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ABSTRACT

Formulas are obtained for the mutual inductance of two helical wires whose
axes are parallel. The formulas are given as series in oblate spheroidal harmonies.
The principal part is the inductance of the two corresponding current sheets, the
correction terms being small when the coils are closely wound, so that the pitch
is small compared to the diameter of the cylindrical form in each case.
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I. INTRODUCTION

The principal part of the mutual inductance between two helices
whose axes are parallel is that between the two associated current
sheets. This approximation may not be sufficient when the inductor
is used for absolute electrical measurements of high precision. In
this paper formulas are obtained which, in addition to the principal
term, contain correction terms of the first and second order in the
small quantities, such as the ratio of the pitch of the windings to their
cylindrical radii.

The electromagnetic force between currents in the helices may be
obtained by differentiation with respect to their relative coordinates.
Such helices are not used as often as coaxial ones, although they do
occur, for example, in the Ayrton-Jones type of current balance as
used by the English National Physical Laboratory.

II. DEFINITIONS AND INTEGRAL FORMULAS FOR THE
MUTUAL INDUCTANCE OF TWO HELICES AND OF
THEIR CURRENT SHEETS

The two helices are shown in figure 1. The axis of the first, ks, is the
z-axis; that of the second, Ay, is the line in the zy plane parallel to the
z-axis at a distance r from it, where r=0. If r=0, the helices are
coaxial. A
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The cylindrical radius of the first is a;; its pitch, 27p;; and its axial
length, [;=27p;N,;, where N;, the “total number of turns,” is not
restricted to be an integer. The “number of turns per unit axia,
length” is n;=1/27p,, not necessarily an integer. The initial planel

<

F1cure 1.—Two helices with parallel axes.

r=2,, contains its initial point, P, and the end plane, z=z,, its end
point, P,, so that l;=2rp,N,=z,,—z;,>0. The current sheet, S,
““associated with the helix, #;,”” is the cylindrical surface (generated by
rotating the helix about its axis through an angle 27), upon which
there is a surface current of unit strength (in electromagnetic cgs
units), uniformly distributed, the direction of the current at any point
being that of the helical filament passing through that point. This is
equivalent to defining the current sheet as that part, included between
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the terminal planes z=z; and z=u,, of an endless eylinder which is
completely covered by a helical tape winding of axial breadth equal
to the pitch, so that no insulating space is left between successive
windings. The angular current is n,=1/27p, per unit axial length.
The axial current 1s 1/27a; per unit length along a circular arc for
which z is constant.

If subscripts 2 refers to the second helix, hy, or its sheet Sy, it follows
from this definition that the mutual inductance, A, between the two
current sheets is given by the double surface integral taken over the

two sheets.
1 5
M= mffdblfflf(xz —21,01,0:)dS,
. e Faxiyir 1w bl
_471—21)11)2 0 d@lﬁn dll‘ﬁ) dg?ﬁa, daesF (2 —21,01,02), (1)
where

0,—61) +pips/asa,
Pty — 21,01, 00) m 208 =1 g 2
(xz i 2) RIZ(ZZ_:EI)BUOZ) ( )

and R, is the distance from a point P, (21,21,21) on S; to Py(xs,1s,2,)
on S, so that

R, (x;—2,6,,0,) = (0y— 1) 2+ a3+ a3—2a,a, cos 6,—0,)
+7r24-2r(a, cos 6,—a, cos 6;).] (3)

The name “mutual inductance” is used here for the Neumann integral,
so that when it refers to an unclosed circuit the implication is that the
mutual inductance of the part (lead wires, ete.) which must be added
to close the circuit must be evaluated by a Neumann’s integral.
With this understanding, it is evident that the term p,ps/a,a, in the
numerator of eq 2 gives rise in eq 1 to the mutual inductance of the
axial currents in the two sheets, whereas the term ‘“cos (6,—6,)”’ gives
rise to that due to their angular currents only.

In the integral (eq 1) the two independent variables, z;, 6;, are
cylindrical coordinates referred to the axes of the first cylinder, and
2y, 0, are cylindrical coordinates referred to the axes of the second
cylinder, so that the angles 6; and 6, each range over the interval from
zero to 2w. If @), y1, 2, are the rectangular coordinates of any point
P, on §), the position of P; may be specified by assigning the pair of
cylindrical coordinates #; and 6; (with cylindrical radius a;), or it may
be specified by assigning the pair of semihelical coordinates 6;,, 6;, the
equations of transformation being

1'1=x11+?1(01_91) 0=<0,,<2r

oy ey SIS o) @
Considering the pair of variables 6, and 6, for this range as two
independent parameters which suffice to determine the position of
P, on S;, eq 4 are the parametric equations of the cylindrical surface
Si.  The locus of the equation 6, =constant, is a helix, A;, of pitch
27, lying on S;, while the locus of the equation 6,=constant is a
straight line of length 2zp, (or less) lying on S;.
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When the point P;(2,y,2;) is also on the helix A, this may be desig-
nated by Pu; (Zny, Yny, 2n,), the Zay, ¥s, and z,, being given as in eq 4
with the understanding that 6, is a given constant and not a variable

parameter.
The equations

$2=$12+P2(92—012)
Yo=r-+as cos 6, {, where
Z= @y sin 0,

050{2<27|'
®)

012 02 625012—*—2%’2\72

are the parametric equations of the sheet S; when 6, and 6,, are both
variables. The locus of the equation 6,=constant is a helix A, of

pitch 27p, lying on S;.
The mutual inductance (Neumann’s integral) of the helices, k; and

hy, is
T J‘ S:Jls ’:is cos (dsy,ds,)
et ol GRS B

taken along both helices, where s; and s, denote total length of arc.
From eq 4 it is found that the element of length ds; has the magni-

tude
ds,=+/ (a2 +p?)db, (6)
and the direction cosines

dn,_ - .. 4y L sin 01 dz, _a, cos 29
ds, 1/(11—!—172 ds, Y 7 2 dsi Ja+p
The total length of the helix is s;, where

0]

l
si=2rNi @ +pi=_Vai+pp ®

where [/, is its ““axial length.”
The same formulas, with change of subscript, refer to kg, so that

ds,,ds; cos (ds,,dsz)=a1a2[cos (02-01)+§i—g:‘ d6,d0,

Hence the mutual inductance of the two helices is

Oy Oey (0 =0 )+P1p2/0102
M==aaf dof 1,208 B th o
ot 0, ; Oiy ) R12(zh2_xh1)01102)

8, 0,
— f ‘&0, f B, F g — 2y 1, 0), ©)
i1 2

where z,, is a function of 6, only and z,, of 6, only, given by eq 4 and
5, the 6, and 0, being constants.

In the general case of helices whose axes are merely parallel, not
necessarily coaxial, and whose terminal planes are arbitrary, eq 1 for
the current sheets is sufficiently complicated, but eq 9 for the helices
is even more troublesome. So far as we are aware, neither of these
integrals may be evaluated in finite terms in general, although the
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former may (in the case of coaxial current sheets) be so evaluated in
terms of the three complete elliptic integrals. This is Jones’ formula.!

The present paper is limited to what may, for brevity, be called the
practical case, in which the two current sheets do not cut or touch each
other, in fact they do not lie at any points close to each other. More
precisely, considering the pitches 27p, and 27w p, as infinitesimals of
the first order compared to finite lengths like a,, a,, then the distance,
R, of a point P; on S from a point P, on S, is, for all points, P, and
P,, finite (not a small quantity of the order of the pitch). The various
expansions in infinite series to be obtained below for the current sheet
are not subject to this limitation but cover the ‘“impractical’’ cases
also. The restriction is necessary, however, in order to obtain a
practicable quantitative expression for the relatively small difference
between the mutual inductance of the two helices and that of their
associated current sheets.

If f(z,0) is a continuous and single-valued function of position on a
cylindrical sheet S, it must be a periodic function of 8 with period 2,
and the line average of f along a helix on S is obviously very nearly
the lslame as its surface average over S, provided that the pitch is
small.

In the following section the two are compared, and an expression for
their difference is obtained to the second order of small quantities
inclusive, and application is made to the problem in hand, because,
with closely wound coils, the precision of electrical measurements at
present attainable requires formulas valid to the second order.

The general case of coaxial helices has been treated in an earlier
paper,? so the emphasis here is upon the noncoaxial case.

III. DIFFERENCE BETWEEN THE FORMULA FOR THE
MUTUAL INDUCTANCE OF TWO HELICES AND THAT
OF THEIR CURRENT SHEETS

Certain problems relating to the helix could be treated more ele-
gantly by the use of semihelical coordinates or by orthogonal helical
ones. A plane rectangle ruled with two mutually orthogonal families
of straight lines could be wrapped around a cylindrical surface, and the
parameters defining these families would be orthogonal helical coordi-
nates. However, 1t has been found by trial that the comparison of a
line integral along a helix with a surface integral over its sheet may be
made most simply by the use of ordinary cylindrical coordinates
(x, 6) because the x limits and 6 limits of the surface integral are inde-
pendent of each other.

As the preliminary formulation applies to either helix &, or k,, the
subscripts may be omitted. In figure 2, with « as abscissa and a as
ordinate, the rectangle represents the development of the cylindrical
sheet S. The helix % is the system of parallel lines whose separation
in the z-direction is Az=2rp=the pitch of the helix. The slope of
these straight lines in figure 2 is p/a. :

The variable 0 lies between zero and 2, and the initial azimuth, 6,
also lies in that interval, but the end azimuth, 9,, as defined in eq 4 or
5, does not, since 6,=60;,+2rN. We, therefore, (for the moment) dis-

1J. V. Jones, Proc. Roy. Soc. (London) [A] 63, 198 (1898).

3 Chester Snow, Mutual inductance and force between two coazial helical wires, J. Research NBS 22, 260
(1939) RP 1178.
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tinguish between 6, and 8, where 8,=0,—2sN’=0;+27 (N—N on
where N’ is the largest positive integer which is less than or equal to
6c/2r. When 6, is thus chosen, it lies in the interval, 0<6,<2r, as

\
o g o

F1cure 2.—Development of cylindrical surface on a plane, showing a heliz as a set of parallel lines.

indicated in figure 2. The points A, A, . . .. Ay have abscissa
Z,, where
O = DO AT for =112 3t = i SN

Hence the equation of the helix for figure 2 is

Tp=2;+p(0—0;) when z,<z<z; and 0,<0<2r
=x,+pd when 2, <z<lt,; and 0<0<2xr forn=1,2,3,.... N’'—1
=2, p(0—0,) when oy <<z, and 0<0<0,.
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Let f(x,0) be a finite, continuous, and single-valued function of posi-
tion on S. It is, therefore a periodic function of its second argument
0, with period 2x. The same character is assumed for f’(z,0) and
f''(x,0), where primes denote partial derivatives with respect to the
x-argument. :

Hence, by eq 6, the line integral along a helix of f(z,0) (a*+p*) ~*is

\/;_1—; j;} (z,0)ds= J;?(xmg) do—

2z N'—1

_ fa flatpl0—01,0)0-+ | db St 90,0)

G
iz Of(ﬁe—l—]?[a—oe]ﬁ)do-
The terms in the summation represent the principal part, the first
and last integrals being relatively small (of the first order). Hence

in them the integrand may be expanded by Taylor’s theorem as a
function of its z-argument, about the terminal values of z, so that

i 5 2 N’'—1
o [ Fwords=a [0S fes+ 90,
td f AL o)+ (OB ()]

+af:’;i€[f(xi,0) +p(0—0,)f" (2:,0)]. (10)

To transform the summation, consider the following integral taken
with respect to @, holding 6 constant,

Int N'=1 (Cz.4Az
[Tapi=5 [Feoa, ay
where the integral is taken along the horizontal dotted line passing
through P, and P in figure 2, the latter point P being the general
point of integration with abscissa z=2,-+ (z—=x;), so that expanding

f as a function of x (with 6 constant) about the point P, on the helix
in this n”* strip, we find

TntAZ Tnt+AT
[Fepde= [ Forto—aods
= ["&"] 1e00) + et @) + 227 o) |

On performing the integration with respect to z (6-and x, being
constant), these become, after placing z,=w,+p6,

Zn+AZ

20| es - 900) +2 =0 Gut 90,0 +5 | =0+ |1 a0,
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so that eq 11 becomes

f I?'(x,o)chc:
-—=21rpllv‘:,1

[t 200)+pa—0f Gut 200+ 5| =045 |7 Gatron) (2)

Applying the same formula to f’(z,0) gives, after multiplying by
p x=—1),

pa—0) [ F @o)de—
:2'”1712;1‘? (7"“"0)17 (w71+1)0:0) +P2 (7"’_ 6)7” (xn ‘*’Po,")}’ (12,)

which carries the approximation to the same order as in eq 12. Also,
by eq 12, we may write to the same approximation

N’ s
7 [ @o)da=2ep St 900). 12")

Subtracting eq 12’ from eq 12, and making use of eq 12’/, gives
N'—1
Ef(xn —*42)010) =
,0) 0—
[0+ (5o +E[0-r-F]ren)

27

On integrating the second and third terms, this becomes

”>_:f(xn+pe 0= [Fand—s [Feod+ [ Feod]
e e —1@0)

+£r[(0—~1r2—§"2:| [f' @xr,0) —f (@1,60)]. (13)

In the terms of smallest order we may place f/(2zy,0) =f’(x.,0) and
f'(@,,0)=f"(z4,6). In the terms involving f(zy,0) and f(z,,6), which
relative to the principal term, are of first order, we may place

f(@n,0) =1 (@e— PBe,0) =f (e,0) — PbeSf’ (2,0)

f(@1,0) =f(@i+pl27—0.],0) =f (24,0) +p 27— 0,)f (x4,0).
Also

1 71 1 Z2i+p(2r—0;))
A e dz !f(x,,o>+(x—x,>f' (xf,o>}

Zi

— () e e 0]
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Similarly,

—f f(zﬂdx————— dx {f(?‘,,ﬁ) + (@—x)f (x.,0 ’

Ifo

== [ 160~ ) |

By use of these expansions, eq 13 becomes

gf (@ +p0,0) =er§£f (z,0)dx

NG (e

The series on the right side of eq 10 is found by multiplying this by
adf and integrating from =0 to 6=2r. Equation 10 then becomes

a s a 27 'z,
‘/mf Fa0)ds =52 f do f f @)

+5 f "-bzo ("" :If(xe,e>+p([ ("e 6)] )f’@‘u

= ;Iw[ =0 e (YT -5 ) 7 @)

¢ [ =2 s+ oY= - )1 w0

2w == e (5= -5 ) e} o

To reduce eq 14 to a more convenient form, consider the function
0(6,—0), which is an odd periodic function of its argument with period
27, having a finite discontinuity when its argument is zero or 2mn.
It is defined for all other values of its argument by the series

sin 7.(0;—6)

0(0;—0)= Z R (15a)
so that

0(0;,—0) =Z—)r—(—0—i—_—0>, when 0<{6;,—6<2r
(15Db)

=_12_|'_<0,2 ) when—21r<0¢—0<0
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Applying the theorem (eq 16) to eq 17 gives

M=27+pz( f L 48,20

2 272
+24, ﬁ doz{me(eez—ez)f(xaz,oz) +|:p§ez(ee2—62) —’;gﬂf <xe2ﬂz)]

—2a, Zﬂdoz 20 (02,—05)f (24,,00) +| p36°(0,,—0,) Ly f (24,02) (+ (19)
0 12

We may now introduce into the various integrals of eq 19 the ex-
pressions for f(z2,02), f(Zey,02), f(iy,02), f* (¥ey,05), and f’(z4,0,) obtained
from eq 18. We retain only three orders of magnitude.

Since f’ occurs only in the second-order terms of eq 19, we need
only the principal part of £/, which is the z,- derivative of the principal
term in eq 18 so that we place

a 2r Tey
1(22,02) =2—7l';)_1ﬁ delJ;.-x dﬁlFl ((Ez’—l'l,ol,o;;)
—a 27 .
=§;i)—1 - dal{F(l‘z—Icl,gl,Oz) ‘“I’(zz*xmol,gﬂ) d

This is required only for the constant values z,=z,, and z;=z,. On
making these substitutions and taking account of eq 1, it is found that

M=Mo+ﬁ{wm+ Wi+

12
+w, (xezfpeipeeg) — w2 (xezepoepoez)
+w2(x126170017012) —wZ(xizfpelpo(g) }7 (20)

where

(&) (xtztualueh) =
27 27 2 2(m2 2
20,02 [ [ do 700~ 0)—pi0@—0) [ =TI 0,0) 1)

and
Listy =Tty — Tty (2 2)

where the subscript ¢ suggests “‘terminal,” so that z,, is any one of
the four possible distances between terminal planes, one of which is
a terminal plane for the first sheet, the other for the second sheet,

Each of the four z-differences represented by z,,, namely,
(22)

Leyt, = Lo, L1y Tejo,=TLe, Loy Lije =T1,—Tey Tay0, =Ty, Ly,

may be positive or negative. The notation 6, indicates which ter-
minal azimuth of No. 1, and 6, which terminal azimuth of No. 2 is
associated with a specified z-difference.



630 Journal of Research of the National Bureau of Standards  (ve. 2

The second-order term, w,, is an even function of its z-argument,
but the other terms are not so simple for

2%
le =_=f dSl‘Zagfng
81 0

[p2e(0ei_02)F(xe,'—‘xl;01,02) "‘I)ze(94,’—02)F(371,—Z1,91,02)] (23a)

and
2%
W21 Ef dS._,Bal d01
81 0

(2180, — ) F (22— .,,0,,02) — 1O (04, —0) F (@, —24,6,,0,)].  (23b)

If the integrals were left in this form, it would be necessary to dis-
criminate between the various cases arising out of the possible com-
binations of positive and negative signs among the four z-values.
The formulation of these cases would be tedious and awkward because
of their lack of symmetry.

This may be avoided without any loss in generality by transforming
all the z-integrations of eq 23 into others in which the z-argument of
F has the same algebraic sign throughout the range of integration.
To do this, we may write eq 23a in the form

W, 12=—= 2a1a2fd01fd02

T ey
The first z; integral is —p20(0:,—0,) fd:ch (@, —21 ,01,02)]

f Flo,—ay) day= f F(')dz' — f F')dx'.

The second is

fF(z,’~x,)dx,:fF(z’)dx'—fF(z’)dx’,
iy 0 0
so that

1“ = Aalagfdolfdoo[pze (0 02) [fF(I’ ,01,02) dz’ — fF(fl:’ ,6] ,02) dx':l
0
Zise Zigty
+p29(91,~02)[fF(x',oxﬁz)dx'—fF(x'ﬁ:ﬁz)dﬁc':l’-
0 0

20 (0., —0z) fdalF(Ie, 21,01,82)
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Similarly,
W21 =

2dlazf d01f dﬂg 2719(031—01)[[ .F:('E 01,92)dx — |F‘1(.E 01,0 )dx ]

+ple(o,,——al)|: f B o p0) e’ — I'T:'(x 01,00)dz:|

Adding these gives

Wi+ Way =
= (xe,i,yollyoe,) =@ (xe,elvoexyoc,) + (xi,elyaelyei,) — 1 (zf,flyetlyoi,) ) (24)
where
w1 (xt,t,,otlpez,) =

Tigey

2x 2%
20,0, [0, [ 80100 0,~0)~p00,~00) || Fe )’ 25)
This definition makes w; an odd function of its argument.

The mutual inductance of the current sheets may be put in a similar
form by writing the z,z, integrals of eq 1

fdxlfdsz(xz——xl)=fdx1fF(x’)da:’—fdxlfF(x’)d(x’).
Ziy Tiy Ziy 0 Ziy 0

In the first of these double integrals let 2" =z, —z, and in the second
let 2” =2, —1. The first becomes

fdx,fF(x’)dx’—fdx” fF(x’)dx’
Ziy 0 TogTey 0 r
fdr"fF(:c Ydx' ~fdx”fF(z’)dm’.
Jo
The second becomes

—~fdzlfF(x’)dz’zfdz”fF(x’)dx’——fdx”fF(x’)d;r’.
iy 0 0 0 0 0

I%lence eq 1 gives as the mutual inductance, M,, of the two current
sheets

1
Mo:m[% (@eyt) —0(Fezey) + 0 @ipe) — wo(%q)} ' (26)
where
2% 2% 2"
wo(2) =a,ay Odelfdazf:ix” fdx'F(ft’,ﬂl,Og) : (26)
0 0 0

which is an even function of z vanishing with . Its z derivative,
wo(z), is an odd function of z vanishing with it.
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An interpretation of the function, w,(z), may be obtained by con-
sidering the special case where z; =2,, and 2., =z,,, which is

2w (2
=y 1 nglzz‘z:znlnzwo (x),
where

zzweﬂl:migel:ll =l

and n;=1/27p;, ny=1/2rp,—=number of turns per unit axial length.
This shows that wy(z) is one-half the mutual inductance of the two
current sheets, when they have the same end planes, their common
length being |z|, and when each sheet has one turn per unit axial length
(both axial and angular current in the sheets).

Collecting these results, the mutual inductance, A4, between the
two helices (their Neumann’s integral) is

M= n1n2{w (xcg'll,etl:eez) i . (x6201)081’082) +o (wizclyoel,oiz)

—w(xizfl,O{l,Biz)}, (27)
where

w(xz211;011;012) :w0<xl2tl) +w (xtztl,ezl;ozz) e wZ(thtl)ollyoiz)) (28)

where wy is given by eq 26!, w; by eq 25, and w; by eq 21. The z-differ-
ences, Iy, between terminal planes of the current sheets and the
terminal azimuths, 6, and 6,, associated with each of these are given
in eq 22 and 22'. It is now apparent that eq 28 is general, whatever
combination of positive and negative signs the four z-differences may
have. These signs are automatically taken care of in the definitions,
eq 26%, 25, and 21, of wy, w;, and w,, respectively, which shows that
and o, and w, are continuous even functions of z, w, being an odd
function of .

It is evident also from these definitions, that w; and w, (and hence w)
are periodic functions of the terminal azimuths 6, and 6., since 6 is
periodic with period 2. The period of » will be seen to be 27 for each
angle. Consequently, w(zsq, 0:, 05,) is developable in a double
Fourier’s series of sines and cosines of multiples of these two angles,
the development holding for all values of the angles and the coefficients
being functions of ., (and of r, a;, a,)

Since wg is the finite term, both the terms (cos (6,-60,) and p,p./a,a,
(constituting the numerator of the expression (eq 2) defining /') must
be retained in evaluating w,. But since w; is in general an infinitesimal
of first order and w, of second order, the term 7,p,/a,a; is negligible in
the definition of ¥, which is used for evaluating w; and w, (since terms
of third order have been neglected).

The system of subscripts in the designation of the three associated
variables (z Lty O, 0,,) has now served its purpose of indicating which
pair of terminal azimuths is associated with a given a-difference.
From here on in the study of the w functions we adopt the simpler
notation (2, 6, 6,) for these three associated variables and place here
for reference, see eq 22 and 227,

T=T41, =10,,0.=0,,

! (29)
w (x101792) = w(:t,l ,,,9,1,9[,)
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This change necessitates a change in the notation of the variables of
integration so that eq 267, 25, and 21 may now be written

o % 0 00 £ 0 21, 1008 (0" —8") +-D1psf 18]
wo(x)~—a1agj; 0 ﬁ do ﬁ b, ﬁ do, nlle D) 1 (30)

w; (2,01,02) =

& 2 2 cos (6" —6,’
20,4 L dz’ ﬁ dal"L doz'[pze(oz—ez')—ple(el—el'nw (31)

2 27 2
@y (,0,0;) =2a,a, | dby’ dﬁz'[pf[BZ (6.—6,") -
0 0 12
2 ’ ’
i o2(9,—0) — |- —onoe—pnlcos 6:i—=0) .,
+p2[9 (02 02) 12] 2]712728 (01 01) 0 (0 02)J Rlz (x’o,ue;,) (3,.,)

Equation 28 becomes
@(x,01,05) = wo () + w1 (2,01,05) + w2 (2,61,6) . (33)

In the relatively small terms w; and w,, a sufficient approximation to
the exact expressions
m  =cos nh

_ &sin nl o, il
9(0)~:§{ = and 62(0) gl e (34)

is

L 1 3 T _ 7 cos 20‘)
8(0)~—9(s1n 0—|—§ sin 20) and O (0)—1—é——9<cos 0-+ 4 (35)

Using this approximation, eq 31 becomes

A z 2 (2 v , 1 5 ,
wq (1,01,02)=—9‘a1a2ﬁ dxlj; dﬁlﬁ dﬁzlpl[&n (01'—01>+"2‘Sln 2(01"'01)]

J = U ’
iy o b 1o, y cos (0;—65)
pyLsm (62 02)+2sm 2(6; @):I}————Rm @00, (36)

and eq 32 becomes

2n%aa, (2, (*3r, , 1 ;
w2 (2,01,0,) = 9‘ 2ﬁd01 J; dez{pf[cos (6’1—01)—|-Zcos 2(01—91)]

+pz[cos (03—0)+ cos 2(0..:—02)]

2
—%—gmz[sin (0045 sin 2(0;—01)]

A 5 Tis 5 cos (6;—0,)
e gt 9 ) Thed Mherds =il w1 GRS Y
I:sm (6,—05) + 5 sin 2(0, 02]} R 0.00) (37)

For reference is placed here an alternative approximation
2 Al

62(0)=Z(1—sm —2—>, when 0<0< 27

2 : (38)
=7rz<1 -+sin g), when —27<6<0

269047—41——2



634 Journal of Research of the National Bureau of Standards (vol. 2
which is seen to be a good approximation, since

32/73==1.032
and

A 4y sin @u—1)7
62(8) =— 1——;;12 —(Q—H—:ﬁa— , when 0<0<x/2.

4

For the type of expansions required here the three-term approxima-
tion for 6% given in eq 35 will be used. It has about the same precision
as the two-term approximation, eq 38. The latter is equivalent to
one used 3 in considering coaxial helices, as it led to a simple expression
for the term corresponding in that case to w,, which was in finite terms.

A comparison of the approximate expression adopted for 6(6) and
for 62(0) —I1%*/12 in (eq 35) with the exact series (eq 34), for these func-
tions shows that we have retained only the first two terms of the series,
and have arbitrarily inserted the factor #%/9, which is slightly greater
than 1, and in fact it is sufficient to replace this by 1 in the second-
order terms.

In the following section the w-functions are expanded in a double
Fourier’s series in the terminal azimuth angles 6, and 6.

IV. EXPANSION OF «» IN A DOUBLE FOURIER’S SERIES OF
THE AZIMUTHAL ANGLES

In figure 3 is shown the projection of the two parallel cylinders
upon the yz plane, and 7y, is the projection of the distance R,; from P,
to P,, so that

&=a*+rd, where x=x,—u1;. (39)

The z axis being taken as the axis of cylindrical coordinates, a, and

8, are cylindrical coordinates of P, but the cylindrical coordinates of
P, may be taken as r, and 65, as shown in figure 3. Since 7, is one

side of the triangle P,0,P,, the other two sides, a;, and r,, including
the angle 6,— 6,

ré=a2—2ayr, cos (0,—0,) 2. (40)

Since 1/R;; is an even periodic function of the angle (8,—63), its Fourier
series may be written

1 20> 7
R;=:\T17; E 5n¢n(x)a'1yr2) cos n(6,—05), (41)

n=0

where eo‘—:—;- and e,=1, if n5£0), and where

2%
¢n (xya/l )7'2) =_1_ COoOS (01 = 0’2) d01
1/ ary 2m i Ry, (429)

and 2, a,, 75, 0; are held constant in this integration.
3 Reference 2, p. 259-261.
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Another integral representation of this function, which will be
derived later and which involves Bessel’s function, /,, is

%iﬂ}:%?‘z)___ oglzf'J,,(alt)Jn(rzt)dt- (42b)
172

A)/

Ficure 3.—Projection of the two helices upon a plane perpendicular to their aves.
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This integral may be evaluated, the result being a function of the
single dimensionless variable %, so that

bl ) Jant I‘2<n+%> - ;
n(Ly,le) K : 3 s '
1/‘117"2 QWW/ZIE I'2n-+1) F(n—l—2’n+2,2n+],k2>, (43)

where
B 4@17'2 ;
2?4 (ay+7s)*
and where F' is the hypergeometric function. It is evident that the

function @,(@—2,7,7)/+/rr is a solution of the partial differential
equation

(44)

1 *\ ¢
(D24 iD %) 2 (450)
1

and also of

<D2+D2+—1D ~&2> i B (45b)
& TSI NT B e

It is further evident that ¢, is a symmetrical function of the two sets,
z,r, and @;,r;, becoming infinite logarithmically when they approach
coincidence. It is the Green’s function and the nucleus of many
integral equations which arise when a solution of eq 45 is required
and which has assigned values (or assigned values for its ‘‘surface
density of charge’’) on surfaces of revolution about the z-axis. Thus
the function

Vola,r) = ¢o(@—a1,r,m1) [4/r71

is a potential at a point P whose cylindrical coordinates are x and 7.
It is symmetrical about the z-axis and is due to a unit circular line
charge distributed with uniform linear density over the circular arc
of radius 7, in the plane ;, which is coaxial with the z-axis.

More generally, if » is any integer, the function

b (@—21,7,77)

774
is the solution of eq 45a at a point 2,7, due to a unit circular line
“source” at x;,7;, in the sense that the solution of eq 45a, whose
surface density of source o is given on any surface of revolution
(z;=function of r,), is found by integrating

fo' (,rl) ¢n (x::EI ,7‘,7”1>

Nrr

27r7’1d81,

where ds, is an element of the generating arc of the given surface of
revolution, lying in a plane through the z-axis, and the integral is
taken between the appropriate limits. If ¢ is known, this gives the
solution, but if the function is assigned, this is an integral equation
to determine o, after which this integral gives the solution. The most
appropriate expansions of this nucleus of the integral equations in a
given coordinate system are those which are the canonical bilinear
expansion of the nucleus in terms of its normal functions for that
system.
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The role of this function ¢, for solutions of eq 45a, having assigned
values on surfaces of revolution, is as fundamental as that of 1/R, ,

in the general theory of electrostatics, and in fact its expansion in
normal functions follows from that of 1/R, , by eq 42a.

Some coordinates pertinent to the problem of this paper may here
be mentioned.

The first is the spherical coordinate system. If the values of a
solution U of eq 45a are assigned on the sphere made by revolving the
circle z3-+7i=R; about the z-axis, and R, {, 6 are the spherical
coordlnates of P, while (Ry, ¢i, 6,) are those of Py, where R=x*+7%,
¢{=u/R and tan 6=y/z (where 6 is the same as in cylindrical coordi-
nates), then it is known that

| N T'(m—n+1) ,, Gl b
A 2:2_‘,% cos n(0—0,) mz TmFnti) Pr(OR Pr(o)R™  (46)
when R>R,. (with interchange of R and R, for the case R<R,).

The expansion corresponding to eq 41 is

il 2. .
E::/ﬁnz-__oen¢n(x_xhr;rl) COS n(o'—el)) (47)
so that 1
¢n(93_$_1,7'y7'1) 2 I'(m—n+ 1)I)n ER-™"1Pn(£)Rr (48)

-\/7’7‘1 m= nr(m+n+l) A

when R>R; (with interchange of B and R, when R<R,), where
Pr.(¢) is the associated Legendre function (Ferrer’s). This is the
canonical bilinear expansion of the nucleus in terms of normal func-
tions for the spherical surface R; by means of which solutions of
eq 45a may be found when their values or the values of their source
density on the sphere are assigned.

When the solution of eq 45a has assigned values on an oblate
spheroid, oblate spheroidal coordinates are used. The bilinear expan-
tion for this nucleus in such coordinates is used in a later section and
applied to the limiting case where the spheroid becomes a circular disk.

The expansion in toroidal coordinates is also intimately related to
the present problem, the function ¢,(k) being a toroidal function

¢"<k)=;Q”"(P_ ), where @, is Legendre’s function of the second
kind.

The derivation of eq 42b may be made by use of Heine’s integral
formula,

1 1 S
_—= = —|2|
Ry 1/xz_*_r%z fe Lo (rigt)dt. , (49)

Using Neumann’s addition formula,
Jo(r1) = 2Ty (@rt) oS, (751) ™06
ny=—o

:2igean(a1t)J,,(rzt) cos (6, —65) (50)
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gives

Ao=2 c0s n(0,—8) ﬂ et T, (ant) T (rat) 51)
12 n=0

which, by comparison with eq 41, gives eq 42b. In the expansion
(eq 41) or its equivalent (eq 51), both r, and 6, are functions of 6,.
Since 7, is one side of the trlangle, P,0,0, (fig. 3), the other sides, r
and a,, including the angle (w—86,),

r3=r*—2ra, cos (w—6,)+a3. (52)

To obtain the Fourier’s cosine series in 6; and 6, for 1/R,;, the term
Jo (rgt) in the integrand of eq 49 must be expressed explicitly in
terms of these angles. Hence in the expansion (eq 50), the term
Jn, (rat) €™ must be expanded as a Fourier series in 6;, and for this a
more general formula than Neumann’s addition formula (eq 50) is
required.

Neumann’s addition formula is a special case of a more general
addition formula derivable from that of Sonin,* which, applied to the
triangle P;0,0., may be put in the form

Ty (rad)e = 33 oy (r0) Ty (aat) e (53)

m=—o

Using this in eq 50 gives
Joru)= 33 30 JnyngD) Iy @)y (@at) "m0, (54)

M=—owo M=—e

By use of this expansion in eq 49, the double Fourier’s series expansion
of the function 1/R;, defined in eq 3 is found to be

1 1
=7 z,r,a ¢t (n161—n302)
Ris(2,61,6) a0y m==w m; Bnyyny (Z,7,01,02)
1

Z_‘/a—h— nE ¢n1m2(z 7 0’11(12) COoS (nlel 7'/202)’ (55)
102 Mm=—o n3=

which may be written

1 2 I¢oo
Ry (2,01,6) 1/a1a2

ERat z¢nlyn1 cos ny(6,—61)

+Z > Gninyrny €08 [(n+n3)01—1n26)] ] (56)

=] my=—oo
or

1
Ry5(2,0,,62) <

”—Z E €n1€ny ¢n1m2+¢nly nz) €0s 40 coS N,
‘\/alaz’nx—() n3=0

+ (Bnymy— Bnyr—ny) SN 7,6, SN Nby - (56")

¢ N. Nielsen, Handbuch der Theorie der Cylinder Funktionen, p. 287, Teubner (1904).
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The coeflicients ¢n,, n, are even functions of , which are represented
by

By (2,7,01,02) = @ﬁ}""J my—ng (1) ny (@18) o, (ast)dt (57a)

or by Fourier’s rule,

___1/@;—21'2' f"" cos (ny0,—mnab,) 4
4’n1,n2(x’r;alya2) 77;_2— odel Odoz' R12(———-33,01,02) ’ (o7b)

which shows that ¢, _n,=@¢_n;,- On inserting the expansion (eq 56)
in the three equations, 30, 31, 32, noting that

27

J;(-)l(B—B'l) cos n0’1d0',=% sin 70, if n7#0, =0if n=0
2

fe(el—e;) sin n01d0’1=—~% cos nb, if n7%0, =0 if n=0
0

21 3
fo?(el—o’,) cos n01d0'1=7%, cos nb, if n=0, "—‘% yif n=0,
0

the Fourier’s series for the function « is obtained. The term w,
corresponding to current sheets may be written

wo=wu+%zwoo, (58)

where the principal part of w is w;; due to the angular component of
current in the sheets. The term

PiP2
alazwoo

is due to the axial components of current in the sheets and is an
infinitesimal of second order.
The functions w;; and wy are special cases of the function w,,,,

defined by

TESWOR ] o
Wayyng (x,r,al 90‘2) =4 7r2’Jala/2J;dx”J; dx"t’n!mz (:E',T,(Ll ,042) ) (59)
so that

Sy
w,npng (23,7',(11 ,(l2) g 47"2-Jala,2fd2,¢nl yng (Z, ,T,Gq,(lg) ! (60)
0

The first-order infinitesimal w,; given by eq 31 is found to be

e sin nf,; . , ?
Wy (x)01)02) 3w —pl Zl n [w n41y1 (23,7',0/1,02) +w n—1y—1 (%7',(11,02)]
n=

e sin n(r—0
—DP2 “z; '——(7%—'—2) [w’n+1)l (-"717';‘12;011) + w,n—ly—l (x;r)a2yal)]) (6 1)
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and the second-order term w,, derived from eq 32 becomes
w2 (x191)02)

— ® cos nb
:4#2401@2 Pf; oy 1[¢n+1,1(a:,r,a1,a2) + bno1y-1(2,7,21,02)]

G —0.
+P§Z_)%”;2)[¢n+1,x (@,7,Q2,01) + Pp—1,—1 (2,7,02,01)]

+P1P22 Z [(¢’nl+l —ngt1 Tt Pa,—1,-n,-1) COS (1161+n20;)

m=1 ny=1T1T2
— (Pn+1,ng017F Pn—1m,-1) COS (’ﬂ101—n202)]J’ (62)

where the arguments of all the ¢-functions in the double series are
(x, r, a1, as), respectively. In deriving these expressions from the
expansion (eq 55), we have made use of the fact (shown by eq 57b)
that ¢_n,—n,=¢s .., and also of the relation (shown by eq 57a that

¢nl.n,(x/r,af1;a’2) zd’n,mlx)r)amal)s (63)

which obviously hold for the functions w,, and «’,

1y°

The approximate expressions for © and 62 given in eq 35 merely
indicate that w; is found from eq 61 by retaining only the first two
terms of each series and inserting the factor #%/9, while the second-order
term, w,, is sufficiently represented by merely extending the n;, and
n, summations each from 1 to 2 in the series given in eq 62.

In the case of coaxial helices (r=0), eq 57a, shows that

¢"1”a (m:oral;a2) T d’nl (x;al;aﬁ)an,n,Z ¢n1 (k)anln,,

where
4a,a,
2+ (a1 +ay)*
and §,,,=1, if n,=n,,=zero otherwise. Equation 61 shows that
=0, and eq 62 shows that

ko=

cos n(01 6s),
n?

wy—>—4T plpﬂ/(hazz [bn—1(k) + Ppnsa ()]

where 6, —0, is the azimuthal difference of the two terminals.

Hence the surviving terms are equivalent to those previously
obtained for the coaxial case in eq 49 of the paper quoted (footnote 2).
The terms n,nyw;; (2),, MMawe (), NiNgws(x,0,— 6,) of this paper correspond
to  wy(2), w.(x), and w,(z,0,)(0,=0;—0,) of that paper, where nn,
=1/47°p1p.

For the coaxial helices in a current balance, the term w, compared
with w, was found to be 10 parts in a million.

To derive a formula by which the mutual inductance of the two
helices may be computed in the general case, where their axes are
merely parallel, it is necessary to obtain expressions by which the
functions ¢, and their first and second partial integrals with respect

to z may be computed. None of the integrals, eq 57a, 57b, 59, and
60, may be integrated in finite terms, so we are driven to expansions
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in series. Such expansions in oblate spheroidal harmonics are ob-
tained in the following sections.
By reference to the relation (eq 63) it is evident that ¢, ., where

n; and n, are any integers (positive, negative, or zero), is obtainable
(by interchange of the arguments, @; and a; when necessary) from one
of the following three irreducible cases:

Case A; ny=n,=0
Case B; 0<n,<m,
Case C; n,<0 and n; >0
However, this requires that we obtain expansions for $nn, I these

three cases, without committing ourselves to a restriction that a,< ay,
that is, one that is valid when a; and a, are interchanged.

V. PARTIAL DIFFERENTIAL EQUATIONS AND BOUNDARY
CONDITIONS SATISFIED BY THE FUNCTION ¢,

1973

From the differential equation satisfied by Bessel’s function, com-
bined with the integral representation of ¢, , in (eq 57a), it is found

that ¢,,,,, satisfies the two partial differential equations

d)n!,n’ ]
1/ Ay

= 0, where n=mn,—n,=0, (64)

2
\p24-024-10, -2

and

(65)

ﬁ‘ Prugny
ail y aya,

and also a similar equation, where a; and n, are replaced by a; and n,.
As to boundary conditions, it is evident that ¢"L’_"1 vanishes when
BT, SR a0y
\/332—1—1‘2 —> , or when 4/224-a —o. The function is also regular in the
neighborhood of r=0 or (a,=0) and is finite, continuous, and single-
valued in general and an even function of . ;
The partial derivative with respect to z, bn,yn, 18 an odd function of x.

Defining o by

5 Bryn, (4-0,7,01,05) 3 b (—0,7,01,0)
2myae, 2

o [, 0T @), (0, (66)
mJo ™™ 1 2

1
(D24 D2+ 2D,

Il

g

it will be seen that ¢ must be zero when r< | a,—a, | and when r>a,+-as,
for the integral representation (eq 57b) exhibits ¢,,,, as a double line
integral around two parallel circles of radii a; and a,, = being the
distance between their planes and » the distance between their axes.
In the case m;=ny,=1, the function ¢, multiplied by 4#*y/aa, is the
mutual inductance of the two parallel circles.
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Equation 57b may be written

27 27
— @, cos n,0,db
472/ Gy, on, (X,7) = f @ COS N20,d0, f I—Rl:'—l'~l
0 0 5

27 27
; f Bl f Gsinnby, )
12
0 0

Each of these integrals is a special case of double-line integrals taken
around the two circles of type

50 = [ fu@ds, [0, (68)

dSl = a1d01 and d-S'g = a2d02

where

are elements of arc of the circles, Ry, being the distance between the
two points of integration, P; in the first circle and P, on the second.
The first of radius @, may be considered in the plane 2=0 coaxial
with the z-axis, the second parallel to it has its center at a point whose
cylindrical coordinates are (z,7,8). Since 1/R;, is so fundamental in
the theory of electrostatics, and because electrostatic problems are
familiar to most of us, some guidance may be obtained by availing
ourselves occasionally of an electrostatic interpretation of integrals
involving the factor 1/R;, in the integrand. Thus the first line integral

in eq 68, which is
I S1(0)dsy,
aeille g

is the electrostatic potential at any point P, on the second circle when
the first circle is a line charge with linear density f,(6,). Hence, if
the second circle is a line charge of linear density f,(6,), then

L e D f $.(63) Euls,, where Ey——D,V

the z-component of the electric field of the first circle at any point P,
of the second. Consequently, —¢’=F,=the z-component of the
force which the first circle exerts upon the second. Clearly this
vanishes when =0 if the circles do not touch or intersect in this
coplanar position, that is,

¢’ (0)=0 if 0<r<|a1—a,| (69)
=0 if a;+a,<r<w.

In the remaining case, |a;—a,|<<r<la;-+a., the circles intersect if they
are brought into the same plane while keeping 7 constant. This is
the case for which figure 3 i1s drawn, assuming a,<a, (but the argu-
ment may be made by reference to that figure, keeping in mind the
other possibility, a;<a;). In this case the values of 6, and 6, corre-
sponding to one point of intersection P, are called 6} and 63, respec-
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Equation 14 may therefore be written

T [ rends—s [ [ rwaras+

+2a J; 2210{1;9 (0,— 0)f (@,,0) + [p29 2(9,—0) —%’2 ]j' @., 0)}

—2a [ @pow—0fn + | 0200 —TE |1 @,0]) 10

where 3, has been replaced by 6., the distinction between the two be-
ing now no longer material, since 6, appears only in 6 (§,—6), which
is a periodic function of its argument with period 2.

The parenthesis on the right of eq 16, which has the factor 1/2xp,
contains three orders of magnitudes. The first, or finite term, is the
surface integral of f taken over the sheet S.

If eq 16 be divided by 27Na, the first member becomes 1/s f5° fds=
the line average of f taken along the helix. The principal term on
the right becomes 1/S /./fdS, which is the surface average of f taken
over S. Equation 16 is therefore the required relation giving the
difference of these two averages as a relatively small quantity in which
two orders of magnitude have been retained.

By two successive applications of the transformation represented in
eq 16 we may convert the two successive line integrals along the two
helices (which represent their mutual inductance, A£) into two suc-
cessive surface integrals over their equivalent sheets plus small cor-
rection terms. To begin this, eq 9 may be written

a2 82
M—JW%'J; dSzf(zz,og) (17)
the integration being along the second helix,
a 81
Jeu) =T [ dsF s,

the latter integration being taken along the first helix.
By use of eq 16

1
S (@2,05) =2—Wi’_l<fﬁdeIF (w2 —121,61,02)

27

+2@1ﬁ dGl[ple(ﬂel—Bl)F(xz—x,l,Bl,Oz)
m°pi
—| 21670, =00~ 2 B (Zz_xe,,elﬂz)]

27

i 2alj:) dﬁl{ple (01'1_ Gl)F(ﬁg— fEil,el,OQ)

2n2
_[p%OZ(Oi‘—BI) "—'721—]211 F’(xz——:E1l,01,02)]>. (18)
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tively. The angle 2¢ between the intersecting arcs may be taken
as the angle 0,P,0,, so that

2¢=05—06), where 0<@¢{<r and 0<6)<,

so that 02y <~ &
The coordinates, 0;=2r—6? and 69=27—63 refer to the other point
of intersection P%.

When the two circles approach the same plane (z—-0), the
infinitesimal arcs in the neighborhood of P, (or P;) contribute a
finite amount to their mutual repulsion F, in the z-direction, because
Ry, vanishes at P, (and P;). Arcs at a finite distance from these
points contribute a vanishing amount to F,. The curvature of the
intersecting arcs becomes irrelevant, but of course the angle 2¢ at
which they intersect is important. The value of the integral may be
computed as in the case of two endless straight-line charges approach-
ing intersection, their linear charge densities being variable, but only
the values of these densities at P, (or P’) being effective. If we
allow for discontinuities in the functions f, () and f, (6,) (as for
example in eq 31 and eq 32, in the integrals defining «; and w,), we
find, when |a;,— azl<r<al+aq and ¢, defined by eq 68, that

<f1 (62+0) +f1 (62— 0))(7‘2 (63+0) -;-jz(og— 0))

—¢' (+0)—s1n 7‘//{
+<f1 (63-+0) ;Ffl (05— 0)) (fz 63+0) ;sz (0'3—0)>

_I_(vr 4y I:(fl(0°+0)-f1(0° 0))<fe(93+0)-—fz(03—0)>

HACHOAG=O Y RO Ok ],

For the case where f; and fg are continuous functlons, this becomes

—¢'(+0)= 5155 [H@f:(6) +/102)/:(0)]. (71')

Using this in eq 67 leads to the following expression for the ¢ defined
in eq 66:

sin 2

o=0 if 0=<r< A4,
s/ 2 cos (1,08 —mny69) . )
T E=A) T ey o Ar<dy, (72)
=0 if A<r<o
where
A= a,}a
1 1+ as , 50 that 0<A4,<A4,. (73)
A2EIa/1'_"

The absolute value [al——a2l is used for A,, so that we need not commit,
ourselves on the question as to which of the two circular radii, a, or
@, is the larger.
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The second member of eq 72 is a function of r, since 67 and 63 and
2¢y=03—6} are functions of ». However, it is more convenient to
reverse this and to express ¢ and r as functions of ¥, which may be
done by expressing 6¢ as functions of ¢.

To do this we define £, by

Emal—ao

" a,ta, (74)
2—\/1 52 21/0/1‘12__J ( 0<£o<1 !

g 0O atay

Considering the triangle 0,P,0, of figure 3, it is evident that

r=(a}—2a,a; cos 2¢+-a)i=A;(1—£ cos® ¢)*

—a1<1 ___262nb> <1 s | —W) (75)

sin 2¢_A2 Ag‘/ (A2—7"2) (7, Ag) (75/)
- 08 2 o
cos 0§’=u—2~7;0”—“¢ cos 02:91_@872‘Pﬂ
: and ! ‘ (76)
sin 6‘1’=@—M sin 03:@?32

From these relations it follows that

a,— aze‘m: <a1 —aze—“\P)%: 14&1 " +§’ EEty (77a)

z 0, — 0% 2 (1—2 cos?y)?

el —

24y
eiag__zﬂ_?ﬂ: £H03+20) (77b)

When considering 6 and 65 as functions of 7, a;, and a,, this may be
indicated by writing 68=609(r,a;,a;,) and 3=03(r,a;,a,). It is evident
from these definitions that when we interchange the arguments a,
and a,, 67 goes into 7—63 and 63 goes into =— 6}, that is,

08 (r,az,a1) =7 — 65 (r,1,05) (78a)
and
0g(7‘)a/2:a’1) :W_B(IJ(T;G/I;QZ)- (78b)

On the other hand, 2¢(=63—6?) is unaltered by interchange of argu-
ments ¢, and a,.
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By eq 77 we may write (if ¢ () denotes the real part)

P\ m—ns [1 Lo E’e‘W]m_m
1— N3 i
cos (m0—n.09) =R (1%) L

m—mna 2

[1—& cos® y] 2

<1+za =

T e
(1—£2 cos’ tl/)

iy k cos 2 (k—+ny)
Z( D 1+go TEFDTAFm—na—k)

L )( “2)—mr(n, mt1)

(1—8 cos? ¥) 7
~ (——1)"( > cos 2ky
PN 5 ey )

Hence, if we define the integer n by
n=mn;—ng, s0 that n=0 in all cases, A, B, and (), (79)
while n, may be positive or negative, then

=0 - - — — — — — — — — when 0Z2r<{A4,

o T <1+s;>ﬂ I'(n+1)
r°A*sin 2y \ 2 (1—Beos?y)3

cos 2(k4n.) ¢ (80)
3=y (1+g,, TEFDTAFn—h)
when 4,<r<4,
Coclyrtis oty igks FOUTOR T by e when 4,<rZ

In case n=0, this series reduces to the simple term cos 2n4/, so tha

by 2 cos 2my /
Tmym™ 3 AZ_ A2) sin 2¢

Quite a different electrostatic interpretation of B, g will now be
useful. If 2, 7, and 6 are considered as the cylindrical coordinates of
a point P in space, the function V(z,r8)= (a102) “Abp1yna(2,1,01,05)
cos (n;—mny)0 is the Newtonian potential at any point P due to a s1mple
distribution of charge upon the annular surface (4;<\r<ZA,2=0), whose
surface density is o cos (n;—ng)0, so that the o defined by eq 66 or 80
plays the same part for solutions of eq 64 that surface density on the
annulus plays for solutions of Laplace’s equation.

In the following section an expansion for ¢, ,. is obtained in terms
of the normal functions of oblate spheroidal coordinates, these being
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used because in terms of them ¢,,,, admits of a single expansion

valid for all real values of 2 and for all positive or zero values of r, a;,
and a;, whereas ordinary spherical coordinates require three different
expansions according as 0=<r=<<A,, 4,<r=<<4,, or A;<r=< o, and the
expansion in the second of these cases is somewhat complicated. In
this respect, toroidal coordinates are superior to spherical but inferior
to spheroidal, as the expansions require only two cases.

VI. EXPANSION OF ¢,,, IN OBLATE SPHEROIDAL
COORDINATES
Instead of the cylindrical coordinates (z, r, 6) the (oblate) spheroidal

coordinates, £, 9, 6 (the same 6), may be used to designate a point in
space, where

r= AT 0o
Solving for ¢ ad 5 gives
it
Er":W[A;—xz—rz—}—\/[xH— (r+ A+ (r—A1)2]]
! : (82)
1
772=271%*(x2+r2——A3+1/[132+ (r+ A1) x*+ (r—AOZ]}
Also from eq 81, we find
d?+dri= A2 (247 I: ati °+1+17] (83)

The locus of the equation, n=constant, is the entire surface of the
oblate spheroid, whose equation is

2[Ain’+r /A3 (1+77) =1,

whose foci are at (=0, r=4A4,). In particular, the locus of 7=0 is
both sides of the circular disk (z=0, 0=<r, <A,), at the edge of which
£=0, and £ increases from zero to 1 on the side =0 as the point
passes from the edge to the origin, or z-axis, while ¢ decreases from
0 to —1 on the side z=—0 as the point moves down to the axis.
The locus £=+1 is the positive z-axis, and £é=—1 is the negative
2-axis.

The hyperboloid which is confocal with every such spheroid whose
equation 1s

— 2’ A+ AF(1—-8) =1

must be considered as the two loci, that half for which >0 being
the locus £=§, >0, and that for which 2< 0 being the locus £=—§,;<0.
Large values of n correspond to points far away from the origin, since
14+n*=(2®+1r%)/A}+#. The differential equation (64) becomes

Dryymy

D PR A S, i T | e %, (34
= 1/a1a2 1+11 1/
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which has solutions of the form
bnny

T PORG), (#5)
where P(¢) is a solution of
D{(1—&)P] +[ﬂ(ﬂ+1) ]P 0, where P"=D:P  (86)
and B(z) is a solution of
DLA+mIR | 1)~ [R=0 s)
N=N;—Ny. (88)

As shown in the preceding section, it is sufficient to consider n=mn;—mn,,
where n is a positive integer, or zero, while 7, is either positive,
negative, or zero, and n,=0. KEquation 87 goes into the same type
as eq 86 in the independent variable z, where n=1z.

One solution of eq 86 for the case where —1<¢<1 may be taken as
P=P;(£), which is (Ferrer’s) associated Legendre function. This
reduces to the accepted value when »=an integer, if we define it, for
general values of u,» when|1—£|<2 by

— T
Pﬁ(ﬁ)"‘)(v;(ug )vg—(lll)_;v+1) F( —wytptlytl; =5 E)‘ (89)

We make use of the two recurrence relations

Cut+1EPL() = (u—r+1) PuYa () + (u+») P21 (8) (90)
@p+1) (=) Pr () =— (u—r+ 1D uPuta(®) + (ut») e+ 1) Pu21(8). (91)
Also when 7 is a positive integer

Pi(®)=(1—8)TDEP. (). (92)

We require also the following expressions when p=»--s, where s is a
positive integer or zero.

o R e P9y e
P &= TeFDTe1D

F(—s,s+2v+1,y+1;115>, if [1—g<2  (93)

Pria@= CRBAER IO D p g o0

Paa()= A IR TR o gty tp0)  O4)
if [§]<].
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Also when |1 —£%| <1, there are the two relations:
2(1—#)7 T(s+v+ DT (s+r+3)

P 6D TeF D T 4D
F(—sstvtipt1i1—8) (950)
v(1 — £2)%
Py () 2 A8 Tekrt ) Datot )

F(v+1) T'(s+1) I'(s+4)
EF (—s,s+v+3p+1;1—8). (95b)

The hypergeometric functions in the last five expressions are polyno-
mials, if s is a positive integer or zero, but eq 93, 95a, and 95b are
valid if » and s are unrestricted.

The importance of the case p=»-s lies in the fact that if » is any
given constant greater than —1, the infinite set of functions Pj, ¢
constitute a complete set of orthogonal functions for the range —1

<£<1, for

[P @a=0its =5 (99)
and
g __ 2D(s+2v+1)
fLPvH(f)]zdf_(2s+2v+1)1‘(s+1)' W

For the range 0<{¢<{1 the set of even functions of &, P; &, are a
closed set of orthogonal functions, as also are the odd functions.

If a function is developable in terms of these normal functions, its
development is

- R o e IR ),
5O =Sotr + D i5Pen(® [FE Py f)d8 for—1<<1.08)

A special case is

O =253 @s+r+ D) s P

[F@Pra@dn for 0<e<t. o8

For the range here needed, 0<9=< =, it is convenient to take the
general solution of eq 87 in the form

R (77) = OIRL, ("1) A 025/;’: (77) ’
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where
n+1
pamai e Tt (el el 8 1)
<u+2)
AT e
v cos vl (p+v+1) Qn(”’) (992)
(ESLEE R
S = PraE g, —~E= SRty s
U Rt VY s ) ( 272’ 2°2 1+,,>
Mi—_liﬂ' RV—P—I ( ) (ggb)
The relation
(1+n?) (RS —RS}| =2 cos ur %ﬁ% (100)

shows that these two functions are linearly independent when
v=n and p=m=n. The two recurrence relations

@u+DnRi= (p—v)By-1— (p+r+1) Ry (101a)
@u+1) L+ Ry =— (u—) (u+DRj1— (utv+ 1) R (101b)

are also satisfied by the functions S,.
Since Q(z)=(2—1)7D?Q,(z), the analogs of eq 92 are

B~ gy 00 DiRG) (1020)
Sin =Rt (14 D28, ). (102b)

By use of the recurrence relations, eq 90, 91, 101a, and 101b, we
obtain equations of the form

@2u+1) PL®RL() = — AD Py (O)B—1(n) + Pua (O Bua (n)] (103)

and three others obtained by replacing Ry(n) by Sn(n) and then P,(£)
by @.(¥) in each of the two relations. It is evident from eq 99
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that R;,—0 when n—>wo if p>—1, while S;—>« if p>0. We also
place here for reference

p—v+1
R:(0)= e p(<"+”+ 1)) and R2(0)= ‘:W)f)
S (0) = {08 1T L 008 vr) P<ﬂ_;+1 and §(0) (104)
» vl (”——_*—_—V—|— 1) u
__(cos pm—cos ) ( o 1>
2 F(u-l— ;+ 1)

The reciprocal distance from Pl(g;,m,ﬁl) to P(&7,0) has the known
expansion

Rip 2 3¢, cos n(0—8;) z<—1>m<m+2>P (E)Rz(n) Pr(8)Sm(ny), (105)

1n=0

provided that n>7;, that is, the point P lies outside the ellipsoid,
71, passing through P;., When it i1s inside, 7<{#; and the above ex-
pansion is merely modified by interchanging the arguments n and 7.
This expansion is very similar in form to that of spherical coordinates
given in eq 46. A comparison of eq 105 with eq 47 gives the expansion
in spheroidal coordinates when 5>,

Su(@—21,7y11) _

W e Z( 1™ (m+5) Pr(§)R5 () Pr(§) S(m) - (106)

with interchange of 4 and », in case »<{»'. This is similar to the
expansion of the same function in spherical coordinates given in eq 48.

Passing now to the case n=0, which corresponds to ;=0 and
0=<r=A,(1—¥)%¥<A4, so that the ellipsoid, 7%;, shrinks into the
circular disc, we find from eq 104 that

_1 n I‘ Al
Strass(0)=0 and S0 = G (TEHD

Hence if

i) 47'7'1
ety L

then
d’n (mf_yrl) s ¢n@
N Vrr

e IF
=y D PP ® Biaaln) Prea®)  (108)
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which is valid for all values of », as is also the integral representation

d:;?= Ome‘”“Jn(ﬂ)Jn(rlt)dt' (109)
1

I}f1 U is a solution of eq 64, which vanishes when 22-+-72— o and such
that

1 1
0= —5D;Ul:—40=~45_[D:Ul-o

is a given function of r,(=4,(1—£)})

on the circular annulus 2=04,<r;<A4,, and ¢=0 when o=<<r<A4,,
and when 7> A4, then &, being defined as in eq 74

U:%fA”'_l‘l(ﬂ)—“s;(k_)c.lﬁ:zwAff&?ﬁ@_Mlgl- (110)
As Ve 0 Vrr
Using eq 108 in this gives

274, 2 T'(s+3)

U=="%% gg (28+n+%)m

£o
Phias®: Biatn). [ 56 Phiatedds. (111

To confirm this result we note that the function U given by eq 111
is a solution of eq 64, which vanishes when 2272 -,

K180, DT sg=0 when 7> Aspsines (Delcs) :<A—16DEU>E=O and
1
Pro(0)=0.

When r< A, 270=— (DIU),=+0:——ZI—IE(D,,U)FO and eq 111 gives,
by use of eq 104,

© o
£ () =253 e+t et P (®). | 6o @) PLad (12)

for 0<¢<1.

Reference to eq 98’ for the case v=n shows that the second member
of eq 112 is the development in normal functions of the function
£0(%), which is zero when £<¢(<1, that is, when 0=<r<{A,, which
shows that eq 111 is the required solution.

The same confirmation results by using eq 109 in eq 110, which give

® Ay
U=21rf e"’”Jn(rt)dtf rio(ry)J, (rt)dry, (113)
0 As
which gives
® Ay
o= (D) mso= [ 7,000t [ ot Tu(rithdr, (114

which is Hankel’s integral representation of a function of r, which is
equal to ¢ when A,<r<A4; and is zero when 0<r<A, and when
T>A1.
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The function
d’n‘ ﬂ.

Vaua,

is equal to U if the density (eq 80) is used. It is then necessary to
evaluate the integral

t 1 f14E\0 or
0:"’"’5J;EN(&)PZ_H,(EI)dEI:W2A12< —%2‘2 > 3 (n—*_gjz) 7

(- 1)"(1—15-9 :
@ 14-£, €& cos 2(k+ny) Y Py (()dE:,

'kz=i")1‘(k—|—1)f‘(l+n—k) 0o (1—&? cos? ¢)p.sin 2y (115)
Now by eq 75 and eq 81, when n=0
= (1—&)¥=(1—&’ cos®})}, so that &=§ cos ¢
and
2
tidti=—"5" in 2ydy——"4",
so this becomes
1)k 1 EO)
nl’n.__lf‘(n—kl)(l—}—s) n 1+,
C*""=—mas \ "2 ) & P(k+1)1‘(1+n 53
: *1c0s 2 (k+ny) ¢ Phis(bicosy)
L (1= cos® ¥)3 .. (&)

Referring to the eq 94a, we find that

P o, (Eocosy)  (—1)2"T(s4+n+3) e
(1153cos2¢);— Jal(s+1) 22 F(—s, 8+n-+3,%; Eozco§2¢)

o gl ot L(4s+n+3) cos*y
=(=02"2 (V'8 v fe—prarimay W7
Now
/2 ek
cos 2(k-+n,) ¢ cos® ¢d¢~ v (118)
é r(+1IE+43 T 2T (4 k+n+1)T(—k—n,+1)°
Hence

/.
fccz)s 2(k+ns) Y Pryas(§o cos Mdtl/
0 (1—£2 cos? ¢)2
I(t+s+n.+43)

= (=02 - D =T G k-t DT G—F—maF 1)
(119)
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Using this in eq 116 gives
0;”1,"!2 ( 1) (1+£0) nZ( I)LSWF (t+8+'n+ )St, (120)

2 A7 T(IFs—1)
where
L\
S it <—1)k ]_‘_—}_—§§>
i I(n+1)ZP(k+1)I‘(k—|—t—}—n2+l)I‘(l—{—t——no TR it

~ In case t=—n,, that is, t+n,=

F<~n,n2—t,t+nz+ 1+so>>

8= T({—n,+1)T({+ne+1)

g+ ‘F(nz t t+n2+n+1 t+n2+1;1‘;&")
(1“) 2. £998)
P(—ny+1)T(t+ne+1)

the last form being obtained by KEuler’s transformation of the first
hypergeometric function. Since ¢ is never negative in eq 120, it is
evident that eq 122a is applicable whenever n,=0, and also for
negative values of n, when the unequality £>—n, holds. In the
remaining case, where 0<<¢<_—mn,, we may write n,=—m, where m
is a positive integer, so that, 0=t=m.

In this case

=T(n+1)(=1)

e 1_A,E:)>,,H1’ﬁ<—Zt,m——t—n,m—t—l—l; <1+£0>>

1+& Irt+1DTrd+n—m+6I'(m—t-+1)

__1)150‘2:221F<—2t,n-|_1,m_ ;1—:&

ul
=T(n+1)(—1) <1+g> TRIFDIEFn—m+ 1) (m—t+1)
(122b)

This expression however is that which eq122a becomes when ¢-}7,<0,

so that either eq 122a or 122b may be used, as they are both vahd
for positive and negative values of 7,. Usmg the latter, where m is
replaced by —mn, gives

(=18, =

1—§&

2% F( —2tm41,1—ny— ;-

nf 1% ( 2 )
e ( o) Lin +1)I‘(t+n+n2+1)P(2t+1)I‘(1—n2——t)

(123)
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Using this, eq 120 becomes

T oot s (815 w7 Rblald € S ) B
Ol TR 27!'%Af F(n_I_ 1)

s 22T (t+s4+nt+3) F(—Qt,n+1,1—n2~t; 1‘2‘53)
2 T A Fs— DTG atm DT CIF DT —n—5
_ (=D)AL —g) L, 2T (ttstnt3)
Ok Az ST +e—HT{E+ntng+1)
. (—1)k<];£‘;>kI‘(k+n—{—1)
gr(k+1)r(lc—t—n2+1)r(1+2t—k) '

Interchanging the order of summation gives

—1)\st+ng '\ntng (1 __ &\~ 23 o EN\ED
0:11,7!:2( D*m145&)" (11— &) "22<_1)k<1 2£o>1(k+7l/+1)61h

et s T®+1)
(124)
where
L 22T (14+s+n+3)
iy ?;(") [(2t+1—k)T(E+n+n+1)T(1 +§-t)r(1 55 sovepm i L)

In order to evaluate G (eq 125) as a single term, we define the
function G (z) as follows:

G (2)= é (—2)*G;
g (— 22T (t+ s+t 1) |
= e PTG DT e A =D
(126)

Since n and n, are integers, this function is a polynomial in positive
and negative powers of z. It is therefore analytic at every finite
point in the z-plane except at z=0. After inverting the order of
summation, we may substitute k=u-+mn.-+¢ and sum first over u

e (—2) " 2*I (t+s+n+3) :
Y &= BTG T AT m DT Ts— DT —mT D)

s (C2rTl—nytD)

2 TG—nF1—w) T GuF1) (140
or
& 2T (thstatd) (=) (1—2) ™
) S e T D e 2
This series starts not below {=n,. Let A=t—n,, then
G (2)= (_22)2%2"’3 [—42(1—2)PT' (A +8+n+ny-+4) (129)

ST DT (A n+2n,+ )T (1 +s—n—\)
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The sum is of the form

i [—4z(1—2)PT(N+ @) =I’(a)F(a,B,a—{—B—{—1};4z(1—z))
SR LT A —N) T(0—B)Tatp+3

with a=s+n-+n,+% and f=n,—s.
By a special transformation due to Gauss
F(o, 8,0+ B+3142(1—2)) =F (2,28, B+ §2)
and by use of the equation
I'(a)

A= ATt ar) Co?bet bt
_ 2TE—p) < (—2) ' (A +2a) :
5 (| DRI T DT ot B HTA—2—n (130
We get
4 (2) Z (—2)*Gy
(=2)Ml'(s—m+3) (—2)* T (N +2s8+2n+2ny-+1)
T 2PEMD (s f nfmy+1) 49 P()\+1)F(>\+n+°n2—|-1)1‘(1—%—28——2%2—)\)
(131)

from which, by equating equal powers of (z), we get for G; with k=
N+-2n; the expression (eq 132) below. This brief method of deriving
eq 132 from eq 125 was suggested to me by C. L. Critchfield, whose
helpful eriticism in other respects may be acknowledged here.

o 1 28-1-2
Te+n+1) G":22"“”21‘(si(:+?bz:§))llz((’;i§§t;g$li)—i— 1—2n,
Using this in eq 124 gives
O,mm — 3( 1)’+”21:(8 ny+3) /1+Eo>” 1—&})‘”’.
Az 27T (s n4-n, -+ 1)\ \1+%
‘Z(“l)k< —&\ T'k+2s+2n+1) i
= 2 JTk+DT(k+1—2n,)T(1+2s+k)

Y (132)

Now
2 i ne T'(k+2s42n+1) -3
;‘Z‘;(—l)k( ) T+ 1T (k+1—2n)T(A+25—Fk)

__ T@s+2n+1) g
—F(QS“L1)F(1—2n2)F<_28’28+2"+171—2n2, 2 )

g ﬂ)z’ T'(2s+2n+1)
“\4;/) T@s+1)T(1—2ny)

by Euler's transformation, remembering that 1—g=2a,/4; and
1+&=2a,/A,.

F —2s,—23—2n—2n2,1—2n2;—@ (133)
ay
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We thus obtain the following

97I"A1P(3+-2-)
2"T(s+n-1)

where the A-function is defined by

S\l
Cprih= (_‘4‘11—)11":"—‘A§:+2n"—2"’(“1;az)’ (134)
|

AN (ay,a0) =
F(s—}—n1+7)F(s+n2+ DI (+nm+n+3)T(s+3)
r@2s+1)r'(2s+2n;,+1)T'2n,+1)

7,128 2 F £ 21,2 1: (17} 13
(01+a2) (al_l—a/z . (’—28,"'— 8——.47L1, n2+ ’—;L—;>( 5)

On expressing this as a polynomial and summing it in the reverse
order, we find, since s is an integer,

AL (a1,a0) = A% (2,01). (136)
Also since 7, is an integer, it is found that
A% (a0,02) = AJ 0 (01,05), (137)

which vanishes if s—n,<0.
If ny=mn, in this, it is found that

wI'(s4+ DT (s—ni+3) am
PRt DTG Fmt 1) C5 @ (138)

A;;n,—zu: (0:1,(1/2) :A;32m,2m ((1/1,(12) —

which vanishes when s<n,.
Recalling that n=n,—n,=0 and n,=90, it is evident that eq 134 may
be written

27rA1P('S + 7}) N1,N3 <_ 1) g2ty 2n1,—2n3 4
mca ST Adg T (@4a5) (139)
o
In this equation ;" is the value of £ P yos (1) (81)dE,
where the expression (eq 80) has been used for the density o, so that
with this value of the integral the formula (111) is the expansion of
the function U= ¢, (x,7,01,02) [+ 2105

We have, therefore, obtained the following development when
N=n—Ny= 0 which is valid for all posmons of the two parallel circles,
which converges to a finite value except in the case where the circles
are equal in radii, and approach coincidence (in which case it becomes
logarithmically 1nﬁmte)

¢nx yng (x;r;a'l;a2)
'\/alaa’Z

7rvA Z( 1)*(28+n+3) AL ~"(a1,02) P2 (€) Ry 425 (). (140)

When n.=n,=0, this becomes by use of eq 138
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¢n1,n1(13,7',(11,(12) L%
-\/(110/2
(—)m & - TE+HTE—m+3) pon i
mZ(—'l )(28+%)I‘(8—I—TIZ)I‘(S—I-’IL1-[-§)P§‘ (&))P?s(é)RZs(n)' (141)

s=n,

From eq 137 it is seen that the expansion (eq=140) begins with the
term s=n, when 0=<n,<n;, but with s=0 when 7n,=0 and 7,<0.

It may be noted that if n=|n,—n,| and if we write Ax>"F2"(q, a,)
- in eq 140, the expansion is valid for all integral values of 7, and s,
with the understanding that the upper of the double signs is to be
taken when n;—mn, >0, the lower when n;—n,<0. The ambiguity
disappears when 7, —ny,=0.

From the integral representation (eq 57a) of f/@ﬁ? it is evident that
Ao

this function is unaltered if we interchange the arguments ¢, and a,
and corresponding parameters 7, and 7, and multiply by (—1)™,
This fact i1s derivable from eq 140 by use of the relation eq 136,
noting that A4;, 4,, & and n are all unaffected by interchange of a,
and a,.

The integral representation shows also that

¢7l177lu3 (12,7',(11,(12) B (_ 1) nzd)ﬁpﬁ? (x,al,r,a.?)
3

Rigats. . % vra;

Ex:'nl”_nfz
22: :’n,g_ . (142)
n =|n;—no|=|m|

Where

This interchange of arguments r and a, in the light of eq 65 amounts
to viewing z and @, as the cylindrical coordinates of a point, while r
and a, are constants playing the part which a; and a, held in the
preceding formulas.

Hence, as in eq 173, we let

21=r+a2; x:ZIE;I-; G’IZZI\/(]:;-E‘Z) (1+—7_72)) (143)

so that géjn_d 7 are computed from the second members of eq 82, after
replacing A4, by r+a, and r by a,.

The function on the right of eq 142 is then given by a development
obtainable from eq 140 by replacing A,, ai, £ 7, n, 7, and n by Zl,
r, £, m, Ny—MNy, — My, and |ny|, respectively. This gives

¢n1mg (xirla‘lia2) L

Vot | ©Prta)

23 (= 1)) 28+l AGHmr(r,a5) P- o ER[ o, (), (144)
the upper or lower sign being taken according as =, is positive or
negative. Similarly, from interchange of » and a,,

¢n1m2 (z,r,al,az) o ¢;1;;2 (x)aﬂ;al;r) :

'\/alaz 1/(1_17‘
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where

E1 ==Y

lez n—n

=1y — Ng|=|ny|

(145)

This gives a third expansion

¢n1,nz ({1},’/‘,(11,0/2) s (_ l)m_m

Jos | ©Prte)

z_ls(zs+ lnzl+%>Azs(r,al)*“"“""'ﬂ"‘-Plﬁiim(s) Rli1a(n)) (146)

8=0

where the upper or lower sign is taken according as n, is positive or
negative

2= (r+a)En and ay=(r+a) -V (1—B) 1), (147)

so that ? and -; are computed from the second members of eq 82 after
replacing A; by r+a, and r by a,. ;

The following section is concerned with the partial integrals with
respect to ¢ derivable from the expansion (eq 140).
VII. EXPANSION OF w,,,,, IN SPHEROIDAL COORDINATES

The function wy »,(,7,a;,a2), or more briefly, w,,,(xr) is represented
in eq 59 by the integral

S o b
Wnymg (@, 1) =477 Jalazﬁ dz” J;qﬁ,,l,,,z (@' ,r)dx’. (148)

We exclude for the present the exceptional case where n, and n, are
both zero. In all other cases we may write

“’nl,nz(xyr) = an.nz (£,r)— an.nz 0,r) +27rlxlSn1,nz(r) (149)
w;u,m (Z‘,T) o V;u,ng ((II,T) Se QWSM,’M (7’) ) (1 50)

the upper or lower sign being taken according as z is positive or
negative. The function V,, ,,(z,7) is an even function of z defined by

Va(osr) =0ty [ 6T ) Tl Tt 151y

The function V,'u,n,(xlr) is an odd function of z defined by

Vs (,7) = :]:47r2(11Q2ﬁm €T g (1) Sy (@18) Sy (a2t) (itt; (152)
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the upper or lower sign being taken according as x is positive or
negative. Also

27810 (1) = — Vs (+:0,7) = 4 Viu,ma(—0,7)
Y ﬁ g0 @) Ty Y- (153)

These relations are all obtained by introducing into eq 148 the in-
tegral representation (eq 57a) for ¢ ., which gives

—lxl o
: 1+'xlt:lJnl_nz(rt)J,,l(alt)an(azt)dt. (154)

Wnyng (1) =47 alaof

If the exceptional case n,=n,=0 be excluded, this may be separated
into three integrals, each of which converges, thus giving the eq 149
to 153.

From 152 and 57a it is evident that

V;n,m(z;r) = _472’\/mfm¢nm2(x/:7)dz’ (155)
z
if 2>0,
and

V(@) =— f V! @) de (156)

if z>>0. In both of these integrals, the integration must be performed,
while 7 is held constant.

The functions V,,,, and V, ,, each satisfy the partial differential
eq 64. The function V, ,, vanishes when the point P(z,r) goes to
infinity in any direction in the (z,r) plane, while V,,, vanishes in
general if z—+ o, while 7 has any fixed finite value.

’ To perform the integrations in eq 155 we write eq 103 in the two
orms:

(28+n+3) Ppyos(§) RBnyas(n) =

_?IDI[PZ—I-ZS—I(E)‘ Rotos—1(n) 4 Prjos41(8) - Rnyost1(n)]  (157)

(2s+7n+3) Prtos+1 () Rayost1(n)=
D P11 ©) B )+ Poaaia® - Blpma)l.  (158)

The expansion for V, ,, is obtained by using the expansion (eq 140)
for ¢n., In eq 155 and then performing the integration with respect
to z by use of eq 157. Since r is held at a finite constant value in
this integration, the value of the integrated terms at z=o (r finite)
are found by letting n— o, while at the same time £—1, the two
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variables being connected, as shown in eq 81, in such a manner that

limit
wi[u-er]-g;
It is thus found that for the case n=n;—n; >0

‘7:,’“,",(23,7',&1,(1«2) ==

A2m,—2m(al,a2)( et
TP

o 1)m+12alaq\/ { E) (F(An+in+1;1—8)

i é(— 1)*[A2m—2™(q,,a,) —Agﬂl;zm (@1,02)|Ppyas+1(£) R:+2s+1(77)} (159)

and for the case ng=n,>0(n=0)

Voo @ 7, 1y @) = (—1) ""20,00v/7 > (— 114, (e, 0o)

$=m—1

— Ay M 7M(a, @2)]Posp (&) Rzs1(n). (160)
The first term inside the brace of eq 159 is

A021l1,-—2‘m (afl, a2) [P:+2a—1 (E)R:+28—1 (n)]s=0

A n1,=2m (g, (1/2)/1
N/m NP

for from eq 95b we find

5) EF(1, nt3, nt1;1—9), (161)

[Brem@] —2orut (e eFQ, nd nt1; 18, (620)
and from the eq 99a we find
1 2 2
(8R4 26-1(1)]s=0= (n;z,;:_?_ ) (162b)

Also from eq 95a we find

n—1 L A 5
[2P2icate) o= -~ R gint 1518,

and from eq 99a

[SRE 1 50—2(1)]sm0= — ! :
T amra—p 4t
Hence

[Prt2s—2(8). Boyos—2(n)]s= n‘/ 1 E 7F(1 n—3mn+1;1—8%.
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Inserting the expansion (eq 159) in (eq 156) and integrating by use of
(eq 158) gives for the case n_>0.

Vm,m (1,',7',(11,(1/2) =

iy 4 A2n1 2"1(0/1,0/2)/1
=(—1) aldzAn”Tl n(n— %)\/71- \T++4°

=t )nF(l,n tntin—m

AR (ay,00) — Adpyz ™ (@1,0) _

. Az
24 1)[ pram—

2”' _Zm(axaz) AQm _2"’(111@2)
‘)b—} n-—->;

nt2s (E) Bnyos(n)p  (163)

and for the case n=0, ny=mn; >0
Vs (@,7,01,02) =

=(—1)"a,a,4, \/‘ﬂ' E Lo

s=mn1—1

AT (01,05) —
28—%

A2m iBis (ay,a,) *Agg-ﬁ'-z— 2"’(‘11;(12)
2s+3%

—2'“(av“'”]Pz,@)Rz,,.(n). (164)

The value of Vi (0,7,a1,a:) for the range 0=<r=<A4, is found by

placing 7=0 and {= \/1_—— in eq 163. For the range r>A; we

place £=0 and 71—\/ ST Similarly, from eq 159 the value of

27 S (1) = — Vnmy (0, ralag) could be found, but such expansmns

are unnecessary, for we now find that S,,m,(r) may be obtained in
finite form.

It should be noticed that the term £F(1,n-+1/2,n+1;1—£) in
eq 159 is an odd function of ¢ (and therefore of z), as are all the terms
in Ppigst1(§) in the series. The latter all vanish with £, but the former
does not, as may be seen by the transformation

EF(,n-+, 0 151—£) = £yt 1 1) = ELLOLD (165
when £ 40.

Hence when z—-40 and »>A4,, i. e., £—>-+0 and \/H— 5 ~—-A’; eq 159
gives for 7> A4,

gl V,,,,.,(—I—O 7y0i02) alaz(— 1)™T (n) A= a, az)(é“)?lﬁﬁ)

27 val'(n+%)
if n#0. Referring to eq 135, we find
AT (ay,a:) o )
VT (n+%) A"(I‘(1+n1 (P(l —ny) )’ o)

when 7; >0 and n,<n,.
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Hence eq 166 becomes

o) = w105 (— 1>mrﬁ>(r - 1))(1“ i i)

when r=A4;=a,+a; and n; >0, n,<n;. This vanishes if n, is a positive
integer less than 7.

This relation may be used to obtain the value of S,,,,(r) for the range
0<r< A, by considering the effect of interchanging » with a, or a,,
which is determined by the integral definition (eq 153 of S,,,(),
which is an abbreviation for S,,,,(r,a:,a;). It is thus found for the
case n; >0 and ny<n; that when 0<r<A,=|a,—a,|

T (7741)‘11272
T(+1)a"T (ny+1)’ o “2<“‘\ (169)

=0 when a, >a,

S™™ (1) =7a,a;

Similarly, for the case n,=mn;>0 it is found that

Sm,m (7') =0 when A1$7"5 o

[ma] |
mlla?( ) if aa<<ay

170
:wa1a2<_>‘"1| i when 0=<r<_A4.. S
a

In all these statements the case n,=n,=0 is excluded. It is evident
therefore that S,,,,(r) vanishes when r= « and also if n;7n, when
r=0. Itmay be shown from its definition (eq 153) that Sy, ,, () is a
continuous function of r, in particul#r at »=A, and r=A4,. To find

its value for the range A4,<r<A;, we find from eq 152 that when
>0

l: D (rDT) _W_]Vﬂlé'l;rlr) Dan‘g,;(x,r)

=27ra1a2ﬁ te™ %] ny—ng (1) S, (11) T, (at) d1.

Letting 2 approach zero in this, and noting that by eq 153
Vayna(+0,7) = — 278y, n,(r), and that the integral on the right approaches
that which defines 27¢(r) in eq 66, we find that Sp, ., (r) satisfies the
ordinary nonhomogeneous differential equation

n2S

nl P 4:7!'20/10/20'(7')

%DT (TDTSm,m) e

— _ oCO8 (nlﬁf—ngﬂg)

=~ "o @) e
for the range A,<r<A,, this value of ¢ being taken from eq 72.
If r lies outside this range ¢,,,,=0, the homogeneous equation having
solution Cyr"+Cyr~"if n4-0 and Cy+C, log 7 if n=0. The values just
found are of this form. Hence if any particular integral of eq 171
is found for the range A,<r<A,, this increased by Cyr"+ Cyr~™ is the
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general solution for that range, and the values of the two constants of
integration, C) and (), are then determined by the fact that this
solution must be continuous at r=A4, and at r=A4, with the solutions
previously found and given by eq 168 and 169. Similarly, in the
case n=0.

To derive a particular integral of eq 171 in finite form for the case
n; >0 and n,<ny, so that n=mn,—mn, >0, we begin with the elementary
integral form of the solution

alaz

S(r)= r~"I,—rtly), (172)
where
L=fr" cos (n.6)—n.09)d2¢
Ingr‘" cos (n,60—n.02)d2y-
Now by eq 77
-2, n
7™ COS (nlo(l’—ng@g)=,%a}’e“2’"2"<1—az(;l ¢>
1)"(%)‘ cos 2(k-+na)y
il
““F(’“FI)EO T(k+1) T(1+n—Fk)
(—1)"<@>k cos 2ky
==L "rr(" ) Z,,",r(k e+ DI (1+n—k)
so that
SR Ll F(n+) " 2y
= (=) e e Ty
=, 1)k< ) sin 2ky!, (173)
k==mr(k 722+1)P(1+n1 k) k

where 2’ indicates that the term k=0 is omitted. To evaluate I,
we derive from eq 77

rewl reid\™
r~" cos (n,09—n.03) =9 ) ( >

sy g reiog)“d (reia‘z’
(Lgb— ?,(1+ s s ’

wg i J‘ (re%)[ +retﬂ°

where the real part is to be taken. 2
09
Since n; >0, the expansion of the binomial I:l +re -

and

so that
rei?

is a finite
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polynomial in reifla,. This gives

_TnF (nl) (173 " 03
PR 7 [P ()T (ny+1) »

&)
f} r sin k69¢, (174)
=l (t+n+1)T(n—k) £k

Using e? 173 and 174 in eq 172 gives a particular integral S(r) of
eq 171 for the range A,<r<A,;, when n, >0 and n,<n;. Hence if
A,=<r<A;, n,>0 and n,<n,, we find

Snma(") B
(=)™ (m)af'az™] 2y
T2 LT (n+1)T(1—ny)

;o) ]
BRI e ey s B
™I (n)es] —09

al'  LT(+1)r(ng+1)

] k .
1 n-1 (a';) sin k63
ke

“n k=2_m T'(k+ny+1)T'(n—k)

T”Ig

= a1a2{

+

, (175)

where the constants C; and (; have been so chosen as to make Sy, (r)
continuous at r=A4; and at r=A,, its values at these points being
given by eq 168 and 169 when r=A4; or A,, respectively.

The terms in the summation vanish at each of these values of r,
for, when r=A4,, =0, 3==, and 2¢y=6—60==, and when r=A4,,

2y =0, and{g‘i’:()ﬁ’:w if.__a:>ai}.

This shows that the second member of eq 175 reduces to eq 168
when r=A; and to eq 169 when r=A,. Therefore, eq 168, 169, and
175 give Srame in finite terms for all values of » when n, >0 and n,<n,.

In eq 175 Suny(r) is Sppng(r,aia2).  In order to find Sy, n,(r,a2,@:),
we must not only interchange ¢, and a, where they occur explicitly

in the second member of eq 172 but must also replace 8, by =—#6;, as
shown by eq 78b.
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The remaining irreducible cases are for my=mn,">0 and n,=n,=0.
In the case my=n,>0(n=0), we start with the particular integral
of eq 171

S(r) =4n’u,a, f rio(ry) log ;—ldr1=2a1a2fcos 2my’ log :Tld‘ZW
———alaz{w log l—l—zfcos 2n.¢’ log r1d2¢’}

= {2 sin 27l1¢1 k(%) fcos 2ny/  cos 2k¢’d2¢’}
k=1

{2 sin 2n1¢1

Yoo é%( >[31n ‘;C(—l'c_;lz—lnl)¢ sin i(f;lnl)zﬁ ]

This may be reduced to finite terms by use of the expansion

2 sin 2n.¢ aG__ 2 l<g2 k2 sin 2m ¢ cos 2ky
9 log r_Z Ny

sin 2(k+ny)y  sin 2(k—ny) ¢
= 1k< )I: m ™ ]’ (t76)

so that

iy sin 2(k+n)¢ sin 2(k—ny)y
nxkzi‘( )[: k~+ny 3 k_nl

e e
SRR e

Now
y !
122210
0100 — .__a'l__ 4
1—%e9
(45}

so that taking the logarithm of both sides we obtain
@ /a,\'sin 2ky
k=1<a1> k el

The particular integral then becomes for the case mys=n,>0.

Se="2

G\ (@M, | sin 2my  IL[a\™ @)""’*]sin Qk\[/,
RS Eee ei UM

269047—41——4
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which contains only a finite number of terms and is valid whichever
of the two circles is the larger.

With this particular integral we find, after determining the two
constants of integration by making Spa, () continuous at r=A,
and at r=A; with the values given in eq 170,

Snyn, (7') :%(Z_j)’nl if a2<a1
=M(‘b)"' if a,<a,
alaz[(m) 6+ (a2> (r—6) +sm 2n1\]/

S ORI

when A2$7‘5A1
=0 when 4, <r<o, (178)
provided that n; >0.
In the particular case of greatest importance, n,=1,

when 0<r=<A4,,

_[mad if a,<a,
Su (7‘)——{#7“f 5 a1<a2] when 0<r<A,

= a0+ a2 (w—03) —a,a, sin 2¢ when A, <r<A4,
=0 when A;<r<ow. (179)

This shows that Sj;(r) is the area common to the two coplanar
circles of radii ¢; and a,, when r is the distance between their axes.

By the preceding formulas every wy, ., is evaluated with the excep-
tion of the case n;=n,=0. Before considering it, attention may be
called to the interesting fact that although every V,,,,, vanishes when
z—4 o holding » finite, there are two cases of eq 163 namely,
Vip(a,r,a,a;) and V,,_, (z r,a1,a;) which do not vanish when the
point P(x r) goes to 1nﬁn1ty in directions other than the z-direction.

By use of eq 163 and 167 it is found that when 2®+7*—>  in the

R @
direction ¢ defined by cos ¢=W then
VI’O (x;rya‘l;a2) R 27r2afa2 tan %’
(180)
Vo1 (@,r,a1,a2) > —27a,a5|tan %1

In the exceptional case where m,=n;=0, the integrals involving
Bessel’s functions, which served to define the functions Vi, ., and
Viyns in eq 151 and 152, are not convergent. Neither are the defi-
nitions of these functions by the integrals, eq 155 and 156. Neverthe-
less, functions

Voo(@,7), Voo(@,r) =D:Veo(@,r), and So(r)
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may be defined in this case, so that eq 149 and 150 are applicable.
To find these functions we begin with

P e ﬁ 2 ey f @ |. "5"‘0/(”” 0 @L7) g (181)
l 2

Shitrry= Do P Aty | SBEE T (182)
1/ @,y

Applying the operator »~'D,(rD;) to the latter gives

1 FENtLL Aty zl TD,¢00(£11 T>> ’
1D,(rD ) = 47010, f rD( e ) Y

=—dx alazf Dz'(%o (x r)>dx’
\/alaz’
= —4r0a,D.( B gtae,| D, (22D ]
Vaa, Vayay / 1z

Also applying the operator I? to eq 182 gives

P00 (z,7) 7')
§ 1/ 1‘12

Divp=A4n 0Dy
so that

Ve _[De i (rD,)]wm (@) =4 alag[D d’j}’i’fa?]ﬁo_

That is, by eq 66
V2w (x,7) = F4720,a5.27 000 (7) (183)

the upper sign if >0 the lower if 2<0. This shows that we(z,r) is
of the form as in eq 150

woo(@,r) = Vo (x,r) £ 27800 (r), (184)
where Vg (2,7) is an odd function of z satisfying
V* Ve (z,r) =0, (185)
and Sy (r) is a solution of
—2
ZSOO(T) =—D (TD Soo(r)) = _47(' 41(100'00(7') SIH 2¢, (186)
as ineq 171.
Since weo and wy both vanish with z,
0'0 0; IO _07
Suo(r)= — Yool k) 4 Yl 207), (17)

as in eq 153.
Also by eq 184

o (2,7) = f wia(@ 1) = Viol@,1) — Veo(0,1) +-2xi2lSoo(r),  (188)
as in eq 149.
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If in the integral (eq 182) we introduce for ¢o(z’,7)/+/a:a, its ex-
pansion (eq 140), where A"2‘3=7rr—1;2(§s+i1%>—) Py(&) by eq 138, this gives
w00 (2,7) :4—“(11;,;21\/;

(5 [ Po@R e+ 23 (— 1) @5+ AL o) [Pu@Ruds] (159)
where
Po@Rr) =Roln)=~=cot™ 1. (190)

The terms in the series of eq 189, for which s>>0, may be integrated
by the use of formula 157, but the present case is again exceptional
for eq 157 now fails entlrely, for the term s=0 becomes infinite instead
of merely becoming indeterminate of the form 0/0, as in the case of PZ,
where n=0.

This breakdown of the formula may be repaired by writing

PAOR() =5 [ PaOR ) (191)

where the integral is a contour integral taken around a small closed
curve in the complex p-plane, encircling the point u=0. Since p does
not vanish at any point on this curve, the integrand may be written
by eq 103
A
Py Ry(n)=— B) 41_1D [Pu-1(®)By-1(n) + Puy1(O)Rus1(n)],

which gives by Cauchy’s theorem
PR == oot r=—AD[D[ Lt OR)] 1P @R,

2u-F1
(192)
It is found that
FLPM—I(E>R#—1(77) . (148§ \/1*}-77 o
|: BT :l —log L (193)
If we define the function »(z,7) by
9 ik
,r)=——=1 [1+ 41 2:‘ when >0
v, ) i A+8) V147 ’ (109)

= +% log [(1—2) \/m] when 2<0

then »(z,r) is an odd function of z, which is an axially symmetrical
solution of Laplace’s equation, and eq 192 becomes

2
Py(&)Ro(n) =;/_1_r cot'n=—A:D,{v(x,r) + P1(§)B:(n) }. (195)
A further integration may be made by the same method. This gives

o(e,") =D, w(x,@%%;(wcot—ln) : (196)
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The function within the parentheses of eq 196 is an even function of z,
satisfying Laplace’s equation. Integrating eq 189 by use of eq 157
and 195 leads to the following definition of Vi,

Vi (,r) = —2a,a5+/7

(r0(a,)+ 325 (— AR (00) — 42010 Prass @ R ) (197)
Integrating this from z=0 to z=x by eq 158 and 196 leads to
PNV T IO

A2, (@1,a0) — AR (1,00)  AL(@1,a5) — A5 (a1,a)
[ e 723— . G : 228-{—-‘;-‘— - ]st(E)st(??)}' (198)

From eq 197, 194, and 187 we find

Soo(r) = — 27 a,a, log (AL1> when r>A4,. (199)

When 0<r<A;, Sp(r) is found from eq 187 and 197 by placing

&l
T)=0 and EZET:V I—E

S (r) =— a12a2{47f log (14-¢,)

25 (1) e 4,2, (01,00) — A0, Prasa(8)] 200)
me=0 I(S )

for the range 0<<r<A4;. In the part of this range 0<r<A, where
o0o=0, this development must represent

So () =Co+Cy log r, (201)
as shown by eq 186.
If the development eq 200 converges when r=0(¢,=1), the constant
C; must be zero.

Now by eq 200, when r=0, ¢,=1 and Ps,;(1)=1. Also reference

to eq 138 shows that

07 (s+4) ,

AZs P2(8+1) P?S(EO)'

Hence from eq 200 we find

Spo(0) = _271'0102{10% 2—F(&) },

where

o DS P S UCan)) 0 R :
I(EO)‘—1+_‘/;§ (_1) P(3+1)L28+28+1]P23(50).

Since this series converges, the constant O in eq 201 is zero. It is
readily found that F(%;) is the development

P =—log| L = —10g AL,
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so that

A+ A4,

Si0(0) = —27a,a; log Y where 4+ 4

2

2:(11 if (l2<a/]

=ay if a, >a;.
Hence eq 201 becomes

Soo(;") :—27!'@1(1/2 ].Og (CL +a > lf a/2<a1
when 0<r<<A,. (202a)

B R (al ﬁaz) T

Also for the range A,<\r<A;, we have
S () =2 alagizw log —+1r lo <a1—l—a2> (Z—) s1nk§k\// e, <<a;

:m,ag[:zwoo 24 1 log (“1+“2) (Z—) Sink;"‘”] if a,>a;

(202D)

Finally, for the remaining range of r,

Soo(r) = — 2710, log (—— ) when 4,<r< w. (202¢)
_l.._

This completes the expansions required. Before summarizing the
results, we should consider a small correction which takes account of
the diameter of the wires.

VIII. CORRECTIONS FOR THE DIAMETER OF THE WIRES

If a helix is made with ordinary wire, a plane section of the wire
by a plane through the z-axis may be "considered circular. Let p1
and p, be the wire radii, and let a; and a, represent the cylindrical
radii of the central hehcal filament of the actual helices. Since p,
and p; cannot be larger than =p; or mp, the correction terms for finite
thickness of the wire will be second-order infinitesimals.

Assume that the current density at any point in the wire is in the
direction of the generating helical filament passing through that
point, its magnitude being a function of the distance 7, of the point
from the axis of the cylinder on which the wire is Wound Let v,
(or v;) be the value, at the central filament, of the r-derivative of
the current density.

It may then be shown that the correction for the thickness of the
wires may be made by using for the cylindrical radii a;, @, in the
prmclpal term not a,, a, of the central filaments of the wires, but

a1, a; of their equivalent helices, where
i £ 271
01:a1+%(a+271) and 0/2'—-_@2+%<a—2+ 2')’2)' (203)

If the current is uniform, v,=v,=0. If it is the ‘“natural” distribu-
tion in both wires (inversely proportional to r) then y,=—1/a;, and
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vo=—1/a,, so that the correction is equal in magnitude but opposite
in sign to that of the uniform distribution.

The derivation of eq 203 is almost verbatim, the same as that
given in the paper on coaxial helices (footnote 2). It depends essen-
tially on the fact that ¢, satisfies the partial differential equation 65.

IX. SUMMARY

The mutual inductance, M, between two parallel helices is ex-
pressed in eq 27 in terms of a function w (2,6;,6,) involving four sets of
terminal z-differences defined in eq 22 and 22’, where 6, and 6, are the
associated terminal azimuths, as given in eq 29. In eq 33 and 58
w is resolved into four others, wj;-+piPwe/@i@:+w;+ws, the first
two, w1+ Pi1Pewe/tias, corresponding to the mutual inductance of the
two associated current sheets, the principal term w;; representing the
effect of angular components of current, the relatively small term,
D1P2w/@@s, of second order representing their axial currents. The
terms w; and w, depend upon z and the terminal azimuths. These
are expanded, eq 61 and 62, in Fourier’s series of the terminal azimuths,
the coefficients involving functions ', and ¢, It is shown
that two terms of the series for the first-order quantity w, are sufficient
in general, the second-order term w, being given by retaining terms
in the single and double series corresponding to n,=1, 2 and n,=1, 2.

In eq 140, 144, and 146 three different types of expansions for any
function ¢, ., in oblate spheroidal harmonics are given. In section

VII the first and second partial integrals of these expansions are
evaluated, giving the functions w’,,, and w,,», in spheroidal har-

monics. The results are found in eq 149 to 202. Finally, in eq 203,
is given the effect of diameter of the wires.

WasHINGTON, August 8, 1940,
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