curvature, and friction.

3. CELERITY OF A WAVE-VOLUME ELEMENT

In order to integrate eq 111, the concept of celerity of a wave-volume
element, an essential simplification due to Boussinesq [3, p. 451], is
introduced. To define this concept, we consider the volume of the
wave per unit width of channel, above the undisturbed primitive level
of the liquid and between z, an arbitrary point, and «, for a descending
wave, and between z and —, for an ascending wave. Denoting
this volume by s, we have

a=fmhd:c and azfz hdz,

for descending and ascending waves, respectively. Recalling the
convention of signs introduced in section 111- 3, the above equations
become

o
P f R (112)

Imagine a plane, normal to the channel axis at the point 2, and which
moves in such a way that the wave volume in front of it, o, remains
constant. This velocity is the celerity of the volume element o, and
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is denoted by w=w(z, ). Differentiating eq 112 with respect to ¢,
we have .
)
O=:|: 5 a—tdxq: hw,

since by definition dz/dt=w, ¢ remains constant, and we assume that
the surface of the liquid is undisturbed at infinity, that is, A vanishes
at + . Differentiating the above equation with respect to z, we
have, regardless of choice of sign,

Oh , d
ot oz
which gives the relation obtaining between «» and h.

We now introduce the value of 04/t from eq 113 into the first two
terms of eq 111, thus obtaining

(hw)=0, (113)

o? o? o%h
—so(hw) =2 Uy (heo) — (GHo— U 35

0*(2+ky B* | KPH,* O%h fo) SN
e o %E‘}' 0 e gH@—‘z'U?)'

This equation is immediately integrable once with respect to z. The
arbitrary function of integration vanishes as a result of the previous
assumption that the surface of the liquid is undisturbed at infinity.
We thus have

fo) oh
26 +2 Uy () + G Ho— U)o

O[/2+4k, B* | k.H? 0% B
o (wo— Uo)az(’% FTO—I_ 23 : aﬁ)ngZ*EUz. (114)

We next transform eq 114 into a form which can be integrated.
In this process it is necessary to operate only on the first three terms

in the left-hand member. If we assume that w/w, is near to unity,
we may write as an approximation

w=u,(1+08(z,t)). (115)

Substituting this value of  in the terms under consideration, we obtain

o) 0 Oh
wogt(h—f—ha) +2onoa(h+h5) + (gH,— Uy .
Now using eq 113 and 107 we obtain
fo) o) o]
— o (1) g (48) -2, U (h+-18) + (o — 20 T o

Applying eq 115 again to the first term and eq 110 to the second term
(which can be done because hé is a small quantity), and cancelling
terms, we obtain

o) o]
o 2w°2b_a: (h&) +2¢, an—x (M) ’
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which can be written
fo)
—Wo (wo_ Uo) b_:i(Zha) 2

Hence eq 114 transforms into

fo) fe)
— wo(wo— Uo)a@’w) == wo(wo‘“ Uo) —CE

2 ky B2 ) R O

e
3 \H, 3 o) iHi—5U,

which, when integrated, gives

_2+kli k2H02 62,), —;— T -_l )
0= R 2 SRR ) aﬁ_2hwo(wo—U0)fim(gH’L 2U2 dz,

and hence from eq 115

.QL— 2+k1 i k2H02 a2h 1 *e -_l
wo—1+ 4 H1+ 6h W+2hwo(wo—Uo)L (gH% 2U2>dx. (116)

This is a general expression for determining the effects of wave
height, curvature of the wave profile, and friction, on the celerity of a.
wave-volume element. The integral containing the friction termr
requires further consideration before the actual wave profile can be
determined as a function of time.

It remains to evaluate that part u of the velocity 7 under the wave
in eq 52. Transforming the equation of continuity, eq 100, by means
of eq 52,

Oh , O

3t+5§(U°+u) (Hy+h)=0.

The result of subtracting eq 113 from the above is
o)
5l (Uotu) (Ho+h) —ho]=0.

Integrating, and using the boundary condition at = «, for all times
t, h=0, and u=0, we have

(Us+u) (Hy+h) —ho= U,H,,

or
w—'Uo
=773 11
u=g (117)
4. DEFORMATION OF THE WAVE PROFILE, ASSUMING
gHi—%‘U2=0

A natural assumption, in proceeding from eq 116, is that the right-
_ hand member (gHi—X\U?/2) 1s negligible. From eq 56 this implies that
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the waves are short, as described in section III-3. On this basis, eq
116 becomes

I 24k, b | k.H? 0%k
w—w0(1+—4— H(;—l— Gh b_z2 ) (118)
or when we introduce the values of ki, &, and w, from eq 106 and 62,
— 3h | Hy? 0%k
o—Uom T 1477 + 58 S0} (119)

Comparison with an earlier paper [1, eq 112] shows that this expres-
sion 1s equivalent to that for the propagation of an irrotational wave
relative to the mean velocity of flow, U;. The assumption that
gHi—\U?2 is equal to zero is thus tantamount to assuming that the
only effect of friction and slope is to superpose a constant velocity U,
on the wave, which itself is propagated without any change of shape
due to frictional damping or to the z-component of gravity.

The deformation of the wave profile, in a short time interval, is
determined by using eq 119. Equation 113 can be written

Oh oh , O
_a—t+ wob—x—l-ah(w—-wo) =()}

For small values of ¢, the integral of the above equation is
0
h=f(z— wt) —t5, [h(w—wq)]. (120)

In verifying this solution, we must use eq 110 when differentiating the
second term on the right, which necessitates assuming that this term
is small compared with the first term. In other words, the magni-
tude of the time interval in which this approximation is permissible
varies inversely with O[A(w—wp)]/0z. Clearly, since at t=0, we have
h=f(x), the function f represents the wave profile at the fiducial
instant. Finally, using eq 119 and 62, eq 120 can be thrown into the
form
—= 0 (3h? | H)? 0%
h=fe—oit) F o 37+ o ) (121)

For a discussion of the deformation of a wave of negligible curvature,
propagated without damping, the reader is referred to the earlier paper
[1, p. 89]. All the formulas on the page cited are directly applicable,
provided the expression 4/gH (1 . ..) isreplaced by U, ++/gH,(14-.. ),
wherever it occurs. This, again, is merely equivalent to superpos-
ing the velocity of flow U,, on the velocity of propagation of the
wave-volume element.

5. EFFECT OF FRICTION AND SLOPE OF BED ON THE PROPAGATION
OF WAVES

In the above solution of eq 116, the term gHi— AU?/2 was ignored.
If the wave is short, the influence of this term is negligible, as explained
in section III-3. For long waves, however, these effects become
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appreciable at distances sufficiently removed from the head of the
wave. The problem of determining these effects is considered sepa-
rately for the two cases, (I) >0 and U, >0, and (II) 2=0 and U,=0.
The first case will now be considered.

From eq 52, we have, after neglecting %2 in comparison with Ug?

gHi_%UZ’ngoi—%Uoz-l—ghi—)\Uou. (122)

Considering the first two terms of the Taylor expansion of A=X\(H)
at Ho, AN
x=xo+(d—ﬁ h, (123)

where Ny=N\(H,), and d\/dH is evaluated at H=H,. Replacing \ by
the above value, and neglecting the small hu term, eq 122 becomes

gHi—%‘U?;(/Hoi’—%OUo?ﬂLghi ;;]3 Ug'—NUgu.

From eq 48 we have
gHyi—RUR=0, (124)

that is, in uniform flow the effects of slope and friction are in equilib-
rium, and thus

gHi— YUP=ghi— %(—if%wg—xomu.

Evaluating d\/dH by means of eq 51 and 124, and introducing the
value of w from the first approximation, eq 64, the above equation
becomes

gHi— S U= —2(an— Uy, (125)
where o
3(.00 5 0 .
—_—— 12
f 3Uo(wo Uo)q ( 6)
Since from eq 112, do/dz= Fh, eq 125 can be written
gH@_—UQ :}:()wo(wo Uo)dz<ofl> (127)

Substituting this in eq 116, we have

2+k1 h k2H02 52h 0'f1
W= w0(1+ 4 ZI+ 6h 622 :th (128)

or introducing the values of k; and k&, from eq 106, and using eq 62

H2 2
e U°—i(‘/gH°<1+4H+6if gf 1i{‘l) (129)
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This integral of eq 116 is due to Boussinesq [3, p. 451], except that the
value of f; given above is new, being based on Manning’s quadratic
law of resistance developed in section ITI-2.

We now consider the sign of the quantity of;/h. If the intumescence
is everywhere positive or everywhere negative; that is, for all z, A= 0
or h=<0, then ¢ has the same sign as b, and o/hispositive. At thehead
of the wave this ratio vanishes, since o is of higher order than A, and it
increases toward the rear of the wave. Since f; is constant for a given
channel and depth of water in uniform flow, the absolute value of the
term varies in the manner just described, and itssign is the same as that
of f;. Upon examining eq 126 we find that f; is positive if (1) U, >w,
or (2) Uy<wo and 3w, >5U, and negative if (3) Uy<w, and 3wy<5U.
Comparison with eq 62 shows that (1) applies to all descending waves,
(2) to descending waves where Uy,?< (9/4)gH,, (3) to descending waves
where Uy>(9/4)gH,. Thus, except in the last case, the combined
effect of friction and slope on the damping of the wave is to cause a
diminution of the absolute value of the velocity of propagation with
respect to the velocity of flow of the various parts of the intumescence,
the effect increasing with increasing distance from the head of the
wave. The last case is of special interest. It has been shown else-
where [16] that if U,>>(9/4)gH,, the waves become unstable, a
phenomenon which is apparently closely related to the origin of roll
waves.

6. DEFORMATION OF A STRAIGHT SLOPING FRONT

We suppose that the wave is descending (fig. 10). Denoting the
slope of the front by 8, B=—tan ¢. Since we are only considering
waves whose profiles lie above the free surface, 8 is always positive.
Denoting, at =0, the position of the front of the wave by ), and the
value of the slope by 8, the equation of the wave profile is thus,

h=6o(x0"'x); = X, t=0;
h=0, = 29, t=0.
Equation 112 then becomes

_ Bo(@o—2)® T
0'—-‘_‘2—) xéxo, t—O, (130)
a=0 r= Lo, t=0.

Introducing the equation for the velocity of propagation of a wave
volume element, eq 128, we obtain from the above equations

24k
w=w0[l—|— —4%0160_{%0 (1?0”‘%)]’ (Céito, =0

If we write

00=2—‘_‘4—{[—I]zlwoﬁo_f‘21’ (131)

then the last equation becomes

w—wy=0,(xo—1x), =, t=0. (132)
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Ficure 10.—Deformation of the linear front of a descending wave.

Now let the position of the front of the wave at {=At be xz,’ (fig. 10).
The section which at time ¢=0 had the volume o in front of it has
moved from z to 2’, and the height has changed from 4 to A’. Since
the wave front moves with the velocity w, (section I111-4), while the
section at z moves with velocity w, we have

T — &' = (wy— w) At+ (xp—1), <2, t=0.
Using eq 132, we obtain
xo' — ' = (1—06,At) (xp—x), <z, t=0. (133)
But the volume ¢ in front of z is equal to the volume o in front of 2’,
and thus we have from eq 130 and 133
a,=%(ﬂco’—x’)2(1 1-20,A).

Comparison with eq 130 shows that during the time At¢ the linear
character of the wave front is preserved, but the slope has changed
from B, to 87,

B’ = (14-26,At) Bo. (134)
Putting

8 =60+ %t

we have from eq 134

%‘-;zzooﬂo, #=0, (135)

which enables us to determine the variation of the slope. Since B,
is positive, we find that if 6,>>0, the wave is becoming steeper, if
6,=0, the slope remains constant, if 6,<{0, the wave is flattening out.
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It is desirable to translate these conditions into relations involving
Bo- 7, and N\. Using eq 106, 126, 62, and 48, eq 131 becomes

%:zJﬁ*&"D’ | (136)
where =1 (2\/ 5 9> Since g, Ho, and g, are positive, we thus find

that if 8, >1, 6,>0; if B,=1, 6,=0; and if B<I, 6, <0. Accordingly,
we find that,

BO>(§\/ k/%—%)i, the wave is becoming steeper;
I A .
Bo= 3 )\/2z—§ i, the slope remains constant;

ﬁo<( 2\/ )\/2?3—%)’5, the wave is flattening out.

We now derive an expression for 8 as function of time. Since it
has been demonstrated that the wave front conserves its linear char-
acter, eq 135 holds for any value of #, and we obtain, using eq 135
and 136 and discarding the subscript which refers to t=0,

d63
N ) (137)

The solution of this diﬁeren’mal equation for the initial condition
B=PpB at t=01is

B=
— (Bo— 1) exp J T (138)
If I=0, the solution of eq 137 becomes
B:_ﬁo—l
-3 \/1—1 Bl (139)

and the slope continually increases.

We next suppose that the wave is ascending (fig. 11). Denoting
the slope of the front by g, f=tan ¢. We again suppose that the
wave profile lies above the free surface, which makes B positive.
Using the same method of reasoning as in the above, we obtain cor-
responding to eq 135 and 136,

a
20— 20,60,

=3 E(— T80
=2V H, o)y

where J=<—2- A—I—% )



Translation Waves in Open Channels 501

Thus, if 60><2\/ 9>z, the wave is becoming steeper;
N AY :
Bi= 3V 2-,{+§ i, the slope remains constant;

Bo \<3 —}—4)z, the wave is flattening out.

Ficure 11.—Deformation of the linear front of an ascending wave.

The expression for g as function of time, becomes
BoeJ
PRI

p= (140)

and if J=0, which for ascending waves can only be the case if the
slope, 7, vanishes, the latter reduces again to

6:——77
3 g (141)
=5

and the slope of the wave is continually increasing.

If it is desired to express 8 as a function of the distance z,’—u, tra-
versed by the wave, this is obtained by introducing (" —a)/w, in
place of  in the various expressions giving § as a function of ¢, since
the head of wave is traveling with the velocity w,.

7. CHANGE OF HEIGHT OF AN ABRUPT WAVE FRONT

In a wave having an abrupt wave front there is a discontinuity of
height at the wave front (fig. 12). If for some considerable distance
behind the front, the height is constant, the change of height with
time, or preferably with the dlsplacement of the front, can be readily
detelmlned using the Boussinesq formula for the velomty of prop-
agation of a volume element.



ch of the N ational Bureau of 8 tandards

502 J ournal of Resear

=0 e 0
he t=471
By ok el e S h
| | i |
:Xo :xc.+"°‘“t T
Ho |
: : } Uo He

TETE
NI\ TN === [V =V
wave front

1GURE 19.— Deformation of an abrupt
rtion of the wave,

=0, in the initial po
descending, that is,

F
It is thus assumed that at ?
} is constant, and the wave is

h=ho, T= %o t=0;
h=0, ZZ%e =

Since the wave is descending, eq 112 becomes
e=ho(@o—12), T=To t—=0;
=0, 2= %o, 1=0.

gation of a wave-volume element is thus from

The velocity of propa
eq 128, 106, 62

L !
w=w0[ +3Z‘—/%Io—°ﬁ—o+@w——?m], 2 < 2oy t=0. (142)

m this it follows that the velocity of the wave front, i, 18

39T ho i
e [T =0

behind the wave front, oh/0

Fro
(143)

Since the height is constant =0, and we

have
3’:-—%@, 1< 2, 1=0, (144)
and from eq 113
oh 0 145
—6—t=—'h0—5‘§:7 12<10, =0, ( )

dw/du=F1, and eq 145 now

Differentiating eq 142 with respect t0 %,

becomes
(146)

%_' —f1h0 x<x0, t=0.
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We consider two distinct values of z at =0, both behind the wave
front, denoting them by z, and a,, and write hi=h(x;), ha=h(xs).
After an interval of time At, let the height of the corresponding wave
elements be A" and hy’. Now

b — b=t = — oA,

and

dh

by —he="g3 dt

At=—fhoAt.

Since hy=h,=hy, we see that hl =h,’. 'This shows that the con-
stancy of height of the wave front is preserved. Replacing k by A in
eq 143, we see that the velocity of the wave front w, is

wl_w0[1+3 VoH, h . | 1=t (147)

Wy

Again replacing h, by A, eq 146 now becomes

=—fh, <zt L wt. (148)

Integrating this equation, and using the initial condition h=h, at
t=0, we obtain A as a function of ¢

h=hge "2, x<zo+ﬁtw,dt. (149)

If it 1s desired to determine % as a function of the distance z,’ —u,
traveled by the wave front, we write from eq 147 and 148

dh _—f 31/gHo
day woh[ 4w Ho] (150)

since dxy’/di=w,; and 3h~/gH,/4wH, is required to be small with
respect to unity. The solution of this differential equation for the
initial condition h="h,, at x,’ =1, is

(8o}

h 4 Wy [fl(ﬁ'() 220 )]

A 151

k3 Vol ho : 62D Vel
Wy Ho

8. SOLUTION OF THE WAVE EQUATION WHEN SLOFPE AND FRICTION
ARE NOT NEGLIGIBLE

The significance of introducing w, the celerity of a wave-volume
element, lies in the fact that the integration of the wave equation, eq
111 becomes equivalent to solving

Oh , d
5t 5z = (113)
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where w is given by eq 116, or in this particular case by eq 128.
Although the general solution is complicated, if it be assumed that
0%h/0a? is negligible, compared to 6h/H%k,, the problem is consider-
ably simplified. This assumption requires that the curvature of the
wave profile be small. We thus obtain from eq 129 and eq 62:

=Rt (o U1+ 30, W F s (152)
and eq 113 becomes
St it Caom U (14577, ) [ S =~ (153)

since d¢/dz=F h. The general solution of this differential equation is

3}?/61

—@wwom> ﬁwmmm (154)

where ® is an arbitrary function. This integral is due to Boussinesq
[3, p. 457, eq 392] and Favre speaks of it as one of the Boussinesq
integrals [6, p. 106].

In determining the arbitrary function ®, two cases are of particular
interest; (1) the channel is infinite in both directions, and (2) the
channel has an entrance and is infinite in only one direction. In the
first case, if for ¢=0, h is a known function of z, — o <2<, then ®
can be obtained directly. Let the function be A=¥(z), {=0. Put-
ting t=0 in eq 154, we have z=®(h), =0, hence in this case & is
simply the inverse of ¥. In the second case, ® is determined from
the boundary condition A=y (t) at the channel entrance =0, but in
this case the evaluation is indirect and tedious. At z=0, eq 154
gives

@(heflt)z—[wo+(wo U°)23I]:I eng’ ’ ]t. (155)

In general, the form of the equation does not permit solving explicitly
for either ¢ or A, hence it is necessary to evaluate ® numerically. By
considering values of ¢ in the range — « to 4 «, and the corresponding
values of h at the entrance, using h=y(f), the magnitude of the
independent variable can be computed. Corresponding values of @
are obtained from the right-hand member of eq 155 by inserting the
same values of A and ¢ used to evaluate he'/;.

9. INTUMESCENCES PRODUCED BY OPERATING LOCKS IN A CANAL
CARRYING WATER

‘We now consider a practical example of case (2) above which can be
treated by a simpler method. In many cases the canals leading to
and from hydroelectric plants are also used for navigation, and a
lock is provided to bridge the difference in head utilized by the plant.
Whenever this lock is emptied, a positive wave is produced in the
downstream canal, and, whenever it is filled, a negative wave is pro-
duced in the upstream canal. The former, of course, travels down-
stream, whereas the latter travels upstream.
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Because of such design considerations as the possibility of over-
topping the embankments, it is desirable to predict by computation
the magnitude and deformation of these waves. Ordinarily the
discharge from the lock is a continuous function of time, the exact
relation being obtained from computation or model experiments. The
waves produced by operating the lock are small in height and long
enough so that the curvature 1s negligible, and thus eq 154 is applicable.

As far as this analysis is concerned, the lock constitutes a termina-
tion of the canal, and the boundary conditions of case (2) apply.
The complications of this case are eliminated by a method due to
Favre [6, p. 112], which is based on the fact that the distance traveled
by the wave is very large compared to its length. The initial shape of
the wave is computed for the initial time ¢{=0, in the form A=V (),
assuming that the effect of friction is negligible during the short time
interval required for the formation of the wave. This function is then
used to determine ®.

Let the discharge at the lock per unit width of channel be represented

by the function

g—1 () ir==0. (156)
As a result of the above, we may also write

$=F(g); 20, (157)

It follows from eq 154 that the form of the wave at the moment
it is produced and shortly thereafter, neglecting the effect of friction
during the genesis of the wave, is represented by

—[wo+<wo U°>2H t+a ), (158)

sinve Lim ZRUE—1)

=1. From eq 52 and 117 the mean velocity
-0 t T

in a cross section beneath the wave is
U,
e Al

Neglecting the effects of friction and curvature in eq 129, this becomes,
using eq 62 7

¢ T 2% Uo)(1+4H e (160)

U=U,+2 78 (159)

The discharge per unit width at 2=0 is thus
g=HU=Us(Hot)+ (o= U 1+ 57 Ji=f @), 2=0.
Comparing this equation with eq 157 we have

t=F(UaHot 1)+ (a0 U1+ 357 ), 2=0,  (16)

524586—43——6
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which expresses h as a function of ¢ for =0, and thus serves to deter-
mine the arbitrary function ® in eq 158. Placmg z=0 in that equa-
tion, we have

2(0) =—[ ant (o= To)ggr (162)
and from eq 161

8() =—[ t (o= V) g5 [FOalHot 1)+ (o= T 14255 - (163)

Since the function ® in eq 158 is the same as the function ® in eq 154,
we write for the second term in the right-hand member of this equation,

3helt

& (het) = —[wo+ (wo— Uo) :IF( U, (Hy+ he't)

e Uo>(1+3’” e, (164)

The solution of a typical problem will now be described in detail.
It is desired to find the wave profile in the canal at any instant ¢ when
the discharge is given as a function of time, Q/b=q¢=f(¢), b being the
width of the free surface of the canal. We shall assume that the
discharge first increases and then decreases, as shown in figure 13.
This will create a positive surge in the discharge canal and a negative
surge in the supply canal. The origin in figure 13 is conveniently
chosen to correspond to the instant of maximum discharge. The
abscissa ¢ is, of course, expressed in seconds, and the ordinate, ¢, in
any convenient unit of discharge per unit w1dth such as square feet per
second. In eq 154 and 164, upon which the solution depends, U, and
wo will have to be expressed in corresponding units of velocity, such
as feet per second.

|
_@\;
/

5°
e - —
e = e o - o

17 0 R7 ] t

Fic. 13.—Discharge from supply canal as a function of time: Q/b=q=f(t), eq 156,
or t=F(q), eq 157.

The positive surge in the discharge canal will now be considered.
The quantities U,, H, B, and % are determined from measurements of
the steady flow. The coefficient of friction, Ay, is then determined from
eq 48. All the quantities needed to determine wy from eq 62, and f;
from eq 126 are thus available. Note that the positive sign in eq 62
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is selected, since the wave will be moving downstream. A small posi-
tive value of & is now selected, which we shall denote as k;. The argu-
ment of the function F' in eq 164 is computed, using the value of ¢
corresponding to the instant for which the wave profile is desired. As
is seen from eq 157, this gives a corresponding value of ¢, which we shall
call ¢;. 1If ¢ 1s greater than the maximum value of ¢ which is actually
obtained, this signifies that h; was higher than any point of the intu-
mescence. It will be advisable to select h; very small at first and then
increase it until the top of the curve in figure 13 1s attained. The values
of ¢ corresponding to h; will be denoted by ¢;; and %, since, there will
generally be two of these, the first positive and the second negative.
This is clearly indicated in figure 13. These two values, t;; and t5, are
thus the desired values of the function F' occurring in eq 164, and the
two values of the double-valued function ® can now be obtained by
replacing h in the coefficient of F' by the quantity #;. Turning now to
eq 154, replacing & by A, and ¢ by the value corresponding to the instant
for which the wave profile is desired, we obtain two values for z, cor-
responding to the original value A, which we shall denote by x;; and
z1. These are the abscissas of the points on the profile having the
height %, (see fig. 14). The whole process is repeated for greater
heights, Ay, hs, . . . , until sufficient points are determined to estab-
lish the contour of the wave.

The process for determining the negative surge in the supply chan-
nel is exactly the same, except that in eq 62 the minus sign is chosen,
since the wave is tmvelmo upstream. The quantities A;, . . . . and
Ty, Z12, - - . , Will be negative, as shown in figure 15.

‘—\
XII
Xiz —————m I

Ficure 14.—Profile of descending wave in discharge canal.

10. EFFECT OF FRICTION ON WAVES WHEN THE SLOPE OF THE
BED VANISHES

We now consider case (II) of section IV—-5, 2=0 and Uy=0. The
determination of the positive sense of the 2z-axis on the basis of the con-
ventions in section ITI-1 fails, since there is no flow. Furthermore,
the terms ‘“‘ascending’” and ‘‘descending’”’ waves explained in section
ITI-3 fail to have any significance, since we have no method of dis-
tinguishing the upstream from the downstream direction. We thus
are forced to make an arbitrary choice of the positive z-direction, and
consider downstream to be in this direction, A descending wave thus
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FicurE 15.—Profile of ascending wave in supply canal.

becomes one for which wy >0, and an ascending wave one for which
wp< 0, that is to say, a descending wave is propagated in the positive
z-direction, and an ascending wave is propagated in the opposite
direction, since our hypothetical observer is stationary and the down-
stream direction coincides with the arbitrarily chosen positive sense
of the z-axis.

Since 7=0 and Uy=0, it follows immediately from eq 52 that

gH'—%ZJZ’:—%‘uz. (165)

It has previously been tacitly assumed that U was always positive,
that is, » was smaller than U, so that U and U, had the same sign.
Since in this case U,=0, this assumption is no longer valid. The
sense of the friction is always opposite to that of the velocity, and thus
if u is negative, the sign of the right-hand member of the above
equation must be changed, since we wish to keep \ positive, regardless
of the sign of 7, From the first approximation, eq 64, u=wh/H,, and
thus the velocity must have the same sign as wh. We introduce the
new parameter

Fo=s if ah>0;
(166)
Fomm 30 i wh<0;

and obtain from eq 165

% b\
gH —§U2=—2w0(170 ' (167)

The difference between \u? and M’ is a quantity of the order being
neglected in this analysis. If we introduce the quantity

Aok f hida, (168)
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then since do’/de= Fh? we can write eq 167 in the form
sl N d( o
oHi—50= 22007 1) (169)

Substituting this in eq 116, we have for the velocity of propagation
of a volume element

= 2+k1 i k2H02 92_}1/ [Of) U’_fg

w_w0<1+ 4 H0+ 6h azzq:OJQ_ (Jrom :

Since in this case U,=0, we see from eq 106 that k,=k,=1, and thus
_of(1a 3 HE TR T,

“’_“’°<1 tim, o bxz:FFFTf)'

Consider the sign of weo’fo/hH,?, which equals w)’e’fo/wohIl,®. Since
from eq 168, ¢’ is always positive, it follows that the sign of the above
is the same as that of fo/wh. But from eq 166 f, has the same sign as
woh, hence the original term is always positive. In accordance with
the convention of choice of signs for descending and ascending waves,
the choice in eq 171 is always opposite to that of the sign of w,. There-
fore, the effect of friction on the celerity w when 7=0, U,=0, is to
diminish its absolute value by an amount which increases with the
distance from the head of the wave.

(170)

(171)

11. SOLUTION OF THE WAVE EQUATION WHEN THE SLOPE
VANISHES BUT FRICTION IS CONSIDERED

As in section IV-3, the problem is to solve
Ooh , O
i+, (k) =0, (113)

where w is given by eq 116 or, in this particular case, by eq 171. For
the reasons mentioned in the same section, we assume that 0°%h/0x*is
negligible. Equations 171 and 113 thus become

= 3h _o'fy (172)
w—w0<1—]—4H0:FhHO2):
and
X oh 3h\oh_ kO (173)
a“(“m)a- *f'ﬂ*’o(ﬁo) ’

respectively, since do’/de=TFh?. Assuming that the wave is every-
where positive or everywhere negative, then f; is constant, and the
general integral of the above differential equation is

o 3 Iog(l —%‘?ht) h
T=uwy 1-}—‘2ﬁ0 s soreudl Y l—fi‘%ht ) (174)
——'mht H,

where @ is an arbitrary function. This is Boussinesq’s second integral

[3, p. 454 eq 393]. ;
Regarding the determination of this arbitrary function, we consider

the same two cases as in section IV-8: (1) the channel is infinite in
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both directions, and (2) the channel has an entrance which is infinite
in only one direction. In the first case, if for t=0, A is a known func-
tion of z, — » << =, then ® can be obtained dlrectly Let the func-
tion be h= ¥(z), t=0. Putting =0 in eq 174 we have 2=®(h), {=0,
hence in this case ® is simply the inverse of ¥. In the second case, ®
is determined from the boundary condition h=y¥ () at the channel
entrance z=0; but in this case the evaluation is indirect and tedious.
At =0, eq 174 gives

fzwo
oy s ) el QP 5 htﬂ (175)
< f2woht> et 0 2H0 Hft";ﬂht _l

In general, the form of the equation does not permit solving explicitly
for either £ or h, hence it is necessary to evaluate ® numerically. By
considering values of ¢ in the range — to -+, and the corresponding
value of & at the entrance, using h=y(t), the magmtude of the inde-
pendent variable can be computed. Corresponding values of & are
obtained from the right-hand member of eq 175 by inserting the same
values of & and ¢ used to evaluate

These methods are precisely analogous to those discussed in connection
with eq 155.

12. INTUMESCENCE PRODUCED BY OPERATING LOCKS IN AN
ORDINARY CANAL

In contrast to canalized rivers and hydroelectric canals, such as
discussed in section IV-9, ordinary canals contain still water except
when disturbances are set up by the operation of the locks. The
general considerations at the beginning of section IV-9 (through eq
157) also apply to this case, except that =0 and U,=0, and hence
we must consider case (2) of eq 174.

The discharge per unit width at the lock is again represented by

q=f(®), z=0, : (156)
or by the inverse function
I— Hilg) =} (157)

Neglecting the effect of friction during the formation of the wave
and shortly thereafter, we obtain from eq 174

,(90(1 e )t+q><h), (176)
log{ 1 f2w°ht>
since Lim =
>0 Qtht

Tz
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For the mean velocity in a cross section beneath the wave, eq 52,
117, 171 give

U=w0(1 + Ho) e (177)

since Uy=0, and friction and curvature are neglected. The discharge
per unit width at 2=0 is, therefore,

3h
QZHUZQ)OIL(]. —i—m); r—0: (178)
Substituting this value of ¢ in eq 157, we obtain

t=F(woh<1 +5 HO» (179)

But from eq 176

<I>(h)=—w0<1+23—g—>t, £, (180)
or from eq 179 ;
b (e ——w0(1+ 3h )P(woh<1+ o )) (181)

Since this function ® in eq 176 is the same as the function @ in eq
174, we have for the right-hand member of this equation,

h e 3h
q’( 7};‘;’%) “"’I: 2H0<1 I 2“"’ht>:|
woh
F _Jaw 15 fg(l) > (182)
( Iflght[ 4H0(1— tht>

Equations 174 and 182 are used to determine the wave profile at
any instant ¢, as is described in section IV-9.

13. LIMITATIONS OF BOUSSINESQ SOLUTIONS

It is necessary to emphasize the fact that the second-order theory,
which is based on the concept of the velocity of propagation, w, of a
volume element, is subject to certain important restrictions. The
most general expression for « is given in eq 116. In deriving this
equation, the important assumption was made that w/w, is nearly
equal to unity.

‘We shall now turn our attention to the specialized equations derived
from eq 116. These are eq 118, 128, 171. KExamination shows that
in each case, w/wo——1+(correct10n terms) The restriction on the
theory thus requires that these terms shall be small compared to
unity. The first term, which is common to all equations, is (2--k)h
/AH,. 'This merely requires that h<4H,/(2-+k;). The second term,
which expresses the effect of curvature, requires that (0%/ bxz)/h
<6/Hk:. We see from this, that (0%h/0x*) must vanish to a higher
order than h.

The third term, which appears only in eq 128 and 171, expresses the
effect of friction. These two equations are applicable only when
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afi/woh or o’f;/RHy?, respectively, is small. But ¢ and ¢’ can be made
as large as we please merely by considering longer and longer intumes-
cences, and if the intumescence has a finite volume, A approaches zero
at the tail whereas ¢ and ¢’ remain finite. This shows that the term
under consideration may be large, or even infinite. In view of this
fact, it may be expected that these solutions will give correct values
only in the frontal portion of the wave where o/h and o’/h are small.
It should be noted that this remark applies with equal force to the
Boussinesq integrals, eq 154 and 174.
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throughout the country, such as public libraries in large cities, and colleges and
universities, where they may be consulted.

A mailing list is maintained for those who desire to receive announcements
regarding new tables as they become available.
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