U. S. Department of Commerce

RESEARCH PAPER RP1251

Part of Journal of Research of the National Bureau of Standards, Volume 23, October 1939

X-RAY STUDIES OF COMPOUNDS IN THE SYSTEM PbO-SiO₂

By Howard F. McMurdie and Elmer N. Bunting

ABSTRACT

X-ray diffraction powder patterns were made on various compositions in the system $PbO-SiO_2$ in order to check the presence of certain reported compounds. It was found that three binary compounds exist: $PbO.SiO_2$ (same as the mineral alamosite), $2PbO.SiO_2$, and $4PbO.SiO_2$. The latter occurs in at least two polymorphic forms. The powder patterns of the alpha and beta forms of PbO are also given.

CONTENTS

		Trepo
I.	Introduction	543
II.	Materials and methods	544
III.	Results and discussion	544
IV.	Summary	547
V .	References	547

I. INTRODUCTION

Considerable work has been done by various investigators on the system PbO-SiO₂ [1, 2, 3, 4, 5, 6].¹ These workers agree on the existence of the compounds 2PbO.SiO₂ and PbO.SiO₂. Beyond this there is little agreement. One worker [6] finds the compound PbO.-2SiO₂. Another [5] suggests the existence of the compounds 3PbO.-SiO₂ and 3PbO.2SiO₂. The last compound would correspond to the natural mineral barysilite.

Valenkov and Poray-Koshitz [8] studied the system with the X-ray, making powder diffraction patterns of various compositions. They concluded that 3:2, 4:1, and 3:1 compounds did not exist. Mixtures at the 4:1 composition gave, according to them, a pattern of a mixture of β PbO and 2PbO.SiO₂.

Geller, Creamer, and Bunting [7] investigated the system by thermal studies, optical investigation, and thermal expansion tests, and came to the conclusion that three binary compounds existed: PbO.SiO₂ (corresponding to the natural mineral alamosite), 2PbO.SiO₂, and 4PbO.SiO₂. The last compound was thought to have three crystal modifications: an alpha form stable above 720° C and melting incongruently at 725° C to PbO and liquid, a beta form stable between 720 and about 140° C, and a gamma form stable below 140° C. The beta to gamma inversion was found to be so rapid that all samples of the beta form which were prepared changed quickly to gamma at room temperature. Heating curves and thermal-expansion measurements indicated the occurrence of the change at 140° C. It was found that the samples of α 4PbO.SiO₂ crystallized between 720° and

¹ Figures in brackets indicate the literature references at the end of this paper.

Demo

544 Journal of Research of the National Bureau of Standards [Vol. 28

 725° C could be quenched successfully to produce the alpha form at room temperature.

The present study was made as a supplement to the work of Geller, Creamer, and Bunting to check by X-ray patterns the compounds found by them.

II. MATERIALS AND METHODS

The samples of the binary compounds were made, using the methods employed in the previous work. The sample of $\alpha 4PbO.SiO_2$ was prepared at 723° C and quenched after holding for 18 hours. The $\gamma 4PbO.SiO_2$ was prepared by first crystallizing the compound for 18 hours at 710° C in the β form and then cooling below 140° C to obtain the γ form. A sample of the natural mineral alamosite was obtained from the United States National Museum, Washington, D. C.

The α PbO (massicotite) was a sample of sublimed "litharge." The β PbO (lithargite)² was prepared by precipitation from a hot solution of 15 N KOH [9].

The X-ray patterns were made in circular cameras with a radius of approximately 5.70 cm. The samples were mounted on fine glass rods with vaseline and rotated during the exposure period of about 17½ hours. The radiation used was from a gas type copper anticathode X-ray tube, operating at about 45 kv and 4 ma. The β radiation was filtered out with a thin sheet of nickel foil placed over the entrance to the camera slit.

III. RESULTS AND DISCUSSION

The diffraction data obtained on the two forms of PbO, on two forms of $4PbO.SiO_2$, and on $2PbO.SiO_2$ and $PbO.SiO_2$ are given in tables 1 to 6.

Line	Inten- sity	d	Line	Inten- sity	đ
		A	10 A		A
1	ww	5.89	17	8	1.463
2	88	3.01	18	20	1.397
3	m	2.93	19	m	1.366
4	. 8	2.72	20	m	1.352
5	8	2.35	21	w	1.319
6	1020	2.26	22	m	1.289
7	2020	2 19	23	m	1 281
8	. 8	1.98	24	m	1.241
9	w	1,950	25	m	1.235
10	8	1.830	26	m	1, 196
11	8	1.775	27	m	1, 181
12	. 8	1.707	28	m	1.165
13	8	1, 595	29	m	1, 132
14	20	1.575	30	m	1, 113
15	8	1 518	31	8	1 094
10	0	1 500	20	m	1 005

TABLE 1.—Powder diffraction pattern of a PbO

[ww=very weak; w=weak; m=medium; s=strong; ss=very strong]

² E. S. Larsen [14] showed the identity of the two natural minerals of PbO with the two artificial forms. In that article he proposed that "massicot" be used for the tetragonal (β) form and "litharge" for the orthorhombic (α) form. In a later paper [11] he proposed interchanging the names, which conforms to current practice.

McMurdie Bunting]

X-Ray Studies in the System PbO-SiO₂

TABLE 2.—Powder diffraction pattern of β PbO

[ww=very weak; w=weak; m=medium; s=strong; ss=very strong]

Line	Inten- sity	d	Line	Inten- sity	đ
1 2 3 5 6 7 8 9 10	ww 88 m m ww ww m 8 8 8 8 8	A 5.07 3.10 2.79 2.49 2.11 2.06 1.97 1.862 1.667 1.530	15 16 17 18 19 20 21 22 22 23 24_	w s w m w w w w w w w w w w w w w w w w	A 1. 248 1. 218 1. 193 1. 146 1. 123 1. 075 1. 060 1. 038 1. 020 . 970
11	ww	1.432	25	w	. 946
12 13 14	10 1010 1010 1010	$ 1. 396 \\ 1. 341 \\ 1. 278 $	26	m	. 935

TABLE 3.—Powder diffraction pattern of α 4PbO.SiO₂

[w=weak; m=medium; s=strong; ss=very strong]

Line	Inten- sity	đ	Line	Inten- sity	d
1	an	A	12		A 2 010
9	w	2 26	10	110	1 059
4	w	0.00	14	w	1. 900
ð	- 88	3. 10	10	w	1. 924
4	8	3.03	16	m	1.891
5	10	2.91	17	20	1.854
6	- m	2.83	18	m	1.800
7	m	2.70	19	m	1,790
8	w	2.49	20	m	1.708
9	w	2.31	21	8	1.676
10	117	2. 245	22	10	1.635
11	10	2 170	23	20	1 610
19	20	2 120	24	m	1 552

TABLE 4.—Powder diffraction pattern of γ 4PbO.SiO₂

[ww=very weak; s=strong; ss=very strong; w=weak; m=medium]

Line	Inten- sity	đ	Line	Inten- sity	d
	d no	A	an all tails bedater an	13. 222	A
1	ww	3.69	12	w	2.02
2	2020	3.48	13	w	1.958
3	8	3.13	14	m	1.897
4	88	3.02	15	m	1.853
5	w	2.93	16	8	1.819
6	20	2.83	17	20	1.730
7	m	2.72	18	w	1.676
8	w	2.65	19	m	1.610
9	w	2.55	20	m	1.563
10	w	2.47	21	m	1.539
11	w	2.31	22	w	1.486

175371-39-6

546 Journal of Research of the National Bureau of Standards [Vol. 23

TABLE 5.—Powder diffraction pattern of 2PbO.SiO₂

Line	Inten- sity	d	Line	Inten- sity	d
	~	A	19		A
1	111	9.80	10	ww	2.14
2	111	0.97	14	ww	2.10
3	w	3.71	15	m	1.99
4	w	3. 55	이 공항 영상 가지 않는 것이 같은 것을 얻을 것 같아.		
5	88	3. 21	16	w	1.93
승규는 것 이 수밖님께서 집에 들어야 한다. 것 같아요.			17	m	1,891
6	88	3, 11	18	m	1.855
7	8	2.98	19	20	1 790
8		2.78	20	20	1 750
0		9 56	40	w	1.100
10	0	2.00	.01		1 700
10	w	2.44	21	w	1. 700
			22	m	1.635
11	w	2.36	23	8	1. 597
12	w	2. 22			

[m=medium; w=weak; ss=very strong; s=strong; ww=very weak]

TABLE 6.—Powder diffraction pattern of PbO-SiO₂ (Alamosite)

· Line	Inten- sity	d	Line	Inten- sity	d
		A			A
1	_ m	5.82	11	w	2.52
2	. 8	3. 58	12	w	2.47
3	. 8	3.36	13	w	2.34
4	_ m	3. 24	14	m	2.285
5	<i>m</i>	3.02	15	w	2.205
6	w	2.89	16	w	2.135
7	_ m	2.78	17	ww	2.080
8	_ w	2.73	18	ww	2.050
9	w	2.66	19	w	2.025
10	_ w	2. 59	20	m	1.928

[ww=very weak; w=weak; m=medium; s=strong]

The diffraction patterns of the α and β 4PbO.SiO₂ are similar, but show significant differences. It can be seen that neither of these patterns could be the result of a mixture of β PbO and 2PbO.SiO₂, as suggested by Valenkov and Poray-Koshitz. Geller and Bunting [16] noted that in mixtures of similar composition, at temperatures considerably below the liquidus, PbO would sometimes crystallize out even though it was not the primary phase. To crystallize 4PbO.SiO2 in either form required that the composition be held at temperatures near the top of their stability ranges at least overnight.³

Thus, if a melted mixture were cooled before the 4:1 compound formed, PbO and $2PbO.SiO_2$ might result. The modification which was formed would presumably depend on the temperature at which the PbO first crystallized. Therefore, rapid cooling might reduce the temperature of the liquid below that of the α to β PbO inversion before crystallization could take place.

The α to β PbO inversion temperature is not agreed on by investigators. Cohen and Addink [12] report the temperature as 488.5° C. Other values reported are 530° C [13] and 587° C [15]. The entire liquidus curve of this system for compositions in which

PbO is the primary phase lies above 725° C. An X-ray pattern of a

³After completing this study, we note that Ernst Kordes [17] confirms the existence of 4PbO.SiO₂. He also prepared 3PbO.2SiO₂ crystals, but we have done no additional work to obtain it.

McMurdie Bunting

mixture of 97.5 percent of PbO and 2.5 percent of SiO₂ held at, and then guenched from, 740° C indicated that α PbO was present.

The inversion from α to β PbO would appear to be very sluggish. Geller, Creamer, and Bunting [7] obtained no breaks in cooling curves made with α PbO. However, the inversion from β to α PbO proceeds rapidly [15].

The α and β PbO patterns check within experimental error the results of the work of Darbyshire [10]. He stated that αPbO (yellow, massicotite) was orthorhombic with a=5.46 A, b=4.72 Å, and c=3.86 A. β PbO (red, lithargite) was tetragonal with a=3.97 A and c=5.01 A.

A diffraction pattern of natural alamosite was also made. While Geller and his coworkers had found the optical properties of prepared PbO.SiO₂ very similar to alamosite, the X-ray patterns show conclusively their identity.

IV. SUMMARY

The X-ray examination of compounds in the system PbO-SiO₂ indicates the existence of PbO.SiO₂, 2PbO.SiO₂, and 4PbO.SiO₂, the last in at least two crystal modifications. The natural mineral alamosite was found to be identical with PbO.SiO₂.

V. REFERENCES

- [1] H. C. Cooper, L. I. Shaw, and N. E. Loomis, Am. Chem. J. 42, 461 (1909).

- H. C. Cooper, L. I. Snaw, and N. E. Loomis, Am. Chem. J. 42, 461 (1909).
 S. Hilpert and P. Weiler, Ber. der deut. keram. Gesell. 42 (III) 2969 (1909).
 S. Hilpert and R. Nacken, Ber. der deut. keram. Gesell. 43 (II) 2565 (1910).
 H. C. Cooper, E. H. Krause, and A. A. Klein, Am. Chem. J. 47, 273 (1912).
 K. A. Krakau and N. A. Vachrameev, Keramica. i Steklo 8 (1) 42 (1932).
 Felice de Carli, Atti II congr. naz. chim. pura applicata 1141 (1926).
 R. F. Geller, A. S. Creamer, and E. N. Bunting, J. Research NBS 13, 237 (1924). (1)34); RP705. [8] N. N. Valenkov and E. A. Poray-Koshitz, J. Phys. Chem. (USSR) **6**, 756
- (1935).

- [9] Appleby and Reid, J. Chem. Soc. 121, 2129 (1922).
 [10] J. A. Darbyshire, J. Chem. Soc. 211 (1932).
 [11] E. S. Larsen, U. S. Geol. Survey Bull. 679 (1921).
 [12] E. Cohen and N. W. H. Addink, Z. Physik. Chem. A168, 188 (1934).

- [13] E. Rencker and M. Brassiere, Comp. rend. 202, 765 (1936).
 [14] E. S. Larsen, Am. Mineral 2, 18 (1917).
 [15] H. C. Germs, De thermische analyse van loodsulfaat chromat, molybdaat en van wolframaat en van hum binaire combinaties (Groningen, 1917)

 \bigcirc

- [16] R. F. Geller and E. N. Bunting, J. Research NBS 17, 277 (1936) RP911.
- [17] Ernest Kordes, Z. anorg. allgem. Chemie 241 (1), 1 (1939).

WASHINGTON, July 14, 1939.