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ABSTRACT 

This paper is the first of a series dealing with the motion of flood waves and 
other waves of translation in open channels. The case treated is that of waves 
for which the forces of fluid friction are negligible with respect to the inertia 
and gravitational forces. The irrotational motion of a perfect liquid in a hori­
zontal rectangular canal when the original surface is disturbed is investigated 
on the assumption that the horizontal velocity in a cross section is approximately 
uniform. The results are also applicable to motion in a canal of uniform slope 
containing water originally moving with a uniform velocity. Special emphasis 
is laid on disturbances which are propagated without change of form, and in 
these cases formulas are derived for the wave profile and velocity of propagation. 
Formulas are also derived which give the deformation, energy, motion of the 
center of gravity, and moment of instability of an arbitrary intumescence. Con­
sideration is given to the maximum height of a wave of permanent form. For­
mulas have been compared with the available experimental data. Of special 
interest is the comparison of the shape of the undulations composing the head of 
an initial sur6e with the characteristics of the cnoidal wave. 
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LIST OF SYMBOLS 

c velocity of propagation of long wave of negligible height and 
curvature. 

CI velocity of wave approaching a discontinuity in a channel 
cross section. Also a constant of integration. 

C2 velocity of transmitted wave after passing a discontinuity in 

cn (x, k) 
pgE 

El (k) 
), F ( ), 

F (x, k) 
Fl (k) 

g 
), G ( ) 

h 

a channel cross section. Also a constant of integration. 
Jacobian elliptic function, cosine amplitude. 
total energy of a wave per unit width of channel [MLT-2]. 
complete elliptic integral of the second kind. 
with or without subscripts-functional symbols. 
incomplete elliptic integral of the first kind. 
complete elliptic integral of the first kind. 
acceleration of gravity. 
functional symbol. 
height of main body of discharge wave (section V-17); vertical 

displacement of water surface. 
hi vertical displacement of surface as wave approaches discon­

tinuity in channel cross section (section IV-5). 
h2 vertical displacement of surface after wave passes discon­

tinuity in channel cross section (section IV-5). 
hi maximum height of solitary wave, maximum depth of nega­

tive wave, maximum height of initial discharge wave. 
hb h2 maximum height and depth, respectively, of cnoidal wave. 

ha=H1Ja. 
hG maximum height of initial discharge wave. 
h' average height of discharge wave. 
H undisturbed depth of liquid in channel. 

H ( ) functional symbol. 
k modulus of elliptic integral. 
l length of section of channel (section IV-4). 

I, m, n direction cosines. 
M. moment of instability [L]. 

M'b M 2, M'2, M", momenta per unit width [MT-I). 
P pressure [ML-IT-2). 

PG atmospheric pressure. 
q speed of particle (section II-5, 7, 8). 
q discharge per unit width in a cross section [DT-I) (section 

V-2). 
Q total volume per unit width of a solitary wave [D). 
s length of arc. 
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sn (x, k) Jacobian elliptic function, sine amplitude. 
t time. 
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u, v, w x component, y component, z component, respectively, of 
velocity. 

Uo x component of velocity at bottom of channel, also first 
approximation to velocity in cross section. 

Uo, vo, Wo velocity components prior to impulse (section II- 6). 
UIJ Uz velocities of particles in a wave before and after passing a 

discontinuity in a channel cross section (section IV-5). 
UIJ Uz , Vt, V 2 local and mean velocities in two cross sections (section V-16). 

Ul velocity of particle at apex of wave (section V-19). 
V mean velocity of particles in cross section. 

Vo mean velocity in a section where h=O. 
V volume [L3] (section II-3); volume per unit width [V] (sec­

tions IV-3, V-5). 
x Cartesian coordinate, specifically, parallel to channel in 

bottom plane. 
y Cartesian coordinate, specifically, lateral to channel in the 

horizontal plane. 
z Cartesian coordinate, specifically, drawn upward with origin 

at bottom of channel. 
a=3/H3 (section V-I0); a ratio (section V-14). 

'Yt, 'Yz, 'Y3 rates of angular dilatation rr-lj. 
r circulation [L2T-l]. 

fl, f2, <3 rates of linear dilatation [T-l]. 
< a small quantity. 

~, 7], r components of vorticity [T-l] (sections II- I, 4, 5). 
r dimensionless x coordinate of free surface. 

7], t z and x coordinates, respectively, of center of gravity of 
volume above undisturbed surface (sections V-5, 6, 12, 17). 

7] dimensionless z coordinate of free surface=h/H (sections V-S, 
9); Boussinesq number (section V-16). 

7]',7]",7]'" = -7]3 three roots of the differential equation of the permanent wave. 
7]1 maximum relative height of a solitary wave (section V-8); 

maximum relative height of a cnoidal wave (section V-9, 
IS). 

7]2 maximum relative depression of a cnoidal wave. 
(J ( ) functional symbol. 

X wave length of a cnoidal wave (sections V-9, IS). 
p density of liquid [ML-3]. 
<T partial volume per unit width of an intumescence [L2]. 
2: volume per unit width of an intumescence. 
</> velocity potential [VT-l]. 

<Po velocity potential prior to application of impulse (section 
II-6); velocity potential, first approximation. 

'" ( ) functional symbol. 
w velocity of propagation of an element of volume of an in­

tumescence. 
Wo velocity of propagation of an elemcnt of wave height, negli­

gible surface curvature. 
WI velocity of propagation of an element of wave height, appre­

ciable surface curvature. 
w< velocity of propagation of 8. cnoidal wave. 
w. velocity of propagation of discharge. 
'" impulsive pressure [ML-IT-l]. 
n gravitational potential [L2T-2]. 

1. INTRODUCTION 

The growing importance of predicting the occurrence of floods and 
the rate of travel and height of flood waves as they pass down rivers 
has led in recent years to a marked increase in the literature on this 
subject. However, in no language can there be found a comprehen­
sive presentation of the mathematical treatment of the problem of 
such waves. Instead, various authors at different times and in dif-
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ferent countries have treated separate aspects of the problem, so that 
the student of the subject must read many papers in several languages 
to obtain a satisfactory grasp of the problem. There is definite need 
for a systematic treatment of the results of these different methods 
of attack, presenting in coordinated form the results that have been 
attained up to the present time. 

It is for this reason that the National Bureau of Standards, at the 
suggestion of the United States Weather Bureau, has commenced the 
preparation of a series of papers dealing with the mathematical theory 
of flood waves and other waves of translation. It is not the purpose 
of these papers to furnish a practical method of predicting the rate 
of flood-wave travel and the rate of attenuation of the wave in an 
actual river channel with its complex flow conditions. Instead, the 
purpose is to furnish a sound mathematical theory on which attempts 
to solve the practical problems of flood prediction can be based. 

The present paper, the first of the series, deals with the motion of 
translation waves in channels of uniform, rectangular cross section 
when the forces of fluid friction are negligible with respect to the 
inertia and gravitational forces. Later papers in the series as now 
plalllled are in various stages of completion and will deal with the 
following topics: The effect of turbulence and channel slope and con­
figuration on the motion of translation waves; the theory of quasi­
permanent regime and the methods of prediction of flood waves; and 
recent advances in the problem of the deformation of an intumescence. 

The different regimes of the flow of water in canals and natural 
watercourses may be characterized as un~form, varied, or unsteady. 

In the unijorm regime the depth and mean velocity are invariable 
with respect to both time and space. This regime is attained in 
sufficiently long stretches of natural courses, provided the slope and 
discharge are constant, and the channel has a uniform cross section. 

In varied flow the depth and mean velocity are unchanging with 
respect to time, but not with respect to space. Examples are flow 
in the backwater region of a dam, flow in a canal connecting reser­
voirs at different elevations, and flow in transition sections. 

On the other hand, the unsteady regime is characterized by a depth 
and velocity which vary with respect to both time and space. 
Gravity waves and capillary waves belong to this class of phenomena, 
the former being the more important of the two, considered from the 
point of view of applied science. Gravity waves fall into two classes­
surjace waves and translation waves. In surface waves, which occur in 
relatively deep waters, the motion decreases rapidly from the surface 
downward. The wave motion is sinusoidal, the individual particles 
periodically traverse closed paths, and the vertieal accelerations are 
always appreciable. In translation waves, on the other hand, the 
motion of all the particles in a cross section is sensibly the same at 
any given instant. As a translation wave passes, the liquid particles 
are permanently displaced by an amount proportional to the volume 
of the wave. Waves of this type are frequently encountered in 
channels and rivers. Tidal waves are examples of the same phenom­
enon in seas and oceans. 

Perhaps the simplest classification of translation waves is that 
obtained by considering the physical condition governing the motion. 
Two extreme cases are immediately apparent. First, we have the 
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case in which the effect of friction is negligible. In these waves the 
volume and the length are small; and the latter fact explains why the 
effect of friction can be neglected, so that the weight and inertia 
become the factors controlling the motion. If the curvature of the 
wave surface is negligible, the velocity of propagation of the wave 
height, Wo, is given by the Lagrange velocity law, wo=.JgH, where g 
is the acceleration of gravity and H is the channel depth. On the 
other hand, if the maximum curvature and the height above the 
tmdisturbed level of the free surface are appreciable, then the velocity 
of propagation of the wave height WI equals Wo times a factor slightly 
different from unity, the exact value of the factor being a function 
of the height and the derivatives of the wave surface. We call such 
disturbances potential int'u.mescences or irrotational translation waves. 
They can be generated by suddenly immersing a solid body in the 
liquid or suddenly adding a small mass of liquid; they may also be 
formed by the sudden motion of a body immersed in the liquid. In 
these cases the disturbed position of the surface is entirely above the 
original surface; that is, the waves have a positive elevation. The 
solitary wave is a familiar example. Waves can also be produced by 
abruptly removing from the channel a small quantity of water or an 
object already in the channel. These waves have a negative ele­
vation. Surges produced in channels by an abrupt change of flow at 
either end also belong in this category. 

At the other extreme, we find t.he quasi-permanent regime of rivers, 
or what are commonly called flood waves. These are also translation 
waves, but they are waves in which friction is the all-important factor, 
the effects of weight and inertia being negligible. The waves are very 
long, which accounts for the predominant effect of friction. It is 
illuminating to compare flood waves and potential intumescences on 
the basis of their velocities of proJ?agation. When discussing flood 
waves, it is convenient to utilize the Idea of the velocity of propagation 
of discharge, W g • According to the KIeitz-Seddon law [1] 1 this velocity 
is given by dq/dH, the slope of the rating curve, q, being the discharge 
per unit width occurring at the normal stage, H. In a rectangular 
channel wg=3U/2, if the Chezy resistance law is used. A comparison 
of the two wave velocities gives W02/wq2=(4/9)(gH/ifl). Since in 
rivers the ratio gH/U2 is a large number, the conclusion is that Wo is 
many times larger than W g • This difference of velocities is significant. 

It should be understood that in reality there exists a continuous 
transition between the two extreme types of waves described above. 
There are other phenomena occupying an intermediate position, in 
which the effects of inertia, height, and friction are of the same order 
of magnitude. These phenomena are also of engineering interest, :par­
ticularly in connection with hydroelectric plants. When the turbmes 
of such plants are suddenly shut down, a positive intumescence is 
generated in the supply canal and travels upstream, increasing in 
length as it goes. A negative intumescence IS simultaneously pro­
duced in the discharge canal, and this travels downstream, decreasing 
in length. These waves may be of considerable height (1 meter or so) 
and are attenuated by the forces of friction. Friction cannot be 
neglected, because of the long distances which the waves travel. 

I Figures in brackets indicate tile literature references at the end of this paper. 
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Similarly, when the turbines are suddenly started, the same phenome­
non occurs, but the signs of the intumescences nre reversed. If the 
pressure and velocity variations caused by these waves are large, 
these effects must be considered in designing channel walls, bottom, 
and embankments. Waves like the above, except that they are 
generally propagated in still water, occur in canal reaches adjacent 
to locks when the latter are operated. The positive and negative 
waves that are generated are quite long, traverse large distances, and, 
although they undergo a deformation of form owing to the action of 
friction, the wave length remains the same [2]. There are also a few 
special cases of flood waves occurring in m01mtainous regions, in 
which the inertia effects are important. Masse [3] has given the 
name of average intumescences to the phenomena described above. 

The ~resent paper deals exclusively with potential intumescences. 
Since fnction is negligible for these waves, and since they are generated 
in a liquid either initially at rest or in uniform motion, then by the 
Lagrange-Cauchy theorem the motion of the liquid particles is irro­
tational. This fact justifies the mathematical approach selected for 
this paper. 

A brief presentation of the elements of irrotational theory is given 
in section II, primarily to emphasize the basic dynamical and kine­
matical principles involved. Section III is a formulation of the basic 
differential equations whose solutions constitute the solution of the 
problem. 

The general theory is applied in sections IV and V, which deal with 
solutions of the equations to a first and to a second approximation. 
In the first approximation, the height and curvature of the waves are 
assumed negligible, and a complete solution is found in which the 
waves are propagated without change of form. In the treatment of 
the second approximation, which constitutes the main body of the 
paper, more general assumptions are made, leading to involved differ­
ential equations which can be solved easily only for particular cases. 
The deformation of the wave profile during propagation and the motion 
of the center of gravity of the intumescence play an important role 
in this analysis. These points are discussed after the introduction 
of the concept of velocity of propagation of a volume element, origi­
nally due to Boussinesq. There are three integrals invariant with 
respect to time associated with intumescences of appreciable curva­
ture-the volume, the energy, and the moment of instability-which 
are discussed in considerable detail. 

The main emphasis is on the intumescence whose wave profile is 
propagated without change of form, and the particular solution is 
obtained for this case. If the liquid is undisturbed at infinity, we 
have the well-known solitary wave which has been investigated 
experimentally. If the liquid is in motion at infinity and this motion 
is indeterminate, we have the less familiar cnoidal waves. In the 
former case, there is an interesting principle discovered by Bous­
sinesq-namely, for all intumescences of equal energy, the solitary 
wave is unique in possessing the minimum moment of instability. 
This theorem is significant in that it explains the frequent occurrence 
and ease of formation of the solitary wave. 

In discussing the velocity of propagation of surges, an attempt is 
made to determine the effect of the channel velocity distribution. 
The characteristics of the initial wave in a surge are not without 
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interest, and this wave is considered in the light of both theory and 
experiment. 

The concludi..'lg section touches on the problem of limiting wave 
heights and the breaking of waves. 

In the preparation of this paper, extensive use has been made of 
Lamb's comprehensive text [4] and of a classic paper by Boussinesq [5]. 
Whenever appropriate experimental data have been available, the 
authors have attempted to discuss the agreement between theory and 
e2l.1leriment. The principal sources of data have been the well-known 
researches of Bazin [6] and Russell [7, 8] and a recent paper by 
Favre [2]. 

II. IRROTATIONAL MOTION 

1. DYNAMICAL EQUATIONS OF MOTION 

We consider an elementary parallelepiped 5x5y5z having its corner 
nearest the origin of the rectangular axes of reference at the point 
(x, y, z). Designating the component velocities at the point (x, y, z) 
by u, v, W, and the density of the liquid by p, we have for the kinetic 
reaction in the x direction of the liquid in the parallelepiped 

du 
Pdt 5x5y5z, (1) 

which is equal to the x component of all the forces acting on the liquid 
in the parallelepiped. If the pressure at the point (x, y, z) is p, we 
have for the x component of the force due to pressure, 

op 
- oixoyoz. (2) 

Denoting the potential of gravity at (x, y, z) by n, we have for the x 
component of force due to the weight of liquid, 

on 
- poix5yoz. (3) 

Equating eq 1 to eq 2 plus eq 3, dividing by p5xoyoz, and applying the 
same reasoning in the remaining two directions, we obtain 

du 1 op on 
(Jj= - P '()X- ox' 

dv 1 op on 
(Jj=-p oy-oy' (4) 

dw 1 op on 
(Jj=-; oz -oz' 

and 

To introduce the local variations of the velocity components, we 
consider u, v, W as functions of x, y, z, and t. With this understanding 
we write the identity 

du OU dx OU dy ow dz au 
dt= ox dt+ oy dt+ oz dt+ ot' (5) 

where dx/dt, for example, represents the time variation of the position x 
of the liquid parallelepiped; that is, the velocity component u, and 

I 
I 
I 
I 
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au/at represents the time variation of u at the fixed point (x, y, z). 
Interpreting the quantities dy/dt and dz/dt in the same manner, we 
write from eq 5: 

du ()u ()u ()u au 
dt=Ft+uax +v ay +wo z' 

Similarly, 
dv av av o v ov 
dt= ot+uClx +voy +woz ' (6) 

and 
dw _ ow+ ow+ ow+ ow 
dt-~ u ox u oy woz ' 

It should be noted that du/dt represents the acceleration of a particular 
element of the fluid followed in its motion relative to the axes x, y, z. 
The symbol d/dt has in general this significance. 

2. DISPLACEMENT AND DEFORMATION OF A LIQUID ELEMENT 

We consider the same elementary parallelepiped, oX oy oz, having 
its corner nearest the origin at the point (x, y , z). Designating the 
component velocities at some instant at the point (x, y, z) by u, v, w, 
we find for the relative velocities at the point (x+ox, y+oy, z+oz) at 
the same instant, by Taylor's theorem, 

au ou ou 
oU = ;;;-ox + ;;;-oy + ;;;-OZ, 

u X uy u Z 

av OV OV 
ov= Oix+~1lY+ 0/)Z1 (7) 

and 
oW ow ow 

oW= ox ox+ olY+'()zoz, 

If we write 

(8) 
ow av au ow ov ou 

71=;;;-+:;;-172=;;;-+'5\173=:;;-+;;;-1 
uy u Z u Z u X u X uy 

and 
ow av ()u ow OV OU 

~=---, 11=-- - ' t=---1 oy OZ OZ ox ox oy 

the relative velocities may be written 

(9) 

and 
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The following physical interpretation is now evident. The motion 
of an elementary parallepiped having the point (x, y, z) for its corner 
nearest the origin may be considered as made up of three parts. The 
first part represents a motion of translation of the whole element with 
the component velocities u, v, w. The second part represents the 
relative displacement of the particles within the parallelepiped and 
describes its deformation. The linear dilatations EI, E2, Ea give the rate 
of increase of the edges of the element ox, oy, oz, respectively, during 
the motion. The angular dilatations I'll 1'2, 1'a give the rate of change 
of the angles of the edges of the parallepiped, taken two at a time. 
The third part represents a rotation of the whole element about an 
instantaneous axis having as components the angular velocities 
(1/2) ~, (1/2) 7], (1/2) r. The vector (~, 7], n is referred to as the vor­
ticity of the liquid at the point (x, y, z). 

When, throughout a finite portion of a fluid mass, the component 
vorticities ~, 7], r vanish, the motion of that portion is called irrotational. 

3. KINEMATICAL RELATIONS 

Since EI, E2, Ea are the rates of dilation of the edges of a cubical ele­
ment, it can be readily shown that the change, dV, of the volume of 
the liquid mass, A V = ox oy oz, due to the displacement of the particles 
per unit time is 

(10) 

We also have the relation, 

Po V = (Po+Ap) (V +dV), (11) 

derived from the principle of conservation of mass. Po is the initial 
density of liquid and Ap the change in the density during the motion 
of the element. If the liquid is incompressible, Ap=O, and we obtain 
from eq 11, dV=O, and from eq 10 

ou + ov + ow=O (12) 
ox oy oz ' 

which is a kinematical relation that is satisfied in the region occupied 
by an incompressible liquid. Equation 12 is known as the equation oj 
continuity for an incompressible liquid. 

At the boundary of the liquid the equation of continuity is replaced 
by a different relation. We shall consider the relation in its most 
general form. Let F (x, y, z, t)=O be the equation of the bounding 
surface. Let u, v, w be the velocity components of a liquid particle 
on the boundary, having the position (x, y, z) at time t. At time 
t+At the position of the particle is 

(X+UAt, y+VAt, Z+WAt). 
Since the particle does not leave the boundary [4, p. 7], we must have, 
because of the equation of the boundary, 

F(x+uAt, Y+VAt, Z+WAt, t+At)=O. 
When the latter expression is expanded by means of Taylor's theorem, 
we obtain the relation 

dF of of of of 
dT=(5t+u ox+ v oy +w~=O, (13) 

which is the general boundary condition. 

l 
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Two special forms are to be noted. At a fixed boundary 

lu+mv+nw=O, (14) 

where l, m, n represent the direction cosines of the normal to the 
boundary. At a surface of discontinuity 

l(u\-u2) +m(v\-v2) +n(w\-w2) =0, (15) 

where the suffixes are used to distinguish the velocities at the two 
sides of the surface. 

4. IRROTATIONAL MOTION 

In a large and important class of hydro dynamical phenomena, the 
vorticities ~, TJ, r vanish-that is: 

~= ClW _ ()v =0 
Oy ()z ' 

ClU ClW 
TJ= Clz - Clx =0, (16) 

ov Clu 
t=ox -oy=O. 

and 

As a result of this restriction, the expressions for the velocity com­
ponents, u, v, w, are very much simplified. ~~~;q~\;,. :,'""r~l~: 

We. consider now the function cp, defined big) he: "differential 
equatIOn '*"ll 

- dcp = udx+ vdy+wdz. (17) 
According to a theorem in differential equations, the necessary and 
sufficient conditions for dcp to be an exact differential, that IS, for 
dcp to be expressed as 

ocp Clcp Clcp 
dcp= oxdx+ oiy + ozdz, (18) 

are the relations in eq 16. Comparing eq 18 with eq 17, we write for 
the velocity components oCa liquid particle of zero vorticity: 

Clcp 
u=-ox' 

Clcp 
v=-­oy' 

()cp 
w=- oz' 

and 

(19) 

The function cp is called a velocity potential from its analogy with 
potentials arising in some other branches of physics. As the velocity 
potential exists if and only if the flow is irrotational, the latter flow is 
also called potential flow. 
1 If the liquid, in addition to being in irrotational motion, is also in­
compressible, [then the velocity potential cp satisfies Laplace's 
equation, 

(20) 
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This can be seen by substituting the ex.pressions for the velocities 
given in eq 19 in the equation of contmuity, eq 12. Thus, for 
the conditions of flow assumed here, (the irrotational motion of an 
incompressible liquid) the complete determination of the velocities 
at all points reduces to the selection of the harmonic function I/> 
satisfymg the boundary conditions. 

5. INVARIANCE OF THE CIRCULATION IN A MOVING CIRCUIT 

The following theorem on irrotational motion is of great importance; 
Ij the motion oj any portion of a perject fluid is irrotational at anyone 
moment, it will continue to be irrotational, provided the external jorces 
have a potential and the density oj the fluid be either constant or a junction 
oj pressure only. 

One of the methods for establishing the theorem is to consider the 
circulation around a closed curve of particles and inquire into the 
variation of the circulation as the particles of the curve move into new 
positions. By the circulation around the circuit, 0, is meant the line 
integral at any time, t, 

r= ~a (udx+vdy+wdx), (21) 

of the velocity vector taken around 0, a closed path of particles in the 
liquid. The circulation of the circuit of the same particles at time 
t+dt is 

where 

dr r+ dt dt, 

dr ~ d 
dt = 'fa dt(udx+vdy+wdz). (22) 

To evaluate dr Idt we take an element of circuit ° of length os and con­
sider the time-rate of variation of the quantity UQX as the particles on 
the element move into new positions. Differentiating the product 
110X, we obtain 

(23) 

The first term in the right-hand member contains the x component 
of the acceleration of a particle on ds, given by the first of the following 
dynamical equations of motion 

and 

du 1 op on 
([[= --p ox - ox' 

dv 1 op on 
dt =-1> oy - oy' 

dw 1 op on 
([[=--p oz-oz' 

(24) 
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Here p is the pressure, p the density of liquid, and n the potential 
of the external forces at the point under consideration. The second 
term is readily transformed into 

d dx 
u fIt (5x) =uO dt=uOu, 

since dxfdt is the velocityu. Thus, 

and similarly 

and 

d lOp on 
- (uOx)=-- - 5x-- 5x+uOu 
dt p Ox Ox ' 

d lOp on 
- (voy) = -- - 5y- - 5y+v5v dt p oy oy' , 

d I op oQ 
- (w5z) = -- - 5z-- 5z+w5w. dt p Oz Oz 

Introducing eq 26 into eq 22, we obtain 

dr = _ J: dp _ J: d Q+l J: dll, 
dt ~ p ~ 2 ~ 

(25) 

(26) 

(27) 

where q2=U2+V2+W2• Since nand q2 are single-valued, continuous 
functions of x, y, z, the last two integrals in the right-hand member 
of the equation vanish. If p is a single-valued, nonvanishing, con­
tinuous function of p only, or a constant, then the first integral 
vanishes also. Hence, under these circumstances 

dr 
(If=O; (28) 

that is, the circulation around a circuit moving with the liquid re­
mains unaltered. 

By using Stokes' theorem, the circulation, r, around circuit 0, 
may be related to the vorticity of the liquid particles on a surface S 
bounded by O. Stokes' theorem states that the line integral of any 
vector around a closed curve is equivalent to the flux of the curl of 
the vector through any surface bounded by the closed curve. Using 
this theorem, we now write 

r=.fs(l~+m1)+nt)dS, (29) 

where l, m, n are the direction cosines of the normal drawn inward 
from the surface. 

It now follows from eq 28 and 29 that the property of irrotation­
ality of a l'ortion of the fluid is carried with the flmd. For, if initially 
~, 1), r varush in a region containing a fluid, then the circulation for any 
circuit in the same region vanishes. This is true at all subsequent 
times in the region containing the same particles, by eq 28 above, and 
the vorticities consequently remain equal to zero. 
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The restrictions under which the main theorem, expressed by eq 28, 
has been proven must be remembered. It is assumed that the 
external body forces have a potential, and that the density is either 
constant or a function of pressure only. The latter condition is 
violated, for example, in the case of convection currents generated by 
a temperature gradient. Since in the dynamical eq 24, which were 
employed in the proof, the viscosity terms are missing, another 
restriction is the condition that the effects of viscous forces a,re 
negligible in comparison with inertial forces. 

6. IMPULSIVE GENERATION OF MOTION 

When the boundary conditions of a mass of liquid are suddenly 
changed, a sudden alteration in the motion may take place. The 
forces introduced are of the nature of impulsive pressures, and, during 
the time interval that the impulses last, the effects of all the other 
forces are negligible. 

Let p be the density, Uo, Vo, Wo the components of velocity imme­
diately before, u', v', w' those immediately after the application of the 
impulse, w the impulsive pressure at the point (x, y , z). The change 
of momentum parallel to x of an elementary rectangular parallelepiped 
having edges ox, oy, oz, and with its corner nearest the origin at 
(x, y, z), is poxayoz(u' -uo); the resultant impulsive pressure in the 

d· . . Ow H same lrectlOn IS - oixoyoz. cnce, 

or 

Similarly 

and 

,low u -Uo=---· 
p ox 

I 1 ow v - Vo=---' 
p oy 

I 1 Ow 
w -wo=-p oz· 

(30) 

In these relations we have a physical interpretation of the velocity 
potential, cpo For, consider the case where Uo, vo, Wo are zero. A 
state of motion for which a velocity potential exists could be produced 
from rest by the application of a properly chosen system of impulsive 
pressures. If cp be the velocity potential, the desired system of impul­
sive pressures is w=pcp+O. The arbitrary constant in this expression 
shows that a uniform pressure throughout a liquid mass has no effect 
on the motion. If the initial state of motion be uniform, that is, 
if for the initial state of motion the liquid possesses the velocity 
potential CPo=Uox+voy+woz, then the new state of motion possessing 
the velocity potential cp may be produced from the initial motion by 
the application of the impulsive pressures w=p(cp-¢o) +0. 
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7. PRESSURE EQUATION 

In a case of irrotational motion the velocity potential, cp, determines 
the velocity components u, v, W, but the hydrodynamical solution of 
the flow is not complete as long as the pressures are unknown. The 
determination of the pressures is made by means of the pressure 
equation. which is a dynamic relation to be derived presently. 

Since the motion is irrotational, the velocities u, v, W in the dynamical 
equations, 

and 

du 1 op on 
([f= -p ox - ox' 

dv lop on 
([f= -p oy - oy' 

dw lop on 
dt =-p oz - oz' 

where the operator dldt is 

d 0 0 0 0 
dt=ot+u ox+ v oy+w oz' 

(24) 

(31) 

may be expressed in terms of the velocity potential, cpo The dynamical 
equations are transformed into 

02cp 102 on lop 
- oxot+2" ox q =- ox -p ox' 

and 

02 1cp loon 1 op 
- oyot+2" oyq2= - Oy -p oy' (32) 

02 cp 1 0 2_ on 1 op 
- ozot+2" ozq - - oz -; oz· 

Multiplying the first by dx, the second by dy, the third by dz, adding, 
and then integrating the sum, we obtain the integral 

fd: = ~~-n- (1/2)(l+j(t) , (33) 

where jet) is an arbitrary function of time. This equation makes it 
possible to determine the pressure, once the velocity potential cp is 
known; it is called the pressure equation. 

For an incompressible liquid, 

(34) 

To determine the arbitrary function jet) we must know p and cp as 
functions of t at some definite point in the region occupied by the 
liquid. Generally this point is one where ocp/ot vanishes, q is a con­
stant, and p is the atmospheric pressure pa. 
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8. SOLUTION C>F PROBLEMS IN IRROTATIONAL MOTION 

61 

The mathematical procedure for solving a problem of the irrota­
tional motion of an incompressible liquid bounded in part by fixed 
boundaries and in part by a free surface consists in finding a har­
monic function, t/J(x,y,z,t), which satisfies Laplace's equation (eq 20) 
in the region occupied by the liquid, and the following surface condi­
tions. 

At the free surface, if it exists, there are two conditions to be satis­
fied. If F(x,y,z,t) is the equation of the surface, we have 

(13) 

where u, v, ware the velocities at the surface. The second condition 
states that the pressure is atmospheric at the free surface; we then 
have from eq 34 

At the fixed boundaries, 

ot/J=o 
On ' 

(35) 

(36) 

n being the normal drawn to the boundary. 
The function, t/J, which satisfies eq 13, 20, 35, and 36 is unique, 

except for an tadditive constant. For references to proofs see [4, 
p.59]. 

III. FORMULATION OF THE WAVE PROBLEM-WAVES IN 
WATER OF SMALL DEPTH 

We consider a rectangular horizontal channel of uniform cross­
section and infinite length, containing a perfect liquid initially at rest. 
We assume that some external agency acting for a short time produces 
a deformation of the free surface of the liquid in the channel. If the 
action of the external agency is such that the associated forces exerted 
on a portion of the water in the channel are essentially in the direction 
parallel to the direction of the channel and are constant throughout 
the whole depth of the liquid, the particles in a normal section under 
the deformed surface will be moving with a constant velocity. Under 
these conditions the deformed free surface constitutes a translation 
wave. 

The liquid of the channel being initially at rest, we infer from the 
theorems previously explained that the resulting motion of the liquid 
under the deformed free surface is irrotational and possesses a velocity 
potential, t/J. Let the axis of x be drawn in the bottom plane of the 
channel parallel to the channel axis; let the axis of z be drawn upwards. 
Denoting the velocity components in the direction of x and z by u 
and w, respectively, we have 
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or/> U=--, 
ox 

(37) 

and 
or/> W=--, OZ (38) 

where r/> is a function of x, Z, and t and satisfies Laplace's equation 

(39) 

The pressure equation (35) reduces to 

'P.. = or/> -gz-.!.(U2+w2)+F(t), 
p ot 2 

(40) 

where g is the intensity of gravity. 
Let the Z coordinate of the free surface be denoted by h+ 11, where 

11 is the initial undisturbed depth of water in the channel, and h is the 
elevation (or depression) of the wave. 

To evaluate F(t), let us consider the point at infinity on the free 
surface; at such a point or/>/ot=u=w=h=O, z=11, and p=pa. Sub­
stituting in eq 40 there results 

F(t)=Pa+glJ. 
p 

At the surface, since p=pa, we obtain the dynamical surface condition 
from eq 40, neglecting the effect of surface tension: 

(41) 

Although the last equation has been derived for the case where the 
liquid at infinity is at rest, it is equally applicable to the case where 
U2+W2 and or/>!ot vanish at the points on the surface where h=O, as, 
for example, in an intumescence consisting of an infinite number of 
undulations of the same dimensions moving without change of form. 

We obtain the kinematic surface condition, that a fluid particle of 
the free surface always remains on the free surface, by substituting 
F(x,y,z,t)=z-11-h=O in eq 13, obtaining 

Ok oh 
w="Ft+uox' z=11+h. (42) 

At the bottom surface of the channel the velocity component normal 
to the bottom vanishes, that is, at z=O, 

or/>_o 
oz- . (43) 

~n view of this last condition, we adopt for the potential rP the power 
senes 

(44) 
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where rp" is a function of x and t only. Substituting this expression 
for rp in eq 39, and equating the coefficients of z" to zero, term by term, 
we arrive at the convergent series 

Z2 02 rpo Z4 04 CPo Z6 06 CPo 
rp = rpO-if ox2 + 41 ox4 -61 ox6 + . . . (45) 

Differentiating with respect to z, 

ocp 02 CPo z'l 04 CPo Z5 06 rpo 
oz=- z ox2 +31 ox4 -51 ox6 + ... (46) 

The" function rpo, as stated above, depends only on x and t. If we 
denote the velocity of particles of water at the bottom of the channel 
at x by 'UQ, then 

La> OCPO f a> 
cpo=(cpo)",- :t ~dx=(cpo).,+ Jx uodx, (47) 

where (CPo)", is the value of rp at x=co. Since the liquid in the channel 
at infinity is at rest, we may take the value of (cpo)", as zero: then, 

CPo = Ix'" uodx. (48) 

In the above formulation, h and CPo are functions specifying a trans­
lation wave. They can be determined by integrating the two simul­
taneous differential eq 41 and 42 representing the dynamical and 
kinematical surface conditions. 

IV. LONG WAVES OF NEGLIGIBLE HEIGHT AND 
CURVATURE 

1. VELOCITY OF PROPAGATION 

If u2 and ware negligible in comparison with gh (assumptions I , 
II) and uOh/ox in comparison with oh/ot (assumption III), then the 
surface conditions given by eq 41 and 42 reduce to 

ocp 
(49) gh--- O ot - , 

and 
orp + oh_ O 
OZ ot- · (50) 

Also, if in the expansions of cp and ocp/oz given in eq 45 and 46 , only 
the first term is retained (assumption IV) , we have 

(51) 

and 

(52) 

198881-40-5 
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Here, then, we have the basis for a first approximation to a solution of 
a wave configuration. The horizontal component of the velocity in 
a normal section is constant and equals the bottom velocity Uo; 
the vertical component varies linearly with z. 

Substituting eq 51 and 52 in eq 49 and 50, we obtain 

and 

h ()CPo 
g ---0 ()t - , (53) 

(54) 

assuming that h is small in comparison with H and hence can be 
neglected (assumption V). Eliminating CPo from eq 53 and 54, we 
obtain the differential equation 

()2h 2()2h 
()t2=c ();t' 

where 
c=-JgH. 

Eliminating h similarly and writing 

()CPo 
Uo=- ()X' 

there results for Uo the relation 

()2 Uo ()2 Uo 
()t2 = c2 ()x2 • 

(55) 

(56) 

(57) 

(58) 

Equations 55 and 58, which are well known, possess complete 
solutions, which also satisfy eq 53 and 54: 

(59) 

and 

(60) 

where FI and F2 are two arbitrary functions. 
These results have a very simple geometrical interpretation. 

Consider the motion represented by the function FI in eq 60. When 
x and t are increased by CT and T, respectively, the value of the func­
tion is not changed; the disturbance h which existed at the place x 
and at time t has moved during the time interval T to the place 
X+CT. Therefore, the function FI represents a wave traveling in the 
positive x-direction without change of form at a constant velocity 
of propagation 2 c=-JgH. 

Similarly, F2 represents another wave propagated in the opposite 
direction with the same velocity. Any motIOn whatever subject to 
the conditions assumed above for the approximate solution will be 
made up of waves of these types. FI and F2 are determinate when 

I The qu~stion of the meaning of velocity of propagation when the wave does not retain Its form will be 
discussed later in section V-I. 
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hand Uo are known for every value of t, and at a single point X=Xl; 

or when It and Uo are known for every value of x and for a single 
time t=t1• 

If hand Uo represent the surface elevation and velocity of particles 
in either the progressive or regressive wave (F1 or F2 =0) it is seen 
from eq 59 and 60 that 

(61) 

where the plus sign applies to a wave moving in the positive x-direction 
(F2 =0) and the minus sign to a wave moving in the negative x-direc­
tion (Fl =0). 

We shall now examine the restrictions assumed in obtaining our 
approximate solution: 

u2~gh, (I) 

and 
oh oh 
u-~-· ox ot 

The two series converge rapidly; that is, 

Z2 o2cf>o 
2i ox2 ~cf>o, 

and 
h 
H~l. 

(II) 

(III) 

(IV) 

(V) 

It can be demonstrated that the following physical restrictions lead 
to the above mathematical assumptions: 

(A) The ratio of the wave amplitude to the depth of the channel 
is small: (hlH) ~ 1. 

(B) The slope of the wave is smaU: CCJh/ox) ~1. 
(0) The radius of curvature of the waves is large with respect 

to H2/2h. 
2. ENERGY OF AN INTUMESCENCE 

A single wave is called an intumescence. The potential energy 
per unit width of an intumescence, at time t, due to the elevation or 
depression of the fluid surface above or below the level of the previ­
ously undisturbed liquid in a channel is 

UP fX. h2dx (62) 
2 JXl ' 

where Xl and X2 denote the extremities of the intumescence. The 
kinetic energy per unit width of the liquid under the free surface of 
the intumescence is 

pHiZ' -2' u~x. 
: Xl 

(63) 
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Substituting for 11Q its value in eq 61, eq 63 becomes 

pg ex, h2 dx. (64) 
2 JXI 

Comparing eq 64 and 62, it is seen that the potential and kinetic 
energy of an intumescence are equal and that the total energy is 

gp ex, h2 dx. (65) 
JXl 

The integral in eq 65 without the multiplier gp will be of special 
interest, and will be subsequently referred to as the energy, E, of 
an intumescence. 

3. DISPLACEMENT OF THE PARTICLES 

The liquid particles in the cross section at x, before the arrival of 
an intumescence, are at rest. At the moment when the intumescence 
is passing, the particles in the section are moving with the velocity 11Q, 

to a first approximation. Thus, the volume of flow through the 
section during the passage of the intumescence is 

it. 
V= uoHdt. 

It 
(66) 

Since 

c dt=dx, (67) 

we have 

v = fX' uoH dx. 
JXl 0 

(68 

Substituting for Uo from eq 61, we obtain 

V= ex, hdx. 
JXl (69) 

The volume of flow through a cross section equals the volume of the 
intumescence. Hence, during the passage of an intumescence, the 
particles in a cross section are moved forward a distance ox, the mag­
nitude of which is given by the ratio of the volume of the intumescence 
to the area of the channel cross section. 

4. EFFECT OF AN ARBITRARY INITIAL DISTURBANCE 

If for t= O the velocity of the liquid particles in the channel and the 
form of the disturbed surface are known: 

(70) 

and 

(71) 
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then the functions FI and F2 occurring in eq 59 and 60 are 

Fl (x) = 4[B(X) + ¢,(x)], ) 

Ji~ (x) =4[ -1J(x) + 1f(x)]. 

and (72) 

To determine the form of the wave profile, hjH = 1f(x,tl ) for any 
subsequent time, t=tl, the curve representing Fl(x) is displaced in the 
positive x-direction by a distance etl • the curve representing F2 (x) by 
the same distance in the opposite direction, and the ordinates of the 
two displaced curves are added algebraically. 

Consider disturbances confined initially to a finite segment of the 
channel of length l. Resolution of the initial disturbance into FI and 
F2 indicates that after the lapse of the time interval r=e/2, two waves 
of equal length l will be traveling in opposite directions. In general, 
resolved waves will have unequal heights at corresponding points. 
If, however, in the initial state, u=O, that is, lJ(x)=O, then Fl(x)= 
F2(x), and the two component waves have the same shape. If, on 
the other hand, U= ±ehjH initially, then either FI or F2 is zero, and 
the result is a single wave traveling in one direction. 

s. REFLECTION AND TRANSMISSION OF WAVES 

A wave is reflected when it reaches a barrier in a channel. We take 
the origin, x=O, at the barrier and note that u = O at the barrier. 
Utilizing this fact in the general eq 60, we obtain the condition that 

Fl (-et) =F2( +et) (73) 

for the incident and reflected waves. 
Applying this last condition to the general eq 59 and 60, we obtain 

(74) 

and 

(75) 

which are the equations for reflected waves or for identical waves 
traveling in opposite directions. Here, if F2(et+x) is taken as the 
incident wave, F2(et-x) will be the reflected wave. At X=XI, and 
t=tl' the elevation or depression of the wave is 

h 
H=F2 (etl+xl). (76) 

The corresponding elevation or depression of the reflected wave will 
reach the point X=Xl at the time t=t1+2xI/c, and the value of the 
elevation or depression is 

h 
H=F2(e{ tl +2Xl/C} -XI) =F2(etl +XI). (77) 
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Hence, elevations and depressions are reflected without chan~e. It 
can be shown in a similar manner that corresponding velocitIes are 
reversed with their magnitudes unchanged. 

When a wave reaches a point in a channel where there is an abrupt 
change in the cross section of the channel, either in width or in depth, 
a part of the approaching wave is transmitted and a part is reflected. 
Taking the ongin at the point of the abrupt change of section, we 
may writ.e from the general eq 59 and 60 for the side from which the 
wave approaches, moving in the positive x-direction, 

(78) 

and 

(79) 

in which the first term in the right member of each equation applies 
to the approaching wave, and the second term to the reflected wave. 

For the transmitted wave we have 

;;2=g(X-C2t), (80) 

and 

u2=g(X-C2t). 
C2 

(81) 

In the above equations HI and H2 are the depths of the channel 
on the two sides of x=O, and CI and C2 the velocities of propagat.ion 
for the corresponding portions of the channel. At x=O, hi =h2, since 
the surface is continuous, and therefore, 

(82) 

Also, the conservation of matter requires that B1Hlui =B2H2U2, where 
Bl and B2 are the widths of the channel on the two sides of .l=O. This 
condition gives 

B1H1Cl[F( -clt)-j(clt)1=B2H2c2g( -C2t). (83) 

We deduce from eq 83 and 84 the ratio of the elevations in the cor­
responding parts of the reflected and incident waves and of the trans­
mitted and incident waves. These are 

(84) 

and 

g 2Bl cI H l 

F= (Blcl + B2C2)H2' 
(85) 

respectively. 
A wave traveling in a channel connected to a body of water in a 

basin of infinite depth and width may be considered as a special case. 
For this case it is evident by inspection that g/F=O and j/F=-l. 
Hence the incident wave is completely reflected at the juncture, and 
the elevations are reflected as depressIOns. 
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v. WAVES OF APPRECIABLE HEIGHT AND CURVATURE 

1. TWO DEFINITIONS OF VELOCITY OF PROPAGATION 

For long waves of infinitesimal height, the concept of velocity of 
propagation entails no ambiguity, because such waves are propagated 
without change of form. However, when a traveling wave is under­
going deformation, the meaning of velocity of propagation must be 
clearly defined. We may adopt either of two distinct definitions. 
The first definition will be d"eveloped on a purely formal basis. In a 
given wave system we consider the quantities oh/ot and oh/ox for an 
arbitrary x and t, and write the following relation from eq 13: 

oh oh 
ot+W1ox =0, h=h(x, t). (86) 

In effect, this relation defines the quantity WI, which we may call the 
velocity oj propagation oj a wave-height element. When the traveling 
wave is undergoing a change of form at a given instant, t, WI is a 
function of h. 

A second definition, which is due to Boussinesq, considers the vol­
ume of an intumescence. The volume of an intumescence is the 
quantity of liquid in the entire intumescence between the free sur­
face and the undisturbed primitive level of the liquid in channel. We 
have, therefore 

~= fa> hdx, 
Jxo (87) 

where Xo is the rear of the intumescence, assumed moving in the 
positive x-direction. The intumescence may be limited posteriorly; 
that is, for all values of x;£ Xo, h is negligible, and in this case ~ has a 
finite value. On the other hand, the intumescence may be unlimited; 
in this case we consider the volume, ~, included between the head 
and an abscissa, Xo, considerably removed from the head, and moving 
in such a way that ~ remains constant. 

We now consider a partial volume, u, of ~, between the head of the 
intumescence and an abscissa, x: 

u= L'" hdx, x;£xo. (88) 

We assume that a plane originally at x moves in such a way that it 
always has in front of it the same partial volumeu of the intumescence. 
We refer to the velocity at which this plane moves as the velocity oj 
propagation oj an element oj volume oj an intumescence, and denote 
this velocity by w. 

The relation between wand h may be obtained from eq 88 by 
differentiating the right-hand member of the equation with respect 
to t and equating to zero. However, it may be more instructive to 
obtain the desired relation in the following manner (see fig. 1). The 
curves abc and a' b' c' represent the free surface of the moving intu­
mescence at the times t and t+At, respectively. A plane at x having 
in front of it, at time t, the partial volume, t1, of the intumescence, 
moves to the position X+wAt at time t+At and still has the same par-
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FIGURE I.-Diagram illustrating the velocity of propagation of a volume element. 

tial volume, (J, in front of it. The areas A and B are equal to each 
other. Consequently, 

fa> 'Oh 
hwt.t= Jx ?it,t.tdx. (89) 

Dividing by t.t, 
fa> 'Oh 

hw= Jx 7itdx, x;;;:to, 

and then differentiating with respect to x, we obtain 

(90) 

which is the relation connecting w with h. 
Eliminating 'Oh/at between eq 86 and 90, we find that the difference 

between the two velocities of propagation is 

wl-w=h:/~;' (91) 

If a wave is moving without change of form, w is constant, and the two 
definitions give identical values for the two velocities of propagation, 
a fact that is self-evident. 

2. MEAN VELOCITY OF PARTICLES 

If U and q, respectively, denote the mean velocity of the particles 
in, and the discharge through, a cross section at x, then 

q=U(H+h) (92) 

Consider the inflow and outflow in a time interval, t.t, for the vol­
ume between two cross sections separated by a distance, t.x; t.x 
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and t1t having the same order of magnitude. The mean discharge 
at x in the time t1t is 

t1t oq 
q +"2 ot' 

omitting infinitesimals in t1t of the second and higher orders. The 
volume of the inflow in the time t1t is then 

qt1t+ (t1~)2 ~~. 

Similarly, the mean discharge at x+t1x in the time t1t is 

q+~~ t1x+ ~t ~~ 
omitting infinitesimals in t1x and t1t of the second and higher orders. 
The volume of the outflow at x+t1x in the time t1t is 

qt1t+~~ t1xt1t+ (t1~)2 ;iq, 

and the accumulation of liquid in the volume is 

oq 
-ox t1xt1t. 

The increase of volume of the liquid is also 

Ok '5f t1xt1t, 

omitting infinitesimals of the same orders as before. 
Therefore, 

or from eq 92 

oq oh 
ox=-ot' 

o oh 
ox[U(H+h)]=-ot· 

Substituting from eq 90 

o 0 
ox[U(H+h)]= ox(hw), 

which when integrated becomes 

U(H+h)=hw+O. 

(93) 

(94) 

(95) 

Since the liquid is assumed to be undisturbed at infinity, the constant 
of integration vanishes, and the equation for the mean velocity is 

hw 
U=H+h' (96) 
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3. EFFECT OF CURVATURE AND HEIGHT ON VELOCITY 
OF PROPAGATION OF A VOLUME ELEMENT 

When the ratio h/H and the curvature of the wave profile are appre­
ciable, the first approximation is no longer satisfactory, and in such 
cases recourse to a second approximation becomes necessary. The 
method which will now be presented is due essentially to Boussinesq. 

In the surface conditions, eq 41 and 42, we neglect w2 and replace u 
by the value of 'UQ in the first approximation, eq 61, replacing c by its 
value in eq 56: 

u={ft. (97) 

These conditions now become 

and 

o</> 1 g gh--+- - h2-0 ot 2H - , (98) 

(99) 

Retaining the first two terms in the expressions for </> and o</>/oz, eq 45 
and 46, and neglecting h in the terms having the smaller values, we 
obtain 

(100) 

and 

(101) 

We differentiate eq 100 with respect to t, replacing o</>% t in the second 
term of the right-hand member by its value in the first approximation 
given by eq 53, that is, by gh. In this manner we obtain 

o</> 0</>0 IF 02 h 
~=7it-2g ox2· (102) 

We next consider eq 101. In the right-hand member there are two 
small terms. In these terms we replace o</>%x by its first approxima-

tion from eq 57 and 61, that is, by -~ kh. In this manner, re­

stricting ourselves to waves propagated in the positive x-direction, 
we obtain 

0</>=_H02 </>0+ rg h Ok _ IP I fL 03 h. (103) 
oz or -V H ox 6 -V 11 or 

Substituting from eq 102 and 103, we obtain from eq 98 and 99: 

and 

0</>0 g[h 2 02 h] gh- -(5t+"2 H+IP ox2 =0, (104) 

(105) 
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To eliminate CPo between these, we differentiate eq 104 twice with 
respect to x and multiply through by H, and differentiate eq 105 with 
respect to t. In place of actually differentiating with respect to t, 
however, we differentiate with respect to x and multiply 3 by -.JgH. 
Subtracting eq 105 from eq 104, there results: 

c:P h 02 h ~"l3 h2 H2 02 h) 
ot2 =g~ ox2 +[-!!C5X2\2 H+T ox2 ' 

(106) 

which is the fundamental wave equation to the second approxima­
tion, in which the effects of the wave height and of curvature of wave 
profile are included. 

Although this equation has been derived for the case where the 
liquid in the channel is undisturbed at infinity, it remains valid for the 
case where the liquid at infinity is in motion, provided u=.Jg/H h, to a 
first approximation (eq 97). 

Equation 106 becomes integrable once with respect to x when oh/ot 
is introduced from eq 90. Performing the integration with respect to x 
and remembering that h and its derivatives vanish for x= <Xl, we 
obtain 

o Oh ~(3h2 H2 02h) 
o/hw) +gH ox +g!!-?iX\2H+3 ox2 = 0, (107) 

which permits the determination of w, the velocity of propagation of a 
wave-volume element, in terms of hand 02 h/ox2. 

We adopt as an expression for w the product 

(108) 

where E is a small quantity. Multiplying the two members by hand 
differentiating with respect to t, we obtain, remembering that E is a 
small quantity and applying the same reasoning used in differ­
~E,!iating eq 105, 

Introducing Oh/ot from eq 90, thi( may be written, 

o ,- 0 0 
ot(hw)=--vgHox(hw)-gHox(Eh) ; (109) 

or, in view of eq)08, 

o 0 
oeChw) = -gHox [(1 + 2E)h1. (110) 

a The Justification for replacing the operator b/bt by -.; oH b/bx can be seen from the following: Assuming 
that the wave retains its form, that Is, that dFldl=O, where Fis s function of (x-ct) , we have the relation 

dF_~+c~_O, 
dt bt ox 

from which it is obvious that 

While the present discussion relates to waves that may change their form, the above relation can be applied 
to small terms in the wave equation, to a first approximation. 
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The substitution of eq 110 in eq 107 makes the latter expression 
immediately integrable with respect to x. Integrating, putting the 
constant of integration equal to zero, since h and its derivatives 
vanish at X= ex> , and then dividing by h, we find 

(111) 

Hence 

(112) 

which is the expression for the velocity of propagation of a volume 
element of an intumescence moving in still water. 

We next derive the expressions for Uo, the horizontal velocity com­
ponent at the bottom, and u, w, the velocity components at a point 
having the ordinate z. To determine Uo we consider eq 105, replacing 
oh/ot by -o(hw)/ox from eq 90, and then integrating with respect to 
x, the constant of integration being equated to zero. In this manner 
we obtain, since Uo= - oc/>%x, 

(113) 

From eq 45, after differentiating with respect to x, and from eq 46, 
retaining only the first two terms of the right members, we obtain: 

and 

Z2 02 Uo 
u=uO- 2 ox2 , 

oUo z3 03 Uo w=-z-+---, Ox 6 or 

(114) 

(115) 

which give, after substituting for Uo from eq 113, and neglecting quan­
tities of small order: 

(116) 

and 

(117) 

4. DEFORMATION OF THE WAVE PROFILE 

The expression for w, eq 112, and the relation in eq 90 permit the 
evaluation of the change in h occurring during a short interval of time 
to a sufficient approximation. Denoting"'; gH by Wo, eq 90 may be 
written as 

oh oh 0 
(5t+woox + ox[h(w-wo)]. (118) 

The integral of this expression is 

o 
h j(x-wot)-tox[h(w-wo)], (119) 



Keuleuan] 
PaUeTSGn Irrotational Translation Waves 75 

when t is small. This may be proved by differentiating eq 119 and 
substituting in eq 118. In the process of differentiating the second 
term in the right member, the relation %t=wo%x is used, this being 
valid if t is small. Eq 119 enables us to trace the wave profile curve 
as it would be for time tl +t, if it is given for time tl' 

We next take an element of the intumescence, du, having the 
height h and base dx and follow its motion. We denote the time-rate 
of variation of h during the motion by dhldt. From the definition of 
w we obtain 

Multiplying by h and using eq 90, we obtain 

h,dh=_h20W . 
dt ox 

Introducing the value of w from eq 112, we obtain 

h dh= _.JH [?.h20h _!!.2oho2 ~+hH203 h], 
d t g 4Hox 6 oxox 2 6 ox 3 

which may be written, after dividing through by h, 

(120) 

(121) 

(122) 

This expression gives the rate of variation of the height of an intumes­
cence element. 

5. MOTION OF THE CENTER OF GRAVITY OF A WAVE 

The last section treated of the motion of an element, du, of a wave. 
We may also discuss the motion of a volume, V, between two abscissas, 
Xl and ~ where X2>Xl' Then 

i x, 
V= du. XI 

Let ~ denote the horizontal coordinate of the center of gravity of 
the volume and TJ the elevation of the center of gravity above the level 
of the undisturbed liquid in the channel. By definition, 

e' x du rXI h du 
I: JXI d JXI .,= V ,an TJ= "'-"-'2='V=--' (123) 

Differentiating with respect to t, we obtain 

rx, w du rx, dh du 
d~_ JXI dd'TJ_ JXI dt 
dt- V ,an dt- 2V' (124) 

which are expressions for the velocity of the center of gravity of the 
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tr' ('Z'dh volume. The two integrals J XI w du and JXI dt du are readily evaluated 

by means of eq 112 and 122. Writing hdx for du, we obtain 

IX, [3 IX, H2(Oh)x,] J x, w du=..J gH V + 4HJxI hdu+(f OX x, ' 

and 

-du=-..JgH -+- h-Q - - • i X'dh - [W H2 { 02 h ('Oh)2 }]X' 
Xl dt 4H 6 Ox· 'Ox x, 

When these expressions are substituted in eq 123 and 124, we obtain 
for the velocity components of the center of gravity 

d~ -[ 377 H2(Oh)X'] 
dt=..JgH 1+ 2H+ 6V ox x, ' (125) 

and 

d77= _ ..JgH[~+ H2{h 02 h _(Oh)2}-r'. 
dt 2V 4H 6 ox2 OX-1, (126) 

Equation 125 simplifies if the slopes oh/ox vanish at the end points 
of the intumescence considered, or if the volume V is large, yielding 

(d~)2 dt =g(H+377). (127) 

Equation 126 likewise simplifies if applied to the entire body of an 
intumescence. If the intumescence is unlimited, V is infinitely lar~e, 
and the right-hand member vanishes. It also vanishes if the m­
tumescence is limited, for then both hand 'Oh/ox vanish at the anterior 
and posterior end,s of the intumescence. Therefore, the center of 
gravity of an intumescence is maintained at a constant height above 
the primitive free surface, and the velocity of propagation of this 
center of gravity is constant. [5, p. 84]. 

6. VARIATION IN ENERGY OF AN INTUMESCENCE 

It may be inferred from the invariability of 77 that the integral 
Jh du, when applied to an entire intumescence, is independent of 
time j that is, the integral 

is independent of time. When this integral is multiplied by pgj2, the 
product represents the potential energy of the intumescence, eq 62. 
On the other hand, the kinetic energy of the entire liquid is given by 
the double integral 

The velocity components, u and w, are given by eq 114 and 115. 
From these equations, neglecting quantities of small order, we obtain 

IIHh [h3 H2 0 ( 'Oh)l Jo (u2+w2)dz=g h2+ 2H+T ox hox J' 
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which we multiply by pdx/2 and integrate between the limits X=Xo 
and X= Q). The integral hoh/ox vanishes at infinity and also, when 
the intumescence is limited, at Xo. It also vanishes at Xo when the 
intumescence is unlimited, because this integral is neglig,ible in com­
parison with the first two terms owing to the length of the intumes­
cence. Thus the kinetic energy of the wave system is 

The total energy of wave, E, consequently, is 

pgE=pg io'" h2 dx+ :l:li~ h3 dx. (128) 

It consists of two terms, of which the first is independent of time, 
and the second which is small in comparison with the other, may be 
shown to vary very slowly with time. 

7. THE MOMENT OF INSTABILITY OF AN INTUMESCENCE 

It was seen that every intumescence is characterized by two 
integrals, E=j'hdU' and V= j'dU', which are independent of time. 
(See eq 65, 69, and 88). In addition to these, there also exists another 
integral 

_i"'[(Oh)2 _ 3h3
] M.- ::.. U3 dx, (129) 

%0 u X .c:z -

which is independent of time. The invariant character of this 
integral was discovered by Boussinesq, who referred to it as the 
moment oj instability [5, p. 97]. 

We consider the integral 

6 f"'f(oh)2 3h3 6h2] 
M·- H2 E= J1:0 L ox - I-P- H2 dx, (130) 

where E is the integral representing the energy of the intumescence. 
Differentiating both members of the equation, we obtain, since 
dE/dt=O, 

(131) 

The term in the brackets vanishes when the intumescence is limited; 
in the contrary case it is negligible in comparison with the integral, 
owing to the great length of the intumescence. Therefore, 

dM,= _ fa> Oh(12!.!:..- + 9h2 +2 02 h \..1 
dt J xo at H2 lJ3 ax2 iX, (132) 

or, in view of eq 112, 

dMs 12 fa> oh 
(JT= - -JgH5Jxo ot hwdx• (133) 
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Now, introducing ()h/()t from eq 90, and then integrating, we obtain 

dMs_ 6 (h) 2 
([t - .,jgJl5 w .,o· (134) 

If the intumescence is limited, the right-hand member vanishes: if it is 
unlimited, this member is a quantity of the order which is neglected 
in this analysis. Therefore, to this approximation, the moment of 
instability of an intumescence is independent of time. 

8. SOLITARY WAVES 

The effect of height and curvature on the deformation of waves 
was discussed in the previous section on the basis of the assumption 
that deformation actually occurs. It may well be that configurations 
exist with appreciable height and curvature which are propagated 
with no deformation whatever. As a matter of fact, such waves were 
first discovered by experiment. The solitary wave of J. Scott Russell, 
consisting of a single elevation whose height may be of the same order 
of magnitude as the depth, may travel considerable distances without 
appreciable deformation [6, p. 505; 7, p. 324; 9, p. 289]. Thisproperty 
is called longe'b'ity and the law governing it may be derived from eq 106. 

Putting new variables 

and 

(x-wt)=sH, 

h=TJH, 

. . 02 2 ()2 h b . f h . mto eq 106, we get, smce ()t2=w (jx2 on t e aSlS 0 t e assumptIOn 

that the wave does not deform, 

(135) 

which when integrated twice gives 

2 02 TJ 
6bTJ - 91/ -20s 2+C1S+C2=0. (136) 

Since TJ and ~~ 1 are finite, Cl=O. If we restrict ourselves to the 

()2 1/ 
case where at s = co , 1/ = 0 and ()s 2=0, then C2= 0 and we have 

2 d21/ 6bTJ-9TJ -2ds2= 0. (137) 

Multiplying by ~~ ds and integrating: 
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(138) 

Denoting the maximum height of the wave by ht, and the corres­
ponding value of 1/ by 1/1 , 

(139) 

At the crest of the wave, 1/ = 1/1, and the wave surface is parallel to the 
bed, d1/ld~=O . Substituting these values in eq 138 we obtain the 
relation between b and 7]1 , 

1/1 = b=(g~I- 1)- (140) 

Replacing this value of bin eq 138: 

(~~y = 37]27]1- 3 1/3, (141) 

and integrating twice: 

Reverting to the original variables, we obtain the equation of the wave 
profile 

(142) 

The free surface is symmetrical about the normal at x=wt, and 
approaches the primitive surface as x-wt approaches ± <Xl (fig. 2). 

+z 

----------~----------~--------------------~+x 
FIGURE 2.- Diagram of a solitary wave. 

The velocity of propagation, w, which may be interpreted either as 
that of the volume element or height element since the wave does 
not deform, is obtained from eq 140: 

(143) 

which is the formula adopted by Russell [7, p, 328; 8, p. 423], on 
empirical grounds and confirmed by the experiments of Bazin [6, p . 
496, 515]. 

198881-39-6 



----------------------------------------~ 

80 Journal oj Research oj the National Bureau oj Standards [Vol. t .. 

A comparison of theory and experiment, based upon 117 observa­
tions by Bazin [6, p. 510-514], shows the error of the formula to be 
-0.91±5.10 percent. Similar calculations based upon 77 observa­
tions by Russell [8, p. 440-442] give +0.78±2.30 percent. The ± 
term indicates the standard deviation, and t.his usage will be followed 
in subsequent comparisons. It will be noted that in each case zero 
error is well within the limits determined by the standard deviation. 

From eqs 127 and 143 we will now show that the center of gravity 
of a wave propagated without change of form is hd3 above the primi­
tive surface, where hi is the maximum height of the wave. Since the 
wave retains its form, 

(144) 

and is constant. Substituting from eq 143 in eq 127, we obtain 

(145) 

A relation connecting the height at any arbitrary point with the 
partial volumes of the wave on each side of the perpendicular at this 
point is derived as follows. By virtue of the relation (l/h) C%x) = 0/0(1, 
when dh/dt is placed equal to zero, eq 122 yields the result: 

( 2IP d2 h) h3 1+3 dq2 = constant. 

The constant is zero, since h vanishes at infinity; therefore, 

1+2IP d2 h_O 
3 dq2 - • (146) 

Inte~rating and employing the boundary conditions (1=0, h=O; 
(1=(/" h=O, we obtain the solution 

(147) 

Since the wave is symmetrical, the maximum ordinate, ht, divides 
the wave into equal parts: 1J=h2' (1=Q/2. 
Therefore, 

(148) 

which is the relation between the maximum height of the wave and 
its total volume. It was demonstrated in section IV-2 that the 
potential and kinetic energies of an intumescence are equal, to within 
a small term of the order of h3 ; consequently 

(149) 
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From eq 148 and 149 we derive the following relations: 

3-VE2 Q 8H2 
h1= 4H ,and r;.=3.:jIJ/ (150) 

These relations will now be used to explain the phenomena of waves 
traveling up a channel of slowly decreasing depth. Considering eq 
85, we see that the quantity CI-C2 is small, since dH/dx is small. 
Consequently, the reflected wave is negligible, and the energy of the 
transmitted wave remains sensibly constant. From eq 150 we deduce 
that hI continually increases, and Q/hl continually decreases. The 
wave gets higher and higher, and its base narrows continually. As 
a result, the wave becomes unstable and finally breaks. A quantita­
tive analysis of this phenomenon will be given in section V-19. 

9. CNOIDAL WAVES 

In the theory developed thus far, extensive use has been made of 
the assumption that the liquid is undisturbed at infinity i that is, that 
the wave profile x j(h) vanishes at infinity together with all its 
derivatives. In the previous section this assumption was utilized in 
deriving eq 137, and it was found tbat the only wave fulfilling this 
condition and proJ?agated without change of form was the solitary 
wave. We now WIsh to eliminate this restriction and determine the 
form of a wave of appreciable height, governed by eq 106 and propa­
gated without change of form. 

We therefore assume that at h=O, the derivatives Ok/ox, o2h/oX2, 
. . . do not all necessarily vanish. The constant C2 is consequently 
retained in eq 136, and we write 

d271 
6b7]-9712 - dr2+3c2=0. (151) 

Multiplying both members of eq 151 by (d7]/dr) dr and integrating: 

(152) 

where 3CI is another constant of integration. Since d71/dr is real at 
7]=0, then C1 is positive, and if 71', 71", 7]"' are the roots of the poly­
nomial, then 

Either all the roots are positive, or one is positive and two negative, 
or one is positive and two complex. There is at least one positive value 
of 7], say 71', for which d7]/dr vanis,hes. If this is the only value of 7] for 
which the profile is horizontal, then the wave profile must become 
infinite with r, which is physically impossible. The third case is there­
fore excluded. If all the roots are positive, then the wave profile must 
be included between the extreme values, since otherwise it would 
become infinite. This requires that the wave surface be everywhere 
above the primitive surface, which is likewise physically impossible, 
and the first case is also excluded. Therefore 7]" and 7]"' are both 
negative. vVriting the three roots 7]1,-7)2,-713, 713~712' we have 
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and 
b=TJI-TJ2-TJa, ) 

C2= - TJ2TJa+ TJITJa+TJITJ2, 

CI =TJITJ2TJa· 

Introducing the new variable, x, 

eq 153 becomes 

where 

and 

2 • 2 
TJ=TJI cos X-TJ2 SIn X, 

k2= TJI +TJ2= hI +h2• 
TJI +TJa hI +ha 

Selecting r=O at the apex, then TJ=TJI and x=O, and we have 

!o" dx 
r={3 .vI k2 . 2 (3F(x, k), o - SIn X 

(153) 

(154) 

(155) 

(156) 

(157) 

(158) 

(159) 

where F is an incomplete elliptic integral of the first kind. Introduc­
ing Jacobian elliptIc functions, since cos x=cn(t!{3, k), sin x= 
sn(r/{3, k) and sn2 u+cn2 u=l, we have 

TJ= -TJ2+ (TJI +TJ2) cn2(~, k). (160) 

or reverting to the original coordinates 

h=-h2+(hl+h2) cn2[ ~3(~jpha) (X-~t),.J~:t~:J (161) 

This equation represents an infinite number of undulations of 
identical size and shape, each symmetrical about a vertical plane 
passing through the apex. The existence of these periodic waves 
moving without change of form was first indicated by Boussinesq 
[10, p. 392], and the name, cnoidal waves, from the en function by 
analogy with sinusoidal, is due to Korteweg and de Vries [11]. 

The relative wave length, A/H, is given by 
A 5or/2 dx 
H =2{3 .v k2' 2 2{3FI (k), 

o 1- SIll X 
(162) 

FI being the complete elliptic integral of the first kind. 
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The initial depth of the water in the channel being H, we must 
have 

or from eq 155 and eq 156 

2 ri ('71 cos2 X - '72 sin2 x){3 dx= O, 
Jo ..jl-k2 sin2 x 

which from eq 158 reduces to 

(hI +ha) El (k) = haFl (k), (163) 

where El is the complete elliptic integral of the second kind. The 
form of the waves is completely determined by A/H, and hdH, the 
relative wave length and height of the crest above the initial surface 
of the water, since h2/H and hatH are determined by eq 158, 162, and 
163. 

From eq 162 we see that the wave length of the undulations be­
comes infinite when k=1. From eq 163 if k=l, h2=ha=0. Since 
cn(x, 1)=sech x, then for k=l, eq 161 reduces to the equation of the 
solitary wave (eq 142), and the latter appears as a special case of the 
cnoidal wave. 

From the definition of b (eq 136) and from eq 154, we have 

(164) 

which is the expression for the velocity of the wave profile. Since 
we are now dealing with an infinite number of undulations moving in 
a channel of finite depth, a question arises as to the meaning of the 
velocity of propagation. Stokes [12, p. 202], has given two definitions 
applicable to this case, and we adopt the second one; namely, the 
velocity of propagation is the velocity of the wave profile with respect 
to the center of inertia of the fluid mass included between two vertical 
planes separated by a distance equal to the wave length. 

Writing this velocity as We: 

1 r' we=w-HAJ 0 U(H+h)dx, (165) 

where U is the mean velocity in a vertical section . If Uo is the mean 
velocity in the section at h= O, we have from eq 95 

U(H+h)=hw+ UoH. 

Substituting in eq 165, we have for the velocity of propagation 

we=w-Uo 
or 

wl=w2( 1-2 ~o)-
We now evaluate Uo• Integrating eq 114, we have 

H2 02Uo 
Uo=Uo- 6"" ()x2 ,h=O, 

(166) 

(167) 

(168) 
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Uo being the velocity at the bottom. It has been assumed in the 
analysis that at h=O, the surface velocity Ul vanishes (see the discus­
sion of eq 41); hence from eq 114, 

and 

H% 02 Uo 
Uo="2 ox2' h=O, 

H2(02 uo) UO=3 0x2 ,h=O. (169) 

From eq 104, since we can write %t=-w (%x), we obtain by differ­
entiating twice with respect to x, and neglecting the term containing 
04h/ox4: 

o;x~=~~:~} h=O. 

Substituting in eq 169, we finally have 

and eq 168 becomes 

1 gH2 02 h Uo=---,h=O 
3 w ox2 

2_ 2[1 2gH2(02 h) ] 
Wc- W - 3w2 ox2 11-0 ' 

or from eq 151, 154, 164, in terms of hil h2' and lLa, within the approxi­
mation of the analysis, that is, neglecting hlhi~3/lJ3, 

(170) 
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FIGURE 3.-Cnoidal waves. 

Relative displacemen of the free surface as a function of the fractional part of the relative wave length. 

This, then, is the velocity of propagation of the wave profile with 
respect to the center of inertia of the fluid mass included between 
two vertical planes separated by a distance equal to the wave length, X. 

For other treatments of this subject reference may be made to 
Boussinesq [10, p. 390], Korteweg and de Vries [11], and Lamb [4,lP. 
4021. 
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Figures 3 and 4 represent two typical cnoidal waves. Figure 3 
shows on an arbitrary scale one complete undulation for two values 
of X/H, and figure 4 shows extended profiles of the same two waves 
at the correct height above the bottom, but compressed horizontally 
5 times. In both cases, h1/H=O.25. 

1.0 

0 .5 

..elI 0 

+ 

1.0 

0.5 

o 

~. 9.99 
H·I.O 

fI- 0.25 

FIGURE 4.-Cnoidal waves. 
Relative height above the bottom as a function of relative horizontal dimension. 

10. MOMENT OF INSTABILITY OF A SOLITARY WAVE 

25 

Of all the intumescences of equal energy, the solita,ry wave is the 
only one for which the moment of instability 

_Sx"'[(Oh)2_ 3h3
] M.- :;,. H3 dx 

xo u X 
(129) 

. . . 
IS a mlillIDum. 

The theorem may be proved by the methods of the calculus of 
variations for the solution of isometric problems. By an isometric 
problem, we mean one of the following kind: 

Among all curves joining two points (xo, ho) and (XII hI) for which 
the definite integral 

K= LSI G(x, h, x', h')ds 

takes on a given value l, to determine the one 

Co, x=x(s), Xo=X(so)} 

h=h(s), ho=h(so) 

which minimizes (or maximizes) another definite integral 

{51 
J= Jso F(x, h, x', h')ds. 

(171) 

(172) 

(173) 
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Here s is a parametric variable, and the primes indicate differentia­
tion with respect to s. 

Putting 
H=F+XG, (174) 

where X is a numerical constant, the first necessary condition for a 
minimum or maximum is that the curve 00 in eq 172 must satisfy 
the differential equation 

where 
H __ HX'h' 

1- x'h' • 

(175) 

(176) 

The subscripts indicate partial differentiation with respect to the 
variables represented by the subscripts. The second necessary 
condition for a minimum is that 

(177) 

a t every point of the curve 0 0, 

Obviously, in the present isometric problem, the integral K corre­
sponds to the energy of an intumescence and the integral J to the 
moment of instability; that is, 

K= Ix.co h2dx, (178) 
and 

J- f co r('Oh)2 _ 3h3Jdx - Jro L 'Ox H3 . 

We select the parametric variable s so that 

and x=s, I 
h=h(s). 

The above integrals, eq 178 and 179, become 

K= f coh2 x'ds, 
J80 

and 

f CO(h'2 \" J = 80 'X'-ah3 x'js, 

where a=3/HS. Hence, 

and 

G=h2x', 

h'2 
F=--ah3 x' 

x ' 

11,'2 
H=-+-ah3 x'+>.h,2 x'. x 

(179) 

(180) 

(181) 

(182) 

(183) 

(184) 

(185) 

(186) 
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The first necessary condition for a minimum, eq 175, after some 
simplificat.ions, yields 

3ah2-2~h+2 ~::/, =0, (187) 

which also may be written as 

(188) 

if a is replaced by 31R3. Since the left-hand member is a const.ant, we 
see on comparing eq 188 with eq 112 that the intumescence having a 
maximum or a minimum moment of instability for a given energy is 
one that is propagated without change of form. The only wave which 
is propagated with constant velocity is the solitary wave. The second 
necessary condition, eq 177, is likewise satisfied; hence the moment 
of instability is a minimum. 

11. MOMENT OF INSTABILITY AND WAVE FORMATION 

The frequent occurrence of the solitary wave, owing to its produc­
tion by a broad class of different initial disturbances, was observed 
by Scott Russell [7, p. 351; 8, p. 423]. This frequent formation of the 
solitary wave has been explained by Boussinesq [5, p. 99; 10, p. 401], 
utilizing the theorem just proved-that the solitary wave is the only 
intumescence for which the moment of instability is a minimum. An 
integration would show that this minimum is 

27 E5/3 
(M.)1=20 H4' (189) 

where E is the energy of the wave and R is the depth of the channel. 
If one considers an intumescence of arbitrary form, and a solitary 

wave, both having the same energy, E, the excess of the integral M. 
of the intumescence over that of the solitary wave, M.- (M')l may 
be regarded as a measure of the rapidity with which the intumescence 
will deform during its propagation and also of the extent of the 
deformation taking place. This is why Boussinesq named the integral 
the moment oj instability. 

If M,- (.1\tf.)l is small, the profile of the intumescence will oscillate 
about that of a solitary wave having the same energy, E. The form 
of the intumescence cannot change very markedly, as this would 
require M. to increase, contrary to the theory. Friction, which has 
been ignored in the theory, will damp out these oscillations and the 
intumescence will eventually assume the shape of a solitary wave. 

It should be noted that there does not exist a solitary wave having 
an arbitrary energy, since there is a maximum height, above which 
a solitary wave cannot be propagated without breaking (see section 
V-19). This limiting factor serves to determine the class of disturb­
ances which can produce a solitary wave. 
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12. NEGATIVE WAVES 

Let us now examine the circumstances governing the motion of a 
negative wave limited in extent and propagated in the positive 
x-direction, negative signifying that the surface is depressed. The 
longitudinal profile of such a wave in its simplest form will consist 
at the moment of the formation of the wave of a main concave por­
tion in the center and two convex arcs at the posterior and the anterior 
ends of the wave. As long as the form is not altered, the center of 
gravity of the wave is located at one-third of its maximum depth; 
that is, '1J=h1/3. According to eq 127, the velocity of propagation of 
this wave would be 

(190) 

a law that is confirmed very nearly in the experiments of Bazin. 
Calculations based upon 18 observations, [6, p. 521] give as the error 
of the formula, -1.54±2.09 percent, where the ± term indicates 
the standard deviation. 

The initial simple form of the wave, however, is soon modified. 
In fact, eq 112 shows that since h is negative, the third term is nega-

-

FIGURE 5.-Negative wave as observed by Bazin. 

tive in the concave portion and positive in the convex portion. The 
second term is more negative in the concave portion than in the con­
vex portion, since h is smaller in absolute magnitude in the latter 
case. Thus the head of the depression, being both at a higher eleva­
tion than the center of the cavity and convex, while the latter is 
concave, is propagated faster than the center and becomes elongated. 
The tail of the wave also travels faster than the center for the same 
reasons and is therefore shortened as long as the requisite initial con­
ditions obtain. However, the process of shortening cannot be indefi­
nite. Furthermore, a convex portion is necessary for the continuity 
of the surface slope; hence the convex portion is finally raised above 
the level of the primitive free surface. Since h is now positive, the 
last term of eq 112 is negative; and if either II, is small enough or 
02 h/ox2 large enough, it can exceed the second term, so that a condi­
tion is reached such that w of the elevated convex portion is the same 
as w of the lowest point of the depressed body. But the elevation 
thus produced at the posterior end of the main negative body of the 
wave requires an intermediate concave portion in order to join the 
free primitive surface with a continuous slope. Such a concave por­
tion cannot exist and cannot be formed if its velocity of propagation 
is greater than that of the positive wave preceding it. Equation 112 
indicates that if these velocities are to be equal, the convex positive 
wave must be followed by a negative wave. Continuing the argument, 
we see that a given negative wave is followed by a series of smaller 
waves, alternatively positive and negative. and entirely convex and 
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concave, with inflection points on the level of the primitive surface 
(fig. 5). For additional figures, see [6, plate 2, fig. 3; 7, plate 52, 
fig. 10]. 

13. INTUMESCENCES OF FINITE HEIGHT BUT NEGLIGIBLE 
CURVATURE 

For an intumescence of finite height but having a free surface of 
negligible curvature, the expression of the velocity of propagation 
of volume element, eq 112, assumes the sinlple form 

(191) 

As an immediate consequence of this simplification, differential 
equation 90 can be integrated and the equation of the intumescence 
profile obtained. Introducing eq 191, eq 90 becomes 

oh - ( 3 h )Oh ot+-VgR 1+2H ox=O, (192) 

which possesses the integral 

X--VgH( 1+~ ~)t=i(h), (193) 

where i(h-) is an arbitrary function of h. The integral may be inter­
preted as follows: If h is the elevation of the free surface at x at time 
t, then the same elevation is reproduced at x+~x at time t+~t; but, 
from eq 193: 

~X=-VgH( 1+~ ~)~t, 
and, therefore, the intumescence height is propagated with the 
velocity 

W1=-VgH( 1+~~} (194) 

which is Airy's expression [4, p. 243] for the velocity of propagation 
for waves of finite height. It should be noted that eq 194 represents 
the velocity of propagation of the height of an element. 

The arbitrary function, i, in eq 193 can be determined in two ways, 
depending on whether the canal is infinite in one or both directions. 
In the latter case, h is usually given for all values of x at some instant, 
t. If the relationship is in the form h il (x), we may invert the 
function and obtaini2(h)=x, which is the desired function. 

In the former case, assume the channel in communication with an 
infinitely large basin and that the water level of the basin is a known 
function of time, say, h=F(t). Inverting this function, we have 
t=F1(h), and, if we take the point where the channel meets the basin 
as the origin of x, the arbitrary function is 

f(h)=--VgH( 1+~ ~)Fl(h). 
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In intumescences of this type, the mean velocity, U, of the fluid 
particles in a cross section is 

,- l1,( II, ) 
U=-VgH'li\ 1-4H ' (195) 

which follows from eq 96 and 191. 

14. HORIZONTAL CHANNEL IN COMMUNICATION WITH THE OCEAN 

Boussinesq has applied the method of the last article to a horizontal 
channel in communication with the ocean to determine the mean 
elevation of the ocean surface above the bed of the channel. 

We may write for the elevation of the surface water of the ocean 
above the bed of channel, 

H+h=a( l+a sin 2;t} x=O, (196) 

where 1-1 is the depth of water in the channel at points so remote from 
the mouth that the disturbances of the ocean are not felt, a is the 
elevation of the mean level of the surface waters of the ocean above 
the channel bed, a the ratio of the half amplitude of the tidal oscilla­
tions to the elevation, a, and T the period of the tides. Using eq 
171, we obtain for the arbitrary function,j(h), in eq 193, 

-j(h)= Iglli(I+~~)T sin-1 H+h-a, (197) -v 2 H 27f' aa 

and for the free surface of water in the channel, 

x=.JgH(I+~ !)(t-:!'" sin-1 H+h-a). 2 H 27f' aa (19S) 

After a certain length of time, the transients will die out and the 
total volume of water entering the channel during each period T will 
be zero; that is, 

SoT U(H+h)dt=O, x=O. (199) 

This condition permits the determination of H. 
eq 199 gives, substituting for w from eq 191, 

Since U(H+h)=wh, 

foT (h+i ;;~t= O. 
Introducing II, from eq 196 and integrating, we obtain 

3 (H-a)2 3 a2 a2 
H-a- 4 H SR' 

(200) 

which can be simplified further since H-a is a small quantity: 

3 H-a=g «a. (201) 
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This is the desired relation. The mean level of the surface water 
of the ocean is below the level of the water in the horizontal channel 
at large distances from the mouth by the small amount (3/8) a2 a. 

15. WAVES DUE TO SUDDEN INCREASE OF DISCHARGE 

Let us examine the case in which a positive intumescence of infinite 
length is produced in a body of still water in a channel when a dis­
charge of constant value is established at the entrance. After the 
initial disturbances have died down, the wave is of constant elevation, 
h, except in the anterior portion, and the front of the wave moves 
with a constant velocity, w. As the curvature of the layer represent­
ing the intumescence is negligible at points sufficiently removed 
from the front, the velocity of propagation of the wave front must 
be from eq 191, 

(202) 

since h/H is small. 
Bazin's experiments verify this formula closely. From his data 

[6, p. 539-541], velocities were computed and were compared with the 
theoretical values. The mean values of hand H at the two points of 
the channel between which the wave traveled when its elapsed time 
was observed were substituted in the formula. The method of 
obtaining h from the data is described on page 96. 

The data gave sufficient information to make 37 comparisons. 
Observations on eight intervals were rejected, since the observers 
reported that the wave had completely broken and reported h as zero. 

The average error of the theoretical values was -0.98±2.71 per­
cent, where the ± term indicates the standard deviation. These 
values were plotted as a function of hjH in figure 6, in an attempt to 
discover a systematic variation. The lines connect observations on 
the same wave in different intervals. The results were essentially 
negative, although there is a suggestion of an error changing in sign 
from minus to plus, as hjH increases. It will be noted that the for­
mula applies equally well to unstable waves on the point of breaking 
as well as to those having a definite hdh ratio of 3/2. (See fig. 9.) 

St. Venant, using the principle of momentum, has derived for the 
celerity of this type of wave, 

( 3 h 1 h2) 
w2-gH 1+-·- +--- 2H 2[-P' (203) 

an expression which reduces to eq 202 when the last term is neglected. 

16. EFFECT OF CHANNEL VELOCITY DISTRIBUTION 

We may now consider a discharge wave superposed on a current 
and determine the effect of the velocity distribution in the current on 
the celerity of the wave. 

We shall assume (1) that the profile of wave does not deform dur­
ing the motion and (2) that at the ~wo sections, each at a distance 8 

from the wave front, the velocity distributions are characteristic of 
the channel. (See fig . 7.) Let the mean velocities at these sections 



92 Journal of Research of the National Bureau of Standards [Vol. t4 

a: 
o 
0:: 
0:: 
W 

I­
Z 
w 
U 
0:: 
W a. 

+4 

+2 

o 

2 

4 

6 

o 

~ 

,J 

0 

( 

cV 

q 

~~ ~I 
~ \ 

1 -r '1 

~V 
0.20 .b.. 

H 

--

~ ? 
a 

I 
\ 

1\ 
0-- STD 

DEVIATION 

I 9 

V l--JI/ MEAN 

/;'/ 
KI STD 

0 DEVIATION 

.40 .60 .eo 

FIGURE 6.-Percentage of error of eq 202 compared with experiment, as a function 
of the relative height. 



Keuleuan] 
Patterson Irrotational Translat'Wn Waves 93 

be Ut and U2, the local velocities at any height z be Ut and U2, and the 
depths Hand H + h. We consider the body of water included at the 
instant t between the sections AB and DO. The distance between 
AB and the section containing the wave front is s; the distance be­
tween DO and the wave front is s+w~t, where w is the celerity of the 
wave, and M an interval of time. The momentum of the body of 

-UI 

B c 
(0) 

-U. 

(b) 

FIGURE 7.-Diagram illustrating the effect of channel velocity distribution. 
(a) Configuration at time t,; (b) Configuration at time t,+At. 

water thus delimited may be denoted by Mz+M2' where M2 is given 
by 

fll 
M2=pw~tJo u2dz=pw~tU2H. 

At the instant of time t+~t, the particles originally at AB have 
reached the position A' B', and the particles originally at DO have 
reached the position D'O'. (See fig. 7.) The liquid contained 
between A'B' and D'O' has the momentum Mz+M'd-M'2' where 

fIlH 
M~=p Jo (w~t-Ut~t)Ul dz, 

and 

M;=p foIl ~2~t d~. 
Introducing the BOU8sinesq number, 1/, the coefficient of the excess 

of the mean of the velocities squared over the square of the mean 
velocity, which we assume to be unaffected by depth, 
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and 

We have, therefore, 

M; = PUl (H + h)wl1t-p Ul2 (H +h) (1 + 1]) I1t, 

and 

M;=p(l +1]) U22 Hl1t. 

Thus the increase of momentum of the body of water under con­
sideration during the time interval !:i.t is 

Mz+ M/ + M/ - (Mz+ M 2) = pl1t[Ul (H +h) (w- Ul) + 
U2H(U2-w)-1]{ Ul2 (H+h)- U22H}]. (204) 

We may eliminate Ul by the equation of continuity, 

Ul(H+h)=U2H+wh, (205) 

and obtain for the rate of change of momentum: 

(206) 

neglecting h/H with respect to unity. 
The force which produces this rate of change of momentum is the 

difference between the total hydrostatic pressures acting on the 
sections AB and DC, which is 

pgHh[1+2~1 (207) 

Equating 206 and 207, and assuming that the effect of the 1] term 
is small, we obtain 

or 

This is the expression for the celerity of a discharge wave or a de­
pression wave, which takes into account the height, h, and U2, the 
channel velocity distribution. For a wave moving downstream the 
plus sign holds; for a wave moving upstream the negative sign holds. 
For a positive wave h represents an elevation and is positive; for a 
negative wave h represents a depression and is negative. 

Equation 208 can be further simplified when the approximation 
w= u2 ±..fijH is used. Accordingly, we obtain for a wave moving 
downstream 

I 

I 

· 1 
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u. "H( 3 h)( 71[U22 2U2 J) w= 2--Vgn l+iH 1+2 gH+..fijH , 

and for a wave moving upstream 

95 

(209) 

(210) 

It is now seen that the effect of velocity distribution is appreciable 
only when the ratio U22/gH is larger than unity, and for the ordinary 
"<lase, in which U22/gH is a small fraction, this effect is negligible. 

17. INITIAL WAVES 

Bazin observed that in waves of constant discharge moving in still 
water, the initial part of the wave is made up of a series of relatively 
short, alternately convex and concave, intumescences. (See fig. 8.) 

-------------------------------------~-----

FIGURE S.-Initial wave as observed by Bazin. 

The foremost intumescence is convex, and its crest is at a higher lever 
than that of the constant elevation of the free surface of the main 
intumescence. Bazin refers to this initial part as the init'ial wave. 
The mechanical basis of the phenomenon was discussed by Boussinesq 
in the following manner, which is similar to the treatment in section 
V-12. 

At the head of the intumescence it is not possible for the depth to 
equal the depth of the main layer. The anterior part of the wave 
being convex, the curvature ()2 h/() x2 is negative and according to eq 
112, 

(112) 

the velocity of propagation there is less than that part of the layer 
which follows. This layer moves with a greater velocity and thus 
overruns the anterior portion of the wave until the augmented height 
compensates for the effect of the negative curvature. This explains 
the formation of the initial wave. It is known that the height of the 
initial wave tends to oscillate around a height equal to 3/2 of the 
height, h, of the long layer. The height of the initial wave will increase 
until the velocity of propagation of its center of gravity becomes 
sensibly equal to that of the layer. But the form of this wave indi­
cates that the center of gravity, 71, is to be placed at 1/3 of its height, 
hai and, on the other hand, eq 127, which is applicable in the present 

198881-89-7 
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case, ~ves f~r the square of the velocity C?f the propagation, g(H+ha). 
Equatlll.g ~hIS to the square of the velocIty of the layer, g(H+3hj2), 
eq 202, It IS seen that ha=3h/2. 

The ratio h1/h=3/2 has been investigated by Bazin [6]. The ex­
periments were made in a rectangular channel having a bottom slope 
of 1.5 in 1,000. The percentage change in depth being the least at 
the deep end, where the waves were generated, the motion at this end 
will nearly approximate flow in a channel of uniform depth. Calcu-
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FIGURE 9.-Relative height of the head of an initial wave as a function of the relative 
depth of the main layer. 

lations made by the authors from data taken at his end of the channel 
[6, p. 542] give h1jh= 1.61 ±0.18. Bazin [6, p. 550] considers 3/2 
to be the approximate value. 

Inasmuch as the waves are found to break as they ascend the 
channel if the original depth of the water is small enough, it is instruc­
tive to consider this aspect of the phenomenon. Observations were 
taken on the wave at four points in the channel. The complete 
data [6, p. 539-541] have been employed to plot hdh as a function of 
the dimensionless ratio h/H, the relative height of the wave layer. 
The average value of h was utilized in order to approximate the 
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steady height of the layer, eliminating the undulations behind the 
head of the wave. These data are represented in figure 9. The 
circles represent observations on waves which have no tendency to 
break; the squares, those in which breaking is imminent; the triangles, 
those in which breaking has occurred. An average of the 33 points 
with circles gives ht/h=1.51±0.17. Although the data do not pro­
vide a clearly defined function, the following conclusions seem justified. 

1. As would be expected, for increasing h/H the waves become 
unstable and eventually break. The critical value is about 0.275. 

2.. The value hdh= 1.5 is a reasonable approximation in the stable 
regIOn. 

3. The ratio ht/h definitely decreases with increasing h/H, outside 
the stable region. 

Recent experiments [2, p. 158-159] indicate that hdh is a function 
of h/H in the stable region, increasing from 1 to 2 at the critical 
value 0.28, then decreasing asymptotically toward unity in the 
unstable region. 

Where the initial wave joins the main layer, the condition of con­
tinuity of slope requires a concave curve, that is, a curve for which 
02 h/ox2 is positive. The positive curvature would entail a velocity . 
of propagation greater than that of the layer as a whole, unless h is 
less than in the remainder of the layer. Hence a depression is pro­
duced immediately following the initial wave. 

Continuing the argument, it is seen that the initial wave is followed 
by convexities and concavities all above the undisturbed surface. 
Because of the internal friction of the liquid, the hei~hts of these 
convexities and concavities decrease in the posterior dIrection until 
they become insensible. The inflexion points where 02 h/ox2 vanish 
are in a plane containing the free surface of the main layer. 

18. FAVRE'S EXPERIMENTS ON THE UNDULATIONS IN A POSITIVE 
SURGE 

In 1934, Favre [2] made an elaborate series of experiments on trans­
lation waves. Several of these experiments were undertaken to 
investigate the undulations composing the head of a discharge wave 
[2, ch. IV]. The experiments established the following facts: 

1. The undulations are not formed immediately, but require a 
certain amount of time to establish themselves. 

2. After the undulations are formed, they are of similar size and 
shape. 

3. The final configuration is a stable one. 
4. The height of the undulation at x is independent of e, the time 

in which the flow is established, for a considerable range of values of 
x, provided 8w/x<0.2. In other words, within certain limits, a dis­
charge which is not created instantaneously will behave like a theo­
retically sudden increase of flow. 

5. The wave length of the undulations depends only on the mean 
height of the layer above the primitive surface. The former decreases 
as the latter increases. 

These results suggest that the undulations composing the head of 
a discharge wave have a very general character, in the same sense 
that the solitary wave has a general character. Within certain limits, 
they are formed independently of the rate at which the discharge is 
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increased, and depend only on the final discharge rate; they assume 
a stable configuration after a short initial interval, that is, they are 
propagated without change of form. In section V-9, it was mathe­
matically demonstrated that the only wave propagated without change 
of form is the cnoidal wave, which includes the solitary wave as a 
special limiting case. It is also true that the solitary wave is a special 
case of the discharge wave from the physical point of view. The 
solitary wave may be formed by a sudden increase of discharge which 
soon decreases to zero, while the discharge wave is caused by a sudden 
increase of discharge which is maintained. All these considerations 
inevitably suggest the question: Are the undulations composing the 
head of a discharge wave cnoidal waves? 

A comparison of figure 4 with Favre's figure 48 l2, p.. 156] supports 
an affirmative answer. The wave profiles are very similar. However, 
there is a more significant comparison which may be made, namely, 
one between the theoretical velocity of propagation, We, and that 
observed by experiment. This is accomplished by using eq 167 and 
170. From the values of 1/1 and "X/H given by the experimental data, 
we determine 1/3, k, and 1/2 by eq 163, 162, and 158, and then calculate 
w. from eq 170. Equation 191 written in the form 

- ( 3 h') w= ...jyH' 1 +4' H' , (191) 

is used to compute w. This equation, in the form of eq 202, has already 
been verified in section V- 15. In order to calculate Uo, we Wlite 

wh'= Uo(H'+h') , (211) 

where h' is the average height of the layer, and H' is the undisturbed 
depth of the liquid. It should be noted that this H' is different from 
the II in eq 170. Uo is computed from eq 211 with the assistance of 
eq 191. From eq 167 we have we=w- Uo• These two values are 
compared in the following tables for nine nonbreaking waves. Table 1 
gives the experimental data from Favre [2, p. 157], and table 2 gives 
the results of the calculations. The explanation of the symbols is 
clearly indicated in figure 10. 

I 
H' 1Io= 0 

1 
FIGURE lO.-Diagram illustrating the notation used in the studies of the positive 

surge. 



Kettleua'll] 
PtUteTBOfI Irrotational Translation Waves 

TABLE l.-Favre's ezperimental data on positive surges 

Undls- Mean Crest height, h·, 

Experiment No. turbed height M ean 
dppth, oClgler 1st 2d 3d 4th h· 

H' wave wave wave wave 

------------
em em em em em em em 4 _______ ___________ __________ 20.55 2. 211 3.90 3.60 ---5:00- -------- 3. 75 

~---- ------------ -- ------ ---- 20.22 3.08 6.00 6. 00 - -- ----- 6.97 8 ______ _____ ____________ ___ __ 
20. 19 4.08 8. 10 8.00 ------- - -------- 8.00 

10 __ ___ ______________________ 
20.38 4.84 9.80 8. 70 9.90 9.47 12 ___________________________ 
20.57 5.72 11.70 11.40 10. 90 11.33 21. __________ __ ________ ______ 
10.78 0.86 1.30 1.20 1.00 1.05 1.14 

22 ___________________________ 
10.73 1.50 2. SO 2.70 2.S5 2. 70 2.76 23 ___________________________ 
10.79 2.48 4. 95 4. 70 4. 70 4.46 4.70 24 ___________________________ 
10. 74 3.02 6.25 6. 10 5.70 6.10 6. 04 

99 

Wave h'/H' length 

----
em 

222 0.111 
194 .152 
192 .202 

185 .238 
176 .278 
U9 . 080 

101 .140 
91 . 230 
86 .281 

TABLE 2.- Velocity comparisons between cnoidal waves and positive surges 

Per-

Experl- hl=mean 
cent-

H=H'+h' >.IH m 112 112 sin-III' '" U, ",-Uo "" a!(e of ment No. h·-h' dIffer-
ence 

--- --------------------
em em em/ser em/sec em/ue em/Bee 4 ___________ 1.46 22.84 9.72 0. 064 0.052 0.142 4S.6° 153.8 15.4 138.4 139.2 +0.58 6 ______ __ ___ 2.S9 23.30 8.33 .124 . 094 . 197 55.4° 156.9 20.7 136.2 136.7 + .37 8 ___________ 3.97 24.27 7.91 .164 . 11S .222 58. So 162.0 27.2 134.8 137.9 +2.30 

10 _________ _ 4.63 25.22 7.34 .184 .126 _ 257 58.1° 166.7 32. 0 134. 7 137.9 +2.38 12 __________ 
5.61 26.29 6.69 .213 .157 .307 57.5° 171.7 37.4 134.3 135.2 +0. 67 21. _________ 0.28 11.64 10.22 . 024 .022 .126 33.6° 109.0 8. 0 101.0 100.0 - .99 

22 __________ 
1.26 12.23 S.26 .103 .OSI .198 61. 5° 113.4 13.9 99.5 98.7 -.80 23 __________ 
2.22 13.27 6.86 .167 .1211 .289 53.7° 120.6 22. 5 98.1 97. 0 -1.12 

24.0 ________ 3. 02 13.76 6.25 .219 .166 .349 55.4° 124.3 27. 3 97. 0 94.5 -2.58 

The average percentage error of We as compared to W- Uo is +0.09 
± 1.53, where the ± term indicates the standard deviation. This 
is further evidence that the undulations in the head of a discharge 
wave are cnoidal waves. Inasmuch as these experiments were not 
intended to shed light on this particular problem, other points of 
verification cannot be easily attempted. An experiment made especi­
ally to investiga,te this problem would be more suitable. 

19. THEORY OF BREAKERS 

As was indicated at the end of section V-S, there is a limiting 
height for a solitary wave, dependent on the depth of the liquid in 
the channel. If an attempt is made to form a higher wave, it breaks 
at the crest. If w is the velocity of propagation of the solitary wave, 
and Ul is the absolute velocity of the liquid particle at the apex, that 
is, at the point h=hh it is evident that the limiting height is repre­
sented by the relation 

(212) 

since if Ul > W, the particle at the crest of the wave is traveling faster 
than the wave itself, and consequently the wave is breaking. 
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Equating eq 112 and 143 and neglecting terms in (hl/HF or higher 
powers, we obtain for the curvature at the apex of the wave 

(~: ~)h=hl=-~ ~. 
Substituting this value in eq 116, putting z=H+hl and neglecting 
terms of the order of (h'/H)4, the resulting velocity of the particle is 

Ul=.JgH{~+K~)l (213) 

Putting this value and that from eq 143 in eq 212, the limiting 
height is a root of the equation 

'i1+~('11f=.J1+t· (214) 
The only posit ive real root of this equation is htlH=0.731, and this 
is the limiting height of the solitary wave. 

This figure is confirmed reasonably well by experiment . Calcula­
tions made by the authors from Bazin's data [6, p. 510-514] give 0.71. 
Scott Russell [7, p. 352; 8, p. 425, 426, 445, 450] surmised that the 
wave broke when its height was approxinlately equal to the depth, 
and McCowan [13, p. 56] states that for his experiments 0.75 is a 
closer approximation for the relative elevation at the breaking point. 

The above result may now be applied to the ultimate breaking 
of waves rolling in on a gently sloping bottom. Assuming that the 
waves are solitary, we obtain from eq 148 the following limiting 
condition involving the volume Q: 

or 

3Q2 hi 
16H4= H=0.73, 

H = 0.71..jQ. (215) 

This gives the depth at whlch the waves will break as a function of 
the volume. If the waves travel up a channel with a sloping bed, the 
larger waves break first, and the depths at which they break is pro­
portional to the square root of their volume. 

The authors express their appreciation to Herbert N. Eaton of the 
National Bureau of Standards for his valuable criticisms and review 
of the paper . 
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