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MUTUAL INDUCTANCE AND FORCE BETWEEN TWO
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ABSTRACT

A formula is found for the mutual inductance and force between two coaxial
helical wires which, in addition to the well-known current-sheet formula, contains
small correction terms, one of which represents the axial components of current;
one the finite diameters of the wires; and another w,, which depends upon the
relative azimuths of the helices, arises, naturally, from the actual helical form of
the windings. The pitch of the windings may be different in the two, but each is
considered so small in comparison with the cylindrical radii that terms relatively
smaller than the square of this ratio may be neglected. The number of turns is not
necessarily an integer.
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I. INTRODUCTION

A formula of precision sufficient for absolute electrical measurements
of the mutual inductance or force between two coaxial helical wires
does not appear to have been developed to the same degree of precision
as in the case of a self inductance. The principal part corresponding
to current sheets is well known, but even if the construction were
perfect, there remain certain small correction terms which must be
found by starting with an idealization of the coils which is nearer the
actual than a current sheet. The procedure here adopted as the most
natural is to formulate the mutual inductance as Neumann’s double-
line integral and to expand the integrand in a Fourier’s series as a
function of the difference of the angular parameters of the two helices.
The constant term of this series gives the current sheet formula, pro-
vided both angular and axial components of current are included in
this term. The remainder of the series gives a correction depending
upon azimuth of the two helices, which is relatively small for such
closely wound coils as are used in practice. By restricting the problem
to cases where the windings of the one do not come too close to those
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of the other, we avoid most of those evaluations of proximity effect so
troublesome in deriving a formula for self inductance.

The equations defining the first helix, 4;, may be taken as the three
equations which express the rectangular coordinates, z;, ¥;, 21, of
any point, Py, on it, in terms of a single independent parameter. The
most suitable line parameter in this case is the angle 6;, where 2, r;,
and 6; are the cylindrical coordinates of P;. If the rectangular axes
are right-handed, a positive pitch, 27p;, corresponds to a right-handed
helix. If the plane z=z; and the azimuth §=6, are those of its
initial point, and z=z,,, §=6,, its end point, and if r, is its cylindrical
radius, the equations of %, are

21 =25 +P1(6,—04)
h=r COS 01 y where 0¢1§ 01§ eel. (1)

2,=ry sin 6,
Its axial length, [;, is given by
li=%4—24=7p1(0,,—04) =27xp,N,. 2)
Its element of length has the magnitude

ds;=~/ri+p.* db; (3)
and the direction cosines

de, p dy,__ rmisin dz__rc08 6

ds; 1/7'12“}‘2912’ ds 1/7'12‘1‘2712’ ds, \/712+P12
If two helices of the type in eq 1 differ only in the values of their two
constants, z;, and r;, they may be considered as filaments of the same
helical wire, w;, where, for the purpose of this paper, a “helical wire”
is defined as follows:

To specify a helical wire, w;, of pitch 27p, and axial length /; and
with a wire radius, p;, whose central filament has the cylindrical
radius 7y, the initial plane and azimuth of this central filament being
zy and 8y, the plane and azimuth of its end point, z,, and 6., we
define it as the totality of all helices, A,’, represented by eq 1 with
(x4, and r," in place of z,, ), provided that the two constants, x;’
and r,’, lie in the range

(& —2)*F 0/ —r)* S b (5)

All azimuthal planes cut this wire in circular sections of radius py,
the initial face of the wire in the plane §=#0,, and its end face in the
plane 6=6,,. All its filaments have the same terminal azimuths and
the same axial length /. Giving 6, a variation while holding I,
constant corresponds to a rigid rotation of the wire about the z axis,
while a variation in z, with /; constant is a translation parallel to
that axis.

The second helical wire, w,, coaxial with w; is specified, as above,
with subscripts 2. It is assumed that p, and p, are both positive;
that is, w; and w, are both right-handed helical axes or both left-
handed depending upon whether the coordinate axes are chosen
nght-handed or left-handed.

)
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The total ‘‘number of turns,” N; and N, are not necessarily integers,
as no essential simplification in the final formulas would be obtained
by placing such a restriction upon the generality of their application.

The associated current sheet of a helix is defined as a circular
cylindrical surface coaxial with it, having the same radius and end
planes, on which the linear density of current has the angular com-
ponent j,=n=1/27p and the axial component 7,=1/27r. The mutual
inductance between the sheets of the two helices will be denoted by
m31:2=m0+mz-

The mutual inductance between one helix and the current sheet of
the other is identical with that of the two sheets, and this statement
holds for each component of my,,, separately, the part my being due

to their angular components of current and m, due to their axial
currents. The latter, m,, may also be interpreted as the mutual
inductance between one of the sheets and any straight line which is
a generator of the other.

A definition will be given later of a helix which is equivalent to a
helical wire, so that the associated current sheet of a helical wire is
that of its equivalent helix.

The equivalent helix of a wire has the same pitch, terminal end
planes, (and hence axial length), as the central filament of the wire,
but a shightly different cylindrical radius, depending upon the wire
radius and the nature of the current distribution in the wire, which
is assumed to flow everywhere in the direction of the generating
helical filament, its magnitude being a function of ».

Hence the axial length adopted here for that of the current sheet
of a helical wire is in harmony with that generally accepted. All
single-layer solenoids are, in fact, helical wires, but when N is an
integer they have generally been treated by 1deahz1ng them as N
equal coaxial circular turns of wire, their central planes equally spaced
Gy (= i =0 1 20 85 o ¢ N—l, so that the distance between
central planes of the first and last turn is 2apN—2xp. If all these
circular turns are cut by a plane through the z axis and each given
a shear, they go exactly into the “helical wire” here defined. The
current sheet associated with this series of circular turns of wire is
generally taken with length 27p plus the axial distance 2xpN—27p
between central planes of the first and last wire, that is, 2ap N, which
is the length adopted here in general, although we do not restrict NV
to be integral.

II. FORMAL EXPRESSIONS FOR THE MUTUAL INDUCT-
ANCE AND FORCE BETWEEN TWO COAXIAL HELICES

The mutual inductance, m, between the helix h;, and that h, is
here defined by the Neumann’s double-line integral

cos (ds;,ds,) .
el yx) I (22— 21)?

=SS e ey

Letting
R*(Y)=r2+ri—2r7; cos ¢, (6)
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this becomes

& N os Y@ +1
m= dxl dxz DiPs ’ (7)
Tiy Tiy 1/(32“181)2+R2[¢($1,I2)]

where ¢ (z,,7;) is a function of (z;,2;) given by

2 Iu| = Ty
Y@z =p 4| 0= [~5, |0,

(8)
The part of m which is due to the angular components of current in
the two helices is that part of the integral in eq 7 attributable to the
first part of the numerator r 7. cos ¥/p;p,; the part coming from the
item 1 in the numerator is due to their z-components or axial com-
ponents of current. The latter is a small quantity compared with
the former (in general, of second order, when p,/r; and p./r; are both
small quantities of the first order).
Writing eq 7 in the form

Tey Zeg
M= J; dxlj; da, Ty — 21,9 (1,22) ]
5 ]
and changing the variable z, to 2’ by the substitution &’ =xz,—z, gives
T ey Teg—21
m“—‘f dﬂ?lf fI ¢ (@2 +)lde’
Ti Zig—21

Next, changing the variable z; to ¢’/ by the substitution 2"’ =z,—2
gives

Z 0y~ 7
O N N | 2 R e
z

Teg=To "— (T og—Tiy
L eg—Tiy % 2ed 5 ¥ = » :
= dx f[.’l? ;‘l/(xez_x s Leg— X +fl' )]dﬁl?
Teg—Z e 0

wehanty) ’ ” ” ’ ’
- I B ¥ ta—2" 2a—2" +2))dz

= f“_z"l d:c"fI Tl W (@n—2" 2n—2" +2']dx’
—fz.rxq d:z:”fl fla' Y (@a—2" xn—2" +2']d’

Y— @ o—2sy)
s dyf ' Y @e—yra—y+a’)ldz’

Zeg—Tiy

Teg—Toy

In the last double integral, the variable of integration z” has merely
been replaced by ¥ in order that the symbol z” may be used in another
sense, so that the four integrals into which m is resolved in eq 9 below
shall each have the same designation of their two variables, and shall
have limits of the same general form. In the last double integral we
next change the variable y to z” by the substitution 2" =y— (z,—24,),
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Ziy—T

and it becomes + | ldz”J; &, y@@,—a", z,—a"+2")ldz’

Writing the 2” integral of this in the form

el e
0 0

gives
mzﬁz"_zi dz" J:’ J&'s ¥, @ 2”)lde’
& ﬂ T L s Yo @ 2
+ :iﬁ_rq dx” j; z'f[x', Vo @ 2")]da’
- L B ﬁ "I Yo @ 2N, )
where

bo@', 2 =t ~~—) 2 +6,—0, (

Pr P

Vo =5t (5, =022 )
) (10)

Vs =54 (55 "+0,2—0¢,—(”" -

‘l/ﬁix(x :I:”)—“—'+ _ﬂ—_> ,’_*_91’_9{1—(%;:39)
D1

In what follows we shall use z (positive or negative) to represent one
of the following four z-differences, and 6, for the associated constant
azimuth-difference.

(11)

T=0Ly—Lgyy Loy— Loy Lty—Leyy a0d :ci,-—xﬁl

0,=0,— 04, 00;—0¢,, 05,— 0o, and 0, —0,,

These four differences represent the four possible axial distances
between a terminal plane of ; and a terminal plane of #,. The cor-
responding azimuth differences, 6, are those of the respective pairs of
terminals (having the same subscrlpts) Equation 10 may by a
similar notation be condensed into

eyl 1 _z
Ve, xz)—p2+Q)l p?>x2+0z 2 (12)

Where ‘pz:\beﬂl} ¢egel’ S",W and ‘p{,ﬁ-

From the definitions given in eq 11 and 12 it is found by the use
of eq 1 and 2 that y,,=y,, and ¥, =V .
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Hence eq 9 shows that the mutual inductance between two helices is
of the form
m=o(r,—z,)—viE,—z,)toE,—2,)—oEz, —2, (13)
Consequently, the z-component, f, of the attraction of k; for f;, when
each carries unit current in the same direction, is given by
f: _w/ (xCZ—xil) +wl (xez_:xex) —w’ (xia xe,) +w (xh I’h (13) ’

where primes denote derivatives with respect to the z-argument and

%2 Tila
o(@) = f dr, f i R, (14)
NEES AN

where R is a function of ¢, defined by eq 6 and ¢, is defined by eq 12.
It will be found that « is an even function and «” an odd function of
the z-argument, both vanishing with it.

It is necessary to evalute the integral w (z) for positive and negative
values of z in order to treat all possible coaxial helices. To do this
we note that the integrand in the integral of eq 14 is an even periodic
function of ¢, with period 27, and may therefore be developed in a
Fourier’s cosine series. To find this series, consider the function

J/4~4J1—k? cos® 6, where the modulus, k, is a positive real in the range
0=<k=<1. This function has the development
e,
4/1—k? cos? 6

where the functions ¢, (k) are given by

59000+ 9 (h) cos 20, (15)

¢n(k) =¢_n(k) == do. (16)

cos 2nb s fe 10 T cos 2nf
o Y1—k%cos?0 m Jo J1—k?sin® 9

They may be expressed in terms of the hypergeometric series

N <n:(§2 +<;;+2>F<n+%,n+%,2n+l,k2>. (17)

When k—1 every ¢,—> », its principal part being ¢n_% log 7 where

k’ is the complementary modulus. These functions satisfy the dif-
ferential equation

bl S e ) == D,

where ¢",=d£k . (18)

The first two functions of the series, ¢, and ¢;, are expressible in terms
of the two complete elliptic mtegrals of the first and second kind with
modulus k.
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$o(k)= fEK(k) and ¢, (k) =,2;(K (k) = EUC))‘Mfr(k)

(19)

Any other function, ¢,(k), could be computed in terms of ¢y, and ¢,
by successive application of the recurrence relation

(n+5 Jowest (n—3 Jon1=20(—1) 2 20)

The derivative, ¢a is given by

oG]

When £ is a function of x, r,, and r, defined by

k2= 47'17'2 5
'+ (r+ry)?

the mutual inductance of two coaxial circles of radii 7, and r; (the

distance between their planes being ) is M=4x2y/rry¢, (k)
Their attraction, #, with unit currents is #=—D_,M, so that

(22)

Y, (k) =44 (k) = JA_{‘ and Y, (k) ==*k*¢] (k)= 1/-7‘—7217' (23)
rire &

These are convenient for finding ¢,(k) and ¢} (k), because the func-
tions Y;(k) and Y, (k) are tabulated against £* in table 2 of the Scien-
tific Papers of the Institute of Physical and Chemical Research
(Komagome, Hongo, Tokyo, 1927) by Nagaoka and Sakurai.

When £ is given by eq 22, the functions ¢,(k) satisfy the partial
differential equation

[D; T W L }(rl ) =0

=[p2 403, 417220, 4+ 52 e, (24)

where « is any constant. ;
There are also the integral representations

¢u(k) _1 (' cosny

Vriry 27 )y 2P HRA(Y)
where o, is Bessel’s function. The modulus, &, in all that follows,
will be understood as the function of z, 7, and 7, defined by eq 22,
unless otherwise stated. When z is replaced by z; it will be called

ky, and ko means the modulus for 2=0.
Hence, as shown by eq 15,

1
Vai+RA(Y,)

d,/,:fmg—’|”J,,(T1-5')t]n(r2s)dsr (25)
0

o 2|¢o<k )42 aalk) cos ndaf,  (20)
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so that the required Fourier’s series for the integrand of eq 14 is

La L 5
PiDs cos ¢,.+1 1 Jr17'2

Vet tRI($2)  yrmalpips
+"Z:‘1, Ccos n!//z[;lr2 (¢n—1 (kl) SiE [ Y (kl)) +2¢n (kl)] (27)

¢1 (k1) + o (1)

Hence eq 14 may be put in the form
"-’(x) =wp () + () +wa(z, 62), (28)

onamrt =3 [, [ 010) 4+ 220 )

_ﬁl_"z - P1P:
T pips J:) (@ xl)[d’l (k1)+ ¢o(k1):|dz1 (29)

where

Wq (13,0,,-) == Zm)"’n (Z,H z)

n=1
wn (T, 0z)——= f dzzf dx; cos N (21,73)

7'17'2

<¢._1<k1)+¢,+1<k1)>+2¢.(kl>] (30)

The term wy is the part of the integral of eq 29 involving ¢,; the term
w, the small part involving ¢,.

To prove that the wss defined by the integral of eq 29 is the o
function which, if used in the general formula, eq 13, would give
the My prev10us1y defined as mutual inductance of the two associated
current sheets, we may start with the elementary formulation which is

Zey Zog 2 2 7'7'2 £
r (2 r%f d, X cos (6,—8,)+1

s182— d d
g G 1'2 2r w/(zg—xl)z—l—Rz(Bg—G,)

Jn, JI.', JO o 0

o e Ty o am it @31)
i dz; dx, Y Wby
J. L ) me—aTE®

By transformation similar to those used in passing from eq 7 to eq 13
(but much simpler) one finds that

ﬁ ey [ it o) =olza—20)

—w(xa_xel) +w($n—l’e1)’—w(xn—$u) (32)
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where
e fo zdzzj:’ Fan)do= ﬁ G e ﬁ s ﬁ g

provided f is such a function that these integrals converge. This
shows that w(x) is an even function of 2, an odd function, or neither,
according as f(x) is. Also w(0)=0, and «’(0)=0, where o’(z)=

D,w(x). In eq 31 f(x) is an even function of z, S0 w(z) is an even
function of 2, and m,, is therefore reduced to the general form of
eq 13, where the w—function is

¢—— cos y-+1
Wy =t = dxz dxl "p—\/ 1+R2(y)
X1
B U]
( )d d!//Z?xPz 2 ¢+1 (34)
L—Ty) A%y 27|' vx +R2(¢)

Using the expansion eq 27 for this mtegrand, the ¥ integral vanishes
for all terms except n=0, so that eq 34 becomes identical with eq 29,
thus proving that the latter corresponds to current sheets.

It is useful to notice the two following partial differential equations
satisfied by the components w and w,, which are derivable from the
definition 29 together with eq 24.

8o,=(Di Doyt 1D, You(Dit Dyt 2D, ) ‘f/fkr)z (35)

(Az—ED,l)wa=(D;+DIl——D,, o

w(p,w?_ D, )o=Y"" g k) (36)
P1P2

III. THE PRINCIPAL TERMS ws; AND wy’

The equation 29 gives

we(z) =zwy’ (x) — ﬂzfzzldh (fey)diz,
P1Pe JO

we’ () =£rzfz ¢y (ky)dzy
P1Pa JO

where

Now, by eq 22
g Mt vy
k? k§_47'11'9,
so that

Zldxl = ""47'17'1 dklg
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Hence

'\/ﬁf =*‘4(7'17‘2)§f dkl
Pie xy¢y (key)dizy Dips . 1(k1)

By eq 18

o) [ e @ |5 et —(F—1) )

(k ) (é_ 1>K(k1) k_lE(kl)]

S [metwan= SR [ E-(a1) (55D
PiPs i \El‘bl(k )d l—_37rp D2 ==]|

minus the same function of £, which, being independent of z, may
be discarded from the » function as it always cancels from eq 13.
Hence, placing

31l'dk1

Hence

1 41I'N1N2
prpz l1l2

we(x) =704’ ()
2N el e (B E)] @D

To find w,(z) we use eq 16.

wy(X) = Jrlrgf cos 260d6 St > L
TP1P2J 0 1/1 ki? cos? 6

—2nn |05 20d6 f dz,
Wplpzf '\/$I2+R2 (20)

ot 27‘17‘2 2 20 1 [x+ ‘/I2+R2(_2—§5]d0
_—————TPIZJQLCOS 0og ———————R (20)

Integrating this by parts gives

2
wof(x) 4(7‘;72)2 fORZ sin? 26d0

TD1P2 (20) Var-+R2(26)
am/rlrzkk 2f sin? 260d6
47pps o(1—kq? cos? 0)/1—Fk? cos? 8

_rm % 3 sin?® §(1—sin® 6)df
TP1P2 (———sln 49)‘/ 1—k?sin? 0
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il 1— (1—£k? sin? 6)
—Wplpgz '\/1 —k*sin’ 0 k

k(l‘”k" )I:l—l_k }sm 20:”

% (riFr)kk |[K—E ko G
=i { XK :”

so that

where

o i df
o(1—k? sin? 6)/1—k? sin? 6
K

K
e ot feg?smu
= J;l—lco%‘n”(u, k) =K+ ol —k02sn2udu'
The equation may also be put in the form
27I'N1N2

)

{ Va2 (ri 7o)’ (K—E)+1/P—;LTT“7);[K—H]}

For computmg, it is sometimes preferable to introduce the Jacobian
zeta-function, Z

wy(z) =

i k 7F 6y, k') =«
K—Tl=p W/k‘; o K200, k) +—5g7— —5,] (38)
where
O<00: sin <2
Hence
2 LT RRREY i1
o @) =2 T G (K~ )

| x20, 19+ 1] o)

Where the plus sign belongs with positive 2 and the minus with
negative z, the bracket multiplied by + vanishing when 2=0. (Also
the absolute value |r2—7:% must be observed.) The zeta-function is
expressible in terms of £(6, k’) and (6, k’) for

7'12’—"7'22

70, k)= E(, Ic’)———F(0 1) (40)

Using the AGM method of computation,' and finding @, b,, and ¢,
by the formulas

1 L. V. King, On the Direct Numerical Calculation of Elliptic functions and Integrals, page 8.
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n =%(am—1+ bn-—l): bn= 'Ja'n-lbn—ly cnzé(an—l T34 bn—l)

b (41)
tan (0y11—6,) =;Lb—" tan 6@,
and starting with the initial values
4
ay=1, by=Fk, coc=Fk’, and 00=sin"‘%°7
then
’
ﬂ'éo["{’—,k)=g—f, and Z(0y, k’)=c, sin 6;+c,sin 6, . . . . ¢, sin 6,. (41)’

Using the initial values ay=1, by=F~’, and ¢,=Fk,
gives

=§‘Z; and K—E=(3+2ci+4¢ . . . . 2"c3)é—{
The formulas 41’ are the result of successive applications of Landen’s
transformation which increases the amplitude and decreases the
modulus. Hence, they will be most suitable when £’ is small.

If, however, £’ is large it is easier to work the transformation in
the opposite direction of increasing modulus, in which case the
formula is

7F (6, k) = T

K7 (6o, k& )+—2KI_—§=_§ (1—sin 'PnH'K;(%; cx), (41)
where
a=1, by=k', co=k
and
Sin (2Yui1— o) =22 sin ¢, (beginning with vy=0)
and

—op tan (2¥s—i) tan (2ys—y,) tan (2¢,—ys)
W o) =20 o5 ag— ) T *e0s @vi—va) T 4% c0s @4

e 0

King? also gives an alternative to this with the same a,, b,, and c,,
and the same recurrence formula between y,,; and ¢,, as above, except
that it starts with

2
sin? Y= 1/2 l—liz ) 3 2
k ki) a*+ (ri—r)
1 There is evidently a misprint in King’s formula 7 see eq 75 or 75 defining 22(\1'..&.). The general term

should contain the factor 2(21+8—1)ca+g and not 2(28—1)ca+s.
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in which case

2K cos (2¢1— o) ; L
k'z—slTé'[“o[a" sin %-i—;(%, c,,)] (41)

II=
To interpret the function w,(z) in eq 39 it will be found that if

the factor N,/l,=1/2xp, is omitted and = replaced by /, in eq. 39 the
result is the mutual inductance between the helix &, (or its sheet)
and a circle of radius 7, in its end plane. This is found from eq 13
by letting 5,—0. The formulas for ws(z) and w,(x) when used in

eq 13 or 13’ are equivalent to the formulas derived by Jones? for
the mutual inductance of two sheets and the force between them.
The principal part of the force comes from the w, function and is,

by eq 13/,
f‘z [w; (zfz_zll) _w;(xig—xel)] s [w; (xeg_'xil) B w;(zez—xel)] .

By the above interpretation of the function w,(x) it is evident that

the first bracket is V,/l, times the mutual inductance between helix A,
(or its sheet) and the initial circle of sheet 2 (in the plane z=ux,,).

The second bracket is N,/l, times the mutual inductance between &,
and the end circle of sheet 2 (in the plane r=z,,).

IV. EFFECT OF AXIAL CURRENT IN HELICES AND

LEAD WIRES
From eq 29
z
wAz)::/ri_r—J; ¢o(ey) ey — 1/— $1¢0(k1)d331—2wz(x)

172

1
— ———f ¢o(ky) 21dye

-\/7'17'2 0

Now, by eq 19 and 22

1 T T e ko
T, etrednm o [ K Gman =400 [ B g,
s BB

Hence, we may take
4.r
ele) =) — L EW),
dropping the term in k,, which is 1ndependent of z, and therefore
always cancels from eq 13.

3J. V. Jones, Proc. Roy. Soc. (London) [A] 63, 198 (1898).

(42)
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To find w,(x) we may use eq 17

w;(x)=7i_l—7—2f¢o(k1)dx,=7—r2 (8+2>(4m2)f x1+(ndilr) =

M (s41)
i 1
=5 log li_:iﬁ Y4 sin v S(v, k3)
where
=
o 7'1+7'2
and

S(y. k)= 2 <s+2)k”“’ ( : ;sm 7)

8§=1 1‘\2 S‘I‘l)

Now, sin yS'is, in general, small compared to the logarithm, except
when y=0, in which case they both vanish; but as z becomes large, v
approaches m/2, and the logarithm becomes infinite, while the series

approaches the finite limit S(g:k0)=log %‘jy which vanishes if k,=0,
0

and has its greatest value, log 2=0.69, when k,=1. Also S vanishes
when k,=0, so that, since the term sin vS(vy;k,) is & small correction
to a second-order term, a good approximation is obtained (sufficient
for all cases with which this paper is concerned) by taking

. . 2
sin yS(v,k) =sin v log 5

so that
PR BF i L s el z it
ws(2) =log l: rtr. :|+sz+ (rotro)? 08 (T)’ (42)
where 7,, is the greater of r, and 7, (since i + T rl-}—r2) It may be
0

noted that the method used to obtain foz ¢1(ky)de; in the preceding
section leads to

fintiianb 225

An approximation similar to this may be obtained from eq 17 in
the form

1 % .
?/?—Tfo ¢u (k) dzy=sin vk3"S, (v,k0),
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where

rar I‘2(s+n+%> 2
Sn(?;ko)=;§ 0 N CESNCESTES) F(l 8— n;—:—: sin 'y>'

when
sin? y=1, F(l §— n: :1) W/W-—P(ﬁ_—n)T,
N(s+ntg)

so that

1 /k\2» i
lc?,"S,,(Lko>= —°) F nn+—,2n+1,kg)
; m% (
~Zn 1+ko> ( ) ol g

b,
2n(rl> if 79y,

Hence an approximation sufficient for use in second order terms is
obtained by placing

k n
Sm ’YS (’Y;ko) Sln 7(1_*__0]‘.0)

so that the following approximation analagous to eq. 43 is obtained:

X

2 z N
ﬁﬁ b (kx)dh:_‘/m %(:—;) if n>0 and 7'2>7'l- (44)

When the lead wire of length [; for the return current of 4, lies parallel
to a generator of the current sheet but at a slightly greater distance
from the axis, say r;=r+Ar,, the mutual inductance between this

lead wire, [, and the helix, h,, is (as far as second-order terms are
concerned) equal to that between /; and the current sheet of h;, the
corresponding w-function being

—w. (2, Ty, 79) =—w,(x, 71, 72) — ATIDrlwz (=, Ty, r3).

If the lead wire of No. 2 is similarly situated at a distance r;,=r,+Ar,
its mutual inductance with 2, has the w-function

— W (Z', T, 7'12) =Wy (27, 71y Tg) '—'Argp,zw, (z, Txrg) ¥

This arrangement, of course, implies that the number of turns, N,
and N,, are integers, so that the azimuths of the two lead wires are
6,, and 8,. Their mutual inductance with each other is determined

by the w-function, w;, as in eq 13, and their force by w;,, as in
eq 13/, where

wiyi(®, @ 1y, T1) =Twy, — 1/x2+Rzl.(a) (45)
118273—89—9
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’
“’m.(x' a, Ty, T1) =log

2 (a z
'\/Iz'I-Rm’( )+x=f dzl (451)

Rlllz(a) 0 1/1%+R,2l1’(a)
where
== 0{2— 0‘1

m’(a) rﬁ+r§—2r,lr,2 cos a.

The additive constant, R;;,, has been omitted from eq 45, being
independent of z, so that it cancels from eq 13. When the radial
distances, Ar; and Ar,, of the lead wires from the helices are small,
the axial currents in the lead wires and helices almost compensate in
their effects upon inductance and force, the residual being a very
small term, depending upon the az1muth a, of the coils. If w,(z, a)
represents the total w-function due to x—components of current in
lead wires and helices, then

Wy (2, &) =w,(x, r1, 12) +wi,1,(2, o, r1-+Ary, 12 Ars)
—w, (@, 11+ APy, 75) — 0, (2, 71, T2+ AT).
When Ar; and Ar; ave small, this becomes
@ (@, @)=y, a, Ty, 1) —w(x, 71, 12) — (A Dy +ArD,) w (2, 14, 13).

Since, however, these w-functions are themselves of second order,
the terms in Ar are smaller than second order and therefore neghglble
Hence, for this arrangement of lead wires, the w-function and its
derivative, which takes account of all axial components of current
in helices and lead wires, are given by

Wz (2,0) =20, (2,0) +4m 2 ,‘/x2+R2( ) i
where
w.(2,a)=log :ﬁ—_;_?(—g)Ria_) — ;' () =Eb, cos na, (46")

n=1

the constant term in this Fourier’s cosine series being zero. The
coefficients b, for n>>0 are given by

=7§——7‘=J" &n(kr)dry= (46")

TVt (k) (r1+r2)2{ >

by the approximation in eq. 45, if ry>r;.  On summing this’Fourier’s
series we find the following finite form as an apprommatlon for eq 46’

o’ (:t,a) e (46”')

X 7
T " E@

when 7, >7;.
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V. THE AZIMUTHAL TERMS
To integrate eq 30, we may place (by reference to eq 10”)
Ccos ni//z=em"” =9 = (9' Px)-*'”wl (Pn 2)"‘1"

with the understanding that the real part of the result is to be taken.
Using the abbreviation
2
S COESANCORSNGORS ARCON ACOR = S DACORACON

eq 30 becomes, by use of eq 25,
w,(2,0,) = ME in o )f dsd (n, S)f e (px pz) 2 dx fz:e ”;:' ol g

If 2>0, then 2; and x; are both pos1b1ve in the range of integration
of the 2,2, double integral, so that e™*!%'=¢™#,  When 2<0, then 71
and x, are both negative in the range of the integral, so that e™**' =
¢, and the result of the integration in the latter case is found by
changmg the sign of s in the result of the integration for the first case.

Tt is thus found that both results are included in the following:

(" —et) py(e"m—ertie)
e nisonllt pike pi—ep’ls
1‘11'28 g bR -
wn(,0;) = 7 (ps p)f dsJ (n,s) liu;:s : 1izg;;s

infz (*o
__mree
o 'n—g'ﬁ dsJ(n,s)

inT inx

D ™ P P ’
(T D) (T

where the upper sign belongs with positive z and the lower with
negative .

—alz]




The real part of this is

on(2,) =112 f dsJ(n,8)|

E S

P2 COS n( > P1 €OS n(f) = ——>—| (1 p,pgs e~*17! cos né,
2,2
” r 1 l—p, sin n((},——) P} sin n(
172

>—| (Zh—l—pg)e“l’! sin né,

! 8dseJ (m,8) i

— 2
B g

CEY )

(47)

SP4DPUDIS JO NDIUNG DUOYDAT Y} f0 Y2uDIsAY fo uULNOL  QGT

88 '10A]
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The terms in the first integral which do not contain the exponential
factor e~*1*l may be discarded, as they will all cancel in eq 13 because,
as shown by reference to eq 2 and 11, the values of §,—2/p, will be the
same for the first and second z-differences, (ze;—i,) and (ze,—e;).
These first and second z-values enter eq 13 with opposite signs.
Similarly, the values of ,—z/p, are the same for the third and fourth
a-values, Z,—ae; and zp—2y, which enter eq 13 with opposite signs.
Hence the term in eq 47, cos n(0,—x/p,), disappears by the second
2-term canceling the first and the fourth canceling the third. Tt is
also found that cos n(6,—z/p:) disappears by the fourth canceling
the first and the third canceling the second. The corresponding
terms in the second integral, sin n(f,—a/p;) and sin n(0,—z/p,), do
not always cancel because of the 4 factor which has the sign of z.
If the associated current sheets are wholly external to each other the
cancelation is complete, but if one lies wholly or partly within the
other the terms sin n(8,—z/p;) and sin n(6,—z/p;) of eq 47 do not
disappear from eq 13.
Hence eq 47 may be written

e*1ElJ (n,s) (1 ——Z—)—‘&s"’)
U2
ds

Ty

w,,(x,oz)=-- E COoS n0, (1 +p£2—)(1+2—)—2’:§)
o n? n’

5 —slz) £y B
Se J(nls) >d8 = w”*(x,ez) : (48)

rira(pr+ . 3 3
;43;@1_;3_2’_2)5111 nl, (1+%§>(1+27;—§
0

plus terms which cancel in eq 13, where

x r
00 =)

lsin n(oz—z—f; f °s___J(n,2;i ¥ _sin n(&z—z%> f‘”sJ(n—’iz;i Sl,
I I v B8 L
o +Z72 R +p¥

We may now show that by limiting the application of the results of
this section to those cases where the w, (z) are all negligible, we do not
impose a serious restriction as far as practical mutual inductances are
concerned, with the exception of a bifilar-wound coil in which one of
the windings is used as primary, the other as secondary. Such a coil
has never been used for absolute measurements, but we see no reason
why it should not be used in the future. It would possess certain
advantages from the point of view of accurate construction and
measurement and would give the greatest possible mutual inductance.
The formuls for its mutual inductance has never been evaluated with
precision as it has for a self inductance, but the problem would present
no greater difficulty.

It is easy to foretell that this limitation is that the helices, k; and A,
shall not through a finite part of their lengths be separated from each
other by a distance which is small (of the order of p/r).
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If H, denotes the first Hankel’s function then

f 8J 1 (118) S (ne)ds I mr1> mr2>
0

L

when 7, >r;.  In case r2<r1, the two are mterchanoed in this equation.
Since ri/p and r,/p are large, the asymptotic expansions of H, and J/»
show that this expression is very close to

P —=nlrs—r| .
e P in cases ry >7y or rp<ry.
204/

Hence, approximately,

)

n
o — Do P | i D8]
wk(z,0,) = 1/7'17‘2 {p o p’[lfz ril4-i(z—p02)] e pillr=rilHiE—p:

n*(py—Ppa)t

where the real part is to be taken.
When p;=p,=p, this becomes

by et
wn(xie) 'J7'17'2{ I7'2 :L‘lzl;l_ Zx} p[lrz ri|+i(z—p8.)]

Since the entire w, function with the factor rr, is of second order in
general compared with the principal term, wp, which has the large

factorﬁ; it is evident that Z‘, =3 il be utterly negligible when

r,—ry 1s finite (not a small quantlty of the order of p). Since w} is
only ditferent from zero when one coil lies wholly or partly within the
other, this means that the two must not approach very close to each
other if «j is to be neglected.

The remaining mtegrals in eq 48 cannot be similarly integrated in
finite terms, but it is evident that when |z] is finite (not small of the
order p/r), we may (on account of the convergence factor e=*l of the
integrand) obtain the principal part of w», by placing p;=p,=0 in
the integrand, as the resulting integrals still converge, even if r;=r,.
We cannot be content, however, with this restriction on z, as we must
evaluate w, for cases where x=0. In this case, if we place P1=p,=0,
the integrals in eq 48 then converge only if r,5%7r,, but if r,—nr, is a
finite quantlty, the principal part of v, is thus obtained. The limita-
tion is therefore evident—the helices must be everywhere separated from
each other by finite distances. Assuming this to be the case, and
noting that the last term in the definition of J(n, s) is negligible, we
obtain the result

wn(2,0;) = — ‘/;;rz [$n-1(k) + ¢n41 (k)] cos nb,,

so that

oS nB

Wq (xioz) ST -\/7'17'2 Z [d’n—-l + ¢n+1] (49)



Snow] Mutual Inductance of Coaxial Helices 259

and

@00 = 1/——2 i 1+¢,.+1]C°Sn”0 (49"

"Tryn=

(In finding the self inductance of a helix, the w, rises in rank from a
second order to a first order quantity, from which originates the most
important correction term—the evaluation of which was the only
difficult part of that problem. The same remark would apply to a
bifilar mutual inductance). Eq 49 holds of course when r;=r,, pro-
vided the end planes of the two coils are not close together and the
coils wholly external to each other (so that k is not close to unity).

The series 49 and 49’ may be evaluated by finding ¢, and ¢; in
terms of elliptic integrals by eq 19, and then finding all other ¢, or ¢,
by the recurrence relation 20 or 21.

Since the series represent second-order terms, it is evident that
some simpler approximation will be sufficient. To obtain such, con-
sider the even, continuous function of 6, f(6), which is never negatlve
and is a perlodlc function of 0, with penod 2w, defined by the series

1) E—g——%E(io;—zm—) for all real values of 0. (50)

f(6) vanishes when 6=2nm, where n is any integer. It has the maxi-
mum value unity when 0= 2n-+1)r. It consists of a succession of
parabolic arcs for

f(o)=(2——7‘: L when 0<0< 2, (51a)
and
f(e)=<4—£><;f-—2> ______ when 27 <0< 4r. (51b)
Now,
2 4\ 646,
o0y =5 -2y LG, (52)
n=1
Also from eq 15 one finds
s ey =0+ T B+ @] cos . (53)

Multiplying eq 52 by eq 53, and integrating the product from 6=0
to 6=2m, gives

21046, 0do 4
f fjl_*———kz) :(()):2 5 37r¢1 (k)“‘_ (b1t Pns1)
7

n==1

cos no
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so that eq 49 becomes

2%
wa(w,0=)=—M{T—§¢1(k)—%c f JM@O_SG_UIQI

]
‘/_z g2
A 1kcos2

‘/m’[ = wk f21r =05 F(0+6.) cos 6df 1rk f(e+ox) cos 0 }

Vl chos’— A 9‘/1 k’cos’—
w—Vz

It is sufficient to evaluate this for the range 026, < since its value
for any other range of 0, is obtainable from this by inspection, remem-
bering that w, is an even function of 6, with period 27. (This restric-
tion  disappears from the end result.) With this restriction the
argument of f in the integral from 0 to 27—0, lies in the range
0=<6-+0,= 2, so that by eq 51a

foto)=(2-1E%)(4EE),

In the integral last written, as eq 51b shows,

A O ()

Making these substitutions, and then changing the variable of inte-
gration in the last integral to 6’, where 6=27—¢’, gives

1—k2 cos2 ¢

[2 60— 0101-—0 cos 0do ]
—J 1—k? cos? -]
or
2 —0z
we(T,8 z),=_\/,~l,¢2 b 1rk 1(6:+0) cos 6d9 Gdo 1rk f(«%——a) cos eczo 59
0 \/1 k2 (:ors2 1—%2 cos? :

where both of the arguments 6,46 and 6,—6 lie in the positive range
of less than 2x. For this range, instead of the cosine series 50, we find
a sine series for f(6)

sin &2 sin@
32l 10 2 2 o
f(e)—-? sin §+T+-ﬁ5— s or 0S5 0=27 (55)

[5A¢ (z 9‘5) == 'JTITZ{ 3 1 (k) [2_02+0—‘01+0 cos 0do

0

Since 32/x°=1.032, it is evident that a good approximation for the
integrals in eq 54 is given by placing f(0)=sin —g— for 0 <0< 2, thatis,
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F@+0)=sin (%52) and fe.—0)

This gives after some simple transformations

L3

—|7? Basif sin 0 cos 20
wa (2,0;) =— 1/7'11'2{% ¢y (k) +% sin f (1—9 ) W db

(56)

0zf("_ ) cos 0 cos 20 aa\,
0

+5 0 53 VI—Fsin? 6

Now,

k f j‘ln 01;03 LA B 2 llog (I cos 0-+/1—F* sin? 6)
—k cos o—Jl——ml

k f T e e dp=a [k sin™ ( sin 0)-+: sin 0y T—F" sia” 4]

so that

wa (2,0;) =— ‘/rlr27?:2¢1 LI 15/ r‘rz[%\/ 1—k? cos? g—"

k sin = + ‘/ 1—k? cos?
’2
—]li—zcos%sin“(k cos 0—5)— %sin%‘ log ] (57)

Differentiating this with respect to z gives

6 0,00) =5 e T )

k
Y
+4 i 2[cos, sin kcos 1—k? cos

ey k sin 2+\/1 k? cos? 2
+k smilog %

These equations hold for any value of 6, since they are even periodic
functions of 6,, with period 2.

(677)
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The four azimuthal differences in eq 11 may be written.

052|1=a+21I'N2,0¢2¢1=a+27T(N2—N1),
01291=a—21rN1,0¢211 EaEﬁiz—th (58)

so that when the number of turns, N; and N,, are integers, every 60,
may be taken equal to a. Itis evident that no essential simplification
would have resulted in the formulas eq 57 and 58 had we restricted
N, and N, to integral values at the beginning.

To obtain an interpretation of the term w,(2,8,), let M(x,0,,7,72),
or, more briefly, M (6,), denote the mutual inductance between the
two incomplete circular arcs which are the parts of the two coaxial
circles of radii 7,7, (the distance between their planes being z) included
between the azimuth planes =0 and §=6,.

When the circles are complete we have by eq 23

M(@2x) =41r21/7?‘;q51 (k)
In general, if 0<60,<2x

0, 0, i
M) =7'17'2ﬁ dé, J(; db, _CM)._

VP +E*(6,—6:)

which may be transformed into

M(,) J‘ f __k cos 6,d8,
24 \/ 1—k? cos? = 1
Using the expansion in eq 53 for this integrand gives

%@_g ” <k>+21%(’”;;—w) (1—cosnb).  (59)

Equations 49 and 59 are equivalent to
Rt +%|:M(0,) —<2%>2M(27r)] Sehen < 6% o
Since, by eq 57,
w, (2,0) = — M(QW) T‘/r‘“k (1 7— sin™! k):
this may be written

o) = =50 +3 M) —( ) M |

r\/rm/c[ k’ e k:l (60)

which furnishes an interpretation for part of the term w,(2,0.), although
this form has no advantage in computation since the mutual induc-
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tance M(6,) of the two incomplete circular arcs is not a well-known

or tabulated function as in the case M (2x) when the arcs are complete
circles. In fact, the foregoing formulas give for it

1—Fk? cos? ——k’

M@)= (‘2'_) M@w)—x+/ rlrgl\/
e ey o 0 e
'—7{:‘5 CO0S § s CcOS 2 =81}
1 0 k sin g—}-\/l—kz cos“’g
— sin 5 log ;

]CI

When the series 49 and 49’ are known to converge so rapidly that
only the first two terms need be retained, there is no need to use
eq 57 and 57’.

VI. THE HELIX EQUIVALENT TO A HELICAL WIRE

(61)

Consider the unit current in wire w; to have the vector volume
density whose magnitude is a function of the distance 7| from the z
axis, say u; (r;). Its direction is that of the generating helical
filament.

An axial plane cuts the wire in a circular section of radius p,, as
specified in eq 5. If dS; is an element of area of this circular section,
a helical tube whose (oblique) section is dS; carries the current,

u (r)dS;

SR e

I}
Vi+(%)
is the cosine of the angle between the normal to dS; and the direction
of the current-density vector or tube. The total current carried by

the wire is unity, so that

Uy (Tl)dsl = (62)
ViH(E)

integrated over the circular section of the wire.

In place of the rectangular coordinates x;—z; and r,—r, of a point
of this section referred to the center of the circle as origin (as used
in eq 5), we may use the polar coordinates p, and ¢;, where

d[1=

since

i, —i,= py 08 ¢; and 7i—r;=p} sin ¢y,
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in terms of which
dS1=pdpide.

Expanding the current density, wu;(})=u,(r,+p; sin ¢,), about the
value r; (corresponding to the central filament of the wire) by Taylor’s
theorem and applying the condition 62, we obtain (to the second
order, inclusive, In p;)

ar=PL ] 14 A sin oot By (o sin? =5 |
where

_u,l () i uy (r1)
Al_% (ry) p Bl_z Uy (7'1).

With similar definitions of A, and By, etc., the current, dl,, in a helical
current tube of the second wire is

A =BYLA 1t sin ot B siv? =5 ) |
P2
so that
dLAL =PRI | (A,g; cin g1+ dug) sin 6
e
By (i sin? gu— 1)+ Ba i sin 2= )4 Au A sin - sin - (63)

The mutual inductance, M, between the two helical wires, w, and w;,
is found by multiplying this expression for dI; dI, by m and integrating
over both circular sections of the wire, an operation which is equiva-
lent to multiplying by 1 when applied to any terms of m except the
finite part my since the operation only alters the subject by a second-
order fraction of itself.

Now, by eq 13, replacing the z by 2’

f f i f f dlyme= f f dl 1ff d L we(2,— ;) — f f dI lﬂdhw(; &
+ [fa1, [{dLows (@, — ") — f[ AL [ d Town (},— ).
Also
wo (7, — ;) = wo (2o, — ), 71, %)
Zwé(xe,'_xtl"“ pa €OS ¢g—p; €OS 1,711 py SN ¢y, 13-+ ps 810 ¢3),  (65)

where X,,—2y, r;, and r, refer to the central filaments of the wires.
The expansion of this by Taylor’s theorem for a function of three

variables may be written symbolically (to the second order in p;
and pj)
(), — ) =[1 +[(p2 cos ¢o—pi €08 ¢1) D+ py sin ¢y Dy, +-pasin ¢, ]
1., , ses y o
+5[(02 cos ¢a— pi €08 ¢1) D+ pi sin ¢1 Dy, +-p sin Dy oo (@,rir),  (66)

where 2=1x,,—a,,.
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Multiplying eq 63 by eq 66 and integrating gives
ffd] 3 f f dlwg (x.',‘—xél)
=148 O+ D3+ 24D, )+ 5 D2+ D 24D, )i,

where mzx,,—w,!=a=the distance between end plane of the central

filament of wire w, and the initial plane of the central filament of
wires wy. On making use of the partial differential 36, this becomes

so that
f f dI, f f A0, — ;) = o Ba—1)

5[ (G 240 )Pt +24:)Ds [ +"‘+”2‘/"’”¢1(ko) (67)

The expansion of the three remaining integrals of eq 64 is the same as
this with the appropriate z-arguments.

The result is that, to the second order, the mutual inductance of
the two wires is given by

il 1
M=t g| A(+H240)Dn+ (7 +240)D Jre, 68)

where /; and h, are their central helical filaments, with radii r, and 7.
This may be written

Mp1wg =M (;1,7‘—2) +mz+ma: (69)

where

E=rl+p’< o4, ) and ra=r+p2 (1+24,), (70)

where all the m’s except the principal one refer to the central helices
of the two wires, and every m is expressed in terms of its w-function,
as in eq 13, with corresponding subscripts.

The sole effect of giving the wires a radius is to increase the effective

radii of their current sheets from r to r (to the second order), the
length of the sheets being unaltered. The latter fact is explained in
part by the particular manner in which their lengths have been
defined, and in part by the fact that the wire sections are circular, so
that the terms which would represent an increase in effective length—
being proportional to D?wy,—have entered the result together with
D?ws and their combined effects have been expressed in terms of
D, wy and D,,wy by means of the partial differential eq 36.

For distributions of current in both wires whose r-derivative
vanishes at the central filament, the constants A; and A; are both
Z€ro.
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The uniform_current distribution is an example of this class. A
correction equal to the above but opposite in sign is obtained for dis-
tributions in which 4;,=—1/r;, and A,=—1/r,, an example of this
class being the ‘“natural” distribution (B,=1/r}), where the current
density varies inversely as the linear length +/7*+p* of the helical
current filaments. A distribution for Whlch Ai=—1/2r, Ay=—1/2r,
would have no correction of this order of magnitude.

Whatever assumption be made as to the current distribution, it will
still be necessary to evaluate D,m and D,m roughly in order to
estimate the effects of errors in determination of the mean radii,
Lt and Ta.

At present we are ignorant of the current distribution in such wires,
so that for simplicity it would seem better to ignore altogether this
correction for finite thickness of the wires. The assumption usually
made of uniform current density carries with it a spurious precision.

We can, however, allow for future increase of knowledge as to
current distribution, 'with no less simplicity of treatment, by defining
the helix which is equivalent to a helical wire as one having the same
pitch and end planes as its central filament, but a cylindrical radius

r=a+%2<(—i+2A):

where @ is the mean cylindrical radius of the helical wire and p is the
wire-radius—the interpretation of the constant A being the value at
the central filament of the r-derivative of the current density, which
was assumed to be a function of » only and in the direction of the

helical filament.
As far as we are concerned here, this disposes of the difference

between helices and helical wires. All the formulas in the preceding
sections regarding mutual inductance of two helices and the force be-
tween them are valid for the helical wires to which they are equivalent.

VII. APPLICATION TO THE CURRENT BALANCE USED
IN THE NATIONAL PHYSICAL LABORATORY

If the z axis be taken vertically upward, the lower (or suspended)
helix, called No. 1, has a mean radius 7,=10 c¢m and length 1,=15.2
cm. The upper hehx has radius 7=16 cm and length l2~11 0 cm.
Both helices have the same pitch, 27p;=27p,=0.2 cm and an integral
number of turns, N;=76 and N,=55 turns. Hence, every 0,=a=
0:,—0, the azimuth of the helices. The upper end of No. 1 projects

into No. 2, so that the third z-difference of eq 11 is negative.
& =T, — Ty =+20.1 cmm—>k;2=0.5926
& =0, — L= 4.9 cm—k?=0.9143
T3 =Lgy—Ley=—06.1 cm—k;?=0.8974
Ty =Tyy—Ty==9.1 cm—>k,2?=0.8434

The force, f, acting on the suspended helix when bothTcarry unit

current is %
f=f9+fz(a) +fa(a)} (71)
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where 1{, is the principal part due to angular components of current in
the helices and by eq 13’.

Jo=—wq" (1) w4’ (22) — wy’ (3) + wo’ (xs), (72)

where the wf’(z) are given by eq 39. The small part 7:(a) denotes the
residue due to z-components of current in helices and lead wires
together and is given by

fz(a) o _—‘;; (xba) -l—;; (12:‘1) T ‘-;; (xaya) + _‘;; (1174,6!) ’ (73)

where the w.(z,a) are given by eq 46’.
The last part, f,(«), is given similarly by

Ja(@) = — & (@1,0) + i (22)0) — @ (w3,0) +- i (24, 0), (74)

where the w.(z,c) may be computed by eq 49’ or 57’. Both w.(z,a)
and w,,(z «) are even periodic functions of «, with period 2, so the

same is true offz(a) and f,(e).
In the actual coils, however, there are two helices on each cylinder

differing in azimuth by =, so that when each carries unit current the
force on the suspended coil is #, where

F=F0+Fz(a)+Fa(O‘); (75)
where
F9:4fa
Fo(e) =2[fo(0) +Fo(at )] (76)

Fo(e) =2[fa(a) +fala+m)]

This makes the azimuthal terms, 7, («) and F,(«), each even periodig
functions of «, with period =, so that

Fo() 4 Fa(a) =i102,, cos 2na. 1)

P. Vigoureux of the National Physical Laboratory of England has
recently reported to this Bureau that in the absence of a formula for
the coefﬁaents O,, he has evaluated experimentally the ﬁrst coefficient,
(,, assuming the first term to be the only one of the series of practlcal
importance. This he did by measuring the force for three different
azimuths «=3°, 15°, and 85°

In order to see what part of 02 is due to axml components of current
and what part is due to the az1muth terms wy, let ;

n=— 02» + Ogn (7 8)

Reference to eq 72, 76, and 46” shows that the effect of axial currents
is given by

_‘/T r2A< ) { x1k1+x2k2—233’€3+334k4} (79)
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and eq 49’ shows that

05— = g3 {— 2kl 41 () + o1 0601+t () + 1 8]

i7" :
— ok d2nt1 () + bon—1(ks) |+ zdkeion s (ks) + Poni ()]} (80)

Placing n=1

Os=

2
1 (:';1) [—Ilk1~|—x2k2—x3k3—l—:c4k4]= +O.103 dynes (81)

7'17'2

Eoif ka[¢l(k1) +¢a(k1)] gl [‘1’1 (k2)+¢3(k2)]

o[ BELEE] | [ BEIEEG]) (g

\/ rlrz

From the recurrence relations 20 and 21, it is found that

[¢1(k)+¢3(k):l 1i 2242] I, (k) — (,;,-2—1)47r2¢1(k)]

=P{[;+3k:]Yz(lc) (,2 1)Y,(Ic)}~ ~Y(H), (83)

where Y; and Y, are the functions defined in eq 23, which may be
taken from tables.

Yl(k)=2.086, 9.100, 8165, and 6.072 for kll kz, k;, and ’C‘
Y, (k)=1.490, 25.663,  20.049, and 10.796
_Y()=0401,  9.04, 6.57, and 3.41
02=F§/1= { — 2 ¥ () +- 227 (ks) — 25 ¥ (ks) -2,V (k) } =0.86 dyne.
rry

Hence

O+ (5=0.8640.10=0.96 dyne, which differs from the observed
value 1 dyne by less than the experimental error.
The force Fp=94,527.22 dynes, so that

1'=94,527.2240.96 cos 2«

For azimuth a=0 or =, this azimuthal term amounts to 10 parts
in a million.
VIII. SUMMARY

The self inductance between two coaxial helices and the force
between them are given in terms of four w-functions, and their z-
derivatives, respectively, as in eq 13 and 13’, the four z-distances
being defined in eq 11 with their respective azimuthal differences 0,.
Resolving these functions into three components, «(x)=wy(x) 4w, ()
~+w,(z,0,), the principal part corresponds to the mutual inductance
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between the two associated current sheets, with angular components
of current, and w,(z) with axial components. The last term, w,(z,8,),
is like w,(z), a second-order correction term applied to the finite term,
ws(x), where the ratio of pitech to eylindrical radius is considered a
first-order infinitesimal.

The principal term, ws(z), is given by eq 37 and w.(x) by eq 39.
The first is equivalent to Jones’ formula for current sheets. The
terms w,(z) and w,(x) are given by eq 42 and 43.

The azimuthal terms, w,(z,0,) and w,(x,0,), are given by the series
eq 49 and 49’ and in finite terms by eq 57 and 57’.

These formulas are not restricted to the case where the helices have
an integral number of turns but are quite general. They need not
have the same pitch. For the case most common in practice where
the numbers of turns are integers and the lead wires are straight lines
parallel and close to the generator of the eylindrical current sheet,
the total effect of all axial components of current in helices and lead
wires together is represented by a function w,(x) which is given by
eq 46, and its a-derivative by eq 46°.

1t is shown in section VII that the azimuthal variation of the force
computed by these equations agrees (within experimental errors) with
that observed at the National Physical Laboratory.

The correction terms given in section VI take account of the finite
diameter of helical wires. They require a knowledge of the current
distribution in the wires.

These formulas are valid to the second order, inclusive, provided
no parts of the two helices lie very close to each other, that is, at
distances of the order of magnitude of the pitch of the windings.

WasaINGTON, December 21, 1938.

&,

118273—39——10



	jresv22n2p_239
	jresv22n2p_240
	jresv22n2p_241
	jresv22n2p_242
	jresv22n2p_243
	jresv22n2p_244
	jresv22n2p_245
	jresv22n2p_246
	jresv22n2p_247
	jresv22n2p_248
	jresv22n2p_249
	jresv22n2p_250
	jresv22n2p_251
	jresv22n2p_252
	jresv22n2p_253
	jresv22n2p_254
	jresv22n2p_255
	jresv22n2p_256
	jresv22n2p_257
	jresv22n2p_258
	jresv22n2p_259
	jresv22n2p_260
	jresv22n2p_261
	jresv22n2p_262
	jresv22n2p_263
	jresv22n2p_264
	jresv22n2p_265
	jresv22n2p_266
	jresv22n2p_267
	jresv22n2p_268
	jresv22n2p_269
	jresv22n2p_270

