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RECTANGULAR PLATE LOADED ALONG TWO ADJACENT 
EDGES BY COUPLES IN ITS OWN PLANE 

By William R. Osgood 

ABSTRACT 

A. and L. Foppl give an approximate solution for the stresses in the rectangular 
knee of an L-shaped plate loaded by couples acting on the legs in the plane of the 
plate. A solution is presented here that is exact in the sense that the equations 
of equilibrium and the condition of compatibility (for two-dimensional systems) 
are satisfied at every point. Small self·equilibrated stresses remain along the 
free edges of the knee. 

The stresses in the knees of rigid frames are of considerable interest 
to engineers, and theoretical analyses, as well as experimental results, 
may be worth while. Such an analysis for the rectangular knee of a 
rigid frame has appeared recently.l Part of the analysis involves the 
stresses produced in the knee by couples acting on the legs in the plane 
of the rigid frame. The solution used for this condition of loading 
was not derived in the paper presenting it; and since it appears to be 
new and not quite obvious, the derivation is presented here for the 
essentially similar but simpler, special case of a rigid frame without 
flanges, that is, an L-shaped plate. 

Figure 1 illustrates the problem. The linear distribution of stress 
of the ordinary flexure formula is assumed to apply in the legs at a 
distance from the knee. At the sharp reentrant corner the stress 
must become infinite, according to the theory of elasticity, so that 
the distribution along the inner edges of the knee, shown dotted in 
the figure, is, according to this theory, probably somewhere between 
a logarithmic distribution, such as is characteristic of a curved beam, 
and the linear distribution of a straight beam. Since in practice the 
theoretically infinite stresses at the corner would be reduced by plastic 
flow, the final distribution of stress would be represented by a curve 
with finite ordinates everywhere. In the present paper it is assumed 
that this distribution can be approximated by a nearly linear dis­
tribution, and a polynomial solution is obtained for the stresses in the 
knee which satisfies the equations of equilibrium and the condition of 
compatibility (for two-dimensional systems). There is some experi­
mental evidence 2 that the assumption of a linear distribution is 
practically justifiable, at least in a rigid frame with flanges running 
through along the dotted lines in figure 1. The stresses in the web 
of the knee are almost surely not appreciably affected by the exact 
manner of distribution at the junctions between knee and legs. For 

1 W. R. Osgood, Stresses in a rectangular kneF. ofa rigid frame, J. Research NBS 27, 443 (1941) RP1431. 
, A. H . Stang, Martin Greenspan, and W. R. Osgood, Strength of a riveted steel rigid frame having straight 

flangea, J . Research NBS 21, 269 (1938) RP1130. 
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practical purposes of design and analysis of the knee, therefore, the 
assumption of a nearly linear distribution of stress along the inner 
edges of the knee, the junctions between knee and legs, seems suffi­
ciently accurate. 

A. and L. Foppl 3 give a solution for the knee in which they assume 
a strictly linear distribution along the inner edges. Their solution 
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FIGURE l.-L-shaped plate loaded by couples. 

satisfies the boundary conditions and the equations of equilibrium at 
every point, but it does not satisfy the condition of compatibility. 
The solution proposed here may be built up by judiciously superposing 
known solutions for cantilever beams. The equations of equilibrium 
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FIGURE 2.-Cantilevered plate acted on by uniformly distributed load. 

and the condition of compatibility are satisfied at every point, but 
small self-equilibrated stresses remain on the outer edges of the knee. 
Since these boundary stresses are relatively small and their effect can 
be readily judged, it seems preferable to sacrifice the boundary condi­
lions rather than the condition of compatibility, the consequences of 

I Drang und Zwang I, 340 (1924) . 
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the latter sacrifice not being so readily apparent. (Rather large se1£­
equilibrated stresses do in fact occur. See footnote 2.) 

We proceed now to the proposed solution. The solution for the 
uniformly loaded cantilever beam or cantilevered plate of thickness t 
shown in figure 2 is 4 

3Wa( X)2y W Y(3 y2) 
uX=-Sb2t 1+-a, b-4atb 5-,,2 ' 

Uv= 4~t( l-¥b)( 1 +~-y, (1) 

TxV= - ~~( 1 +~)( 1-~} 
The solution for the cantilevered plate of thickness t carrying a uni­
formly varying total load Was shown in figure 3 is 5 
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FIGURE 3.- Cantilevered plate acted on by uniformly varying load. 

wac X)3y W ( X)Y(3 1/) uX= Sb2t 1 +(i 7j+ 4at 1 +(i 7j 5-7)2 , 

u=-- l+ - 1-- 1+- , W( x)( y)( y)2 
v 4a t a 2b b 

(2) 

If we superpose these two solutions, we obtain the solution for a 
plate loaded by couples M= Waf3 on the two edges x=a and y=b, 
figure 4: 

(3) 

9M ( X2X y2) 3Mb( y2)(1 y2) 
T xv=-16abt 1-az 1-1)2 +16a3t 1- b2 [j-b2 · 

Along the edge y=b the forces are uniformly varying but not along 
the edge x=a. This "unsymmetrical" condition is not of much 

, R . V. Southwell, Theory of Elasticity, p. 377 (1936) . 
• S. Timoshenko, Theory of Elasticity, p. 42 (1934). 
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interest. Moreover, for large values of b/a the self-equilibrated nor­
mal stresses (second term on right-hand side of expression for uz) at 
X= -a become relatively large. These objections may be overcome 

~~------,o,~------~~----x 

FIGURE 4.-Rectangular plate loaded unsymmetrically by couples. 

as follows. We write first the solution for a uniformly varying load 
along the edge x=a by interchanging x and y and a and b in solution 3: 

U z=-!~(I+~y( 1-2xa)t' 
(4) 

N ow if we replace M by aM in solution 3 and M by (l-a)M in 
solution 4 and then superpose these two solutions, we obtain another 
solution for a plate loaded by couples M on adjacent edges; and by 
varying a the distribution of the loads may be made to vary between 
that required by solution 3 and that required by solution 4: 

3M( X)2( x \?i 3aM x Y(3 y2) 
CTx =-4b2t l+a 1-2a}7j+ 4a2t -a-6 5-7)2 , 

3M x( y)2( y) 3(I-a)M x Y(3 X2) 
CTII=-4a2t -a l+b 1-2b + 4b2t ab 5-"(£2 , 

gM ( X2X y2) 3Mr abe y2X1 y2) 
T zll = -16abt I-I? 1-[j2 +16tL a3 1- (j2 5-7)2 

(5) 

+ (1 b3a)a( 1-~Xi-~) J 
If we wish to keep the ratio of the self-equilibrated normal stress to 
the remaining normal stress the same for equal values of x/a and 
y/b, inspection of the first two of eq 5 shows that we must have 

b2a (l-a)a2 

a2 b2 

or 
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(6) 
9M ( X2X y2) 

TxV= -16abt 1-0} 1-7)2 

3Mab [( X2)(1 X2) ( y2X1 y2)] 
+16(a4 + b4 )1 1-0} 5-0} + 1-7)2 5-P . 

This solution is symmetrical, and the self-equilibrated stresses, 
represented by the second of each of the two terms on the right-
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FIGURE 5.-Rectangular plate loaded symmetrically by couples. 

hand sides, can never become excessive. At x=a, y= b, for example, 
the second term of rYx or of rYv is equal to a2b2/ [5(a4+ b4)] times the first 
term. The maximum value this fraction can have is 1/10, when 
a=b. Figure 5 shows the distribution of stress along the boundary 
for a/b=2. The self-equilibrated shearing stresses are too small to 
appear in the drawing. ) 

WASHINGTON, September 17, 1941. 
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