U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

RESEARCH PAPER RP1501

Part of Journal of Research of the National Bureau of Standards, Volume 29, October 1942

PERFORATED COVER PLATES FOR STEEL COLUMNS: COMPRESSIVE PROPERTIES OF PLATES HAVING OVAL-OID PERFORATIONS AND A WIDTH-TO-THICKNESS RATIO OF 68

By Ambrose H. Stang and Martin Greenspan

ABSTRACT

Tests were made to determine the mechanical properties of perforated cover plates intended to be used as a substitute for lattice bars or batten plates in built-up box-type columns. Each column was built up from one perforated plate and either two or four angles. Columns with unperforated plates were used as controls.

This paper gives the results of the tests on columns having plates of three different perforation spacings. The plates had ovaloid perforations and a width-tothickness ratio of 68.

It was found that the perforated plates contributed to the strength and to the stiffness of the columns. The factor of stress concentration, due to the pe-forations, varied from 2 to 2.6 based on the gross area (1.7 to 2.1 based on the net area).

CONTENTS

		rage
I.	Introduction	280
II.	Cover-plate columns	280
	1. General	280
	2 Dimensions	281
	3 Condition of ends	282
TIT.	Procedure	282
	1. Coupons	282
	2 Columns	282
	(a) Elastic range	282
	(b) Maximum load	282
IV.	Results	283
	1. Coupons	283
	2. Columns	283
	(a) Modulus of column and effective area of plate	283
	(b) Stresses	284
	(1) On the edge of the perforation	284
	(2) On the surfaces of the plate	287
	(c) Maximum-load test	300
	(1) Stress-strain graphs	300
	(2) Deflections	300
	(3) Maximum load and effective area of plate	300
V.	Summary	302
	1. Modulus	302
	2. Stress distribution	302
	3. Strength	302

I. INTRODUCTION

This paper is the third of a series dealing with the mechanical properties of perforated cover plates intended to be used as a substitute for lattice bars or batten plates in built-up box-type columns. An outline of the program and description of the test methods were presented in RP1473 1 and the results for plates having ovaloid perforations and a width-to-thickness ratio of 40 were given in RP1474.²

In this paper are presented the test results for the C_4 series of These plates were 25.5 in. wide by % in. thick, thus having plates. a width-to-thickness ratio of 68. The perforated plates of this series had ovaloid perforations 11.5 in. wide. The net to gross cross-sectional area ratio was 0.55.

II. COVER-PLATE COLUMNS

1. GENERAL

The details of the C_4 plates and of the angles are shown in figure The perforated C_4 plates were all of the same nominal dimensions 1. as to length, width, and thickness, and number, size, and shape of perforations, but they differed with regard to perforation spacing (i. e., the distance between centers of adjacent perforations). The perforation spacing was 35 inches for the C_{4A} plates, 47 inches for the C4B plates, and 59 inches for the C4C plates. The C4D plates had the same nominal dimensions as the perforated C4 plates but had no perforations.

Each plate shown in figure 1 represents three like plates, designated (0-1), (2-3), and (4-5), and the angle shown represents many like angles which were used interchangeably with the plates to form the columns of which the cross sections are shown in the figure. The angles used with the plates to form the columns are given in table 1.

Column designation ¹	Angle designations
$C4A (\longrightarrow)$ two angles $C4A (\longrightarrow)$ four angles	C5C (4-5), C5M (0-1). C5C (4-5), C5M (0-1), C5D (2-3), C5E (2-3)
C4B () two anglesC4B (C5C (0-1), C5E (2-3). C5C (0-1), C5E (2-3), C5A (2-3), C5D (2-3).
C4C () two angles C4C () four angles	C5B (0-1), C5D (2-3). C5B (0-1), C5D (2-3), C5A (2-3), C5E (4-5).
$\begin{array}{c} C4D () \text{ two angles} \\ C4D () \text{ four angles} \\ \end{array}$	$\begin{array}{c} C5L \ (0-1), \ C5M \ (2-3). \\ C5L \ (0-1), \ C5M \ (2-3), \ C5C \ (4-5), \ C5E \ (2-3). \end{array}$

TABLE 1.—Angles used for the C4 columns

¹ The three columns represented by each of the above designations contained the same angles.

¹ Ambrose H. Stang and Martin Greenspan, Perjorated cover plates for steel columns: Program and test methods. J. Research NBS 28, 669 (1942) RP1473. ² Ambrose H. Stang and Martin Greenspan, Perjorated cover plates for steel columns: Compressive prop-erties of plates having ovaloid perforations and a width-to-thickness ratio of 40. J. Reserch NBS 28, 687 (1942) RP1474.

2. DIMENSIONS

The dimensions given in figure 1 are nominal. There were the usual commercial variations in the thicknesses and widths of the plates and angles. The variations in the dimensions of the perforations were considerably greater; for some plates the difference between the minimum and maximum perforation width was of the order

281

of 0.1 in. The cross sectional areas of the plates and angles, computed from the measured dimensions, are given in table 2.

Plates	Angles			
Designation	Gross area	Net area	Designation	Area
$\begin{array}{c} C_{4}A \ (0-1) \\ C_{4}A \ (2-3) \\ C_{4}A \ (4-5) \\ C_{4}B \ (1-1) \\ C_{4}B \ (2-3) \\ C_{4}B \ (2-5) \\ C_{4}D \ (2-5) \\$	$\begin{array}{c} in.^{2} \\ 9.60 \\ 9.63 \\ 9.63 \\ 9.77 \\ 9.74 \\ 9.72 \\ 9.65 \\ 9.64 \\ 9.64 \\ 9.51 \\ 9.43 \end{array}$	<i>in.</i> ² 5. 31 5. 33 5. 35 5. 32 5. 40 5. 36 5. 38 5. 38 5. 32 5. 33	$\begin{array}{c} C5A \ (2-3) \\ C5B \ (0-1) \\ C5C \ (0-1) \\ C5C \ (0-1) \\ C5C \ (2-5) \\ C5D \ (2-5) \\ C5E \ (2-5) \\ C5E \ (2-5) \\ C5E \ (4-5) \\ C5E \ (4-5) \\ C5E \ (4-5) \\ C5M \ (0-1) \\ C5M \ (2-3) \\ \end{array}$	<i>in.</i> ² 5.7 5.7 5.7 5.7 5.7 5.7 5.8 5.7 5.8 5.7 5.7 5.7

TABLE 2.—Cross-sectional areas of plates and angles for C4 columns

3. CONDITION OF ENDS

The plates and angles had been prepared with unusual care, so that the ends of the columns were reasonably flat. However, the ends were not flat in the sense that milled ends are flat. When the columns were stood on end on a flat steel plate, a definite tendency to teeter was observed.

III. PROCEDURE

1. COUPONS

Coupons representing the plate and angle material were cut in the direction of rolling and tested in tension. Young's modulus of elasticity, E; Poisson's ratio, ν ; yield point; tensile strength; and elongation were determined.

A composite sample of the C4 plate material and a composite sample of the angle material were analyzed for carbon, manganese, phosphorus, and sulfur.

2. COLUMNS

(a) ELASTIC RANGE

The shortening under load in the elastic range was determined for each column. The strains in the edge of the middle perforation were determined for each perforated-plate column. The strains in the surfaces of the plate were determined for the middle bay of one of each group of three like perforated-plate columns having four angles. The distribution of stress in the middle bay of each of these columns was calculated from the strain data, and the values of the elastic constants obtained from the coupon tests.

(b) MAXIMUM LOAD

One two-angle column of each group of three like two-angle columns was subjected to maximum-load test after the bolts had been replaced by rivets. Data to complete the stress-strain curves and data for stress-deflection curves were taken.

IV. RESULTS

1. COUPONS

The results of the tensile tests of the coupons are given in table 3.

Coupon designation	Thickness	Young's modulus of elasticity, E	Poisson's ratio, v	Yield point	Tensile strength	Elongation in 8 in.
	1	PLATE COU	JPONS			•
C4A(1-2) C4A(3-1)	In. 0.376 377	Kips/in. ² 29,700 29,700	0. 281	Kips/in. ² 38. 0 38. 1	Kips/in. ² 59.7	Percent 33. 6
C4B(1-2)	. 385	30,000	. 284	38.7	61.6	28.9
C4B(3-4)	. 382	29,700	. 280	37.8	59.4	32.5
$C_4C(1-2)$. 381	29,900	. 288	37. 2	59.1	33. 5
$C_4C_{(3-4)}$. 377	29,800	. 284	38.4	61.2	34.8
$C_{4}D(1-2)$	377	29,700	. 283	38.0	59.7	30.8
C4D(3-4)	.373	29,700	. 286	38.0	59.7	34. 5
Service present de la company		NGLE COL	TRONG	104-112 1		
		INGUE COU	TONS			
C5A(1-2)	0, 510	29,600	0, 286	36, 3	59,0	33. 5
C5A (1-2) C5A (3-4)	0. 510	29, 600 30, 000	0. 286	36. 3 35. 6	59. 0 58. 7	33. 5
C5A (1-2)	0.510 .506 .506	29, 600 30, 000 29, 700	0. 286 . 290 . 286	36. 3 35. 6 36. 0	59. 0 58. 7 59. 5	33. 5 33. 5 31. 3
C5A (1-2) C5A (3-4) C5B (1-2) C5B (3-4) C5B (3-4)	- 0. 510 	29, 600 30, 000 29, 700 29, 700	0. 286 . 290 . 286 . 278	36. 3 35. 6 36. 0 35. 9	59. 0 58. 7 59. 5 58. 7	33. 5 33. 5 31. 3 35. 8
C5A(1-2) C5A(3-4) C5B(1-2) C5B(3-4) C5C(1-2) C5C(1-2)	0. 510 . 506 . 506 . 510 . 510 . 508	29, 600 30, 000 29, 700 29, 700 29, 400	0. 286 . 290 . 286 . 278 . 281	36. 3 35. 6 36. 0 35. 9 36. 5	59. 0 58. 7 59. 5 58. 7 58. 8	33. 5 33. 5 31. 5 35. 8 31. 3
C5A(1-2) C5A(3-4) C5B(1-2) C5B(3-4) C5C(3-4) C5C(3-4)	- 0. 510 506 506 	29, 600 30, 000 29, 700 29, 700 29, 400 29, 700	0. 286 . 290 . 286 . 278 . 278 . 281 . 286	36. 3 35. 6 36. 0 35. 9 36. 5 34. 8	59. 0 58. 7 59. 5 58. 7 58. 7 58. 8 58. 3	33. 5 33. 5 31. 3 35. 5 31. 3 35. 5 31. 3 33. 0
C5A (1-2) C5A (3-4) C5B (1-2) C5B (3-4) C5C (1-2) C5C (2-2) C5C (3-4) C5D (1-2)	- 0. 510 506 	29, 600 30, 000 29, 700 29, 700 29, 400 29, 700 29, 800	0. 286 . 290 . 286 . 278 . 281 . 286 . 287	36. 3 35. 6 36. 0 35. 9 36. 5 34. 8 37. 0	59. 0 58. 7 59. 5 58. 7 58. 8 58. 3 63. 7	33. 5 33. 5 31. 2 35. 8 31. 2 33. 1 33. 1 33. 1 33. 1 33. 1
C5A(1-2) C5B(1-2) C5B(3-4) C5B(3-4) C5C(1-2) C5C(3-4) C5D(3-4) C5D(1-2) C5D(3-4)		29, 600 30, 000 29, 700 29, 700 29, 400 29, 700 29, 800 29, 700	0. 286 290 .286 .278 .281 .281 .286 .287 .287 .287	36. 3 35. 6 36. 0 35. 9 36. 5 34. 8 37. 0 36. 9	59, 0 58, 7 59, 5 58, 7 58, 8 58, 3 63, 7 64, 5	33. 5 33. 5 31. 3 35. 8 31. 3 35. 8 31. 3 35. 8 31. 3 33. 0 33. 1 33. 1
C5A(1-2) C5A(3-4) C5B(3-4) C5C(1-2) C5C(1-2) C5C(5-4) C5C(5-4) C5D(1-2) C5D(1-2) C5D(3-4) C5E(1-2) C5E(1-2)	. 0. 510 	29, 600 30, 000 29, 700 29, 700 29, 700 29, 700 29, 800 29, 700 29, 800 29, 700	0. 286 290 286 278 281 287 287 287 288 287 288 285	36. 3 35. 6 36. 0 35. 9 36. 5 34. 8 37. 0 36. 9 37. 5	59. 0 58. 7 59. 5 58. 7 58. 8 58. 3 63. 7 64. 5 59. 6	33. 5 31. 3 35. 5 31. 3 33. 0 33. 1 33. 0 33. 1 33. 1
$C5A(1-2) \\ C5B(3-4) \\ C5B(3-4) \\ C5B(3-4) \\ C5C(1-2) \\ C5C(3-4) \\ C5C(3-4) \\ C5D(3-4) \\ C5D(1-2) \\ C5D(3-4) \\ C5E(1-2) \\ C5E(1-2) \\ C5E(3-4) $	0.510 506 506 506 508 508 501 501 500 507 507 508 508	29, 600 30, 000 29, 700 29, 700 29, 700 29, 700 29, 800 29, 700 29, 700 29, 600	0. 286 290 286 278 281 281 286 287 288 285 285 285	36. 3 35. 6 36. 0 35. 9 36. 5 34. 8 37. 0 36. 9 37. 5 36. 0	$59.0 \\ 58.7 \\ 59.5 \\ 58.8 \\ 7 \\ 58.8 \\ 58.3 \\ 63.7 \\ 64.5 \\ 59.6 \\ 59.1 \\ 1$	33. 5 33. 5 31. 2 35. 8 31. 2 33. 0 33. 1 33. 0 31. 2 33. 1
C5A(1-2) C5A(3-4) C5B(1-2) C5C(3-4) C5C(3-4) C5C(3-4) C5D(1-2) C5D(3-4) C5D(3-4) C5D(3-4) C5E(1-2) C5E(1-2) C5E(1-2) C5L(1-2) C5L(1-2)		29, 600 30, 000 29, 700 29, 700 29, 400 29, 700 29, 800 29, 700 29, 700 29, 500	0. 286 290 286 278 281 281 286 287 287 288 285 285 281 290	$\begin{array}{c} 36.\ 3\\ 35.\ 6\\ 36.\ 0\\ 35.\ 9\\ 36.\ 5\\ 34.\ 8\\ 37.\ 0\\ 36.\ 9\\ 37.\ 5\\ 36.\ 1\end{array}$	$59. 0 \\ 58. 7 \\ 59. 5 \\ 58. 7 \\ 58. 8 \\ 68. 3 \\ 63. 7 \\ 64. 5 \\ 59. 6 \\ 59. 1 \\ 59. 7 \\ 59. $	33. 1 33. 1 31. 2 35. 8 31. 2 33. 0 33. 0 33. 1 33. 0 31. 1 33. 1 33. 1 33. 5
$C5A (1-2) \\ C5A (3-4) \\ C5B (3-4) \\ C5B (3-4) \\ C5C (1-2) \\ C5C (3-4) \\ C5C (3-4) \\ C5C (3-4) \\ C5D (1-2) \\ C5D (1-2) \\ C5D (1-2) \\ C5E (1-2) \\ C5E (1-2) \\ C5E (3-4) \\ C5L $		29, 600 30, 000 29, 700 29, 700 29, 400 29, 700 29, 800 29, 700 29, 700 29, 600 29, 600 29, 600	0. 286 2200 286 278 281 281 287 287 288 285 285 281 290 286	36. 3 35. 6 36. 0 36. 5 34. 8 37. 0 36. 9 37. 5 36. 0 36. 1 36. 1 36. 6	$\begin{array}{c} 59.\ 0\\ 58.\ 7\\ 59.\ 5\\ 58.\ 7\\ 58.\ 8\\ 58.\ 3\\ 63.\ 7\\ 64.\ 5\\ 59.\ 6\\ 59.\ 1\\ 58.\ 7\\ 59.\ 6\\ 59.\ 1\\ 58.\ 7\\ 50.\ 1\end{array}$	33. 2 33. 2 35. 2 35. 2 33. 1 33. 0 33. 1 33. 0 31. 1 33. 1 33. 1 33. 4
C5A (1-2) C5A (3-4) C5B(1-2) C5B(3-4) C5C(3-4) C5C(3-4) C5D(3-4) C5D(3-4) C5D(3-4) C5D(3-4) C5E(3-4) C5E(3-4) C5L(1-2) C5L(3-4) C5L(3-4) C5M(3-4) C5		29, 600 30, 000 29, 700 29, 700 29, 400 29, 800 29, 700 29, 800 29, 700 29, 600 29, 600 29, 600 29, 600	0.286 .200 .286 .278 .278 .281 .286 .287 .285 .285 .285 .285 .285 .290 .290 .286 .282	$\begin{array}{c} 36.\ 3\\ 35.\ 6\\ 36.\ 0\\ 35.\ 9\\ 36.\ 5\\ 34.\ 8\\ 37.\ 0\\ 36.\ 9\\ 36.\ 0\\ 36.\ 1\\ 36.\ 6\\ 35.\ 3\end{array}$	$\begin{array}{c} 59.\ 0\\ 58.\ 7\\ 59.\ 5\\ 58.\ 7\\ 58.\ 8\\ 58.\ 3\\ 63.\ 7\\ 64.\ 5\\ 59.\ 6\\ 59.\ 1\\ 58.\ 7\\ 59.\ 5\\ 59.\ 5\\ 8.\ 7\\ 59.\ 5\\ 8.\ 1\\ 58.\ 1\end{array}$	33. 2 33. 2 35. 8 31. 2 33. 1 33. 1 33. 1 33. 1 33. 1 33. 1 35. 8 34. 6 31. 2 33. 1 35. 8 34. 1 31. 2 33. 1 35. 8 31. 2 33. 1 33. 1 34. 1

TABLE 3.—Results of tensile tests of coupons

The chemical composition of the coupon material is given in table 4.

TABLE 4.—Chemical composition of coupon material

Composite sample	Carbon	Manganese	Phosphorus	Sulfur
Plates C4 Angles C5	Percent 0. 18 . 21	Percent 0.58 .56	Percent 0.009 .014	Percent 0. 03 . 03

2. COLUMNS

(a) MODULUS OF COLUMN AND EFFECTIVE AREA OF PLATE

The moduli, E', of the columns, and the effective-area factors, K, with respect to shortening under compressive load, for the plates, are given in table 5.³

³ See pages 679 and 680 of Research Paper RP1473.

	Num	Based o	on gross cro	ss-sectional area	Based	on net cros	s-sectional area
Plate designa- tion	ber of an- gles	Modulus E'	Effec- tive-area factor, K	$\frac{\begin{array}{c} \text{Ratio,} \\ \underline{\text{maximum stress}} \\ P/A \end{array}}$	${f Modulus}_{E'}$	Effec- tive-area factor, K	$\frac{\begin{array}{c} \text{Ratio,} \\ \underline{\text{maximum stress}} \\ P/A \end{array}}$
$C_{4A}(0-1)$ $C_{4A}(2-3)$ $C_{4A}(4-5)$	2 2 2	Kips/in. ² 24, 300 24, 300 24, 300	0.62 .62 .62		Kips/in. ² 30, 600 30, 500 30, 500	1. 12 1. 12 1. 11	
Avg		24, 300	0.62	-2.24	30, 500	1.12	-1.78
C4A(0-1) C4A(2-3) C4A(4-5)	4 4 4	26, 200 26, 300 26, 200	0. 61 . 63 . 61		30, 200 30, 300 30, 100	1. 11 1. 13 1. 11	
Avg		26, 200	0.62	-1.98	30, 200	1.12	-1.72
C4B(0-1) C4B(2-3) C4B(4-5)	2 2 2	24, 700 24, 600 24, 600	0.65 .64 .64		31,100 31,000 31,000	$ \begin{array}{r} 1.18 \\ 1.17 \\ 1.16 \end{array} $	
Avg		24,600	0.64	-2.63	31,000	1.17	-2.09
C4B(0-1) C4B(2-3) C4B(4-5)	4 4 4	$\begin{array}{r} 26,400 \\ 26,200 \\ 26,300 \end{array}$	0. 64 . 62 . 63		30, 500 30, 200 30, 300	$ 1.17 \\ 1.12 \\ 1.14 $	
Avg		26, 300	0.63	-2.27	30, 300	1.14	-1.97
$\begin{array}{c} C_4C(0-1) \\ C_4C(2-3) \\ C_4C(4-5) \end{array}$	2 2 2 2	$\begin{array}{r} 25,400 \\ 25,300 \\ 25,200 \end{array}$	0.70 .69 .69		$31,800 \\ 31,800 \\ 31,700$	$ \begin{array}{r} 1.26 \\ 1.25 \\ 1.25 \\ 1.25 \\ \end{array} $	
Avg		25, 300	0.69	-2.48	31, 800	1.25	-1.97
$C_4C(0-1)$ $C_4C(2-3)$ $C_4C(4-5)$	4 4 4	$\begin{array}{r} 26,700 \\ 26,600 \\ 26,600 \\ 26,600 \end{array}$	0. 67 . 66 . 66		30, 700 30, 700 30, 600	1. 21 1. 21 1. 19	
Avg		26, 600	0.66	-2.43	30, 700	1.20	-2.11
$C_{4}D(0-1)$ $C_{4}D(4-5)$	2 2	29, 500 29, 300			29, 500 29, 300		
Avg		29, 400	1.00		29, 400	1.00	
C4D(0-1) C4D(4-5)	4 4	29, 500 29, 600			29, 500 29, 600		
Avg		29, 500	1.00		29, 500	1.00	****

TABLE 5.-Moduli of columns, effective-area factors of plates, and maximum stresses

(b) STRESSES

(1) On the edge of the perforation.—The distribution of stress on the edge of the middle perforation is indicated in figures 2, 3, and 4. Each curve represents the average result for three like columns having the same perforation spacing.

FIGURE 3.—Columns C4B, perforation spacing 47 inches. Distribution of stress on the edge of the middle perforation.

The solid line is for the two-angle column and the dashed line for the four-angle column. Based on net area.

FIGURE 4.—Columns C4C, perforation spacing 59 inches. Distribution of stress on the edge of the middle perforation.

The solid line is for the two-angle column and the dashed line for the four-angle column. Based on net area.

The vertical axis of the graph in each figure is a development of one quadrant of the edge of the perforation. The point B is the point of tangency of the circular and straight parts of the edge.

In the stress ratios $\sigma_{u,v}/(P/A_n)$, A_n is the net area of the column, and σ_u and σ_v are the maximum and the minimum principal stresses, respectively. The stress ratios based on gross area, $\sigma_{u,v}/(P/A)$ may be obtained by multiplying $\sigma_{u,v}/(P/A_n)$ by 1.26 for the two-angle, and 1.15 for the four-angle, columns.

The maximum stresses are given in table 5.

(2) On the surfaces of the plate.—The distributions of stress on the surfaces of the middle bay for the perforated-plate columns having four angles are indicated in figures 5 to 16, inclusive. The stress ratios shown in these figures are based on net area. The stress ratios based on gross area may be obtained by multiplying the given values by 1.15 for these four-angle columns.

FIGURE 5.—Column C4A (2-3) (four angles), perforation spacing 35 inches. Isogram of maximum principal stress.

Based on net area.

FIGURE 6.—Column C4A (2-3) (four angles), perforation spacing 35 inches. Isogram of minimum principal stress.

Based on net area.

FIGURE 7.—Column C4A (2-3) (four angles), perforation spacing 35 inches. Isoclinics.

The angle θ is measured positive counterclockwise from the axis of the column to the direction of the maximum principal stress.

FIGURE 8.—Column C4A (2-3) (four angles), perforation spacing 35 inches. Magnitude and direction of the principal stresses. Based on net area.

FIGURE 9.—Column C4B (2-3) (four angles), perforation spacing 47 inches. Isogram of maximum principal stress. Based on net area.

FIGURE 10.—Column C4B (2-3) (four angles), perforation spacing 47 inches. Isogram of minimum principal stress. Based on net area.

481036-42---4

FIGURE 11.—Column C4B (2-3) (four angles), perforation spacing 47 inches. Isoclinics.

The angle θ is measured positive counter-clockwise from the axis of the column to the direction of the maximum principal stress.

FIGURE 12.—Column C4B (2-3) (four angles), perforation spacing 47 inches. Magnitude and direction of the principal stresses. Based on_net area.

FIGURE 13.—Column C4C (2-3) (four angles), perforation spacing 59 inches. Isogram of maximum principal stress. Based on net area.

FIGURE 14.—Column C4C (2-3) (four angles), perforation spacing 59 inches. Isogram of minimum principal stress. Based on net area.

FIGURE 15.—Column C4C (2-3) (four angles), perforation spacing 59 inches. Isoclinics.

The angle θ is measured positive counterclockwise from the axis of the column to the direction of the maximum principal stress.

FIGURE 16.—Column C4C (2-3) (four angles), perforation spacing 59 inches. Magnitude and direction of the principal stresses. Based on net area.

The effect of the perforation on the stress distribution may be judged from the fact that for a solid plate (no perforation) the values everywhere of $\sigma_u/(P/A)$ are 0; of $\sigma_v/(P/A)$, -1; and of θ , 90 degrees.

(c) MAXIMUM-LOAD TEST

(1) Stress-strain graphs.—The stress-strain graphs for the columns, based on net areas, are shown in figure 17.

FIGURE 17.—Columns C4-(two angles). Stress-strain graphs. Based on net area.

The stresses on gross area may be obtained by multiplying the stresses on net area by 0.80.

(2) Deflections.—The stress-lateral-deflection graphs for the columns, based on net area, are shown in figure 18.

The stresses on gross area may be obtained by multiplying the stresses on net area by 0.80.

(3) Maximum load and effective area of plate.—The maximum loads for the columns, the maximum average stress on the gross area and on the net area, and the effective-area factors of the plates with respect to compressive strength, C, are given in table 6.⁴

Column C4C during the maximum load test is shown in figure 19.

TABLE	6M	aximum	loads	for	columns	and	effective-area	factors	for ;	plat	tes
-------	----	--------	-------	-----	---------	-----	----------------	---------	-------	------	-----

Column designation	C4A	C4B	C4C	C4D
Perforation spacing, in	35.0	47.0	59.0	(=)
Area of algles, in. ²	11.48	11.52	11. 51	11. 50
Gross area of plate, in. ²	9.63	9.74	9.64	9.51
Net area of plate, in. ²	5. 33	5.36	5. 33	9.51
Total area, gross, in. ²	21.11	21.26	21.15	21.01
Total area, net. in. ²	16.81	16.88	16.84	21.01
Maximum compressive load, Kips	531	543	557	638
Compressive stress on gross area at failure. Kips/in. ²	25.2	25.5	26.3	30.4
Compressive stress on net area at failure. Kips/in.2	31.6	32.2	33.1	30.4
Effective-area factor of plate with respect to compressive strength, C:			She was	
Based on gross area	0.62	0.65	0.71	1.00
Based on net area	1.12	1.18	1.28	
Slenderness ratio.				72.5

* No perforations.

⁴ See page 685 of Research Paper RP1473.

The perforated-plate columns, C4A, C4B, and C4C, failed by primary buckling away from the plate side of the column, as would be expected from the consideration that, in the neighborhood of a perforation, the gravity axis of the column is displaced away from the plate side. Local buckling of the outstanding legs of the angles of the columns occurred near the ends of the column. The plates buckled near the middle perforation.

The unperforated-plate column, C4D, started to fail toward the plate side, as would be expected from the double-modulus theory, but finally failed suddenly by secondary buckling of the plate and angles near one end with little additional deflection of the columns as a whole. The column efficiency of 83 percent, given in table 6, is

FIGURE 18.—Columns C4-(two angles). Stress-deflection graphs. Based on net area. When the deflection is north, N, the bending stress is tensile on the plate side.

the ratio of the average stress at failure to the weighted average yield point of the material determined from the tensile tests of the coupons. This value of column efficiency is lower than would be expected for a column having a slenderness ratio of 72.5, tested with flat ends. Calculations based on the distance between the rows of rivets, the measured plate thickness, the elastic constants as determined from the coupon test results, and on the assumption that the plate edges were simply supported, give the critical buckling stress in the plate as 29.1 kips/in². The compressive stress at failure was 30.4 kips/in².

The test results being somewhat greater than the calculated buckling stress probably was due to the fact either that the angles were more rigidly connected to the plate than was assumed or that the effective plate width was less than the distance between the rows of rivets.

The effective area factors, C, of the perforated plates with respect to compressive strength are of course greater than they would have been if the unperforated-plate column had failed at a higher stress due to primary buckling. It may be noted that the compressive stresses on net area at failure are practically the same for the perforated-plate C4 columns as for the previously tested perforatedplate C2 columns.

Figures 20 and 21 show the columns after test.

V. SUMMARY

1. MODULUS

The effectiveness of the perforated plates in resisting shortening under compressive load was determined by comparison of the modulus of a column containing the perforated plate with that of a similar column containing an unperforated plate. It was found that from 61 to 70 percent of the gross cross-sectional area of the plate, depending on the perforation spacing, was effective in resisting shortening under compressive load. The effective-area factors for the perforated plates were not consistently affected by variation in the number of angles with which they were tested.

2. STRESS DISTRIBUTION

The stress distribution was determined on the edge of the middle perforation of each perforated plate column and on the middle bay of one of each group of three like columns having four angles. In every case the maximum stress was compressive and occurred on the edge of the perforation. The value of the maximum stress was only slightly affected by variation of perforation spacing. For columns with the same perforation spacing, the maximum stress was higher for the two-angle than for the four-angle column for the same average stress on the gross area. This was not always true when the stresses were based on net area.

The maximum stress varied from 2 to 2.6 times the average stress on the gross area, or 1.7 to 2.1 times the average stress on the net area.

3. STRENGTH

The effectiveness of the perforated plates with respect to strength was somewhat higher than with respect to resistance to shortening and increased with increase of the perforation spacing.

WASHINGTON, July 2, 1942.

Research Paper 1501

FIGURE 19.—Column C4C during the maximum load test.

Research Paper 1501

FIGURE 20.—Columns C4-(two angles) after maximum load tests. From left to right the columns are C4A, C4B, C4C, and C4D.

FIGURE 21.—Columns C4-(two angles) after maximum load tests. From left to right the columns are C4A, C4B, C4C, and C4D.

NATIONAL BUREAU OF STANDARDS, WASHINGTON, D. C.

Send me the Mathematical Tables marked X below. I enclose remittance ¹ to cover the cost.

김 아님 영어		Pric	e	
Mark X	Title of publication	United States and its possessions, and countries ex- tending franking privilege	Other countries	Amountenclosed
	MT1. Table of the first ten powers of the integers from 1 to 1000	\$0. 50 2. 00 2. 00	\$0. 65 2. 50 2. 50	

¹ Remittance should be in form of post-office money order, or check, and made payable to the order of the "National Bureau of Standards" in United States currency.

Send to	
Number and Street	
City and State	

MATHEMATICAL TABLES

Attention is invited to a series of publications which is being prepared by the *Project for the Computation of Mathematical Tables* conducted by the Federal Works Agency, Work Projects Administration for the City of New York under the sponsorship of the National Bureau of Standards.

To date, 13 tables have been made available through the National Bureau of Standards. These are listed below:

MT1. TABLE OF THE FIRST TEN POWERS OF THE INTEGERS FROM 1 TO 1000:

(1938) VIII+80 pages; heavy paper cover. 50 cents.

MT2. TABLES OF THE EXPONENTIAL FUNCTION ex:

The ranges and intervals of the argument and the number of decimal places in the entries are given below:

Range of x	Interval of x	Decimals give
-2. 5000 to 1. 0000	0.0001	18
1.0000 to 2.5000	. 0001	15
2.500 to 5.000	.001	15
5.00 to 10.00	.01	12

(1939) XV+535 pages; bound in buckram, \$2.00.

MT3. TABLES OF CIRCULAR AND HYPERBOLIC SINES AND COSINES FOR RADIAN ARGUMENTS:

Contains 9 decimal place values of sin x, cos x, sinh x and cosh x for x (in radians) ranging from 0 to 2 at intervals of 0.0001.

(1939) XVII+405 pages; bound in buckram, \$2.00.

MT4. TABLES OF SINES AND COSINES FOR RADIAN ARGUMENTS:

Contains 8 decimal place values of sines and cosines for radian arguments ranging from 0 to 25 at intervals of 0.001.

(1940) XXIX+275 pages; bound in buckram, \$2.00.

MT5. TABLES OF SINE, COSINE, AND EXPONENTIAL INTEGRALS, VOLUME I:

Values of these functions to 9 places of decimals from 0 to 2 at intervals of 0.0001. (1940) XXVI+444 pages; bound in buckram, \$2.00.

MT6. TABLES OF SINE, COSINE, AND EXPONENTIAL INTEGRALS, VOLUME II:

Values of these functions to 9, 10, or 11 significant figures from 0 to 10 at intervals of 0.001 with auxiliary tables. (1940) XXXVII+225 pages; bound in buckram, \$2.00.

MT7. TABLE OF NATURAL LOGARITHMS, VOLUME I:

Logarithms of the integers from 1 to 50,000 to 16 places of decimals. (1941) XVIII+501 pages; bound in buckram, \$2.00.

MT8. TABLES OF PROBABILITY FUNCTIONS, VOLUME I:

Values of these functions to 15 places of decimals from 0 to 1 at intervals of 0.0001 and 1 to 5.6 at intervals of 0.001.

(1941) XXVIII+302 pages; bound in buckram, \$2.00.

MT9. TABLE OF NATURAL LOGARITHMS, VOLUME II:

Logarithms of the integers from 50,000 to 100,000 to 16 places of decimals. (1941) XVIII+ 501 pages; bound in buckram, \$2.00.

[Continued on p. 4 of cover]

MT10. TABLE OF NATURAL LOGARITHMS, VOLUME III:

Logarithms of the decimal numbers from 0.0001 to 5.0000, to 16 places of decimals. (1941) XVIII+501 pages; bound in buckram, \$2.00.

MT11. TABLES OF THE MOMENTS OF INERTIA AND SECTION MODULI OF ORDINARY ANGLES, CHANNELS, AND BULB ANGLES WITH CERTAIN PLATE COMBINATIONS:

(1941) XIII+197 pages; bound in green cloth. \$2.00.

MT12. TABLE OF NATURAL LOGARITHMS, VOLUME IV:

Logarithms of the decimal numbers from 5.0000 to 10.0000, to 16 places of decimals. (1941) XXII+506 pages; bound in buckram, \$2.00.

MT13. TABLE OF SINE AND COSINE INTEGRALS FOR ARGUMENTS FROM 10 TO 100:

(1942) XXXII+185 pages; bound in buckram, \$2.00.

Payment is required in advance. Make remittance payable to the "National Bureau of Standards", and send with order, using the blank form facing page 3 of the cover.

The prices are for delivery in the United States and its possessions and in countries extending the franking privilege. To other countries the price of MT1 is 65 cents; that of MT2, MT3, MT4, MT5, MT6, MT7, MT8, MT9, MT10, MT11, MT12, and MT13, is \$2.50 each; remittance to be made payable in United States currency.

Copies of these publications have been sent to various Government depositories throughout the country, such as public libraries in large cities, and colleges and universities, where they may be consulted.

A mailing list is maintained for those who desire to receive announcements regarding new tables as they become available. A list of the tables it is planned to publish will be sent on request.