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ABSTRACT 

There is disagreement in the literature regarding the use of the Coriolis and the 
Boussinesq velocity-distribution coefficients in the open-channel flow equation. 
It is shown in this paper that the use of either coefficient is correct, provided t he 
terms representing the effects of resistance are properly interpreted. The methods 
of deriving the two forms of the flow equation are given in detail, and it is shown 
that in the form of equation containing the Boussinesq coefficient, the friction 
coefficient is related directly to the wall friction . In t he form of equation con­
taining the Coriolis coefficient, t he friction coefficient is related to the rate of 
energy loss in the water. This has a direct bearing on the correct use of Manning's 
un" in the equation of flow in open channels. 
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1. INTRODUCTION 

The equation of motion of steady mean flow in open channels is the 
equation which describes, for the permanent regime of flow, the rela­
tion between the depth of water, the variation of this depth with dis­
tance along the bed of the channel, the mean velocity in a section, the 
variation of this velocity with distance, the slope of the bed, and the 
coefficient of resistance. The physical significance of the coefficient 
of resistance is determined by the manner in which the equation is 
derived. Essentially there are two methods of derivation, one of 
which involves the application of the energy equation, the other of a 
momentum equation, both of which result from the general hydro­
dynamic equations of motion. In addition to the quantities men­
tioned, the equation of motion contains a coefficient resulting from the 
velocity distribution in a section. The meaning of the latter, like 
that of the coefficient of resistance, depends on the way in which the 
equation is derived. 

The results obtained by the two methods differ slightly. It seems 
that the significance of this difference and its bearing on the meaning 
of the coefficient of resistance are not generally recognized. Conse-
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quently, for investigations in the field of open-channel flow, the 
reasons for selecting one relation in preference to the other do not 
appear to be clearly understood today. Preference for one or the 
other relation depends, obviously, on the concept of the coefficient of 
friction which is adopted. It will be shown later in this paper that 
if the equation of motion is derived by the energy method, the concept 
underlying the friction coefficient in that equation is that of energy 
dissipation in the fluid per unit length of channel. On the other hand, 
if the momentum method is used, the concept of the friction coefficient 
is based on the frictional force exerted on the fluid by the walls of 
the channel. 

II. PURPOSE OF PAPER 

The purpose of this paper is to show the difference between the 
equation of steady mean flow in an open channel when derived by the 
energy method and the corresponding equation dE-rived by the mo­
mentum method, and to explain the significance of this difference. 
Finally, it will be shown that the equation based on momentum con­
siderations is the convenient one to use in discussing steady mean 
flow in open channels. Since the historical aspects of the problem 
have recently been discussed adequately by Bakhmeteff [IJI, they 
will not be given here. 

III. REYNOLDS EQUATIONS OF TURBULENT MOTION 

Before proceeding with the method of energy or momentum, it is 
necessary to adopt a system of dynamical equations of motion appli­
cable to a liquid medium at the point (x, y, z). The selection of these 
dynamical equations depends on whether the stresses due to relative 
motions are essentially viscous, or essentially apparent (turbulent), 
or in part viscous and in part apparent. Since the matter to be 
studied relates to turbulent flow in open channels, we may assume 
that in these channels the turbulent core occupies the whole cross 
section when th e solid surfaces are covered with asperities; and the 
very small area of the laminar sublayer may be disregarded when 
the solid surfaces are smooth. We assume that the apparent stresses 
predominate everywhere in this core and that, therefore, no sensible 
error is introduced when the viscous stresses are neglected. The 
restrictions involved in these assumptions are not important for the 
general argument that will be followed in this paper. Neglecting 
the viscous stresses and denoting the temporal mean velocities in the 
directions of x, y, and z by u, v, and w, respectively, the dynamical 
equations of motion to be adopted are of the form, assuming the 
liquid to be incompressible [2), 

du=_ op _ oQ + oRxx+ oRvz+ oRzz , 
Pdt ox ~ ox oy oz 

dv = _ op _ oQ + aRzy + oRyv + aRzv, 
P(Jj ay Pay ox ay oz (1) 

I Figures in brackets indicate literature references at the end of this paper. Additional unnumbered 
references are given but not cited in the text. 
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where n denotes the potential energy per unit mass at the point 
(x, y, z), due to gravitational force; p the density of the liquid; p the 
temporal average of the pressure, and R the apparent, or Rey­
nolds, stresses. In terms of the velocity fluctuations, u', v', w', these 
latter stresses are given by 

Rxz= - pu' u', 

R -;-; 7I7I=-pV v, 

R .. =-pw'w', 

R -R - -, ') X7l- 7IX--pU v, 

R.,.=Rox= - pu'w" 

R -R -- ....,..--; 710- 071- pV W • 

Since the flow is permanent, the operator d/dt is 

d 0 0 0 
-=u--+v-+w-· dt ox oy oz 

(2) 

(3) 

The effect of introducing the Reynolds stresses in the above equa­
tions is to give the mean temporal velocities, u, v, w, the character 
of velocities in stream-line flow. But the question then arises as 
to what we mean by a stream line or a fluid filament in turbulent 
flow. We shall define a fluid filament as a line for which the average 
directions of the instantaneous velocities at all points of the line are 
tangential to the line, or rather as a tubular surface composed of 
such lines and having a normal section of infinitely small dimensions. 
Stream lines are fixed in space, but, owing to turbulence, a particle 
of fluid initially on a stream line does not always remain on this line. 
However, if a surface made up of fluid filaments is selected, then the 
temporal average of the flow across this surface vanishes. For such 
a surface, if uo. Vo, and Wo are the velocity components of the mean 
motion at a point on the surface, and l, m, and n are the direction 
cosines of a normal drawn to the surface, 

(4) 

In turbulent flow the mean temporal velocities are subject to the 
compressibility condition, and this fact is denoted by the equation 
of continuity, 

ou/ox+ ov/Oy+ ow/oz=O, 

which will be used frequently in this paper. 

IV. ENERGY PRINCIPLE IN TURBULENT FLOW 

(5) 

If we multiply the three dynamical equations, eq 1, by u, 0, w, 
respectively, use eq 3, and add, we obtain, in view of the condition of 
compressibility, eq 5, 

(6) 
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where q is the absolute velocity, 

q2=U2+V2+ W 2, 

and 'li is the turbulent dissipation function: 

( OV OW) 
+Rvz oz +oy . 

(7) 

(8) 

The physical meaning of eq 6 can be explained in a concise manner, 
if we multiply the two sides of eq 6 by dxdydz, perform the integration 
for a volume V, such as shown in figure 1, and consider the result. 

z 

.J-y 
FIGURE I.- A closed surface in a field of flow. 

To facilitate the required integration use may be made of Green's 
theorem in three dimensions (also referred to as Gauss' theorem or 
the divergence theorem), 

r (OX oY OZ) r J v ox +oy +(5Z dV=- J s(lX+mY+nZ)dS, (9) 

where X, Y, Z are any three functions, finite, single valued, and dif­
ferentiable at all points of the connected region V completely bounded 
by one or more closed surfaces, S. The quantities l, m, n are the 
direction cosines of the normal drawn inwards. An element of volume 
is denoted by dV, and an element of surface by dS. The volume 
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integral is taken throughout the region of V and the surface integral 
on the bounda,ries S. Effecting the integration, we find 

where 

x 

L(p+~q2+ pn )Clu+mv+ nw)dS= 

R hZ= lRzz+ mRvz+ nR.x 

RhV= lRzv+mRvv+ nR.v 

Rh.=lRz.+ mRv.+nR •• 

z 

(10) 

(11) 

y 

FIGURE 2.- Boundary st1'esses expressed in terms of Reynolds stresses by means of 
tetrahedron. 

C~~ 

To give physical significance to R hZ, R hlJ , and R ht , consider the-force 
FdS which the liquid outside of S exerts on dS, dS being on the 
boundary of V. See figure 2. The components of FdS in the three' 
dU'ections of x, y, z are FllxdS, FhydS, Fh.ds, respectively. Using 
Cauchy's theorem of the tetrahedron, we find , in view of eq 11, the 
expressions 
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- Fh:r;=Rhz-lp, ) 

- Fhll=Rhll -mp, 

-Fh.=Rh.-np. 

(12) 

Hence R,,%, R"II' R". are the boundary stresses on the liquid outside of 
V with the pressures removed. They are the boundary stresses due 
to turbulence. 

To interpret the relation in eq 10 consider figure 3. In this figure, 
Sand S' represent the envelopes of the same body of liquid at the 
times t and t+.1t, respectively, in the sense of stream-line flow. 
Denote the volume of liquid within the surface S by V1+ Yo; that 

\ 
V I..,s-t + L!t 

2 J 

I 
/ 

"'-:7- ( - IU+mv+nw)At 

--":::::""-.":':::::.~/ 
FIGURE 3.-Motion of a limited body of liquid. 

within S' by V2+ Yo. Denote the kinetic and the potential energies 
of the liquid having the volume VI by KI and PI, respectively. The 
corresponding quantities for Vo are Ko and Po; for V2 they are K~ 
and P2• Obviously, the increase of the kinetic energy of the liquid in 
S as S moves into its new position is Ko+K2- (Ko+KI ) or K2-KI• 

Now 

Since lu+mv+nw is the velocity of mean motion along the direction 
of the normal drawn inwards, 

and hence 

for VI: dV=(lu+mv+nw)dS~t, 

for V2: dV=-(lu+mv+nw)dS~t, 
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It can be shown in a similar manner that the increase of potential 
energy is 

On tho other hand, the work done by the pressure, p, on the liquid in 
8 at time t during the subsequent interval At is 

W = !::.tfsp(lu+mv+nw)d8. 

Accordingly, the terms on the left-hand side of eq 10 give the excess 
of the work done on the liquid by pressure in that portion of the 
liquid bounded by the surface 8 over the variation of the kinetic and 
potential energies of the same liquid, all per unit time. The kinetic 
energy of the liquid in this case is the energy of mean motion. The 
right-hand member gives the dissipation in the body of water inside 
of the surface 8 due to the Reynolds stresses and the work done by 
these stresses on the liquid outside of 8. In other words, the equation 
states: 

FIGURE 4.-Segment of a tube of fluid filaments. 

where W is the work done on the fluid in 8 by the external hydrostatic 
pressure, E is the increase in energy, Ll is the work done by the fluid 
inside of 8 against turbulent boundary stresses, and L2 is the energy 
~~W. ~ 

Obviously eq 10 is the energy equation for steady mean motion. 
The consideration of the equation becomes more fruitful if we select 
for the volume V the region bounded by a tube of fluid filaments and 
two planes, the planes forming the two ends of the tube. See figure 4. 
Let 8 3 represent the surface formed by the outer fluid filaments; 8 1 

the surface at the end of the tube through which the liquid is entering; 
and 8 2 the surface il.t the other end of the tube, through which the liquid 
is leaving. There is no flow across the bounding surface; that is, the 
mean motion across it is zero; hence the mean motion at 8 3 is tangen-
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tial. Let qo denote the absolute velocity of flow at this surface and 
let Uo, Vo, Wo be its components. Denote the direction cosines of qo by 
lo, mo, no· 

Hence 

uo=qolo, vo=qomo, wo=qono; 

and, in view of eq 4, 

(13) 

(14) 

N ext, consider the surface force + FdS exerted on dS, an element of 
S3, by the liquid outside the tube, and denote its component in the 
direction of qo by TdS. Then 

7=loFhX+moFhll+noFhX' 

From eq 12 and 14 

From eq 13 

(15) 

Using the latter relation, eq 10 becomes 

fsl(P+pQ+pq2/2)(lu+mv+nw)dS+p.h2(P+pQ + pq2/2)(lu+mv+nw)dS= 

fs1 (uRhx+vRhll+wR"z)dS+fs2(uR"x+vRhll+wRhz)dS- fsaTqodS+ .fv'f!dV, 
(16) 

where V represents the volume of the tube bounded by the surfaces 
SI, S2, and S3. This is the energy equation of mean flow for a ffia­
ment tube of finite cross section. 

V. MOMENTUM EQUATIONS FOR A STREAM TUBE 

For an incompressible liquid, the first of the three dynamical equa­
tions in eq 1 may be written, using the condition of compressibility, 
eq 5, as 

[ a ( 2)+ a ( )+ a ( )]_aIIx+oR.x+ ORzx p - u - uv - uw -- -- --, ox oy oz ox ay oz (17) 

where 

IIx=-p-pQ+Rxx. (18) 

Multiplying the two members of this by dxdydz or dV, integrating 
through the space V of the tube in figure 4, and again using Green's 
t~eorem with inward-drawn normal, we obtain, after changing the 
sIgns: 

pfslu(lu+mv+nw)dS+.fszu(lu+mv+nw)dS=.hl(lIIx+mRlIx+nRxo)dS 

+ .fs2 (lIIx+ mRlIx +nRx.) dS + .fsa (lIIx+ mRlIx + nRxz)dS. (19) 

The integral on the left over S3 vanishes, since, by eq 13 and 14, 

louo+ movo + nowo = o. 
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This is the momentum equation for the flow through the tube with 
reference to the x-dil'ection,;which states that the time rate of change 
of the momentum equals .the x-component of the forces acting. The 
equation suggests that, to evaluate the difference of momen ta of the 
liquid entcring through 8 1 and leaving through 8 2, it is necessary to 
know the values of the pressure, the Reynolds stresses, and the poten­
tial in respect to the gravitational force at the bounding surfaces, and 
the direction cosines of the normals to these surfaces. The momen­
tum equations corresponding to the y and z directions may be derived 
in a similar manner. A simpler method would be to obtain them from 
eq 19 by applying the cyclic permutations U ----'7'/!-7W, X----'7y----'7Z, and 
i ----'7m----'7n. 

VI. PRESSURE LAW IN GRADUALLY VARIED FLOW 

The application of the energy and momentum equations to open­
channel flow will give practical results only when some definite 
restrictions are imposed on the form of channel and on the variation 
of the depth of water. Otherwise, too many quantities difficult to 
evaluate numerically will appear in the results. 

Taking the x-axis in the bed of the channel, the positive branch being 
in the direction of flow, the y-axis horizontal, positive z-axis directed 
upwards, the equation of the surface forming the channel may be 
given by 

where XI, YI, Zl, are the coordinates of a point on the channel boundary. 
D enote the direction cosines of the inward-drawn normal to this 
surface by ii , ml, nl' The restriction of the channel form to be 
assumed is that i l and Hallux, where H is depth of water, are small 
quantities, the squares of these being negligible with r espect to 
unity. We take as the depth of water the z-coordinate of the free 
surface. The restriction of the depth of water to be assumed is that, 
H being a function of x only, Hd2H/dx2 and the square of dH/dx are 
negligible with respect to unity. In Boussinesq's language, the flow 
is "gradually varied". These restrictions isolate the localities where 
the slope of the boo or the cross section of the channel changes 
abruptly. They isolate also the places where hydraulic jumps or 
bends of the watercourse occur. 

The restrictions made in the above have the following kinematical 
and dynamical consequences. The squares, v2 and w2, are negligible 
with respect to u2, and hence q2 = U 2. The derivatives of the ratios 
w/u and vju with respect to x are negligible in comparison with the 
derivatives of these ratios with respect to y and z. Then the ac­
celerations in the directions of yand z are negligible; that is, the left­
hand terms in the second and tqe third equations in eq 1 may be 
discarded [3]. 

In addition to the above, it becomes necessary to make certain 
assumptions in regard to the Reynolds stresses. First, the velocity 
fluctuations are such that 
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Second, u being the predominant component, the correlation between 
the fluctuations v' and w' and the derivatives of this correlation with 
respect to y and z are negligible in comparison with the correlation 
between u',v' and v',w' and the corresponding derivatives. That is, 
the derivatives of R.y with respect to y and z may be neglected. 
Third, since the flow is gradually varied, the x-derivatives of Rxv and 
Rx. may be ignored. 

With these assumptions in mind, the second and the third equations 
in eq 1 reduce to 

and 

op + oQ _ oRyv=O 
oy ~ oy , (20) 

(21) 

Take the horizontal plane passing through the point P(O,O,O) as 
the surface of reference for the potential energy. Denote the bed 
inclination, that is, the angle between the x-axis and this plane by i. 
Then 

pQ=pgz-ixgp; (22) 

assuming that i is small. The general solution of eq 21 is 

p+pgz-ixgp-R •• f(x,y) , 

where j is an arbitrary function. At the free surface, that is, at 
z+H, the pressure is atmospheric, so that p=pa. Obviously, the 
fluctuations w' vanish at the free surface, or Rzz=O at z=H. Hence 

Pa+pgH- pixg=j(x,y). 

Subtracting, we have 

p=pg(H-z) +Rzz+Pa, 

or, since Rxx= R •• =Rvll' 

p=pg(H-z) +Rxx+Pa, (23) 

which relation satisfies eq 20 also. This is the law of pressures in 
gradually varied flow. Differentiating eq 18, and using eq 22 and 
23, we obtain 

oil dH . 
-(5X=pg dx -pgt. (24) 

VII. THE TWO EQUATIONS OF OPEN-CHANNEL FLOW 

Let us first consider the energy method. We regard the portion of water 
in the channel between the planes X=Xl and X=X2 as the filament tube 
for which the energy relation of eq 16 is to be evaluated. See figure 5. 
The sections Al at Xl and A2 at X2 are identified with Sl and S2, respec­
tively. The free surface and the wetted surface between the sections 
at Xl and X2 constitute the surface S3. Accordingly, qo is the velocity 
of water at the free surface or in the plane of the peaks of the asperities 
of the solid boundary, or the velocity at the face of the laminar sub­
layer if the bounding surface is smooth. At the section AI, l=l, 
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m=O, n =O. AtA2' l= -1, m=O, and n=O. At the surface Sa, l=ll1 
m=ml, and n=nl' It must be remembered that II is small. The 
energy relation for the flow in channel from eq 16 is thus, using eq 11: 

L{~,2+pQ+P-Rxx)udA-L.( ~2+pQ+P-Rxx)UdA= 
i (VRxv+WRx.)dA-i (vRxv+wRx.)dA- r rqodS+ r iFdV. (25) 

AI AI Js. Jv 
Since we have assumed that Rz;x= R vv = Rzz and that the- liquid is 
incompressible, the dissipation function iF as given in eq 8 _now_takes 
on the form 

iF=R (OU + OV)+R (OU + OW)+R (OV + OW). (26) xv oY Ox xz oz Ox vz oz oY 

Horizontal 

FIGURE 5.-Segment of a tube of fluid filaments in gradually varied flow. 

Since we are dealing with gradually varied flow, the value of the 
product rqo in terms of the Reynolds stresses and the wall velocities 
takes on a simpler form. The general value of this product is, from 
eq 15 and 11, 

- rqo =Uo (lIRxx + mlRvx + nIR.x) + Vo (llRxv + mlRvv + n1Rzv) + 
Wo (lIRx. + mlRv• +nIRzz). 

Using eq 4 and remembering that Rxx=Rvv=Rzz, this simplifies to 

-rqo= (Uoml+voll)Rvx+ (uonl+woll)Rzx + (vonl+ woml)Rvz' 

Since the flow is gradually varied, voll is negligible in comparison with 
uomJ, and woll in comparison with UOnl, and thus we have 

- rqo = uomlRvx + uonlRzx+ (vonl +woml)Rv.' (27) 

We wish to obtain the channel equation in its differential form. To 
do this we select XI=X and x2=x+dx. We suppose that the Reynolds 
stresses vanish at the free surface, and remember that dV = Adx, 
n1dS=dYldxl and m1dS= -dz1dxI, since we shall evaluate the line 
integrals counterclockwise in the yz-plane. 
Then eq 25 becomes 

- fxfA (pu2/2+pQ+p-Rx,,)udA= - fxfA (vRxv+ wRxz)dA-

J: uo(Rvxdz1-Rz:z;dYI) + J: Ryz(vodYI-wodzl)+f iFdA, (28) :fPr :fpw A 
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where A is the cross section at x, Pw is the wetted perimeter, and dZ I 

and dYI are the projections of an arc ds of the wetted perimeter. 
Next we express the left-hand terms of the last equation in terms 

of a quantity which is measW'able when the channel is prismatic and 
the flow is uniform. The measurable quantity that will be used is 

'" RlI£izl - RoxdYI = - TOP w, (29) Jpw 
where TO in the case of uniform flow in an open channel is the magni­
tude of the average shear on the wall per unit length of channel and 
is a positive quantity. Denote the hydraulic radius by R, so that 

RPw=A. 

Denote the average velocity in the direction of x by U and the dis­
charge by Q: then 

Q= UA=J.udA. (30) 

Introduce the dimensionless coefficients, Nl and N 2 , such that 

.f...(vRxll+wRzx)dA= -N1TOUA= -N1ToQ, (31) 

and 

.£ uo(RlIxdzl-RzxdYI)- ~ RlIo(vodYI-Wodzl)-!'I!dA=-N2TOQ/R . . :rpw :rpw A 

(32) 

In addition to these we introduce also the well-known dimensionless 
coefficient a of Coriolis; which is defined by 

fAu3dA=arJ3A= aU2Q. (33) 

In view of eq 24, 30, 31, 32, and 33, eq 28 now may be given in 
the form 

(34) 

which is the equation of motion of steady flow in open channels, as 
derived by the energy method. 

Consider secondly the momentum method. Working with the 
same fluid tube as in the above we have, from eq 19, after trans­
forming the IT terms back into a volume integral, the relation, 

r pu2dA - r pu2dA = - r ~ITdV + r (mlRvx +ntRox) dS. JA I JA. Jvux JSa 
The differential relation derived from this, by putting Xt=X and 
X2=x+dx, dV = Adx, ntdS=dytdxt, mtdS= -dztdxt, 
reduces to 

-dd i u2dA=-i °;rdA+ ~ (RoxdYl-RlIxdzl)' (35) 
x A A X JPw 

Now introduce the Boussinesq coefficient TJ by means of the relation 

(1 + TJ) U 2A= J4 u2dA, 
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-or 
(36) 

Differentiating both sides of this equation by x and assuming that 
'1 changes slowly with x, we have 

(37) 

In view of eq 18, 22, 24, and 37, eq 35, after dividing by pA, reduces 
to 

(38) 

which is the equation of motion of steady flow in open channels, as 
derived by the momentum method. 

VIII. THE COEFFICIENT OF LOSS AND FRICTION IN 
THE VARIED-FLOW EQUATIONS 

The two equations of motion, eq 34 and 38, of varied flow in open 
channels given above, are in conformity with theory. Examining 
these two equations, it must be emphasized that the equation derived 
from the general energy equation, that is, eq 34, contains NI and N2 
in addition to TO' All three of these quantities are unknown even if 
we suppose that H, U, and a are known as functions of x, through 
observation. Since by the mere observation of H, U, and a, the quan­
tities TO, N I, and N2 can not be determined, the terms involving these 
unknowns may be represented as a single term. That is, we put 

Rd~(NITO) +N2TO= +"A .. ~pU2, (39) 

and then eq 34 takes the form 

dH _Ji U . U2 
g dx +aU-dx =g~- "Ae2R , (40) 

where "Ae is a dimensionless coefficient arising solely from the fact 
that there is dissipation of energy in the flow. The quantIty 

U2 
)..e2R·pQ, 

where Q is the constant discharge in the open-channel flow, represents 
the rate of loss of energy in the channel per unit length of channel. 
This interpretation follows from the fact that the results were derived 
from the general energy equation. Accordingly, we must look upon 
"Ae as a coefficient of energy loss. 

On the other hand, the equation derived from the general momen­
tum equation, that is, eq 38, contains the single unknown, TO. If 
we write 

(41) 

eq 38 takes on the form 

dH _JiU. U2 
gdx + (1+'1) U dx =g~- )..2R· (42) 
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Since TO is the frictional force of the channel per unit length, the coef­
ficient A represents the coefficient of friction. 

IX. SELECTING THE MORE USEFUL FORM OF THE EQUA. 
TION OF MOTION FOR AN OPEN CHANNEL 

If the equations above given were equaUy advantageous, a selection 
between the two would be meaningless. But this is not the case. 
Of the coefficients, Ae and A, the second being directly associated with 
the friction exerted by the walls of channel is the less affected by 
changes in dU/dx. This is obvious when we consider the equation 
which expresses the coefficients in terms of the shear. Judging solely 
on this basis, the universal use of eq 42 as the equation of motion for 
varied flow in open channels would naturally be favored. 

In this connection an error that is often made in the use of the 
equations above discussed should be pointed out. Frequently, eq 40 
is employed to determine Manning's "n" for open channels. Since 
Manning's" n" relates to the magnitude of the frictional force in 
channels, obviously the correct equation to use is eq 42, the relation 
between n and A being 

n= 1.486R1Z3(A/2g)112, (43) 

where Rand g are measured in English units; that is, in feet and in 
seconds. 

The following general remarks regarding the role of the energy 
and the momentum equations in hydrodynamics may be made in 
passing. In the present problem we are concerned solely with the 
relation between wall resistance and mean flow in the channel, and 
hence no advantage is achieved by the simultaneous use of the energy 
and momentum equations. The reason for this is that the law of 
velocity distribution in open channels, when the flow is turbulent, is 
not susceptible of theoretical determination. Experience estab­
lishes the relation between the local velocities and the shear at the 
wall. This being the case, one of these equations is sufficient, as 
explained above. But if the problem considered is one in streamline 
flow, and if solutions are attempted by approximate methods, then the 
simultaneous use of the energy and momentum equations results in 
improving the approximations of the solutions obtained. 

In solving the problems of boundary layer on a plate and at the 
entrance section of a pipe, for example, it is necessary first to es­
tablish the law of velocity distribution. It has been customary to 
use the momentum relation to obtain the approximate form of this 
distribution. If, in addition, the energy relation is used, a better 
approximation results. 

The author expresses his appreciation to George W. Patterson and 
Herbert N. Eaton for valuable criticism and review of the paper. 
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