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ABSTRACT 

Physical data intended to represent the variation of a function of a single 
variable may be actually mean values of the function over interval s of the argll­
ment. Formulas for approximatin g to the values of the functi on from such 
data and examples of their use arc presented in this paper. These fOl'mulas have 
been applied to p roblems of strain distribution in the Eng ineering Mechanics 
Section of t he National Bureau of Standards. 
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I. INTR ODUCTION 

Methods of measurement to determine the variation of a function 
with its argument are frequently such that only the mean values 
of the function over intervals of the argument are obtained. For 
example, a strain gage measures the total extension over the gage 
length and the mean strain is computed by dividing the extension 
by the gage length. If the variation of strain along the gage length 
is not nearly linear, the measured value may differ considerably from 
the strain at the middle of the gage length. This difference may be 
reduced by the use of a shorter gage length but as a result the sensi­
tivity of the gage would be decreased and the gage would be more 
difficult to construct. 

Another example is the measurement of heat capacity; the heat 
capacity, dQ/dt, of a body at temperature t is usually approximated 
by l:J.Q/l:J.t, where l:J.Q is the quantity of heat required to change the 
temperature of the body by an amount l:J.t, where the interval l:J.t 
includes t. 

A method of correcting such data was obtained by Strutt [1].1 
Strutt's formula is equivalent to the first correction-term of eq 
12 in this paper. It will be seen that this is inadequate in many 

I Figures in brackets indicate the literature references at tbe end of this paper. 
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cases. An analogous method for cases where the function is defined 
for discrete values of the argument only is King's formula for quin­
quennial sums [2]. 

Runge [3] has proposed a method of correcting observed spectral­
energy distributions which has been applied by Stang [4], and by 
Runge to some data of Paschen. In this case the observed intensity 
is a double integral of the desired intensity, the error arising from the 
finite width of both the collimating slit and the bolometer strip. 
Runge's formula is not applicable to the problem considered here. 

The statistical data which specify frequency distributions are often 
obtained in an approximate form analogous to the cases of strain and 
heat capacity. Thus, in a table of heights of individuals, the entry 
corresponding to 70 in. might be the number of individuals whose 
heights lie between 69}~ and 70}~ in. A method of computing the 
"true" moments of the distribution from the "rough" moments ob­
tained from the data has been given by Sheppard [5]. Sheppard's 
work is the closest approach to a solution of the present problem found 
in the literature, but the method is in general not directly applicable. 

II. DERIVATION OF THE FORMULAS 

1. CENTRAL· DIFFERENCE FORMULA 

Suppose that it is desired to determine the values ofj(x) correspond­
ing to successive values of x differing by w, and that the method of 
measurement is such that the result, F(x), is the average value ofj(x) 
over the interval g from x-g/2 to x+g/2. Then 

1 i Z+~ F(X)=k- 2 j(x)dx, w kw 
X-T 

(1) 

where k=g/w. This may be written symbolically as 

F( ) _~ ~ j(x) 
X -kw Uk D ' (2) 

where D=dJdx and Ok is defined from 

odl(x) = Y{ X + k;:)_1/t( x _ k;:} (3) 

Eq 1 may be written 

D 
j(x) =kw ~ F(x). (4) 

It is desired to calculatej(x) in terms of F(x) and its successive central 
differences, onF(x), defined by repeated application of 

on1/t(x) = 1l[lln - l 1/t(x)] 

to eq 3 with lc = 1. The operators Ilk and D in eq 4 are thus to be re­
placed by equivalent expressions in terms of the operator Il. These 
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expressions are obtained by expanding the right-hand side of eq 3 in 
Taylor's series about x, thus: 

kWD kWD 
ok1f;(x) =e 2 1f;(x)-e-Y 1f;(x) , 

or 

(5) 

from which, with k= 1, 

D=~ sinh-I ~ . 
w 2 (6) 

The substitution of D from eq 6 into eq 5 gives 

ok = 2 sinh (Ie sinh-I ~} (7) 

~eplacement of D and Ok in eq 4 by the values given in eq 6 and 7 
gives 

j(x) = . (. o)F(X). 
smh k smh- 12 

Ie sinh-I~ 
(8) 

This is in the form j(x) =p cschp F(x), where p=1e sinh- l (o/2) , and by 
expansion of p csch p in Maclaurin's series may be written 

. _ [ "'(_1)n(2211-1- 1) ( •. -li)2I1JI 
j(x)- 1 +2~ (2n) ! B211 _ 1 k smh 2 F(x) , (9) 

where B2._1 are the successive Bernoulli's numbers.2 Expansion of 
sinh- l (o/2) in Maclaurin's series in eq 9 gives the double series 

{ '" (2211-1- 1) 
j(x) = 1 +2~(- I)n (2n)! B 2n- 1 

['co( '" (2m) ' )J2"} 2 l+n~(- 1)nt(2mm!) 2(2~+ I) (0/2) 2m F(x) , (10) 

or 

When 1e = 1, which is the case when the intervals g are contiguous, 
eq 11 reduces to 

j(x) =( 1- 214°2+ 6~Oo4- 7156806+ . . .)F(x) . (12) 

The numerical values of the coefficients of the first three correction 
terms in eq 11 are given for four values of k, in table 1. 

, What are bere denoted by B'n-l are sometimes denoted by Bn. 
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k -C, C, -Co k -C, C, -C, 

L . .... ... __ .. __ . ____ . 0.0417 0.00469 0.000714 3 ____ . __________ . __ ... 0.375 0.130 0.0439 
2. __ __ ____ . __ . ____ .. __ .167 .0333 .00714 4 ____ . ____ . ________ • __ .667 .367 . 101 

2.!i.DESCENDING·DIFFERENCE FORMULA 

Equations 11 and 12 cannot be used to calculate j(x) at x=b, 
where b is near a boundary of the interval of x for whichJ(x) is defined, 
or where values of x on only one side of b are accessible to the method of 
measurement, because the necessary central differences are not avail­
able. For such cases an ascending- or descending-difference formula 
may be used. It is convenient to consider the measured value F(x) 
to correspond to the initial point of the interval g=kw, so that 

1 (z+kw 
F(x)=kwJz J(x)dx, (13) 

or, symbolically, 

F( ) - 1 A J(x) 
x -kW'-'kJ)' (14) 

where D = d /dx and fj,k, the descending difference, is defined from 

fj,kif;(x) = if; (x + kw) - if; (x) . (15) 

Equation 14 may be written 

D 
J(x) =kw fj,k F(x)· (16) 

It is desired to calculatej(x) in terms of F(x) and its successive de­
scending differences fj,nF(x), defined by repeated application of 

fj,"if;(x) = fj,(fj,n-l if; (x)] 

to eq 15 with k= 1. The operators fj,k and D in eq 16 are thus to be 
replaced by equivalent expressions in terms of the operator fj,. . Equa­
tion 15 may be written 

or 
(17) 

and 
(18) 

Equation 17 and 18 give 

(19) 

and 
(20) 
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Replacement of D and Llk in eq 16 by the values given in eq 19 and 
20 gives 

log (1 + Ll)k 
J(x) = (1 + Ll)k-1 F(x) . (21) 

This is in the formJ(x)= ep~ 1F(x), where p = k log (1 + Ll ), and by 

expansion of p/(eP- 1) in Maclaurin's series may be written 

J(x) ={ 1-~ log (1 +Ll) + ~( -ll;:;f2n- I [k log (1 + Ll)pnlF(x) , (22) 

where B2n_1 are the successive Bernoulli's numbers .3 Expansion of 
log (l+Ll) in Taylor's series in eq 22 gives the double series 

{ k '" Ll m '" ( l )n+lB [ '" Ll"']2"} J(x)= 1-- L;( - 1)"'+1- +L: - , 2n- l lc2n L;(-l)m+L F(x) , 
2m = 1 m 11 = 1 (2n) . m = l m 

(23) 

(24) 

When k= l , which is the case when the intervals g are contiguous, 
eq 24 reduces to 

( 111111 ) 
J(x) = 1-2Ll+ 3 Ll2- 4 Ll3+ gLl4 -"6 Ll5+7Ll6- . .. + ... F(x). (25) 

The numerical values of the coefficients of the first six correction 
terms in eq 24 are given, for four values of k, in table 2. 

c, -c, c, -c, (:, 

---------------
1..... . .......... . ... ...................... O. 500 0.333 0.250 0. 200 0.167 0.143 
2...... ....... ... ........ . ......... .... .... 1. 000 .834 .667 .533 . 433 .360 
3.. . ......................... . ............. 1. 500 1.500 1.250 .950 .700 . 5~6 
4. ......... ................ ... . . ... . .. . .... 2.000 2.333 2.000 1. 367 .800 . 476 

III. ACCURACY AND LIMITATIONS 

The derivations of eq 11 and 24 involve the expansion of operators 
in terms of ascending powers (orders) of the symbols {j and Ll , respec­
tively. This procedure is strictly valid if the function F(x) upon 
which the expanded expression operates is a polynomial, because i5 
and Ll obey the commutative, associative, and distributive laws; and 
because, since the operation i5 or Ll on a polynomial of finite degree n 
reduces its degree by one, all differences of F(x) of order higher than 
the nth vanish. The series therefore terminates, and is exact. 

However, if F (x) is not a polynomial, the formulas 11 and 24 can be 
applied only on the assumption that F(x) may be sufficiently well 
represented by a polynomial of degree n. The error involved in such 
a procedure might be estimated by considering the remainder after 

3 See footnote 2. 
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the nth difference term of the series, but this is not possible when, as 
is usually the case, the characteristics of F(x) are unknown. The 
justification for the use of formulas 11 and 24 therefore rests on the 
fact that distributions encountered in practice are frequently such 
that they may be approximated to by polynomials of low degree. 

It is obvious that, so far as the data F(x) are concerned, the function 
j(x) is undetermined to the extent of an additive arbitrary periodic 
function of period g the average value of which over any interval g 
is zero. This indetermination can be reduced only by reducing the 
interval g over whichj(x) is averaged in the measurement. Of course, 
a lower limit to g is set by other considerations. 

The value for the interval w between observations may ordinarily 
be the same as that which would for various reasons have been used 
if the corrections were not to be applied. In cases where there are 
not enough data to provide differences of sufficiently high order, w 
can be decreased. The highest order of differences which can be 
advantageously used is determined by the accuracy of the data. The 
successive differences are increasingly affected by the errors of meas­
urement, and the differences of a certain order, and all succeeding 
differences, will consist mostly of accumulated errol'. It may be 
desirable to graduate the data F(x) before applying eq 11 or 24. 

IV. EXAMPLES 

It was thought desirable to include the following two examples 
which indicate roughly the order of accuracy to be expected from the 
use of eq 11 and 24 . For these examples hypothetical data were 
obtained by computing mean values of strain over intervals of length 
g from theoretically known strain distributions. These mean values 
represent data that would be obtained by a perfect strain gage of 
gage length g. 

1. CENTRAL· DIFFERENCE FORMULA 

Consider (fig. 1) a very long isotropic elastic strip of breadth 2b 
containing a centrally located circular hole of diameter b. The strip 
is in a state of generalized plane stress such that the stress at cross 
sections remote from the hole is of magnitude Xx ---"'T, uniform across 
the section and normal to it. The boundaries of the strip are free . 
The curve of figure 1 shows according to Howland [6] the variation of 
stress along an edge of the strip near the hole. Suppose that in a 
certain specimen the stresses along an edge were actually as given by 
the curve of figure 1 and it were desired to determine them by means 
of a strain gage. (Since the edge of the strip is a free boundary, the 
stress is proportional to the strain.) The data that would be obtained 
by the use of a strain gage of gage length (2/3)b and the results of 
applying eq 11 are shown in figure 1. It is evident that the corrected 
values conform much more closely than the data to the original 
distribution. 

2. DESCENDING-DIFFERENCE FORMULA 

Consider (fig. 2) an isotropic elastic fiat circular plate of radius a 
and thickness h~a, clamped around the edge and subjected to a 
hydrostatic pressure p = 18.8E(h4/a4 ) on one face. (E is Young's 
modulus of elasticity and Poisson's ratio is taken as 1/4.) The curve 
of figure 2 shows according to N adai [7] the variation along a radius of 
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~.-----r-----,_-------r------, 

(~Ih. I 1- --/---+-----1-----+-----1 

o given by strain gage, gage length 2/3 b 

o corrected by eq II with k = 2 

I 
l> cor re ct ed by eq II with k = 4 

o 5 = ~ 2 

> -- x 
T 

FIGUUE I. - Problem oj a tension member containing a hole. 

Er Il~:2' where Er is the normal strain in the unloaded face in the radial 

direction. Suppose that in a certain specimen the radial strains were 
actually as given by the curve of figure 2 and it were desired to deter­
mine them by means of a strain gage. If the value of the strain at the 
clamped edge were desired, eq 24 would be used with the trans­
formation x= 1-u. The data that would be obtained by the use 
of strain gages of gage lengths (2/5)a and (4/5)a and the results of 
applying eq 24 are shown in figure 2. 

The corrected values conform much more closely than the data to 

the original distribution. Furthermore, the value of Er /1;:2 at the 

clamped edge, which is inaccessible to the strain gage, is accurately 
obtained. 

3. NOTATION 

Various notations for differences are in use. Tables 3 and 4 show 
how the differences used in this paper are computed. The tables are 
arranged so that the difference corresponding to any entry, F(x), is 
on a horizontal line through that entry. 

The interval between successive values of the argument x is constant. 
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FlG n RE 2.-Problern of a circular fl at plate subjected to hydrostatic pressure. 

T ABLE 3.-Central differences 

F(z) of(x) o'F(z) o'F(x) o'F(z) 

F (zo) 
of(xll') =F(x,)-F(xo) 

F(x,) o'F(x,)=5F(x'/2) -oF(x' /') 
of (x'I') ~F(x,)-F(x, ) 0' F(x,,,) =5' F(x,)-o' F(x,) 

o'F(x,)ofJ'F(x'I' ) -o'F(x'/2) F(x,) 0' F(x,)=5F(x'I') -oF(x",) 
of(x,,,) =F(x,)-F (X2) 0' F(z'I') =5' F(x,) - o' F (X2) 

o'F(x,)=5'F(x'I' ) -o'F(x,,,) F(x,) 02 F(x,)=5F(X7/2) -oF(x'I') 
of(x,,,) =F(x,)-F(x,) o'F(x7/') :o2F(x,)-0'F(x,) 

oIF(x,)=5'F(x,,,) - . 'F(x,,,) F(x,) 02F(x,)~F(x,,,) -oF(x'I') 
of(x,,,) =F(x,)-F(x.) o'F(x,,,) =52F(x,)-0'F(z,) 

0' F(x,)=5'F(xIl /2)--o'F(x,,,) F(x,) 0' F(x,)=5 F(xII ,,)- 0 F(x",) 
of(xlI /2)~F(X6)-F(x,) iPF(zll ,,)=52F(x,) -o'F(x,) 

F(x.) 02F(XI)=5F(x13/2)-oF(XIl /2) 
OF(X13 /2)=F(x,)-F(x,) 

F(x,) 
I 

l 
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TABLE 4.- Descending diffeTences 

F(x) 1'.F(x) tJ.'F(x) 1'.'F(x) tJ.'F(x) 

F(xo) 1'.F(Xo)=F(x,)-F(xo) 1'.' F(Xo)=tJ.F(x,)-1'.F(xo) 1'.'F(Xo)=1'.'F(x,)-tJ.'F(xo) tJ.' F(xo)=tJ.' F(x, )-tJ.'F(zo) 
F(x,) tJ.F(x, )=F(x,)-F(x,) 1'.' F(1',)=tJ.F(X2)-1'.F(x,) 1'.' F(x,)=1'.' F(x,)-tJ.' F(x,) tJ.' F(x,)=tJ.' F(xl)- 1'.' F(x,) 
F(x,) 1'.P(x,)=P(x,)-F(x,) 1'.' P(x,)=tJ.F(x,)-1'. F(z,) 1'.' F(x,)=1'.' F(x,)-1'.' F(x,) tJ.'F(x,)=tJ.'F(x,)- tJ.'F(x, ) 
F(x,) 1'.F(x,)=F(x,)-F(x,) 1'.'P(x,)=tJ.F(x,)-tJ.P(x,) 1'.' F(x, )=1'.' F(x,)-1'.' F(z,) tJ.'F(x,)=tJ.3F(x,)-tJ.'P(x, ) 
F(x,) 1'.P(x,)=F(x,)-F(z.) 1'.2F (X.) : tJ.F(x,)-1'.F'(x'l 1'.' F(x,)=1'.' F(x,)-1'.' F(x,) 
F(x,) 1'.F(x,)=F(x,)-F(x,) tJ.2 F(x,)=tJ.F(x.)-1'.F(x, 
F(x,) 
F(x,) 

1'.F(x,)=F(x,)-F(x.) 
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