U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

RESEARCH PAPER RP1301

Part of Journal of Research of the National Bureau of Standards, Volume 24, May 1940

REDETERMINATION OF THE MUNSON-WALKER **REDUCING-SUGAR VALUES**

By Lester D. Hammond

ABSTRACT

The various methods for the gravimetric determination of reducing sugars by the alkaline copper tartrate reagent (Fehling's solution) were unified by L. S. Munson and Percy H. Walker in 1906. This method has gained widespread use because of its simplicity and reproducibility. Now that sugars of higher purity are available, a redetermination of the values of Munson and Walker has been made. To this have been added the values for levulose, as well as the values for an additional sugar mixture containing 0.3 g of total sugar. This latter mixture extends the adaptability of the method to include such products as simulated molasses, which contains such high percentages of invert sugar in the total sugar present that painter that painter a substantial sugar products as simulated molasses. present that neither column of sugar-mixture values in the original table was directly applicable. The conditions of the Munson and Walker method were followed, except that the copper was determined electrolytically and the solution was heated by electricity. It was demonstrated that the substitution of electricity for gas-flame heating produces no change in the results. Also, the invert sugar was prepared by taking equal weights of crystalline dextrose and levulose. For a given weight of copper the new values are somewhat higher than the old values. An extensive table showing the reducing-sugar values for weights of copper from 10 mg to 435 mg in 1-mg intervals has been computed.

CONTENTS

		Page
I.	Introduction	579
II.	Analytical procedure	581
	Calculation of table	588
IV.	References	589

I. INTRODUCTION

During the process of manufacturing or refining sugar, there occurs a certain amount of decomposition of the sucrose into simpler sugars, dextrose and levulose. Their quantitative estimation is of great importance in factory methods and in the United States customs laboratories, where a knowledge of the percentage of reducing sugars in a sugar product is necessary for the assessment of customs duties. In 1841, Trommer [1]¹ reported a method of distinguishing between sucrose and dextrose by treating separate solutions of these sugars with an alkaline copper sulfate solution, in which the dextrose produced a dark-red precipitate of cuprous oxide, whereas the sucrose solution gave little or no such reaction. In 1844, Barreswil [2] made the important contribution that potassium tartrate increases the stability of the alkaline copper reagent; and in 1849, Fehling [3] published the details of the method essentially as it is now used.

¹ Figures in brackets indicate the literature references at the end of this paper.

In the years that have followed the publication of Fehling's work, many reducing-sugar methods have been proposed in which various modifications of the concentrations of the components of the Fehling reagent and of the period of boiling the solution of sugar and reagent were made. Jackson [4] has made an extensive study of this method in which he shows the results of determining the copper by volumetric and electrometric methods, while Erb and Zerban [5] have studied the total reducing sugar and the dextrose and levulose in cane molasses, determining the copper as cupric oxide. Smolenski [6] has recently summarized a graphical classification of 29 methods for the estimation of reducing sugars.

In 1906, Munson and Walker [7] surveyed the various methods and proposed one to unify all the others for the determination of dextrose, invert sugar, and two mixtures of invert sugar and sucrose totaling 0.4 g and 2.0 g, respectively. This method has gained widespread use because of its simplicity and extreme reproducibility of results. Their solutions and method of manipulation are as follows: The copper sulfate solution contains 34.639 g of CuSO₄.5H₂O in 500 ml, and the alkaline tartrate solution contains 173 g of potassium sodium tartrate (KNaC₄H₄O₆.4H₂O) and 50 g of sodium hydroxide in 500 ml. Transfer 25 ml each of the copper and alkaline tartrate solutions to a 400-ml beaker and add 50 ml of reducing-sugar solution; or if a smaller volume of sugar solution is used, add water to make the final volume 100 ml. Heat the beaker upon an asbestos gauze over a bunsen burner: so regulate the flame that boiling begins in 4 minutes and continue the boiling for exactly 2 minutes. Keep the beaker covered with a watch glass throughout the entire time of heating. Without diluting, filter the cuprous oxide at once on an asbestos felt in a porcelain Gooch crucible, using suction. Wash the cuprous oxide thoroughly with water at 60° C, then with 10 ml of alcohol, and finally with 10 ml of ether. Dry for 30 minutes at 100° C, cool in a desiccator, and weigh as cuprous oxide.

Despite the wide utilization of the Munson and Walker method for scientific and commercial purposes, there has been neither a redetermination of their original values nor any needed additions to the scope of the tables since their publication. Now that purer sucrose and dextrose are readily available, it was decided to redetermine the reducing-sugar values from which the Munson and Walker table was computed, and also, since pure levulose is now available by methods developed at this Bureau [8], to determine the values for this sugar.

Within the past few years a new article of commerce has appeared. It is a simulated molasses manufactured directly from cane juice or raw sugar with or without the addition of molasses. It is now imported into the United States in large quantities and, because of its lack of accumulated impurities, is a product preferred for many purposes to ordinary molasses. The sucrose present is partially hydrolyzed with acid, neutralized, and concentrated to a thick sirup. Samples received at this Bureau have a composition varying between 70 and 82 percent of total sugar and a reducing-sugar content between 45 and 58 percent. When a sample of such a molasses is taken to give a total sugar content of 0.4 g in 50 ml, the concentration of reducing sugar is such that the limits of the Munson-Walker table are exceeded. In analyzing this new material, it is now necessary to use a smaller sample and to add sufficient pure sucrose to obtain 0.4 g of total sugar in the 50-ml aliquot. In order to be able to directly weigh out a sample, it was decided to determine data for a new column for 0.3 g of total sugar.

II. ANALYTICAL PROCEDURE

In redetermining these values, as well as in determining the new ones, the conditions of the Munson-Walker method were followed and the same concentration of alkaline copper tartrate reagent was used. However, certain changes in technique were soon found to be ad-visable. Munson and Walker brought the solution to boiling by heating over a gas flame, but this procedure was changed to the use of the more convenient electric heating. When the 400-ml beaker was placed in the electric heater, the 100 ml of solution it contained was entirely surrounded by a nest of the resistance wire. When gas is used to heat such a mixture, a yellow substance often forms on the side of the beaker which is more marked when low-grade sugar products, such as blackstrap molasses, are to be analyzed, but which has never been observed when the heating is done electrically. Also, the beaker can be handled more comfortably, which permits the filtering of the cuprous oxide to be started more rapidly than can be done when gas heating is used.

The current was controlled in the following manner: The line voltage was stabilized by means of a voltage regulator whose output voltage was constant within small limits, regardless of input variations caused by fluctuations in the line voltage. This constant output voltage was fed into the input of a continuously variable transformer whose output voltage was adjusted to give the correct current through the heater. The solution could readily be brought to boiling in the 4-minute interval used in the method within ± 5 seconds.

Munson and Walker transferred the precipitated cuprous oxide to Gooch crucibles and weighed the cuprous oxide. This procedure was abandoned, and the copper was determined electrolytically. The cuprous oxide was transferred to a Gooch crucible, washed, and then dissolved by the slow dropwise addition of 5 ml of 1:1 nitric acid. The copper nitrate was received in a 250-ml beaker, and 10 ml of 1:1 nitric acid added, as well as about 5 g of ammonium sulfate. Enough water to cover the cylindrical platinum-gauze electrodes was added, making the total volume of electrolyte about 180 ml. The electrolysis was conducted for about 36 hours² at a current density of approximately 0.10 amp/dm²; and upon completion, as indicated by the ferrocyanide test, the electrolyte was displaced with distilled water before breaking the current. The copper deposit was washed with alcohol, dried for 15 minutes at 100° C, cooled in a desiccator, and weighed. All deposits were bright and showed no trace of "burning." ³

Munson and Walker prepared the invert sugar by hydrolyzing a pure sucrose solution with 10 ml of 0.2 N HCl and, upon completion of the hydrolysis, neutralizing with 0.2 N sodium hydroxide. This procedure leaves in the invert solution an amount of sodium chloride equivalent to the acid used. Six experiments in determining dextrose with the addition of approximately 150 mg of sodium chloride

^a The electrolysis can be completed overnight by using a larger current. John A. Scherrer, Rosemond K. Bell, and William D. Mogerman, J. Research NBS 22, 697 (1939) RP1213. ^a Electroanalysis of copper was selected on account of its extreme accuracy. In the routine analysis of sugar products, any method of determining copper which is suitable to the products may be used.

to the solution showed significantly larger amounts of cuprous oxide precipitated than in the absence of the salt. Consequently, the invert solution was made by taking equal weights of crystalline dextrose and levulose.

The levulose was prepared by taking a purified sample and dissolving it in water to make a 50-percent solution. Vegetable carbon was added and the solution heated. The filtered solution was evaporated in vacuo to a thick sirup, seeded with pure levulose, and crystallized in motion. The crystals were centrifuged and then washed with absolute alcohol. After drying in the air, the crystals were pulverized, dried for 2 hours at 50° C, and finally dried and stored in a vacuum desiccator. A polariscopic examination showed the levulose to be pure.

The sucrose and dextrose used in this work were Standard Samples 17 and 41, respectively, issued by this Bureau.

In general, the same intervals in the concentrations of the sugars employed by Munson and Walker were used, except that additional points were determined at higher concentrations to obtain data for a better least-squares adjustment in the high range of sugar concentrations. Fresh solutions were made for each determination by weighing the requisite amount of sugar into a sugar scoop, transferring to a 500-ml flask, and completing the volume at 20° C, at which temperature the solution was kept while the aliquots of 50 ml were taken. For the concentration 20 mg per 50 ml, the amount of sugar necessary for 1 liter of solution was taken.

The experimental data are shown in table 1. A single weight of sugar or sugar mixture was dissolved, and four 50-ml aliquots were taken for each determination. However, for dextrose another series of duplicate determinations was made from a different specimen of Standard Sample 41 in order to check the reproducibility of results.

		DEXT	ROSE 1		
Reducing sugar	Copper	Copper	Copper	Copper	Average result
<i>mg</i> 20	<i>mg</i> 42. 2 41. 8	mg 41.5 41.9	mg 41. 8	mg 41.7	mg 41.8
40	82. 5 82. 4	81.7 82.2	82.1	82.0	82. 2
60	121. 1 121. 1	$121.1 \\ 121.2$	121. 2	121.2	121. 2
80	160. 3 160. 1	$160.0 \\ 160.1$	160.3	160. 1	160. 2
100	197.6 198.0	198.1 198.0	197.6	198.2	197.9
120	235. 0 235. 5	235. 2 235. 3	234.6	234.5	235.0
140	$271.2 \\ 271.2$	$271.2 \\ 271.4$	271.0	270.6	271. 1
160	307.3 307.4	307.1 307.4	306.7	306.6	307.1

TABLE 1Tabula	tion of a	inalytical	data
---------------	-----------	------------	------

¹ For each reducing-sugar concentration the 4 values in the first line represent the results from 4 aliquots of the solution. A new solution was prepared and the 2 values in the second line represent the results from the 2 aliquots taken from that solution.

Reducing-Sugar Studies

	D	EXTROSE	-Continue	a	
Reducing sugar	Copper	Copper	Copper	Copper	Average result
<i>mg</i> 180	mg 341. 4 341. 8	mg 341. 4 341. 8	mg 341. 4	mg 340. 5	<i>mg</i> 341. 4
200	375. 1 375. 8	375. 5 375. 7	374.9	374.9	375. 3
220	408. 4 409. 1	408. 8 409. 3	408.6	407.8	408.7
240	438. 5 438. 1	438. 2 438. 5	438. 4	438. 3	438. 3
		INVERT	SUGAR)
20	39.7	39.6	39.6	39.7	39.7
40	78.2	78.0	78.3	78.0	78.1
60	115.9	115.5	115.4	116.0	115.7
80	153.4	152.8	153.3	153.4	153. 2
100	190.3	190.1	190.0	190.2	190.2
120 140	226.6	226.4 261.1	225.9 260.9	$226.1 \\ 261.1$	226.3
160	202.2	297.0	296.6	296 7	261.3 296.8
180	262. 2 296. 7 330. 5	330.2	330 6	296.7 330.2	330. 4
200	363.8	363 6	363. 5	364.1	363.8
220	396.1	396.1	396. 3	396.0	396.1
240	396. 1 427. 7 438. 4	$\begin{array}{c} 396.1 \\ 427.7 \\ 438.6 \end{array}$	$\begin{array}{c} 363.5\\ 396.3\\ 427.6\\ 438.2 \end{array}$	428.0	$ \begin{array}{r} 396.1 \\ 427.8 \\ 438.4 \end{array} $
250	400. 4	400.0	400. 2	438.4	400.4
NVERT	SUGAR A	ND SUCR	OSE-0.3 g	OF TOTA	LSUGAI
20	42.9	42.8	42.9	43.1	42.9
20 40	80.9	81.2	81.2	81.4	81.2
60	118.7	118.7	119.0	118.7	118.8
80	155.5	155.8	155.2	155.1	155.4
100 120	192.1	$192.6 \\ 228.2$	192.0 228.3	$191.9 \\ 228.7$	192.2 228.3
140	227.9 263.7	263.1	263.6	263.7	263.5
160	297.3	297.5	207 A	297.5	203. 3
180	331. 1 364. 9	297.5 331.3	331. 5	331.5 364.7	331.4
200	364.9	364.9	365.2	364.7	364.9
220	397.4	397.6	397.8	397.8 428.5	$397.7 \\ 428.6$
	100 F	100 4	100 1		
$\begin{array}{c} 240\\ 250 \end{array}$	397. 4 428. 5 438. 6	$\begin{array}{c} 397.\ 6\\ 428.\ 4\\ 438.\ 4\end{array}$	$\begin{array}{c} 231.4\\ 331.5\\ 365.2\\ 397.8\\ 429.1\\ 438.2 \end{array}$	428.5 438.6	428.6 438.5
240 250	438. 6	438.4	429.1 438.2 OSE-0.4 g	438.6	438.5
240 250	438. 6 SUGAR A	438.4 ND SUCR	OSE-0.4 g	438.6 OF TOTA	438. 5 L SUGA1
240 250	438. 6 SUGAR A 43. 8	438. 4 ND SUCR 44. 1	438. 2 OSE-0.4 g 43. 9 81. 8	438.6 OF TOTA 43.8	438. 5 L SUGA1 43. 9
240 250 INVERT 20 40	438. 6 SUGAR A 43. 8 81. 5 119. 7	438.4 ND SUCR	OSE-0.4 g	438.6 OF TOTA 43.8	438. 5 L SUGA1 43. 9
240 250 INVERT 20 40 60 80	438. 6 SUGAR A 43. 8 81. 5 119. 7 156. 5	438. 4 ND SUCR 44. 1 81. 9 119. 6 156. 4	438. 2 OSE-0.4 g 43. 9 81. 8 119. 5 156. 4	438.6 OF TOTA 43.8 81.7 120.1 156.7	438. 5 L SUGAI 43. 9 81. 7 119. 7 156. 5
240 250 INVERT 20 40 60 80 100	438. 6 SUGAR A 43. 8 81. 5 119. 7 156. 5 193. 5	438. 4 ND SUCR 44. 1 81. 9 119. 6 156. 4 193. 6	438. 2 OSE-0.4 g 43. 9 81. 8 119. 5 156. 4 193. 4	438.6 OF TOTA 43.8 81.7 120.1 156.7 193.5	438. 5 L SUGAI 43. 9 81. 7 119. 7 156. 5 193. 5
240 250 INVERT 20 40 60 80 100 120	438. 6 SUGARA 43. 8 81. 5 119. 7 156. 5 193. 5 229. 2	438. 4 ND SUCR 44. 1 81. 9 119. 6 156. 4 193. 6 228. 8	438. 2 OSE-0.4 g 43. 9 81. 8 119. 5 156. 4 193. 4 229. 2	438.6 OF TOTA: 43.8 81.7 120.1 156.7 193.5 228.7	438. 5 L SUGAI 43. 9 81. 7 119. 7 156. 5 193. 5 229. 0
240 250 INVERT 20 40 60 80 100 120 140	438. 6 SUGARA 43. 8 81. 5 119. 7 156. 5 193. 5 229. 2 263. 9	438. 4 ND SUCR 44. 1 81. 9 119. 6 156. 4 193. 6 228. 8 264. 1	438, 2 OSE-0.4 g 43, 9 81, 8 119, 5 156, 4 193, 4 229, 2 263, 9	438.6 OF TOTA 43.8 81.7 120.1 156.7 193.5 228.7 264.2	438. 5 L SUGAI 43. 9 81. 7 119. 7 156. 5 193. 5 229. 0 264. 0
240 250 INVERT 20 40 60 80 100 120 140 160	438. 6 SUGARA 43. 8 81. 5 119. 7 156. 5 193. 5 229. 2 263. 9	438. 4 ND SUCR 44. 1 81. 9 119. 6 156. 4 193. 6 228. 8 264. 1 298. 5	438, 2 OSE-0.4 g 43, 9 81, 8 119, 5 156, 4 193, 4 229, 2 263, 9	438.6 OF TOTA 43.8 81.7 120.1 156.7 193.5 228.7 264.2	438. 5 L SUGAI 43. 9 81. 7 119. 7 156. 5 193. 5 229. 0 264. 0 298. 3
240 250 INVERT 20 40 60 80 100 120 140 160 180	438. 6 SUGAR A 43. 8 81. 5 119. 7 156. 5 193. 5 229. 2 263. 9 298. 2 332. 1	438. 4 ND SUCR 44. 1 81. 9 119. 6 156. 4 193. 6 228. 8 264. 1 298. 5 331. 5	438.2 OSE-0.4 g 43.9 81.8 119.5 156.4 193.4 229.2 263.9 298.2 332.0	438. 6 OF TOTA: 43. 8 81. 7 120. 1 156. 7 193. 5 228. 7 264. 2 298. 2 332. 0	438. 5 L SUGAI 43. 9 81. 7 119. 7 156. 5 193. 5 229. 0 264. 0 298. 3 331. 9
240 250 INVERT 20 40 60 80 100 120 140 160	438. 6 SUGAR A 43. 8 81. 5 119. 7 156. 5 193. 5 229. 2 263. 9 298. 2 332. 1	438. 4 ND SUCR 44. 1 81. 9 119. 6 156. 4 193. 6 228. 8 264. 1 298. 5 331. 5 364. 5	438.2 OSE-0.4 g 43.9 81.8 119.5 156.4 193.4 229.2 263.9 298.2 332.0 364.8	438.6 OF TOTA 43.8 81.7 120.1 156.7 193.5 228.7 264.2 298.2 332.0 364.9	438. 5 43. 9 81. 7 119. 7 156. 5 193. 5 229. 0 264. 0 208. 3 331. 9 364. 7
240 250 INVERT 20 40 60 80 100 120 140 160 180 200	438. 6 SUGARA 43. 8 81. 5 119. 7 156. 5 193. 5 229. 2 263. 9	438. 4 ND SUCR 44. 1 81. 9 119. 6 156. 4 193. 6 228. 8 264. 1 298. 5 331. 5	438.2 OSE-0.4 g 43.9 81.8 119.5 156.4 193.4 229.2 263.9 298.2 332.0	438. 6 OF TOTA: 43. 8 81. 7 120. 1 156. 7 193. 5 228. 7 264. 2 298. 2 332. 0	438. 5 L SUGAI 43. 9 81. 7 119. 7 156. 5 193. 5 229. 0 264. 0 298. 3 331. 9

TABLE 1Ta	bulation of	analytical	data-Continued
-----------	-------------	------------	----------------

Reducing sugar	Copper	Copper	Copper	Copper	Average result
mg	mg	mg	mg	mg	mg
20	55.1	54.9	55.2	55.2	55.1
40	93.8	93.9	94.3	94.2	94.1
60	130.2	131.0	131.2	130.9	130.8
80	166.9	166.7	166.8	167.3	166.9
100 120	202.9 238.5	203.7 238.6	204.1 238.6	204.2 238.7	203.7 238.6
140	238. 5	273.4	273.0	273.3	273.3
160	308.0	307.2	307.1	307.3	307.4
180	339.8	339.9	340.1	340.3	340.0
200	373.0	373.4	373.4	373.3	373.3
220	404.7	404.7	404.6	404.7	404.7
240	434.7	434.3	434.6	434.6	434.6
		LEVUI	LOSE		
20	38.3	38.2	38.2	38.2	38.2
40	74.7	74.7	74.4	74.7	74.6
60	110.8	111.0	111.0	111.1	111.0
80	146.9	146.9	146.8	146.8	146.9
100	182.5	182.5	182.6	182.5	182.5
120 140	218.2 251.7	217.9 252.2	217.5 251.7	217.6 252.2	217.8 252.0
160	286.2	285.8	285.7	285.5	285.8
180	318.9	318.8	319.6	319.0	319.1
200	352.6	352.6	352.3	352.0	352.4
220	385.2	384.6	384.9	384.6	384.8
240	416.8	416.5	416.8	416.5	416.7
260	438.5	438.8	438.4	438.5	438.6

TABLE 1.—Tabulation of analytical data—Continued

Critical examination of the experimental data shows that either the parabolic or the rectangular hyperbolic equation fits the data for the lower range of sugar concentrations but that neither equation can be made to fit the whole range. The following are the characteristics required of an equation fitting the data over the whole experimental range. For low concentrations of reducing sugar the amount of copper obtained is very nearly proportional to the concentration of reducing sugar, and the curve representing the equation is therefore very nearly linear in this range. With increasing sugar concentrations the slope of the curve decreases, since the change in the amount of copper obtained for a given increase in concentration of sugar decreases. The data show this decrease in slope to be uniform, and it becomes very rapid as the amount of unreduced copper becomes approximately 5 mg. As the amount of available copper is further diminished, the decrease in the slope of the curve becomes less rapid, approaching zero as the amount of available copper approaches zero. A curve having the above characteristics and possessing ease of application was found to be of the form

$$(a+x) (b-y) = c + d (y_1 - y)^{-1}.$$
 (1)

It is formed by adding the term $d(y_1-y)^{-1}$ to the equation for the rectangular hyperbola. It fits the data satisfactorily throughout and, in addition, is considerably easier to apply than an equation of the parabolic form. The added term causes the curve to approach

Reducing-Sugar Studies

Hammond]

the limiting value of copper, y_1 =440.9 mg, asymptotically, as was indicated by additional data taken for sugar concentrations corresponding to values for reduced copper between 435 and 440.9 mg. In this range, the additional amounts of copper reduced during the reaction by equal increments of sugar become increasingly smaller, which is probably explained by the decreased amount of unreduced copper in the reagent as the reaction of the reagent and sugar proceeds

in the range closely approaching 440.9 mg of reduced copper. In all of the sugars and sugar mixtures, the total amount of copper reduced approaches the ordinate 440.9 asymptotically. Therefore, it is obvious that the adaptability of the method is questionable for sugar concentrations corresponding to values of copper greater than approxi-

222120-40-7

mately 435 mg. There is some evidence that the precision of the measurements for all concentrations greater than 220 mg of sugar is somewhat less than that for lower concentrations. Although this region is of lesser importance analytically, a further study of the reaction for it is contemplated and is justified from theoretical considerations alone. Also, additional data may be instrumental in even more definitely fixing the positions of the several curves in this range.

Figure 1 shows graphically the several curves plotted from eq 1, using the constants given in table 2 for the different sugars and sugar mixtures. The range which is the subject of future investigation is shown in the insert.

From the average result of each series of determinations in table 1, the constants of eq 1 were calculated and adjusted by the method of least squares. The values of the adjusted constants for the various sugars and sugar mixtures are shown in table 2.

		Turnah	Invert	sugar and s	sucrose	
Constants	Dextrose	Invert sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total sugar	Levulos
a b c×10 ⁻⁶	1776.34 3707.48 6.58497 17757	$2045.73 \\ 4089.15 \\ 8.36591 \\ 38134$	2176.944299.109.3508444726	$2061.90 \\ 4086.88 \\ 8.41765 \\ 40666$	$1924. \ 46 \\ 3806. \ 37 \\ 7. \ 29378 \\ 26959$	2834.91 5344.05 15.1484 77065

TABLE 2.-Values of equation constants

Solving eq 1 for x, it takes the form

$$x = \frac{c + d(y_1 - y)^{-1}}{b - y} - a,$$
(2)

where x=mg of sugar, y=mg of copper, and $y_1=440.9$, the amount of copper in milligrams in 50 ml of the copper tartrate reagent. From this equation was computed the reducing sugar from any weight of copper within the limits of the method.

From eq 2 were calculated the values for each series of sugars and sugar mixtures, and the data in table 3 show the differences between the experimental values and those computed from the equation. Munson and Walker state that their differences were small and negligible, except for the mixture containing 2.0 g of total sugar, in which larger differences between the experimental and computed values were found. However, table 3 shows that the differences are quite small for all the sugars and sugar mixtures, and are all smaller than those of Munson and Walker, whose general average is 0.48 mg.

Reducing-Sugar Studies

Hammond]		

LOR 0.00		ditto be	Invert	sugar and s	sucrose	leosinger
Reducing sugar	Dextrose	Invert sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total sugar	Levulose
<i>mg</i> 20	mg of Cu -0.1	mg of Cu -0,4	mg of Cu 0.2	mg of Cu -0.3	mg of Cu -0.2	mg of Cu 0.3
40	1	0	.1	.3	.6	2
60	.3	.5	0	.1	1	2
80	0	.3	5	.3	6	2
$100 \\ 120$	0^{1}	0	1	3 2	.2	0
140	0 1	1	.4	2	1	.4
160	- 4	6	2	0.1	.2	0
180	0	1	2	.1	4	2
200	.1	1	0	.4	.4	0
220	0	.3	.2	1	1	1
240	0	0	1	2	0	.1
250		0	0	0		
260						0
Mean	0.1	0.2	0.1	0.2	0.2	0.1

TABLE 3.—Differences between the computed and experimental values

In table 4 are given the differences between the copper values of the Munson and Walker table and the new values for concentrations of reducing sugar between 20 and 240 mg. In general, the differences between the two tables increase with increase of sugar concentration. It is to be noted that if a comparison is made between a given weight of copper and the corresponding sugar value, the new sugar value will be somewhat higher than that in the Munson and Walker table.

Con- cen- tra- tion	Dextrose			Invert sugar			Invert sugar and su- crose 0.4 g of total sugar			Invert sugar and su- crose 2.0 g of total sugar		
of reduc- ing sugar	Mun- son and Walker	Ham- mond	Dif- fer- ence	Mun- son and Walker	Ham- mond	Dif- fer- ence	Mun- son and Walker	Ham- mond	Dif- fer- ence	Mun- son and Walker	Ham- mond	Dif- fer- ence
<i>mg</i> 20 40 60 80 100 120 140 160 180 200 220 240	mg of Cu 41.7 82.2 121.7 160.6 198.3 235.4 271.4 306.8 341.1 374.7 407.4	mg of Cu 41.8 82.0 121.6 160.2 198.0 235.0 235.0 271.2 306.7 341.5 375.5 408.7	mg of Cu 0.1 .2 .1 .4 .3 .4 .2 .1 .4 .8 1.3	mg of Cu 39.8 79.1 117.6 155.3 192.3 228.5 263.8 298.6 332.5 365.6 397.9 429.6	<i>mg</i> of Cu 39.2 78.0 116.2 153.5 190.2 266.2 261.5 296.2 330.3 363.7 396.3 427.7	mg of Cu 0.6 1.1 1.4 1.8 2.1 2.3 2.3 2.4 2.2 1.9 1.6 1.9	mg of Cu 44.9 83.5 121.3 158.5 194.9 230.8 265.8 300.2 334.0 367.0 399.3 431.0	mg of Cu 43.6 82.0 119.8 156.8 193.2 228.8 263.8 298.2 332.0 365.2 397.6 428.6	mg of Cu 1.3 1.5 1.5 1.7 1.7 2.0 2.0 2.0 2.0 2.0 1.8 1.7 2.4	<i>mg</i> of Cu 57. 2 95. 2 132. 9 169. 7 205. 9 241. 6 276. 5 310. 8 344. 4 377. 5 409. 9	mg of Cu 55.2 93.4 130.8 167.5 203.5 203.5 238.7 273.3 307.2 340.3 373.0 404.8	mg of Cu 2.0 1.8 2.1 2.2 2.4 2.9 3.2 3.6 4.1 4.5 5.1

TABLE 4. - Differences between the Munson and Walker table and the new table

The differences between the old and new tables become greater, in general, with the increase in sugar concentration, and it was thought they might be caused by differences in the heating characteristics when electric heating was substituted for gas-flame heating. To test this, a series of experiments, using solutions containing 220 mg of reducing sugars in 50-ml aliquots, was carried out. New solutions were prepared, and from a given solution two 50-ml aliquots were analyzed by heating with a gas flame and two 50-ml aliquots by heating electrically. The results showed differences too small to be considered significant. The averages of the results are given in table 5 and show that the differences between the two tables are not caused by substituting electricity for gas-flame heating in the method of procedure. In addition, reducing-sugar determinations on two samples of blackstrap molasses were made in which one aliquot from each sample was heated by a gas flame and one aliquot of each sample was heated electrically, but again there were no significant differences in the amounts of copper formed.

20 mg of invert sugar. .4 g of total sugar. 20 mg of invert sugar. .0 g of total sugar. .20 mg of invert sugar. .20 mg of invert sugar.	Milligrams of copper			
Taken for analysis	Gas	Electric		
220 mg of dextrose	407.9 396.2	408.2 396.5		
0.4 g of total sugar 220 mg of invert sugar	} 396.8	397.2		
2.0 g of total sugar	} 404.1	404.5		
220 mg of levulose	384.7	384.7		
Blackstrap molasses:	ntra.	13403		
Sample 1	322.5 409.4	322.5 409.3		

TABLE 5.—Comparison of gas and electric heating

III. CALCULATION OF TABLE

In table 6 are shown the reducing-sugar values for each sugar and sugar mixture for weights of copper from 10 to 435 mg at intervals of 1 mg. For each sugar and sugar mixture the value for each tenth point from 10 to 420 mg of copper was computed from eq 2 and all intermediate points were determined by linear interpolation. Above 420 mg the differences between successive points change with increasing rapidity, so that smaller intervals were necessary in order for linear interpolation to give sufficiently accurate values. In this range, points 425, 430, 433, and 436 were computed from the equation. The values for cuprous oxide were computed by multiplying the corresponding value for copper by the factor 1.12585.

Attention is called to the fact that the columns for 0.3 g and 0.4 g of total sugar are practically identical beyond the concentration 220 mg of reducing sugar. It is believed that this is due to the slowing of the reaction beyond 220 mg, as explained above, and that the effect of the slight differences in concentration of the two mixtures is of a magnitude approximating the experimental error of the determination.

In 1907, Walker [9] published his determination of the reducingsugar values of lactose and maltose. Subsequently an error in the calculation of the table for lactose was discovered and a corrected table was published [10]. Later, Given stated that a question had arisen as to the composition of the lactose used by Walker, and that M. N. Straughn, of the Sugar Laboratory, Bureau of Chemistry, United States Department of Agriculture, had prepared a sample of lactose of known composition and had determined values for a new

Hammond

Reducing-Sugar Studies

lactose table. Straughn and Given then determined values for two mixtures of lactose and sucrose which, with the new lactose values, were published in 1912 [11]. However, none of the analytical data from which they constructed the tables now in use were given. Work is now in progress on the redetermination of the reducing-sugar values of lactose, two mixtures of lactose and sucrose, and of maltose.

Acknowledgment is made to James B. Saunders for the mathematical treatment of the data and the computation of the reducingsugar table.

IV. REFERENCES

- Trommer, Liebigs Ann. Chem. 39, 360 (1841).
 L. C. A. Barreswil, J. pharm. chim. [3] 6, 301 (1844).
 H. V. Fehling, Liebigs Ann. Chem. 72, 106 (1849).
 R. F. Jackson, J. Assoc. Official Agr. Chem. 17, 293 (1934).
 C. Erb and F. W. Zerban, Ind. Eng. Chem., Anal. Ed. 10, 246 (1938).
 K. Smolenski, Proc. Int. Comm. Uniform Methods of Sugar Anal. (Ninth Session, London), p. 12 (1936).
 L. S. Munson and P. H. Walker, J. Am. Chem. Soc. 28, 663 (1906).
 R. F. Jackson, C. G. Silsbee, and M. J. Proffitt, BS Sci. Pap. 20, 587 (1926) S519.
- S519.

- [9] P. H. Walker, J. Am. Chem. Soc. 29, 541 (1907).
 [10] P. H. Walker, J. Am. Chem. Soc. 34, 202 (1912).
 [11] A. Given, Methods for Sugar Analysis (P. Blakiston's Son & Co., Philadelphia, Pa., 1912).

TABLE	6.—Table fo	or calculating	dextrose,	invert suga	r alone,	invert	sugar	in	the
	presence of s	sucrose (0.3, 0.	4, and 2.0	$0 \ g \ of \ total \ s$	ugar), a	nd levu	lose 1		

			Towns	Inver	t sugar and s	ucrose		
Coppe	r Cuprous oxide	Dextrose	Invert sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total sugar	Levulose	Copper
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} mg \\ 4.6 \\ 5.1 \\ 5.6 \\ 6.0 \\ 6.5 \end{array}$	mg 5. 2 5. 7 6. 2 6. 7 7. 2	mtg 3.2 3.7 4.2 4.8 5.3	mg 2.9 3.4 3.9 4.4 4.9		mg 5.1 5.6 6.1 6.7 7.2	mg 10 11 12 13 14
	15 16.9 16 18.0 17 19.1 18 20.3 19 21.4	7.0 7.5 8.0 8.5 8.9	7.7 8.2 8.7 9.2 9.7	5.8 6.3 6.8 7.3 7.8	5.4 5.9 6.4 6.9 7.4		7.7 8.3 8.8 9.3 9.9	15 16 17 18 19
	20 22.5 21 23.6 22 24.8 23 25.9 24 27.0	9.49.910.410.911.4	10. 2 10. 7 11. 2 11. 7 12. 3	8.3 8.8 9.3 9.9 10.4	7.98.48.99.510.0	1.92.42.93.43.93.9	$10. \ 4 \\ 10. \ 9 \\ 11. \ 5 \\ 12. \ 0 \\ 12. \ 5$	20 21 22 23 24
	25 28.1 26 29.3 27 30.4 28 31.5 29 32.6	$11.9 \\ 12.3 \\ 12.8 \\ 13.3 \\ 13.8 \\ $	$12.8 \\ 13.3 \\ 13.8 \\ 14.3 \\ 14.8$	10.9 11.4 11.9 12.4 12.9	$10.5 \\ 11.0 \\ 11.5 \\ 12.0 \\ 12.5$	4.4 4.9 5.5 6.0 6.5	$13.\ 1\\13.\ 6\\14.\ 2\\14.\ 7\\15.\ 2$	25 26 27 28 29
	30 33.8 31 34.9 32 36.0 33 37.2 34 38.3	$14.3 \\ 14.8 \\ 15.3 \\ 15.7 \\ 16.2$	15.3 15.8 16.3 16.8 17.3	$13.4 \\ 14.0 \\ 14.5 \\ 15.0 \\ 15.5$	$13.0 \\ 13.5 \\ 14.1 \\ 14.6 \\ 15.1$	7.0 7.5 8.0 8.5 9.0	15.8 16.3 16.8 17.4 17.9	30 31 32 33 34

¹ The values in the table for concentrations of reducing sugar less than 20 mg are extrapolated and should be used with caution and only for approximate determinations.

	Christian	10000		Invert	sugar and su	al della de	n mora	
Copper	Cuprous oxide	oxide Dextrose	Invert sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total sugar	Levulose	Copper
mg	<i>mg</i>	<i>mg</i>	mg	<i>mg</i>	<i>mg</i>	<i>mg</i>	<i>mg</i>	mg
35	39. 4	16.7	17.8	16. 0	15. 6	9.5	18. 4	35
36	40. 5	17.2	18.3	16. 5	16. 1	10.1	19. 0	36
37	41. 7	17.7	18.9	17. 0	16. 6	10.6	19. 5	37
38	42. 8	18.2	19.4	17. 6	17. 1	11.1	20. 1	38
39	43. 9	18.7	19.9	18. 1	17. 6	11.6	20. 6	39
40 41 42 43 44	$\begin{array}{r} 45.0\\ 46.2\\ 47.3\\ 48.4\\ 49.5\end{array}$	$19.2 \\ 19.7 \\ 20.1 \\ 20.6 \\ 21.1$	20. 4 20. 9 21. 4 21. 9 22. 4	18. 6 19. 1 19. 6 20. 1 20. 7	18. 2 18. 7 19. 2 19. 7 20. 2	$12.1 \\ 12.6 \\ 13.1 \\ 13.7 \\ 14.2$	21. 1 21. 7 22. 2 22. 8 23. 3	40 41 42 43 44
45 46 47 48 49	50. 7 51. 8 52. 9 54. 0 55. 2	$21.6 \\ 22.1 \\ 22.6 \\ 23.1 \\ 23.6$	$\begin{array}{c} 22.9\\ 23.5\\ 24.0\\ 24.5\\ 25.0 \end{array}$	21. 2 21. 7 22. 2 22. 7 23. 2	20. 7 21. 3 21. 8 22. 3 22. 8	14.7 15,2 15.7 16.2 16.8	$23.8 \\ 24.4 \\ 24.9 \\ 25.4 \\ 26.0$	45 46 47 48 49
50	56. 3	$24.1 \\ 24.6 \\ 25.1 \\ 25.6 \\ 26.1$	25. 5	23. 8	23. 3	17.3	26. 5	50
51	57. 4		26. 0	24. 3	23. 8	17.8	27. 1	51
52	58. 5		26. 5	24. 8	24. 3	18.3	27. 6	52
53	59. 7		27. 0	25. 3	24. 9	18.8	28. 2	53
54	60. 8		27. 6	25. 8	25. 4	19.3	28. 7	54
55 56 57 58 59	$\begin{array}{c} 61. \ 9 \\ 63. \ 0 \\ 64. \ 2 \\ 65. \ 3 \\ 66. \ 4 \end{array}$	$26.5 \\ 27.0 \\ 27.5 \\ 28.0 \\ 28.5$	28. 1 28. 6 29. 1 29. 6 30. 1	26.3 26.9 27.4 27.9 28.4	25. 9 26. 4 26. 9 27. 5 28. 0	19.9 20.4 20.9 21.4 21.9	29. 2 29. 8 30. 3 30. 9 31. 4	55 56 57 58 59
60 61 62 63 64	67. 6 68. 7 69. 8 70. 9 72. 1	$29.0 \\ 29.5 \\ 30.0 \\ 30.5 \\ 31.0$	30. 6 31. 2 31. 7 32. 2 32. 7	28. 9 29. 5 30. 0 30. 5 31. 0	28. 5 29. 0 29. 5 30. 1 30. 6	$\begin{array}{r} -22.5\\ 23.0\\ 23.5\\ 24.0\\ 24.5\end{array}$	$\begin{array}{c} 31.9\\ 32.5\\ 33.0\\ 33.6\\ 34.1 \end{array}$	60 61 62 63 64
65 66 67 68 69	73. 2 74. 3 75. 4 76. 6 77. 7	31.5 32.0 32.5 33.0 33.5	33. 2 33. 7 34. 3 34. 8 35. 3	$ \begin{array}{c} 31. 6 \\ 32. 1 \\ 32. 6 \\ 33. 1 \\ 33. 6 \end{array} $	$ \begin{array}{c} 31.1\\ 31.6\\ 32.1\\ 32.7\\ 33.2 \end{array} $	$25.1 \\ 25.6 \\ 26.1 \\ 26.6 \\ 27.1$	34.7 35.2 35.8 36.3 36.8	65 66 67 68 69
70	78. 8	$\begin{array}{r} 34.0\\ 34.5\\ 35.0\\ 35.5\\ 36.0\end{array}$	35.8	34. 2	33. 7	27. 7	37.4	70
71	79. 9		36.3	34. 7	34. 2	28. 2	37.9	71
72	81. 1		36.8	35. 2	34. 7	28. 7	38.5	72
73	82. 2		37.4	35. 7	35. 3	29. 2	39.0	73
74	83. 3		37.9	36. 3	35. 8	29. 8	39.6	74
75	84. 4	36.5	38. 4	36. 8	36. 3	30. 3	40. 1	75
76	85. 6	37.0	38. 9	37. 3	36. 8	30. 8	40. 7	76
77	86. 7	37.5	39. 4	37. 8	37. 4	31. 3	41. 2	77
78	87. 8	38.0	40. 0	38. 4	37. 9	31. 9	41. 7	78
79	88. 9	38.5	40. 5	38. 9	38. 4	32. 4	42. 3	79
80	90. 1	$ 39.0 \\ 39.5 \\ 40.0 \\ 40.5 \\ 41.0 $	41. 0	39.4	38. 9	32.9	42.8	80
81	91. 2		41. 5	39.9	39. 5	33.4	43.4	81
82	92. 3		42. 0	40.5	40. 0	34.0	43.9	82
83	93. 4		42. 6	41.0	40. 5	34.5	44.5	83
84	94. 6		43. 1	41.5	41. 0	35.0	45.0	84
85	95.7	$\begin{array}{r} 41.5\\ 42.0\\ 42.5\\ 43.0\\ 43.5\end{array}$	43. 6	42. 0	41. 6	35. 5	45. 6	85
86	96.8		44. 1	42. 6	42. 1	36. 1	46. 1	86
87	97.9		44. 7	43. 1	42. 6	36. 6	46. 7	87
88	99.1		45. 2	43. 6	43. 1	37. 1	47. 2	88
89	100.2		45. 7	44. 1	43. 7	37. 6	47. 8	89
90	101. 3	$\begin{array}{r} 44.0\\ 44.5\\ 45.0\\ 45.5\\ 46.0\end{array}$	46. 2	44. 7	44. 2	38. 2	48. 3	90
91	102. 5		46. 7	45. 2	44. 7	38. 7	48. 9	91
92	103. 6		47. 3	45. 7	45. 2	39. 2	49. 4	92
93	104. 7		47. 8	46. 3	45. 8	39. 8	50. 0	93
94	105. 8		48. 3	46. 8	46. 3	40. 3	50. 5	94
95	107.0	$ \begin{array}{r} 46.5 \\ 47.0 \\ 47.5 \\ 48.0 \end{array} $	48. 8	47. 3	46. 8	40. 8	51. 1	95
96	108.1		49. 4	47. 8	47. 4	41. 3	51. 6	96
97	109.2		49. 9	48. 4	47. 9	41. 9	52. 2	97
98	110.3		50. 4	48. 9	48. 4	42. 4	52. 7	98
99	111.5		50. 9	49. 4	48. 9	42. 9	53. 3	99

Hammond]

Reducing-Sugar Studies

	0		SOX 16 1	Inver	t sugar and s	ucrose		
Copper	Cuprous oxide	Dextrose	Invert sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total suga r	Levulose	Copper
mg 100 101 102 103 104	<i>mg</i> 112. 6 113. 7 114. 8 116. 0 117. 1	$\begin{array}{c} mg \\ 49.0 \\ 49.5 \\ 50.0 \\ 50.6 \\ 51.1 \end{array}$	$mg \\ 51.5 \\ 52.0 \\ 52.5 \\ 53.0 \\ 53.6$	$mg \\ 50.0 \\ 50.5 \\ 51.0 \\ 51.6 \\ 52.1$	mg 49, 5 50.0 50.5 51.1 51.6	mg 43. 5 44. 0 44. 5 45. 1 45. 6	<i>mg</i> 53. 8 54. 4 54. 9 55. 5 56. 0	mg 100 101 102 103 104
105 106 107 108 109	118. 2 119. 3 120. 5 121. 6 122. 7	$51.6 \\ 52.1 \\ 52.6 \\ 53.1 \\ 53.6$	54. 1 54. 6 55. 2 55. 7 56. 2	52. 6 53. 1 53. 7 54. 2 54. 7	$52.1 \\ 52.7 \\ 53.2 \\ 53.7 \\ 54.2$	46. 1 46. 7 47. 2 47. 7 48. 3	56.6 57.1 57.7 58.2 58.8	105 106 107 108 109
110 111 112 113 114	$123.8 \\ 125.0 \\ 126.1 \\ 127.2 \\ 128.3$	$54.1 \\ 54.6 \\ 55.1 \\ 55.6 \\ 56.1$	56.7 57.3 57.8 58.3 58.9	55.3 55.8 56.3 56.9 57.4	54.8 55.3 55.8 56.4 56.9	48.8 49.3 49.9 50.4 50.9	59.3 59.9 60.4 61.0 61.6	110 111 112 113 114
115 116 117 118 119	$129.5 \\ 130.6 \\ 131.7 \\ 132.8 \\ 134.0$	56.7 57.2 57.7 58.2 58.7	59.459.960.461.061.5	57.958.559.059.560.1	57.4 58.0 58.5 59.0 59.6	51.552.052.553.153.6	$\begin{array}{c} 62.1\\ 62.7\\ 63.2\\ 63.8\\ 64.3 \end{array}$	115 116 117 118 119
120 121 122 123 124	$135.1 \\ 136.2 \\ 137.4 \\ 138.5 \\ 139.6$	$59.2 \\ 59.7 \\ 60.2 \\ 60.7 \\ 61.3$	$\begin{array}{c} 62.\ 0\\ 62.\ 6\\ 63.\ 1\\ 63.\ 6\\ 64.\ 2\end{array}$	60. 6 61. 2 61. 7 62. 2 62. 8	$\begin{array}{c} 60.\ 1\\ 60.\ 7\\ 61.\ 2\\ 61.\ 7\\ 62.\ 3\end{array}$	$54.1 \\ 54.7 \\ 55.2 \\ 55.8 \\ 56.3$	$\begin{array}{c} 64.9\\ 65.4\\ 66.0\\ 66.5\\ 67.1\end{array}$	120 121 122 123 124
125 126 127 128 129	$140.7 \\ 141.9 \\ 143.0 \\ 144.1 \\ 145.2$	$\begin{array}{c} 61.8\\ 62.3\\ 62.8\\ 63.3\\ 63.8\end{array}$	$\begin{array}{c} 64.\ 7\\ 65.\ 2\\ 65.\ 8\\ 66.\ 3\\ 66.\ 8\end{array}$	63.3 63.8 64.4 64.9 65.4	$\begin{array}{c} 62.8\\ 63.3\\ 63.9\\ 64.4\\ 64.9\end{array}$	56. 8 57. 4 57. 9 58. 4 59. 0	67. 7 68. 2 68. 8 69. 3 69. 9	125 126 127 128 129
130 131 132 133 134	146. 4 147. 5 148. 6 149. 7 150. 9	$\begin{array}{r} 64.3\\ 64.9\\ 65.4\\ 65.9\\ 66.4\end{array}$	67. 4 67. 9 68. 4 69. 0 69. 5	$\begin{array}{c} 66.0\\ 66.5\\ 67.1\\ 67.6\\ 68.1 \end{array}$	$\begin{array}{c} 65.5\\ 66.0\\ 66.6\\ 67.1\\ 67.6\end{array}$	59.560.160.661.161.7	70. 4 71. 0 71. 6 72. 1 72. 7	130 131 132 133 134
135 136 137 138 139	$\begin{array}{c} 152.\ 0\\ 153.\ 1\\ 154.\ 2\\ 155.\ 4\\ 156.\ 5\end{array}$	$\begin{array}{c} 66.9\\ 67.4\\ 68.0\\ 68.5\\ 69.0 \end{array}$	70. 0 70. 6 71. 1 71. 6 72. 2	68. 7 69. 2 69. 8 70. 3 70. 8	68. 2 68. 7 69. 3 69. 8 70. 3	$\begin{array}{c} 62.\ 2\\ 62.\ 8\\ 63.\ 3\\ 63.\ 9\\ 64.\ 4\end{array}$	73. 273. 874. 374. 975. 5	135 136 137 138 139
140 141 142 143 144	157. 6 158. 7 159. 9 161. 0 162. 1	69.5 70.0 70.5 71.1 71.6	72. 7 73. 2 73. 8 74. 3 74. 9	71. 4 71. 9 72. 5 73. 0 73. 5	70. 9 71. 4 72. 0 72. 5 73. 0	64.9 65.5 66.0 66.6 67.1	76. 0 76. 6 77. 1 77. 7 78. 3	140 141 142 143 144
145 146 147 148 149	$\begin{array}{c} 163.\ 2\\ 164.\ 4\\ 165.\ 5\\ 166.\ 6\\ 167.\ 8\end{array}$	72. 1 72. 6 73. 1 73. 7 74. 2	75. 4 75. 9 76. 5 77. 0 77. 6	74. 1 74. 6 75. 2 75. 7 76. 3	73. 6 74. 1 74. 7 75. 2 75. 7	67.7 68.2 68.7 69.3 69.8	78. 8 79. 4 80. 0 80. 5 81. 1	145 146 147 148 149
150 151 152 153 154	168. 9 170. 0 171. 1 172. 3 173. 4	74.7 75.2 75.7 76.3 76.8	78. 1 78. 6 79. 2 79. 7 80. 3	76. 8 77. 3 77. 9 78. 4 79. 0	76. 3 76. 8 77. 4 77. 9 78. 5	70. 4 70. 9 71. 5 72. 0 72. 6	81. 6 82. 2 82. 8 83. 3 83. 9	150 151 152 153 154
155 156 157 158 159	174.5 175.6 176.8 177.9 179.0	77.3 77.8 78.3 78.9 79.4	80, 8 81, 3 81, 9 82, 4 83, 0	79.5 80.1 80.6 81.2 81.7	79.0 79.6 80.1 80.6 81.2	73. 1 73. 7 74. 2 74. 8 75. 3	84. 4 85. 0 85. 6 86. 1 86. 7	155 156 157 158 159
160 161 162 163 164	180. 1 181. 3 182. 4 183. 5 184. 6	79.9 80.4 81.0 81.5 82.0	83. 5 84. 0 84. 6 85. 1 85. 7	82. 2 82. 8 83. 3 83. 9 84. 4	81. 7 82. 3 82. 8 83. 4 83. 9	75. 9 76. 4 77. 0 77. 5 78. 1	87.3 87.8 88.4 89.0 89.5	160 161 162 163 164

			at on one test		sugar and su			
Copper	Cuprous oxide	Dextrose	extrose Invert - sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total sugar	Levulose	Copper
<i>mg</i>	mg	<i>mg</i>	mg	mg	mg	mg	mg	mg
165	185.8	82.5	86. 2	85. 0	84. 5	78. 6	90.1	165
166	186.9	83.1	86. 8	85, 5	85. 0	79. 2	90.6	166
167	188.0	83.6	87. 3	86. 1	85. 6	79. 7	91.2	167
168	189.1	84.1	87. 8	86. 6	86. 1	80. 3	91.8	168
169	190.3	84.6	88. 4	87, 2	86. 7	80. 8	92.3	169
170	191. 4	85. 2	88.9	87. 7	87. 2	81. 4	92. 9	170
171	192. 5	85. 7	89.5	88. 3	87. 8	81. 9	93. 5	171
172	193. 6	86. 2	90.0	88. 8	88. 3	82. 5	94. 0	172
173	194. 8	86. 7	90.6	89. 4	88. 9	83. 0	94. 6	173
174	195. 9	87. 3	91.1	89. 9	89. 4	83. 6	95. 2	174
175	197. 0	87. 8	91.7	90. 5	90. 0	84. 1	95. 7	175
176	198. 1	88. 3	92.2	91. 0	90. 5	84. 7	96. 3	176
177	199. 3	88. 9	92.8	91. 6	91. 1	85. 2	96. 9	177
178	200. 4	89. 4	93.3	92. 1	91. 6	85. 8	97. 4	178
179	201. 5	89. 9	93.8	92. 7	92. 2	86. 3	98. 0	179
180	202. 7	90. 4	94. 4	93. 2	92.7	86. 9	98. 6	180
181	203. 8	91. 0	94. 9	93. 8	93.3	87. 4	99. 2	181
182	204. 9	91. 5	95. 5	94. 3	93.8	88. 0	99. 7	182
183	206. 0	92. 0	96. 0	94. 9	94.4	88. 6	100. 3	183
184	207. 2	92. 6	96. 6	95. 4	94.9	89. 1	100. 9	184
185	208. 3	93. 1	97.1	96.0	95.5	89.7	$101. \ 4 \\ 102. \ 0 \\ 102. \ 6 \\ 103. \ 1 \\ 103. \ 7 $	185
186	209. 4	93. 6	97.7	96.5	96.0	90.2		186
187	210. 5	94. 2	98.2	97.1	96.6	90.8		187
188	211. 7	94. 7	98.8	97.6	97.1	91.3		188
189	212. 8	95. 2	99.3	98.2	97.7	91.9		189
190	213. 9	95.7	99. 9	98.7	98. 2	92. 4	$104. 3 \\ 104. 8 \\ 105. 4 \\ 106. 0 \\ 106. 6$	190
191	215. 0	96.3	100. 4	99.3	98. 8	93. 0		191
192	216. 2	96.8	101. 0	99.9	99. 4	93. 6		192
193	217. 3	97.3	101. 5	100.4	99. 9	94. 1		193
194	218. 4	97.9	102. 1	101.0	100. 5	94. 7		194
195	219. 5	98. 4	102. 6	101. 5	$ \begin{array}{c} 101.0\\ 101.6\\ 102.1\\ 102.7\\ 103.2 \end{array} $	95. 2	107. 1	195
196	220. 7	98. 9	103. 2	102. 1		95. 8	107. 7	196
197	221. 8	99. 5	103. 7	102. 6		96. 4	108. 3	197
198	222. 9	100. 0	104. 3	103. 2		96. 9	108. 8	198
199	224. 0	100. 5	104. 8	103. 7		97. 5	109. 4	199
200 201 202 203 204	225, 2 226, 3 227, 4 228, 5 229, 7	101. 1 101. 6 102. 2 102. 7 103. 2	105. 4 106. 0 106. 5 107. 1 107. 6	104. 3 104. 9 105. 4 106. 0 106. 5	$ 103.8 \\ 104.4 \\ 104.9 \\ 105.5 \\ 106.0 $	98.0 98.6 99.2 99.7 100.3	$110.0 \\ 110.6 \\ 111.1 \\ 111.7 \\ 112.3$	200 201 202 203 204
205	230.8	103.8	108.2	107. 1	106.6	100. 9	$112.9 \\ 113.4 \\ 114.0 \\ 114.6 \\ 115.2$	205
206	231.9	104.3	108.7	107. 6	107.2	101. 4		206
207	233.1	104.8	109.3	108. 2	107.7	102. 0		207
208	234.2	105.4	109.8	108. 8	108.3	102. 5		208
209	235.3	105.9	110.4	109. 3	108.8	103. 1		209
210	236. 4	106.5	110. 9	109.9	109.4	$ 103.7 \\ 104.2 \\ 104.8 \\ 105.4 \\ 105.9 $	115.7	210
211	237. 6	107.0	111. 5	110.4	110.0		116.3	211
212	238. 7	107.5	112. 1	111.0	110.5		116.9	212
213	239. 8	108.1	112. 6	111.6	111.1		117.5	213
214	240. 9	108.6	113. 2	112.1	111.6		118.0	214
215	$\begin{array}{c} 242.1\\ 243.1\\ 244.3\\ 245.4\\ 246.6\end{array}$	109.2	113.7	112.7	112.2	106. 5	118.6	215
216		109.7	114.3	113.2	112.8	107. 1	119.2	216
217		110.2	114.9	113.8	113.3	107. 6	119.8	217
218		110.8	115.4	114.4	113.9	108. 2	120.3	218
219		111.3	116.0	114.9	114.4	108. 8	120.9	219
220	247. 7	111.9	116.5	115.5	115.0	109.3	$121.5 \\ 122.1 \\ 122.6 \\ 123.2 \\ 123.8 \\$	220
221	248. 8	112.4	117.1	116.1	115.6	109.9		221
222	249. 9	112.9	117.6	116.6	116.1	110.5		222
223	251. 1	113.5	118.2	117.2	116.7	111.0		223
224	252. 2	114.0	118.8	117.7	117.3	111.6		224
225 226 227 228 229	253. 3 254. 4 255. 6 256. 7 257. 8	114.6 115.1 115.7 116.2 116.7	119.3 119.9 120.4 121.0 121.6	118.3 118.9 119.4 120.0	117.8 118.4 119.0 119.5 120.1	112.2 112.7 113.3 113.9 114.4	124. 4 125. 0 125. 5 126. 1 126. 7	225 226 227 228 229

Hammond]

				Invert	sugar and su	icrose		Copper
Copper	Cuprous oxide	Dextrose	Invert sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total sugar	Levulose	
mg 230 231 232 233 234	mg 258. 9 260. 1 261. 2 262. 3 263. 4	<i>mg</i> 117. 3 117. 8 118. 4 118. 9 119. 5	<i>mg</i> 122. 1 122. 7 123. 3 123. 8 124. 4	<i>mg</i> 121.1 121.7 122.3 122.8 123.4	<i>mg</i> 120.7 121.2 121.8 122.4 122.9	<i>mg</i> 115. 0 115. 6 116. 2 116. 7 117. 3	<i>mg</i> 127. 3 127. 9 128. 4 129. 0 129. 6	mg 23 23 23 23 23
235 236 237 238 239	264. 6 265. 7 266. 8 268. 0 269. 1	120. 0 120. 6 121. 1 121. 7 122. 2	124. 9 125. 5 126. 1 126. 6 127. 2	124.0 124.5 125.1 125.7 126.2	123. 5 124. 1 124. 6 125. 2 125. 8	117. 9 118. 4 119. 0 119. 6 120. 2	130. 2 130. 8 131. 3 131. 9 132. 5	23 23 23 23 23 23
240 241 242 243 243 244	270. 2 271. 3 272. 5 273. 6 274. 7	$122.7 \\ 123.3 \\ 123.8 \\ 124.4 \\ 124.9$	$127.8 \\ 128.3 \\ 128.9 \\ 129.5 \\ 130.0$	126. 8 127. 4 127. 9 128. 5 129. 1	126.3 126.9 127.5 128.0 128.6	120. 7 121. 3 121. 9 122. 5 123. 0	133. 1 133. 7 134. 2 134. 8 135. 4	24 24 24 24 24 24
245 246 247 248 249	275. 8 277. 0 278. 1 279. 2 280. 3	$125.5 \\ 126.0 \\ 126.6 \\ 127.1 \\ 127.7$	130. 6 131. 2 131. 7 132. 3 132. 9	129.6 130.2 130.8 131.3 131.9	129.2 129.8 130.3 130.9 131.5	123. 6 124. 2 124. 8 125. 3 125. 9	136. 0 136. 6 137. 2 137. 7 138. 3	. 24 24 24 24 24 24
250 251 252 253 253	281. 5 282. 6 283. 7 284. 8 286. 0	$128.2 \\ 128.8 \\ 129.3 \\ 129.9 \\ 130.4$	133. 4 134. 0 134. 6 135. 1 135. 7	$132.5 \\ 133.1 \\ 133.6 \\ 134.2 \\ 134.8$	132.0 132.6 133.2 133.8 134.3	$126.5 \\ 127.1 \\ 127.6 \\ 128.2 \\ 128.8$	138. 9 139. 5 140. 1 140. 7 141. 3	25 25 25 25 25
255 256 257 258 259	287. 1 288. 2 289. 3 290. 5 291. 6	$131.0 \\ 131.6 \\ 132.1 \\ 132.7 \\ 133.2$	136.3 136.8 137.4 138.0 138.6	135.3 135.9 136.5 137.1 137.6	134.9 135.5 136.0 136.6 137.2	$129. \ 4 \\ 130. \ 0 \\ 130. \ 5 \\ 131. \ 1 \\ 131. \ 7$	$141.8 \\ 142.4 \\ 143.0 \\ 143.6 \\ 144.2$	25 25 25 25 25
260 261 262 263 264	292, 7 293. 8 295. 0 296. 1 297, 2	$133.8 \\ 134.3 \\ 134.9 \\ 135.4 \\ 136.0$	139. 1 139. 7 140. 3 140. 8 141. 4	138. 2 138. 8 139. 4 139. 9 140. 5	$137.8 \\ 138.3 \\ 138.9 \\ 139.5 \\ 140.1$	132. 3132. 9133. 4134. 0134. 6	$144.8 \\ 145.4 \\ 145.9 \\ 146.5 \\ 147.1$	26 26 26 26 26
265 266 267 268 269	298. 3 299. 5 300. 6 301. 7 302. 9	136. 5 137. 1 137. 7 138. 2 138. 8	$142.0 \\ 142.6 \\ 143.1 \\ 143.7 \\ 144.3$	$141.1 \\ 141.7 \\ 142.2 \\ 142.8 \\ 143.4$	$140.\ 7\\141.\ 2\\141.\ 8\\142.\ 4\\143.\ 0$	135. 2 135. 8 136. 3 136. 9 137. 5	147. 7 148. 3 148. 9 149. 5 150. 1	26 26 26 26 26
270 271 272 273 273 274	304.0 305.1 306.2 307.4 308.5	139. 3139. 9140. 4141. 0141. 6	144. 8 145. 4 146. 0 146. 6 147. 1	144.0 144.5 145.1 145.7 146.3	$143.5 \\ 144.1 \\ 144.7 \\ 145.3 \\ 145.9$	138. 1 138. 7 139. 3 139. 8 140. 4	$\begin{array}{c} 150.\ 6\\ 151.\ 2\\ 151.\ 8\\ 152.\ 4\\ 153.\ 0 \end{array}$	27 27 27 27 27 27
275 276 277 278 279	309. 6 310. 7 311. 9 313. 0 314. 1	$142.1 \\ 142.7 \\ 143.2 \\ 143.8 \\ 144.4$	147.7 148.3 148.9 149.4 150.0	$146.8 \\ 147.4 \\ 148.0 \\ 148.6 \\ 149.2$	$146.\ 4\\147.\ 0\\147.\ 6\\148.\ 2\\148.\ 8$	$141. 0 \\ 141. 6 \\ 142. 2 \\ 142. 8 \\ 143. 4$	$153. \ 6 \\ 154. \ 2 \\ 154. \ 8 \\ 155. \ 4 \\ 156. \ 0$	27 27 27 27 27 27
280 281 282 283 283 284	315. 2 316. 4 317. 5 318. 6 319. 7	$144. 9 \\ 145. 5 \\ 146. 0 \\ 146. 6 \\ 147. 2$	$150. \ 6 \\ 151. \ 2 \\ 151. \ 8 \\ 152. \ 3 \\ 152. \ 9 \\$	$149.7 \\ 150.3 \\ 150.9 \\ 151.5 \\ 152.1$	149.3 149.9 150.5 151.1 151.7	143. 9 144. 5 145. 1 145. 7 146. 3	156. 5 157. 1 157. 7 158. 3 158. 9	28 28 28 28 28 28
285 286 287 288 289	320. 9 322. 0 323. 1 324. 2 325. 4	$147.7 \\ 148.3 \\ 148.8 \\ 149.4 \\ 150.0 \\$	$\begin{array}{c} 153.\ 5\\ 154.\ 1\\ 154.\ 6\\ 155.\ 2\\ 155.\ 8\end{array}$	152. 6 153. 2 153. 8 154. 4 155. 0	152. 2152. 8153. 4154. 0154. 6	$146. 9 \\ 147. 5 \\ 148. 1 \\ 148. 6 \\ 149. 2$	$159.5 \\ 160.1 \\ 160.7 \\ 161.3 \\ 161.9$	28 28 28 28 28 28
290 291 292 293 293 294	326. 5 327. 6 328. 7 329. 9 331. 0	$150.5 \\ 151.1 \\ 151.7 \\ 152.2 \\ 152.8 \\$	156. 4 157. 0 157. 5 158. 1 158. 7	155.5 156.1 156.7 157.3 157.9	155. 2155. 7156. 3156. 9157. 5	$149.8 \\ 150.4 \\ 151.0 \\ 151.6 \\ 152.2$	$\begin{array}{c} 162.\ 5\\ 163.\ 1\\ 163.\ 7\\ 164.\ 3\\ 164.\ 9\end{array}$	29 29 29 29 29 29

		0	ine benirch	Inver	t sugar and s	ucrose		Copper
Copper	Cuprous oxide	Dextrose	sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total sugar	Levulose	
mg 295 296 297 298 299	mg 332. 1 333. 3 334. 4 335. 5 336. 6	<i>mg</i> 153. 4 153. 9 154. 5 155. 1 155. 6	<i>mg</i> 159. 3 159. 9 160. 5 161. 0 161. 6	<i>mg</i> 158.5 159.0 159.6 160.2 160.8	<i>mg</i> 158. 1 158. 7 159. 3 159. 9 160. 4	mg 152. 8 153. 4 154. 0 154. 6 155. 2	<i>mg</i> 165. 4 166. 0 166. 6 167. 2 167. 8	mg 29 29 29 29 29 29
300 301 302 303 304	337. 8 338. 9 340. 0 341. 1 342. 3	156. 2 156. 8 157. 3 157. 9 158. 5	$\begin{array}{c} 162.\ 2\\ 162.\ 8\\ 163.\ 4\\ 164.\ 0\\ 164.\ 5\end{array}$	$\begin{array}{c c} 161.\ 4\\ 162.\ 0\\ 162.\ 5\\ 163.\ 1\\ 163.\ 7\end{array}$	$\begin{array}{c} 161.\ 0\\ 161.\ 6\\ 162.\ 2\\ 162.\ 8\\ 163.\ 4\end{array}$	155. 7 156. 3 156. 9 157. 5 158. 1	168. 4 169. 0 169. 6 170. 2 170. 8	300 300 300 300 300
305 306 307 308 309	343. 4 344. 5 345. 6 346. 8 347. 9	$159.0 \\ 159.6 \\ 160.2 \\ 160.7 \\ 161.3$	165. 1 165. 7 166. 3 166. 9 167. 5	164.3 164.9 165.5 166.1 166.7	164. 0 164. 6 165. 1 165. 7 166. 3	158. 7 159. 3 159. 9 160. 5 161. 1	171. 4 172. 0 172. 6 173. 2 173. 8	30 30 30 30 30
310 311 312 313 314	$\begin{array}{c} 349.\ 0\\ 350.\ 1\\ 351\ 3\\ 352.\ 4\\ 353.\ 5\end{array}$	161. 9 162. 5 163. 0 163. 6 164. 2	168. 0 168. 6 169. 2 169. 8 170. 4	$ \begin{array}{c} 167. 2 \\ 167. 8 \\ 168. 4 \\ 169. 0 \\ 169. 6 \end{array} $	$166.9 \\ 167.5 \\ 168.1 \\ 168.7 \\ 169.3$	$\begin{array}{c} 161.\ 7\\ 162.\ 3\\ 162.\ 9\\ 163.\ 5\\ 164.\ 1\end{array}$	174. 4 175. 0 175. 6 176. 2 176. 8	31 31 31 31 31 31
315 316 317 318 319	354. 6 355. 8 356. 9 358. 0 359. 1	164.7 165.3 165.9 166.5 167.0	171. 0 171. 6 172. 2 172. 8 173. 3	170. 2 170. 8 171. 4 172. 0 172. 6	$169.9 \\ 170.5 \\ 171.1 \\ 171.7 \\ 172.2$	164. 7 165. 3 165. 9 166. 5 167. 1	177. 4 178. 0 178. 6 179. 2 179. 8	31 31 31 31 31 31
320 321 322 323 324	360. 3 361. 4 362. 5 363. 6 364. 8	167. 6 168. 2 168. 8 169. 3 169. 9	173. 9 174. 5 175. 1 175. 7 176. 3	173. 1 173. 7 174. 3 174. 9 175. 5	$172.8 \\ 173.4 \\ 174.0 \\ 174.6 \\ 175.2$	$167.7 \\ 168.3 \\ 168.9 \\ 169.5 \\ 170.1$	180. 4 181. 0 181. 6 182. 2 182. 8	32 32 32 32 32
325 326 327 328 329	365. 9 367. 0 368. 2 369. 3 370. 4	$170.5 \\ 171.1 \\ 171.6 \\ 172.2 \\ 172.8$	176. 9 177. 5 178. 1 178. 7 179. 2	176. 1 176. 7 177. 3 177. 9 178. 5	175.8 176.4 177.0 177.6 178.2	170. 7 171. 3 171. 9 172. 5 173. 1	183. 4 184. 0 184. 6 185. 2 185. 8	32 32 32 32 32 32
330 331 332 333 334	371. 5 372. 7 373. 8 374. 9 376. 0	173. 4 173. 9 174. 5 175. 1 175. 7	179. 8 180. 4 181. 0 181. 6 182. 2	179. 1 179. 7 180. 3 180. 9 181. 5	$178.8 \\ 179.4 \\ 180.0 \\ 180.6 \\ 181.2$	173. 7 174. 3 174. 9 175. 5 176. 1	186. 4 187. 0 187. 6 188. 2 188. 8	33 33 33 33 33
335 336 337 338 339	377. 2 378. 3 379. 4 380. 5 381. 7	176. 3 176. 8 177. 4 178. 0 178. 6	182. 8 183. 4 184. 0 184. 6 185. 2	182. 1 182. 6 183. 2 183. 8 184. 4	181. 8 182. 4 183. 0 183. 6 184. 2	176.7 177.3 178.0 178.6 179.2	189. 4 190. 1 190. 7 191. 3 191. 9	33 33 33 33 33 33
340 341 342 343 343	382. 8 383. 9 385. 0 386. 2 387. 3	179. 2 179. 7 180. 3 180. 9 181. 5	185. 8 186. 4 187. 0 187. 6 188. 2	185. 0 185. 6 186. 2 186. 8 187. 4	184. 8 185. 4 186. 0 186. 6 187. 2	179.8 180.4 181.0 181.6 182.2	192. 5 193. 1 193. 7 194. 3 194. 9	34 34 34 34 34
345 346 347 348 349	388. 4 389. 5 390. 7 391. 8 392. 9	182. 1 182. 7 183. 2 183. 8 184. 4	188. 8 189. 4 190. 0 190. 6 191. 2	188. 0 188. 6 189. 2 189. 8 190. 4	187. 8 188. 4 189. 0 189. 6 190. 2	182. 8 183. 4 184. 0 184. 6 185. 3	195. 5 196. 1 196. 7 197. 3 197. 9	34 34 34 34 34 34
350 351 352 353 354	394. 0 395. 2 396. 3 397. 4 398. 5	185. 0 185. 6 186. 2 186. 8 187. 3	191. 8 192. 4 193. 0 193. 6 194. 2	191. 0 191. 6 192. 2 192. 8 193. 4	190. 8 191. 4 192. 0 192. 6 193. 2	185. 9 186. 5 187. 1 187. 7 188. 3	198. 5 199. 2 199. 8 200. 4 201. 0	35 35 35 35 35
355 356 357 358 359	399.7 400.8 401.9 403.1 404.2	187. 9 188. 5 189. 1 189. 7 190. 3	194. 8 195. 4 196. 0 196. 6 197. 2	194. 0 194. 6 195. 2 195. 8 196. 4	193. 8 194. 4 195. 0 195. 7 196. 3	188. 9 189. 5 190. 2 190. 8 191. 4	201. 6 202. 2 202. 8 203. 4 204. 0	355 356 357 358 3 58

Hammond]

Reducing-Sugar Studies

 TABLE 6.—Table for calculating dextrose, invert sugar alone, invert sugar in the presence of sucrose (0.3, 0.4, and 2.0 g of total sugar), and levulose—Continued

	0		T	Invert	sugar and su	icrose	Antigan 1	
Copper	oxide	oxide Dextrose	Invert sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total sugar	Levulose	Copper
mg 360 361 362 363 364	mg 405. 3 406. 4 407. 6 408. 7 409. 8	$\begin{array}{c} mg \\ 190. \ 9 \\ 191. \ 5 \\ 192. \ 0 \\ 192. \ 6 \\ 193. \ 2 \end{array}$	mg 197. 8 198. 4 199. 0 199. 6 200. 2	<i>mg</i> 197. 1 197. 7 198. 3 198. 9 199. 5	<i>mg</i> 196. 9 197. 5 198. 1 198. 7 199. 3	<i>mg</i> 192. 0 192. 6 193. 2 193. 9 194. 5	<i>mg</i> 204. 7 205. 3 205. 9 206. 5 207. 1	mg 366 365 365 366 366
365 366 367 368 369	410.9 412.1 413.2 414.3 415.4	$193.8 \\194.4 \\195.0 \\195.6 \\196.2$	200, 8 201, 4 202, 0 202, 6 203, 2	200. 1 200. 7 201. 3 201. 9 202. 5	199. 9 200. 5 201. 1 201. 7 202. 4	195. 1 195. 7 196. 3 196. 9 197. 6	207. 7 208. 3 209. 0 209. 6 210. 2	360 360 363 365 365
370 371 372 373 374	416. 6 417. 7 418. 8 419. 9 421. 1	196.8 197.4 198.0 198.5 199.1	203. 8 204. 4 205. 0 205. 7 206. 3	$\begin{array}{c} 203.1\\ 203.7\\ 204.3\\ 204.9\\ 205.6\end{array}$	$\begin{array}{c} 203.\ 0\\ 203.\ 6\\ 204.\ 2\\ 204.\ 8\\ 205.\ 4 \end{array}$	198. 2 198. 8 199. 4 200. 0 200. 7	210. 8 211. 4 212. 0 212. 6 213. 3	37 37 37 37 37 37
375 376 377 378 379	$\begin{array}{c} 422.\ 2\\ 423.\ 3\\ 424.\ 4\\ 425.\ 6\\ 426.\ 7\end{array}$	$199.7 \\ 200.3 \\ 200.9 \\ 201.5 \\ 202.1$	206. 9 207. 5 208. 1 208. 7 209. 3	206. 2 206. 8 207. 4 208. 0 208. 6	206. 0 206. 6 207. 3 207. 9 208. 5	201. 3 201. 9 202. 5 203. 1 203. 8	213. 9 214. 5 215. 1 215. 7 216. 3	378 376 377 378 378
380 381 382 383 383 384	427. 8 428. 9 430. 1 431. 2 432. 3	$\begin{array}{c} 202.\ 7\\ 203.\ 3\\ 203.\ 9\\ 204.\ 5\\ 205.\ 1\end{array}$	209.9 210.5 211.1 211.8 212.4	209, 2 209, 8 210, 4 211, 1 211, 7	$\begin{array}{c} 209.1 \\ 209.7 \\ 210.3 \\ 211.0 \\ 211.6 \end{array}$	204. 4 205. 0 205. 6 206. 3 206. 9	217. 0 217. 6 218. 2 218. 8 219. 5	380 381 382 383 383 384
385 386 387 388 389	433. 5 434. 6 435. 7 436. 8 438. 0	$\begin{array}{c} 205.7\\ 206.3\\ 206.9\\ 207.5\\ 208.1 \end{array}$	$\begin{array}{c} 213.\ 0\\ 213.\ 6\\ 214.\ 2\\ 214.\ 8\\ 215.\ 4 \end{array}$	212. 3 212. 9 213. 5 214. 1 214. 7	212, 2212, 8213, 4214, 0214, 7	$207.5 \\ 208.1 \\ 208.8 \\ 209.4 \\ 210.0$	$\begin{array}{c} 220.\ 1\\ 220.\ 7\\ 221.\ 3\\ 221.\ 9\\ 222.\ 6 \end{array}$	398 386 385 385 385
390 391 392 393 394	439. 1 440. 2 441. 3 442. 5 443. 6	$\begin{array}{c} 208.7\\ 209.3\\ 209.9\\ 210.5\\ 211.1 \end{array}$	$\begin{array}{c} 216.\ 0\\ 216.\ 7\\ 217.\ 3\\ 217.\ 9\\ 218.\ 5\end{array}$	215. 4 216. 0 216. 6 217. 2 217. 8	215. 3 215. 9 216. 5 217. 1 217. 8	$\begin{array}{c} 210.\ 6\\ 211.\ 3\\ 211.\ 9\\ 212.\ 5\\ 213.\ 2\end{array}$	$\begin{array}{c} 223.\ 2\\ 223.\ 8\\ 224.\ 4\\ 225.\ 1\\ 225.\ 7\end{array}$	390 391 395 395 394
395 396 397 398 399	444. 7 445. 8 447. 0 448. 1 449. 2	$211.7 \\ 212.3 \\ 212.9 \\ 213.5 \\ 214.1$	$\begin{array}{c} 219.1 \\ 219.8 \\ 220.4 \\ 221.0 \\ 221.6 \end{array}$	$\begin{array}{c} 218.\ 5\\ 219.\ 1\\ 219.\ 7\\ 220.\ 3\\ 220.\ 9\end{array}$	218. 4 219. 0 219. 6 220. 3 220. 9	$\begin{array}{c} 213.\ 8\\ 214.\ 4\\ 215.\ 1\\ 215.\ 7\\ 216.\ 3\end{array}$	226. 3 226. 9 227. 6 228. 2 - 228. 8	398 396 398 398 398
400 401 402 403 404	450. 3 451. 5 452. 6 453. 7 454. 8	$214.7 \\ 215.3 \\ 215.9 \\ 216.5 \\ 217.1$	$\begin{array}{c} 222.\ 2\\ 222.\ 9\\ 223.\ 5\\ 224.\ 1\\ 224.\ 7\end{array}$	$\begin{array}{c} 221.\ 5\\ 222.\ 2\\ 222.\ 8\\ 223.\ 4\\ 224.\ 0 \end{array}$	$\begin{array}{c} 221.\ 5\\ 222.\ 1\\ 222.\ 8\\ 223.\ 4\\ 224.\ 0 \end{array}$	217. 0 217. 6 218. 2 218. 9 219. 5	229. 4 230. 1 230. 7 231. 3 232. 0	400 401 402 403 404
405 406 407 408 409	456. 0 457. 1 458. 2 459. 3 460. 5	$217.8 \\ 218.4 \\ 219.0 \\ 219.6 \\ 220.2$	$\begin{array}{c} 225.\ 4\\ 226.\ 0\\ 226.\ 6\\ 227.\ 2\\ 227.\ 9\end{array}$	$\begin{array}{c} 224.\ 7\\ 225.\ 3\\ 225.\ 9\\ 226.\ 6\\ 227.\ 2\end{array}$	$\begin{array}{c} 224.\ 7\\ 225.\ 3\\ 225.\ 9\\ 226.\ 5\\ 227.\ 2\end{array}$	$\begin{array}{c} 220.\ 1\\ 220.\ 8\\ 221.\ 4\\ 222.\ 0\\ 222.\ 7\end{array}$	$\begin{array}{c} 232.\ 6\\ 233.\ 2\\ 233.\ 9\\ 234.\ 5\\ 235.\ 1\end{array}$	405 406 407 408 408
410 411 412 413 414	$\begin{array}{r} 461.\ 6\\ 462.\ 7\\ 463.\ 8\\ 465.\ 0\\ 466.\ 1\end{array}$	$\begin{array}{c} 220.8\\ 221.4\\ 222.0\\ 222.6\\ 223.3\end{array}$	$\begin{array}{c} 228.5\\ 229.1\\ 229.7\\ 230.4\\ 231.0 \end{array}$	$\begin{array}{c} 227.\ 8\\ 228.\ 4\\ 229.\ 1\\ 229.\ 7\\ 230.\ 4 \end{array}$	227. 8 228. 4 229. 1 229. 7 230. 4	223. 3 224. 0 224. 6 225. 3 225. 9	$\begin{array}{c} 235.\ 8\\ 236.\ 4\\ 237.\ 1\\ 237.\ 7\\ 238.\ 4\end{array}$	410 411 412 413 414
415 416 417 418 419	467. 2 468. 4 469. 5 470. 6 471. 7	$\begin{array}{c} 223.9\\ 224.5\\ 225.1\\ 225.7\\ 226.3 \end{array}$	231. 7 232. 3 232. 9 233. 6 234. 2	231. 0 231. 6 232. 3 232. 9 233. 5	231. 0 231. 7 232. 3 232. 9 233. 6	226. 6 227. 2 227. 8 228. 5 229. 1	239. 0 239. 7 240. 3 241. 0 241. 6	415 416 417 418 419

595

 TABLE 6.—Table for calculating dextrose, invert sugar alone, invert sugar in the presence of sucrose (0.3, 0.4, and 2.0 g of total sugar), and levulose—Continued

		·	age Dangal	Inver	t sugar and s	ucrose		
Copper	Cuprous oxide	Dextrose	Invert sugar	0.3 g of total sugar	0.4 g of total sugar	2.0 g of total sugar	Levulose	Copper
mg	mg	mg	mg	mg	mg	mg	mg	mg
420	472.9	227.0	234.8	234. 2 234. 8	234.2 234.9	229.8 230.4	242.2	420
421 422	474.0	227.6 228.2	235.5 236.1	235.5	235.5	230.4	242.9 243.6	421 422
423	476.2	228.8	236.8	236.2	236.2	231.8	243. 0	422
423	477.4	229.5	237.5	236.8	236.9	232. 4	244. 9	424
425	478.5	230.1	238.1	237.5	237.5	233.1	245.6	42
426	479.6	230.7	238.8	238.2	238.2	233. 8	246.3	426
427	480.7	231.4	239.5	238.8	238.9	234. 5	247.0	427
428	481.9	232.0	240.2	239.5	239.6	235.1	247.8	428
429	483.0	232.7	240.8	240.2	240.3	235. 8	248.5	429
430	484.1	233.3	241.5	240.9	241.0	236. 5	249.2	430
431	485.2	234.0	242.3	241.7	241.7	237.2	250.0	431
432	486.4	234.7	243.0	242.4	242.5	238.0	250 8	432
433	487.5	235.3	243.8	243.2	243.3	238.7	251.6	433
434	488.6	236.1	244.7	244.1	244.2	239.6	252.7	434
435	489.7	236.9	245.6	245.1	245.1	240.4	* 253.7	43

WASHINGTON, March 20, 1940.

0