U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

RESEARCH PAPER RP1340

Part of Journal of Research of the National Bureau of Standards, Volume 25, October 1940

STUDIES ON THE SYSTEM LIME-FERRIC OXIDE-SILICA

By Milton D. Burdick

ABSTRACT

The equilibrium diagram of a part of the ternary system lime-ferric oxide-silica is presented. A comparison with the diagram of the lime-alumina-silica system shows that the presence of ferric oxide results in extension of the stability fields of the calcium silicates and the lowering of the liquidus and eutectic tem-peratures in much of the area investigated. Evidence from thermal analyses is offered of a limited solid-solution series between dicalcium silicate and ferric oxide, substantiated by an X-ray investigation. The amount of reduction of ferric oxide at the liquidus temperature of representative ternary mixtures is recorded. The applications to iron-rich cements are discussed.

CONTENTS

		Page
I.	Introduction	475
II.	Experimental methods	476
III.	Stability fields	476
	1. SiO ₂	476
	2. $CaO.SiC_2$	477
	3. 3CaO.2SiO	479
	4. 2CaO.SiO	480
	5. 3CaO.SiO ₂	484
	6. CaO	485
TV.	Reduction of ferric oxide in ternary mixtures	485
v	Applications	486
VT	Summary	487
VIT	References	488
	101010100022222222222222222222222222222	100

I. INTRODUCTION

The system lime-ferric oxide-silica is one of the ternary systems involving the major oxide components of portland cement which has not been thoroughly investigated. Further study of this system seemed desirable, since it might be applicable to high-iron cements, and because it would supply preliminary information necessary for an investigation of the quaternary system, CaO-Al₂O₃-Fe₂O₃-SiO₂, in the region of aluminous cements. In this study the phase relations have been determined in that portion of the system including from 15 percent to 65 percent of CaO and up to 65 percent of Fe_2O_3 . Previous investigators of a part of the system covered in this

report [1]¹ noted the presence of a stability field for the compound tricalcium silicate, reported no ternary compounds, and observed the inability of ferric oxide to prevent the β - γ inversion of dicalcium silicate, except when present in high concentration. These findings are confirmed by the present study.

Two of the binary systems making up the ternary system under consideration have been investigated. These are the systems

¹ Numbers in brackets indicate the literature references at the end of this paper.

CaO-SiO₂ [2, 3, 4, 5] and CaO-Fe₂O₃ [6]. The binary system Fe_2O_3 -SiO₂ has not been thoroughly studied, but an equilibrium diagram has been suggested [7].

In the determination of the primary and secondary phases of all preparations containing more than 30 percent of ferric oxide, liquids were developed with a sufficient concentration of ferric oxide to cause the persistent development of quench growths of calcium ferrites.

II. EXPERIMENTAL METHODS

Calcium carbonate, purified silica gel, and ferric oxide were the materials from which the mixtures studied were prepared. The calcium carbonate was of reagent quality for alkali determinations. Analyses showed 55.94 percent of CaO, 0.04 percent of SiO₂, 0.02 percent of R₂O₃, 0.02 percent of MgO, and 44.03 percent was ignition loss. The silica gel was a commercial granular product, which was purified by boiling with concentrated nitric acid and subsequently thoroughly washed and dried. Treatment with hydrofluoric and sulfuric acids left an insoluble residue of 0.08 percent, based on the weight of the ignited silica, composed of 5 parts of Al₂O₃ and 3 parts of Fe₂O₃. The ferric oxide, by analysis, contained 0.40 percent of SiO₂, 99.28 percent of Fe₂O₃, and 0.24 percent was ignition loss.

The samples for study were prepared by weighing appropriate amounts of the materials, correcting for ignition loss and impurities, grinding and intimately mixing in an agate mortar, sintering twice in a platinum crucible with intermediate grinding, and finally regrinding. Analyses of three mixtures showed close agreement between calculated and analyzed compositions.

A vertical-tube platinum-wound resistance furnace and control [8] was used for the high-temperature treatments.

Temperatures were measured by means of platinum-platinumrhodium thermocouples and a type K potentiometer and a suspension galvanometer. The single thermocouples were compared with a calibrated couple. The differential thermocouple used in the determination of heating curves was calibrated frequently at the melting point of potassium sulfate, 1,067° C, [18] and by determining the α - β inversion temperature of pure dicalcium silicate, 1,420° C [3].

Microscopic examination of the quenched samples was made with a petrographic microscope, and indices of refraction were measured by the immersion method.

III. STABILITY FIELDS

In figure 1 are shown the boundary lines of the primary phase areas. The stability fields of SiO_2 , α -CaO·SiO₂, 2CaO·SiO₂, and CaO are relatively large when compared with those of 3CaO·2SiO₂, 3CaO·SiO₂, and 2CaO·Fe₂O₃. The dots represent the mixtures investigated.

Isotherms have been inserted in figure 2 to show the temperatures of complete melting.

1. SiO₂

The data on preparations in which tridymite occurs as the primary phase in equilibrium with liquid are given in table 1.

259104-40 (Face p. 476) No. 1

259104-40 (Face p. 478) No. 2

System Lime-Ferric Oxide-Silica

Preparations treated for periods of an hour or less at appropriate temperatures contained crystalline silica identified as tridymite by its index of refraction and its birefringence. The characteristic lathlike shapes [9] were observed only in those preparations treated for longer periods of time before quenching.

Preparation number	Composit	ion (percen weight)	t by	Time at constant	Temper-	Phases
od 1.10 sectore (and	Fe2O3	CaO	SiO2	ture	ature	(05=040.510)
1	% 1.8	% 32.1	% 66. 1	hr 16	° <i>C</i> 1,439	SiO ₂ +glass.
2	3.7	32.1	64.2		1,465	Do. SiO + CS+glass.
3	6.0	32.0	62.0		1,408 1,360	$SiO_2+glass.$ $SiO_2+CS+glass.$
4	10.0	30.0	60.0	{ ³ ⁄ ₄	1,395	SiO_2 +glass.
5	14.6	26.4	59.0	21	1, 328	SiO ₂ +glass.
6	14.6	28.4	57.0	{ 17 ¹ /4	$1,325 \\ 1,315$	Do. SiO ₂ +CS+glass.
7	18.2	26.6	55.2	$\begin{cases} 21 \\ 1 \end{cases}$	1,431 1.335	Glass only. SiO ₂ +glass.
8	20.1	26.6	53. 3	1/2	1,280	Do.
9	27.4	20.8	51.8		1,208	SiO ₂ +glass.
10	29.2	20.9	49.9	3/4	1,278	Do.
11	29.2	22.9	47.9	$\begin{cases} 2\\ 2\\ 2 \end{cases}$	1,248 1,231 1,102	Glass only. SiO ₂ +glass.
12	36.5	15.1	48.4	1 1/4	1, 192	SiO ₂ +glass.
13	36.5	17.1	46.4		1,413 1,323 1,324	Glass only. SiO ₂ +glass. Glass only.
14	36.5	19.1	44.4		1, 306 1, 199	SiO_2 +glass. Do.
15	36.5	21.1	42. 4		1, 176 1, 243 1, 216 1, 192	SiO ₂ +CS+glass. Glass only. SiO ₂ +glass. SiO ₂ +CS+glass.
16	40.1	13.2	46.7	1/2	1, 402	SiO ₂ +glass.
17	40.1	9.2	50.7	1 2	1,509	Do. Do
18	40.1	19.2	40.7	4	1, 196	Do.
10	41.0	15.9	10 0		1,176	SiO ₂ +CS+glass.
20	-11. 9	10.0	14.0	1 2	1, 176	D0,
20	50.0	16.0	34.0	1 2	1, 154	SiO ₂ +CS+glass.

TABLE 1.—Composition of and data on preparations determining the silica field

2. CaO.SiO₂

The data on preparations which determine the area within which pseudowollastonite (α -CaO.SiO₂) occurs as the primary phase are listed in table 2. Wollastonite (β -CaO.SiO₂) was not observed in any of the quenched samples, since few were held below 1,200° C and none below 1,150° C, which has been suggested as the true α - β inversion temperature of monocalcium silicate [10].

Iwase and Niskioka [11], in discussing the system CaO.SiO₂-2CaO.Fe₂O₃, have described this as a simple binary system. Their diagram shows CaO.SiO₂ and 2CaO.Fe₂O₃ to be the only solid phases appearing on the liquidus curve with the eutectic at 45 percent CaO.SiO₂. Inasmuch as the compound 2CaO.Fe₂O₃ melts incongruently, mixtures of this with any other compound or oxide should be defined as a pseudobinary system. Also, as can be seen from figure 2, a join between the compounds CaO.SiO₂ and 2CaO.Fe₂O₃ would

Burdick]

cross the stability fields of CaO.SiO₂, 3CaO.2SiO₂, 2CaO.SiO₂, $2CaO.Fe_2O_3$, and CaO. The eutectic temperature, reported by the above investigators, for mixtures of CaO.SiO₂ and 2CaO.Fe₂O₃ containing from 50 to 90 percent of CaO.SiO₂ has a mean value of 1,181° C. In the ternary system $CaO-Fe_2O_3-SiO_2$ the above mixtures are located in the composition triangle CaO.SiO₂, 3CaO.2SiO₂, CaO.Fe₂O₃. Thermal analyses of preparations in this triangle, made during the current investigation, indicate a value of 1,188° C for the eutectic The few degrees between 1,188° C, as indicated by temperature. heating-curve breaks of preparations in the ternary system, and 1,181° C, as determined by Iwase and Niskioka from arrests of the cooling curves of pseudobinary mixtures, can easily be attributed to supercooling of the liquids in the latter case. Such a small amount of supercooling is unusual for a silicate system, and is attributable to the fluidity of the melts, which was noted by Sitz [12] to be greatest on the line CaO.SiO₂-CaO.Fe₂O₃. If Iwase and Niskioka's mixtures of CaO.SiO₂-CaO.Fe₂O₃ are plotted on the ternary diagram, the cooling-curve breaks, interpreted by them to indicate the melting point of the primary phase, are seen rather to indicate boundary temperatures, while the actual liquidus temperatures are, in some cases, as much as 200° C higher.

Preparation number	Compos	sition (perc weight)	ent by	Time at constant tempera- ture	Temper- ature	Phases (CS=Ca0.SiO)
	Fe2O3	CaO	SiO ₂			$C_3S_2 = 3CaO(2SIO_2)$
The stands of the stands	%	%	%	hr	°C	
21	2.0	35.2	62.8	1/2	1, 434	CS+glass.
22	9.1	32.3	58, 6		1, 411	Glass only. CS4-glass.
23	12.0	32.0	56.0	14	1, 346	Do.
24	10.0	36.0	54.0	$ \left\{\begin{array}{c} \frac{1}{4} \\ \frac{3}{4} \\ \frac{3}{4} \\ \frac{3}{4} \\ 1 \\ 1 \end{array}\right. $	$1, 328 \\ 1, 470 \\ 1, 414 \\ 1, 347 \\ 1, 261$	CS+SIO ₂ +glass. Glass only. CS+glass. Do. CS+SiO ₂ +glass
25	20.1	28.6	51.3	{ 34 34 34	1, 329 1, 287	Glass only. CS+glass.
26	20.1	30.6	49.3	$\left\{\begin{array}{c} 2 \\ 1 \\ 1^{\frac{1}{2}} \end{array}\right.$	$1,342 \\ 1,332 \\ 1,305$	Glass only. CS+glass. CS+SiO ₂ +glass.
27	20.1	32.6	47.3		1,408	Glass only.
28	29.2	24.9	45.9	$\begin{cases} 2^{2} \\ 1^{1} \\ 2 \\ 1^{1} \\ 2 \end{cases}$	1, 215 1, 196	Glass only. CS+glass.
29	34.6	23.1	42.3		1,242	Glass only.
30	34.6	25.1	40.3	84	1, 262 1, 244	Glass only. CS+glass.
31	2.0	53, 5	44. 5		$1,459 \\1,456 \\1,447 \\1,471$	Glass only. CS+glass. CS+ C_3S_2 +glass. Glass. only.
32	4.0	52.0	44.0		1,450 1,426 1,418	CS+glass. Do. $CS+C_3S_2+glass.$
33	8.0	50.0	42.0		$\begin{array}{c} 1,460\\ 1,450\\ 1,421\\ 1,410\end{array}$	Glass only. CS+glass. Do. $CS+C_3S_2+glass.$
34	12.0	48.0	40.0	14	1,442 1,429	Glass only. CS+glass.
35	16.0	46.0	38.0	14	1,412	Do.

TABLE 2.—Composition of and data on preparations determining the α -monocalcium silicate field

Burdick]

System Lime-Ferric Oxide-Silica

TABLE 2.—Composition o	f and data	a on preparations	determining the	α -monocalcium
	silicate	e field-Continue	d	

Preparation number	Compos	sition (per weight)	cent by	Time at constant	Temper- ature	Phases (CS=CaO.SiO
	Fe ₂ O ₃	CaO	SiO2	ture		$C_3S_2 = 3CaO.2S_1O_2)$
	%	%	%	hr	°C	
36	26.0	40.0	34.0	{ 3/4 1/	1,258 1,220	CS+glass. $CS+C_3S_2+glass.$
37	28.0	40.0	32.0		1,351 1,320	CS+glass. $CS+C_3S_2+glass.$
38	30.0	38.0	32.0		1, 280	CS+glass.
39	38.0	32.0	30.0		1, 245 1, 265 1, 255 1, 263	Glass only. Glass only. Glass only.
40	38.0	34.0	28.0	$\left\{\begin{array}{c}1\\1\frac{1}{2}\\1\end{array}\right.$	$1,251 \\ 1,211 \\ 1,196$	CS+glass. Do. $CS+C_3S_2+glass.$
41	40.0	32.0	28.0		1,259 1,241 1,225	Glass only. CS+glass.
42	40.0	34.0	26, 0	$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{array} \right\}$	$1,218 \\ 1,218 \\ 1,207 \\ 1,242 \\ 1,235 \\ 1,230 \\ 1,209 \\ 1,209 \\ 1,200 \\ 1,20$	CS+glass. $CS+C_3S_2+glass.$ Glass only. CS+glass. $CS+c_3S_2+glass.$ $CS+C_3S_2+glass.$
43	44.0	32.0	24.0			
44	46.0	30.0	24.0	$\left\{\begin{array}{c}1\\1\\1\end{array}\right\}$	1,302 1,234 1,219	CS+glass. CS+ C_3S_2 +glass.
45	48.0	30.0	22.0	$ \left\{\begin{array}{c} 1\\ hc^{a}\\ 1\\ 1 \end{array}\right\} $	$1,230 \\ 1,228 \\ 1,225 \\ 1,217$	Liquidus CS+glass. CS+C ₃ S ₂ +glass.
46	50.0	24.0	26.0	$\left\{\begin{array}{c}1\\1\end{array}\right]$	$1,302 \\ 1,250$	Glass only. CS+glass.
47	56.0	21.2	22.8	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right $	$1,303 \\ 1,277$	Glass only. CSglass.
48	51.1	25.5	23.4	$\left\{ \begin{array}{c} 1\\ 2 \end{array} \right $	1,208 1,202	Do. $CS+C_3S_2+glass.$
49	51.1	27.5	21.4	$\left\{ \begin{array}{c} 2\\ 1^{3}_{4} \end{array} \right.$	1, 209 1, 204	CS+glass. $CS+C_3S_2+glass.$
50	52.9	25.6	21.5	$\left\{ \begin{array}{c} 2\\ 2\end{array} \right]$	1, 213 1, 199	CS+glass. $CS+C_3S_2+glass.$
51	60.0	19.2	20.8	1	1, 275	CS+glass.
52	54.7	24.7	21.6	$\left\{\begin{array}{c}2\\2\end{array}\right\}$	1,216 1,201	$CS+C_3S_2+glass.$
53	60. 2	21.8	18.0	$\left\{ \begin{array}{cc} 1^{1} & 2 \\ 2 \end{array} \right\}$	1,209 1,200	CS+glass. $CS+C_3S_2+glass.$
54	62. 0	21.9	16.1	$\left\{\begin{array}{c} 1^{1}_{2} \\ 1^{1}_{2} \end{array}\right.$	1, 201 1, 197	CS+glass. $CS+C_3S_2+glass.$

• he indicates data obtained from heating curves. Under the column headed "Phases", the data given in such cases represent interpretations placed on breaks of heating curves.

3. 3CaO.2SiO₂

The data on preparations which determine the area within which tricalcium disilicate is the primary phase are given in table 3. In many preparations rich in ferric oxide (table 2) the occurrence of 3CaO.2SiO_2 as the second solid phase to appear on cooling indicates the existence of this field somewhat farther than is shown in the figures. Preparations treated for 1 hour or more before quenching showed large, well-formed crystals of the primary phase. In abutting fields in which 3CaO.2SiO_2 occurred as the secondary phase, the crystals also formed easily and grew to large sizes.

Preparation number	Composition (percentage by weight)			Time at constant	Temper-	Phases	
	Fe ₂ O ₃	CaO	SiO ₂	ature	ature	(C=CaO; S=SIO ₂)	
55	% 2.0	% 54. 0	% 44.0	hr 14	°C 1,459	Glass only.	
55 a	b 2.17	53.86	43.68		1,455	$C_3S_2+CS+glass.$	
56	10.8	48.8	40.4		1,366	$C_3S_2+glass.$ $C_3S_2+CS+glass.$	
57	24.0	42.0	34.0		1,308 1,270	C_3S_2 +glass. C_3S_2 +CS+glass.	
58	26.0	42.0	32.0		$1,324 \\ 1,282$	Glass only. C_3S_2 +glass.	
59	31.2	38.8	30.0		1,269 1,248	Glass only. $C_3S_2+glass.$	
60	34.0	38.0	28.0		1, 233 1, 231	Glass only. $C_3S_2+glass.$	
61	38.0	36.0	26.0		1,240 1,231	Glass only. C_3S_2 +glass.	
62	42.0	34.0	24.0		$1,236 \\ 1,230$	Glass only. C_3S_2 +glass.	
63	46.0	32.0	22.0		$1,235 \\ 1,222$	Glass only. $C_3S_2+C_2S+glass.$	
64	49.3	29. 5	21.2	$\left\{\begin{array}{c}2\\2\end{array}\right.$	1,218 1,206	All glass. C_3S_2 +glass.	
65	56.6	25.7	17.7	$\begin{cases} 2 \\ 1\frac{1}{2} \end{cases}$	1,215 1,211	Glass only. $C_3S_2+glass.$	
66	63.8	22. 0	14.2	$\begin{cases} 2 \\ 1\frac{1}{2} \end{cases}$	1,206 1,190	Glass only. C ₃ S ₂ +glass.	

 TABLE 3.—Composition of and data on preparations determining the tricalcium disilicate field

^a By analysis. ^b R₂O₃.

4. 2CaO.SiO₂

The data on preparations determining the area within which dicalcium silicate occurs as the primary phase are given in table 4. The phenomenon of resorption, which has been fully discussed by Rankin and Wright [3], is found to occur during the crystallization of a number of these preparations. Numbers 71, 73, 74, 76, and 77 illustrate the progressive phase relations with regard to resorption of all compositions within the area 3CaO. 2SiO₂. -b-A (fig. 2). The boundary between the fields of dicalcium silicate and dicalcium ferrite could not be located satisfactorily by means of quenching experiments, because the preparations were characterized by profuse quench crystals of the calcium ferrites. The determination of the primary phase in the region of this boundary would require a clearer distinction than has been found between ferrite crystals formed on quenching and those that are in equilibrium with liquid at the temperatures of the quench.

It has been shown that the formation of two limited solid-solution series between the calcium borates and dicalcium silicate has a marked effect upon the α - β inversion temperature and upon the index of refraction of the dicalcium silicate [13]. The addition of Fe₂O₃ to 2CaO·SiO₂ causes a maximum lowering of the α - β inversion temperature of about 60 degrees (table 5 and fig. 3). Since the addition of 0.5 percent of Fe₂O₃ by weight causes a lowering of the inversion temperature of 60 degrees and the addition of larger percentages causes no further lowering, it is believed that the limit of solid solution of Fe₂O₃ in dicalcium silicate is not more than 0.5 percent. No variation in the indices of the dicalcium silicate was noted-thus this

property cannot be used to indicate the presence of solid solution. The extent of the solid solution of Fe_2O_3 in β -dicalcium silicate was determined also by treating mixtures of these two materials at appropriate temperatures below the melting points of either material, quenching, and examining microscopically for the presence of glass.² Dicalcium silicate prepared in the ordinary way proved unsuitable for this purpose, since the compound on quenching always inverted to the low temperature (γ) form. However, if the initial mixture was prepared from the crystalline, hydrated, dicalcium silicate 10CaO- $5SiO_2 \cdot 6H_2O$, this inversion did not occur.

In discussing their experiments on the hydration of dicalcium silicate, Keevil and Thorvaldson [14] describe three crystalline forms

FIGURE 3.—Effect of Fe₂O₃ on the α - β -2CaO.SiO₂ inversion temperature.

of hydrated dicalcium silicate. It was reported that two forms retained their original crystal structure after ignition at 900° C and possessed indices of refraction considerably lower than the lower index of β -dicalcium silicate but well above those of γ -dicalcium silicate. The third and most distinctive product found in steam-treated dicalcium silicate was described as well-developed, platelike, orthorhombic crystals, with refractive indices: $\alpha = 1.610 \pm 0.002$ and $\gamma = 1.633 \pm 0.002$. The dehydration of this product was not discussed. Flint, McMurdie, and Wells [15] duplicated this product and suggested for it the formula 10CaO.5SiO₂.6H₂O.

Experiments in the present study proved that the treatment of $10\text{CaO}\cdot5\text{SiO}_2\cdot6\text{H}_2\text{O}$ at $1,450^\circ$ C resulted in β -dicalcium silicate. It is of interest to note that, (1) the platelike form is not retained, but instead the irregularly shaped crystals of β -dicalcium silicate are

Burdick]

² If the dicalcium silicate is able to take up some ferric oxide in solid solution, a preparation composed of dicalcium silicate and an amount of Fe_2O_3 smaller than or equal to the limiting amount that could be held in solid solution should not form any liquid when treated at a temperature well below the melting point of dicalcium silicate. For this reason, the presence of glass in a preparation treated as above indicates that the amount of Fe_2O_3 in the mixture exceeds the amount that can be held in solid solution.

observed, (2) normal indices of refraction for β -dicalcium silicate are obtained, and (3) the β - γ inversion is prevented. Keevil and Thorvaldson suggest that the finely divided form of their dehydrated products prevents the inversion of the β -form to the γ -form. However, it is here shown that dehydrated 10CaO·5SiO₂·6H₂O does not invert to the γ -form, even though occurring in large crystals.

Mixtures of dicalcium silicate and ferric oxide containing 2 percent, 1 percent, and 0.5 percent of ferric oxide, treated for 17 hours at 1,350° to 1,360° C, consisted, upon quenching, of β -2CaO·SiO₂ and glass. Thus, if there is solid solution of ferric oxide in dicalcium silicate, as indicated by the lowering of the α - β inversion temperature, the limit is probably not more than 0.5 percent of ferric oxide.

The X-ray pattern of a sample of 10CaO-5SiO₂·6H₂O treated at 1,350° C for 3 hours was identical with that of ordinary β -dicalcium silicate. However, two mixtures of ferric oxide and dicalcium silicate from the hydrate, containing 0.5 percent and 1 percent of ferric oxide, respectively, gave X-ray patterns in which the lines of dicalcium silicate showed a slight shift. This shift further confirms the presence of a limited solid solution of Fe₂O₃ in dicalcium silicate, as indicated by the α - β inversion lowering.

Preparation number	Compos	weight)	ent by	Time at constant	Tempera-	Phases (C=CaO;	
	Fe2O: CaO		SiO ₂	tempera- ture	ture	S=S1O ₂ ; F=Fe ₂ O ₈	
67 68	% 0.5 .6	% 64. 7 64. 8	$\% \\ 34.8 \\ 34.6$	hr • he he	° C 1, 414 1, 428	Eutectic (1).• Pseudobinary eutectic	
69 70	1.0 2.9	64. 7 63. 8	34. 3 33. 3	he he	$1,425 \\ 1,426 \\ 1,440$	$\begin{array}{c} \text{Do.}\\ \text{Do.}\\ \text{C}_{2}\text{S+glass.} \end{array}$	
71	6.0	52.0	42.0		$ \begin{array}{c} 1,429\\ 1,418\\ 1,411\\ 1,408 \end{array} $	$\begin{array}{c} \text{Do.}\\ \text{C}_2\text{S}+\text{C}_3\text{S}_2+\text{glass.}\\ \text{Do.}\\ \text{C}_3\text{S}_2+\text{CS}+\text{glass.} \end{array}$	
72	9.6	61. 2	29. 2	he	1, 426	Pseudobinary eutectic	
73	10. 0	50.0	40. 0		$1, 422 \\1, 414 \\1, 406 \\1, 397 \\1, 378 \\1, 359$	$\begin{array}{c} \text{Glass only.}\\ \text{Glass only.}\\ \text{C}_2\text{S}+\text{glass.}\\ \text{C}_2\text{S}+\text{C}_3\text{S}_2+\text{glass.}\\ \text{D}_0.\\ \text{C}_3\text{S}_2+\text{C}\text{S}+\text{glass.} \end{array}$	
74	18.0	46.0	36.0		1,410 1,386 1,361 1,338 1,301 1,252	Glass only. $C_2S+glass.$ $C_2S+C_3S_2+glass.$ $C_3S_2+glass.$ Do. $C_4S_2+CS+glass$	
75	24.0	44.0	32. 0		1, 252 1, 396 1, 375 1, 300	$C_{2}S_{2}+C_{3}S_{2}+glass.$ $C_{2}S_{2}+glass.$ $C_{2}S_{2}+C_{3}S_{2}+glass.$	
76	28.0	41.6	30.4		$ \begin{array}{c} 1, 331 \\ 1, 301 \\ 1, 278 \\ 1, 238 \\ \end{array} $	$C_2S+glass.$ $C_2S+C_3S_2+glass.$ $D_0.$ $C_3S_2+glass.$	
77	32.0	40.0	28.0		1, 291 1, 240	$C_2S+glass.$ $C_2S+C_3S_2+glass.$	
78 79	34. 0 34. 0	40.0 52.0	26. 0 14. 0		1, 219 1, 285 1, 412	$\begin{array}{c} C_{3}S_{2} + glass.\\ C_{2}S + glass.\\ D_{0}.\end{array}$	

TABLE	4.—Composition	of	and	data	on	preparations	determining	the	dicalcium
				sili	cate	field			

"he indicates data obtained from heating curves. Under the column headed "Phases," the data given in such cases represent interpretations placed on breaks of heating curves.
Numbers in parentheses refer to points in figure 2.

Burdick]

System Lime-Ferric Oxide-Silica

TABLE 4.—Compositi	ion of	and silic	data cate fie	on eld—	<i>preparations</i> -Continued	determining	the	dicalcium
			and the second second second		And the second se	and the second se		

Preparation number	Compos	sition (per weight)	cent by	Time at constant	Tempera-	Phases ($C = CaO$; S=SiO ₂ ; F=Fe ₂ O ₂
	Fe ₂ O ₃	CaO	SiO ₂	ture	luic	5-5104, 1 10101
80	% 35. 0 36. 0	% 42.4 38.0	% 22. 6 26. 0	hr 44		Glass only. $C_{2}S+glass.$ $D_{0}.$ $C_{2}S+C_{3}S_{2}+glass.$ $D_{0}.$
82	36.0	40.0	24.0		1, 232 1, 369 1, 349	Do. $C_1S+glass.$ Do. $C_2S+C_2S_2+glass$
83	36.8	39.2	24.0		1, 198 1, 324 1, 227	$C_2S+Glass.$ Do.
84	38.0	38.0	24.0		1, 247 1, 241	Do. $C_2S+C_3S_2+glass.$
85 86	38.0 38.8	40.0 52.0	22. 0 9. 2	14	1, 458 1, 494	$C_2S+glass.$ Do.
87	39.2	36.8	24.0	$\begin{cases} \frac{1}{4} \\ \frac{1}{4} \end{cases}$	1,297 1,250 1,402	Do. C ₂ S+C ₃ S ₂ +glass. Liquidus.
88	40.0	39.0	21.0		1,407 1,400	Glass only. $C_2S+glass.$
89	40.0	42.0	18.0	$\begin{cases} he \frac{1}{4} \\ \frac{1}{4} \end{cases}$	1,528 1,215 1,257	Do. Boundary. C.S+glass.
90	42.0	36.0	22.0	he 1/4	1, 237 1, 207	Boundary. $C_2S+C_2S_2+glass.$
91	42.0	40.0	18.0	1/4	1, 466	C ₂ S+glass.
92	42.0	50.0	8.0	r 14	1,472 1,244	Do. Glass only.
93	44.0	94.0	12.0		1,220 1,464	$C_2S+C_3S_2+glass.$ Glass only.
94	44.0	36.0	18.0		1,450 1,364	$C_2S+glass.$ Do.
96	46.0	40.0	14.0		1, 500 1, 462	Glass only. C ₂ S+glass.
97	46.0	48.0	6.0	14	1,441	Do.
98	48.0	34.0	18.0		1, 330	$C_2S+glass.$
99	48.0 48.0	44.0 46.0	8.0 6.0	14	1,446	Do. Do.
101	50.0	32. 0	18.0		1, 233 1, 220	Glass only. C ₂ S+glass.
102	50.4	38.4	11.2		1,545 1,510 1,970	Glass only. C ₂ S+glass.
103	50.8	32.0	17.2		1,270	C ₂ S+glass.
104	52.0	38.0	10.0	1 14	1,512 1,467	Glass only.
100	52.0	42.0	16.0	$\left. \right\} \frac{1}{11/2}$	1,440 1,240	C ₂ S+glass. Glass only.
100	04.0	30.0	10.0	1 2	1, 218	C ₂ S+glass.
107	54.0	32.0	14.0	14	1,251 1,460	Do. Glass only.
108	54.0	40.0	6.0		1,429	C ₂ S+glass. Glass only.
109	56.0	38.0	6.0		1,425	$C_2S+glass.$
110	58.0	30.0	12.0		1,280	C ₂ S+glass.
111	58.8	26.8	14.4		1, 245 1, 224 1, 206	$C_2S+glass.$ $C_2S+C_3S_2+glass.$
112	58.8	34.0	7.2		$1,402 \\ 1,390$	Glass only. C ₂ S+glass.
113	60.0	28.0	12.0		1,251 1,225	C ₂ S+glass.
114	60.8	32.0	7.2		1,380 1,362	Glass only. C ₂ S+glass.
115	62.0	27.9	10.1		1,200	Do. Glass only.
116	62.8	30.0	7.2	{ î	1,348	C ₂ S+glass.

TABLE 5.—Data showing the lowering of the α - β dicalcium silicate inversion temperature and determining the temperature of eutectics (1) and (2)

Preparation number	Compos	ition (perc weight)	ent by	α-β inver- sion tem- perature	Eutectic temperature
	Fe2O3	CaO	SiO2		
117	$\begin{array}{c} \% \\ 1.9 \\ 1.0 \\ 0.5 \\ .1 \\ 38.8 \\ 46.0 \\ 40.0 \\ 0.5 \end{array}$	$\begin{array}{c} \% \\ 63.7 \\ 64.4 \\ 64.7 \\ 65.0 \\ 52.0 \\ 48.0 \\ 50.0 \\ 64.7 \end{array}$	% 34.4 34.6 34.8 34.9 9.2 6.0 10.0 34.8	° C. 1, 361 1, 360 1, 359 1, 413	° C. 1,416 1,414 1,412 1,414
120 121 122 123	40. 0 36. 0 42. 0 38. 0	54. 0 56. 0 52. 0 54. 0	6.0 8.0 6.0 8.0	Mean Mean	1, 414 Eutectic (1)* 1, 412 1, 412 1, 412 1, 413 1, 408 1, 411 Eutectic (2)*

• Numbers in parentheses refer to points in figure 2.

5. 3CaO·SiO₂

In table 6 are given the data on preparations that determine the area within which $3\text{CaO}\cdot\text{SiO}_2$ is the primary phase. The liquidus temperatures rise rapidly along the boundaries from points (1) to (3) and from points (2) to (3). The temperatures available with the furnace used in this study render impossible the location of the upper boundaries of this area.

Point (1) (1,414° C) is the eutectic for α -2CaO·SiO₂, 3CaO·SiO₂, and 2CaO·Fe₂O₃, while point (2) (1,411° C) is the eutectic for 3CaO·SiO₂, CaO, and 2CaO·Fe₂O₃. These temperatures were determined by heating curves and each individual value given in table 5 is the mean of two or more determinations.

The boundary between eutectics (1) and (2) rises to a maximum of $1,428^{\circ} \pm 5^{\circ}$ C. This temperature is the boundary break on the heating curve of a preparation (50% Fe₂O₃, 46% CaO, 4% SiO₂) on the join 3CaO·SiO₂-2CaO·Fe₂O₃ and in the stability field of 2CaO·Fe₂O₃.

 TABLE 6.—Composition of and data on preparations determining the tricalcium silicate field

Preparation number	Composit	ion (percer weight)	nt by	Time at constant tempera- ture	Tempera- ture	Phases (C=CaO; S=SiO ₂)
	Fe ₂ O ₃	CaO	SiO2			
124 125 126	% 36.0 37.6 38.0	% 54.0 53.2 54.0	% 10.0 9.2 8.0	hr 1/2 1/2 1/4	°C 1,530 1,536 1,497	C ₈ S+C ₂ S+glass. C ₃ S+glass. Do.
127	40.0	52.0	8.0	{ ¼	1,499	Glass only.
122	42.0	52.0	6.0	1/4	1,478	Do.
128	44.0	50.0	6.0		1,468 1,449	Glass only. C ₃ S+glass.
129	45.6	49.2	5.2		1, 429 1, 412	Glass only. C ₃ S+CaO+glass.

6. CaO

The data on several preparations in which CaO occurs as the primary phase are given in table 7.

TABLE 7.—Composition	of	and	data	on	preparations	determining	the	calcium	oxide
				3	field				

		Phases (C=CaO; S=SiO ₂ ; F=Fe ₂ O ₃)	
ure a	ture		
hr 1/4	° <i>C</i> 1, 532 1, 480 1, 446	CaO+C ₄ S+glass. CaO+glass. Do.	
ALALAL	1, 447 1, 427 1, 443 1, 435	Do. CaO+C ₃ S+glass. Glass only. CaO+glass.	
1	ir 1/4 1/4 1/4 1/4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

IV. REDUCTION OF FERRIC OXIDE IN TERNARY MIXTURES

The reduction of ferric oxide in the system CaO-Fe₂O₃ [6] was reported as negligible in mixtures containing less than about 74 percent by weight of ferric oxide. Since some of the ternary mixtures developed magnetic properties after treatment at high temperatures, an indication of the amount of reduction of Fe₂O₃ was desired. Determinations of ferrous oxide were made on several charges containing between 12 and 63 percent of ferric oxide and between 6 and 56 percent of silica and located in the various fields delimited. The preparations used in these tests were wrapped in platinum foil, treated at about their liquidus temperature for 15 minutes, and quenched in air. The resulting material was coarsely ground and the platinum separated by means of a sieve. Weighed samples were treated with hot dilute HCl in an atmosphere of carbon dioxide until all except the silica was dissolved. The solution was diluted with air-free water, a phosphoric and sulfuric acid mixture was added, and the ferrous oxide determined by titration with potassium dichromate.

Preparation number	Composition	(percentage	by weight)	Primary phase	Tempera- ture	Time at constant	FeO
	Fe ₂ O ₃	CaO	SiO ₂	$(C = CaO; S = SiO_2)$		tempera- ture	
66	% 63.8 56.0	% 22.0 38.0	% 14.2 6.0	C ₃ S ₂ C ₂ S	°C 1,200 1,400	hr 14	% 0.7
133 128	48.0 44.0	38. 0 50. 0	14.0 6.0	$C_{2}S$ $C_{3}S$	1,400 1,400 1,400		1. 1 0. 0
18 41 134 1	40.1 40.0 35.8	19.2 32.0 37.5	40.7 28.0 26.8	CS	1,300 1,250 1,410	1/4 1/4 1/4	2.8 0.9
135 1 35	31.6 16.0	33.1 46.0	35.2 38.0	CS CS	1,400 1,400	1/4	3.0
18 41 134 1 135 1 35 23	$\begin{array}{r} 40.1\\ 40.0\\ 35.8\\ 31.6\\ 16.0\\ 12.0\\ \end{array}$	$ \begin{array}{c} 19.2\\ 32.0\\ 37.5\\ 33.1\\ 46.0\\ 32.0 \end{array} $	$ \begin{array}{r} 40.7\\ 28.0\\ 26.8\\ 35.2\\ 38.0\\ 56.0\\ \end{array} $	$\begin{array}{c} S10_2\\ CS\\ C_2S\\ CS\\ CS\\ CS\\ CS\end{array}$	1,300 1,250 1,410 1,400 1,400 1,350	ALTAL ALTAL	

TABLE 8.—Ferrous oxide content of several representative preparations

 1 These compositions were prepared and analyzed in connection with another study and were treated at about 100° C above their liquidus temperatures.

The results are given in table 8. The reduction of ferric oxide increases with the temperature and with the amount of silica present.

the latter appearing to be the more potent factor. The amounts of ferrous oxide found are not believed to cause a significant error in the diagram.

V. APPLICATIONS

The specifications generally in use for either moderate or low heat of hydration cements, and for sulfate-resisting cements, demand a low alumina and a high iron oxide content. Consequently, the data obtained in this investigation are of interest industrially in the production of such cements. The following indicate certain applications.

It has been shown by Kühl [16] that cements of the portland cement type can be produced in the system lime-ferric oxide-silica. The composition range of alumina-free cements having satisfactory strengths and setting properties has been delimited by Kühl as being within the elliptical area enclosed by a continuous line in figure 2. For comparison, the field representing the compositions of portland cement in the system lime-silica- R_2O_3 , in which R_2O_3 is considered as alumina, has been indicated by the elliptical area within the broken line. As can be seen, the substitution of ferric oxide for alumina results in a marked enlargement of the field in which satisfactory cements can be obtained.

Bogue [17] has described the manner in which the oxide components of portland cement containing SiO_2 , Al_2O_3 , Fe_2O_3 , CaO, and MgO, alone, react or combine:

(1) The ferric oxide reacts with alumina and lime to form 4CaO- Al_2O_3 ·Fe₂O₃.

(2) The magnesia remains essentially in the form of uncombined MgO.

(3) The alumina remaining after the formation of the compound $4\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot\text{Fe}_2\text{O}_3$ reacts with lime to form $3\text{CaO}\cdot\text{Al}_2\text{O}_3$.

(4) The lime remaining after the formation of the above compounds reacts with silica. The compound $2\text{CaO}\cdot\text{SiO}_2$ is formed, and any CaO then uncombined reacts with the $2\text{CaO}\cdot\text{SiO}_2$ to form $3\text{CaO}\cdot\text{SiO}_2$. If CaO remains after converting all of the $2\text{CaO}\cdot\text{SiO}_2$ to $3\text{CaO}\cdot\text{SiO}_2$, it will be present as uncombined lime.

When the R_2O_3 content of cements containing SiO₂, Al₂O₃, Fe₂O₃, and CaO, alone, is predominately ferric oxide, the limit of lime content is decreased because of the difference in combining ratios of the aluminum and ferric oxides. In such portland cements the alumina reacting with lime to form $3CaO \cdot Al_2O_3$ requires 1.65 parts of CaO for 1 part of alumina, but in the iron-rich cements the ferric oxide not in solid solution with dicalcium silicate or in combination as $4CaO \cdot Al_2O_3$. Fe₂O₃ probably forms dicalcium ferrite, in which 1 part of ferric oxide requires only 0.70 part of CaO. Thus more lime remains for combination with silica and the minimum lime content is lowered.

Lowering the SiO_2 -R₂O₃ ratio in portland cements having an Al₂O₃-Fe₂O₃ ratio of between 0.6 and 1.6 results in the formation of increasing amounts of tricalcium aluminate. If this compound is in excess, difficulty with rapid setting of the cement is encountered. Lower SiO_2 -R₂O₃ ratios are possible in iron-rich cements than in the portland type because of the formation of dicalcium ferrite, which hydrates rapidly but does not have the flash-setting property characteristic of tricalcium aluminate. The liquidus temperatures of preparations within the dicalcium silicate field of the system lime-alumina-silica are lowered little, if any, by the substitution of ferric oxide for alumina, but the temperature at which liquid is first formed is appreciably reduced. The majority of modern portland cement compositions are within the triangle $2\text{CaO}\cdot\text{SiO}_2$ - $3\text{CaO}\cdot\text{SiO}_2$ - $3\text{CaO}\cdot\text{Al}_2\text{O}_3$ of the system lime-alumina-silica. Compositions within this area have a eutectic temperature of $1,455^{\circ}\text{C}$. Substitution of ferric oxide for alumina, a condition which is approached in the case of high-iron cements, results in eutectic temperatures of $1,411^{\circ}$ C for the triangle $3\text{CaO}\cdot\text{SiO}_2$ - $2\text{CaO}\cdot\text{Fe}_2\text{O}_3$ or $1,414^{\circ}\text{C}$ for the triangle $2\text{CaO}\cdot\text{SiO}_2$ - $3\text{CaO}\cdot\text{SiO}_2$ - $2\text{CaO}\cdot\text{Fe}_2\text{O}_3$.

An interesting relationship is observed by comparing the amounts of liquid formed at a given temperature in various cement mixtures. In table 9 are listed five oxide compositions which lie in the cement zone of the system lime-ferric oxide-silica, together with the percentage of liquid at $1,455^{\circ}$ C, when the R_2O_3 is all Al_2O_3 and when it consists of Fe₂O₃. It is seen that, although the use of ferric oxide brings about the formation of liquid at lower temperatures than alumina does, the ferric oxide mixtures result in the formation of smaller amounts of liquid than those in which alumina is used.

TABLE 9.—Liquid content of cement mixtures in the system lime-ferric oxide-silica at $1,455^{\circ}C$

[The amount of liquid that would result from a percentage substitution of Al₂O₃ for Fe ₂O₃ in these mixtures is also given]

Number	Composi	tion (perce weight)	entage by	Percentage liquid when-			
	CaO	SiO2	R2O3	$R_2O_3 = Fe_2O_3$	$R_2O_3 = Al_2O_3$		
1	% 64	% 30	% 6	% 13	% 18		
$\begin{array}{c}2\\3\\4\end{array}$	$\begin{array}{c} 62\\ 62\\ 66\end{array}$	28 24 20	10 14 14	22 31 31	$\begin{array}{c} 31\\ 43\\ 42 \end{array}$		
5	68	26	6	13	19		

VI. SUMMARY

The boundaries of the primary phase areas in a part of the ternary system lime-ferric oxide-silica have been established.

The effect of ferric oxide in lowering the α - β inversion temperature is offered as evidence of a limited solid solution of ferric oxide in dicalcium silicate. The limit of this solid solution is placed at not more than 0.5 percent by weight of ferric oxide. No variation in the indices of refraction of the dicalcium silicate due to solid solution was noted. However, the presence of as little as 0.5 percent of ferric oxide caused a slight shift of the lines in the X-ray patterns. The crystalline hydrated dicalcium silicate 10CaO·5SiO₂·6H₂O, after treatment at 1,350° C, could be quenched to maintain the β -form of dicalcium silicate as verified by its X-ray pattern. Ferric oxide did not prevent the β - γ inversion in quenched samples prepared from calcium carbonate and silica gel.

No ternary compounds were found in the portion of the system investigated.

The amount of ferrous oxide developed as a result of heating preparations in several stability fields at their liquidus temperatures for 15 minutes was determined and found to increase with increase of temperature and with higher silica contents. The largest percentage of ferrous oxide found was about 3, which was not believed to cause a significant error in the results.

The author is indebted to H. F. McMurdie for the X-ray patterns, and acknowledges the cooperation and advice of L. S. Wells and of E. P. Flint.

VII. REFERENCES

- [1] Hansen and Bogue, Studies on the system calcium oxide-ferric oxide-silica,
- Hansen and Bogue, Stuares on the system calcium oxide-jerric oxide-stitca, J. Am. Chem. Soc. 48, 1261 (1926).
 A. L. Day, E. S. Shepherd, and F. E. Wright, The lime-silica series of minerals, Am. J. Sci. [4] 22, 265-302 (1906).
 G. A. Rankin and F. E. Wright, The ternary system CaO-Al₂O₃-SiO₂. Am. J. Sci. [4] 39, 1-79 (1915).
 J. B. Ferguson and H. E. Merwin, The ternary system CaO-MgO-SiO₂. Am. J. Sci. [4] 48, 81-123 (1919).
 J. W. Grieg Immiscibility of silicate melts. Am. J. Sci. [5] 13, 1-44, 133-154.

- [5] J. W. Grieg, Immiscibility of silicate melts. Am. J. Sci. [5] 13, 1-44, 133-154 (1927).
- [6] R. B. Sosman and H. E. Merwin, The system CaO-Fe₂O₃. J. Wash. Acad. Sci. 6, 532-537 (1916). [7] N. L. Bowen, J. F. Schairer and H. W. V. Willems, The system Na₂SiO₃-
- Fe₂O₃-SiO₂. Am. J. Sci. [5] **20**, 405–455 (1930). [8] H. S. Roberts, The Geophysical Laboratory furnace thermostat, J. Opt. Soc.
- Am. Rev. Sci. Instr. 11, 171-186 (1925).

- Am. Rev. Sci. Instr. 11, 171-180 (1925).
 [9] C. N. Fenner, The stability relations of the silica minerals, Am. J. Sci. [4] 36, 351 (1913).
 [10] N. L. Bowen, J. F. Schairer, and E. Posnjak, The system CaO-FeO-SiO₂. Am. J. Sci. [5] 27, 206 (1933).
 [11] Kiezo Iwase and Usaburo Nishioka, The equilibrium diagrams of three binary systems, (1) CaO.SiO₂-TiO₂-MgO.TiO₂, (2) CaO.MgO.2SiO₂-MnO.TiO₂ and (3) CaO.SiO₂-2CaO.Fe₂O₃. Sci. Rep., Tohoku Imp. Univ. [1] 26, 592-601 (1938).
 [12] C. Sitz. The system CaO Fe₂O₂ SiO₂ in relation to its significance for metallure.

- 592-601 (1938).
 [12] G. Sitz, The system CaO.Fe₂O₃.SiO₂ in relation to its significance for metallurgical slags, Metall u. Erz 29, 269 (1932).
 [13] E. P. Flint and L. S. Wells, The system lime-boric oxide-silica. J. Research NBS 17, 727-752 (1936) RP941.
 [14] N. B. Keevil and T. Thorvaldson, The hydration of dicalciums ilicate and tricalcium silicate, Canadian J. Research 14, 20-30 (1936).
 [15] E. P. Flint, H. F. McMurdie, and L. S. Wells, Formation of hydrated calcium silicates at elevated temperatures and pressures, J. Research NBS 21, 617-638 (1028) PP1147. (1938) RP1147.
- (1938) RP1147.
 [16] Hans Kühl, The cement field in the ternary system lime-ferric oxide-silica, Zement 13, 25 et seq. (1924).
 [17] R. H. Bogue, Calculation of the compounds of portland cement. Ind. Eng. Chem. Anal. Ed. 1, 192 (1929).
 [18] Int. Crit. Tables 1, 154 (McGraw-Hill Book Co., Inc., New York, N. Y., 1920)
- 1926).

WASHINGTON, August 30, 1940.