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ABSTRACT 

A formula is found for the mutual inductance and force between two coaxial 
helical wires which, in addition to the well-known current-sheet formula, contains 
small correction terms, one of which represents the axial components of current; 
one the finite diameters of the wires; and another W a, which depends upon the 
relative azimuths of the helices, arises, naturally, from the actual helical form of 
the windings. The pitch of the windings may be different in the two, but each is 
considered so small in comparison with the cylindrical radii that terms relatively 
smaller than the square of this ratio may be neglected. The number of turns is not 
necessarily an integer. 
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I. INTRODUCTION 

A formula of precision sufficient for absolute electrical measurements 
of the mutual Inductance or force between two coaxial helical wires 
does not appear to have been developed to the same degree of precision 
as in the case of a self inductance. The principal part corresponding 
to current sheets is well known, but even if the construction were 
perfect, there remain certain small correction terms which must be 
found by starting with an idealization of the coils which is nearer the 
actual than a current sheet. The procedure here adopted as the most 
natural is to formulate the mutual inductance as Neumann's double­
line integral and to expand the integrand in a Fourier's series as a 
function of the difference of the angular parameters of the two helices. 
The constant term of this series gives the current sheet formula, pro­
vided both angular and axial components of current are included in 
this term. The remainder of the series gives a correction depending 
upon azimuth of the two helices, which is relatively small for such 
closely wound coils as are used in practice. By restricting the problem 
to cases where the windings of the one do not come too close to those 

239 



Ci 

240 Journal oj Research oj the National Bureau oj Standards [Vous 

of the other, we avoid most of those evaluations of proximity effect so 
troublesome in deriving a formula for self inductance. 

The equations defining the first helix, hi, may be taken as the three 
equations which express the rectangular coordinates , XI, Yb ZI, of 
any point, PI, on it, in terms of a single independent parameter. The 
most suitable line parameter in this case is the angle OJ, where XI, rll 
and 01 are the cylindrical coordinates of PI. If the rectangular axes 
are right-handed, a positive pitch, 27rPI , corresponds to a right-handed 
helix. If the plane X=Xtl and the azimuth O=Oil are those of its 
initial point, and X=X'I' 0=0'1 its end point, and if rl is its cylindrical 
radius, the equations of hi are 

XI =Xtl +PI (OI -Oil)1 
YI =rl C?S 01 ' where Oil ~ 01 ~ Oel. 
zl=rl SIn 01 

(1) 

Its axial length, ll' is given by 

II =X'I-XII =PI (0'1- Oil) =27rPIN I. (2) 

Its element of length has the magnitude 

dSI = ..JrI2+PI2 dOl (3) 

and the direction cosines 

dXI PI dYI r) sin 0) dz) rl cos 0) 
dSI = ..JrI2+p/ dSI = - ..Jr)2+p / ds) = .,jrI2+p/ 

(4) 

If two helices of the type in eq 1 differ only in the values of their two 
constants, Xl) and rl, they may be considered as filaments of the same 
helical wire, WI, where, for the purpose of this paper, a "helical wire" 
is defined as follows: 

To specify a helical wire, WI, of pitch 27rPI and axial length l) and 
with a wire radius, PI, whose central filament has the cylindrical 
radius r), the initial plane and azimuth of this central filament being 
XII and Olp the plane and azimuth of its end point, X'l and OeI' we 
define it as the totality of all helices, hI', represented by eq 1 with 
(Xit' and rl ' in place of XII' r)), provided that the two constants, XiI' 

and rl" lie in the range 

(Xit' -Xtl)2+ (r)' -rl)2 ~ P12 (5) 

All azimuthal planes cut this wire in circular sections of radius Pb 
the initial face of the wire in the plane 8=8il , and its end face in the 
plane 0=8'1. All its filaments have the same terminal azimuths and 
the same axial length ll. Giving Oil a variation while holding II 
constant corresponds to a rigid rotation of the wire about the X axis, 
while a variation in XII with 1) constant is a translation parallel to 
that axis. 

The second helical wire, W2, coaxial with WI is specified, as above, 
with subscripts 2. It is assumed that .PI and P2 are both positive; 
that is, WI and Wz are both right-handed helical axes or both left­
handed, depending upon whether the coordinate axes are chosen 
right-handed or left-handed. 

, 
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The total "number of turns," NI and N~, are not necessarily integers, 
as no essential simplification in the final formulas would be obtamed 
by placing such a restriction upon the generality of their application. 

The associated current sheet of a helix is defined as a circular 
cylindrical surface coaxial with it, having the same radius and end 
planes, on which the linear density of current has the angular com­
ponent j9=n= 1/27rp and the axial component Jx= 1/271-r. The mutual 
inductance between the sheets of the two helices will be denoted by 
m'I'2=m9+mx. 

The mutual inductance between one helix and the current sheet of 
the other is identical with that of the two sheets, and this statement 
holds for each component of mSlS2 separately, the part m9 being due 
to their angular component.s of current and mx due to their axial 
currents. The latter, mx , may also be interpreted as the mutual 
inductance between one of the sheets and any straight line which is 
a generator of the other. 

A definition will be given later of a helix which is equivalent to a 
helical wire, so that the associated current sheet of a helical wire is 
that of its equivalent helix. 

The equivalent helix of a wire has the same pitch, terminal end 
planes, (and hence axial length), as the central filament of the wire, 
but a slightly different cylindrical radius, depending upon the wire 
radius and the nature of the current distribution in the wire, whieh 
is assumed to flow everywhere in the direction of the generating 
helical filament, its magmtude being a function of r. 

Hence the axial length adopted here for that of the current sheet 
of a helical wire is in harmony with that generally accepted. All 
single-layer solenoids are, in fact, helical wires, but when N is an 
integer they have generally been treated by idealizing them as N 
equal coaxial circular turns of wire, their central planes equally spaced 
at x=27rpn, n=O, 1, 2,3, ' . .. N-1, so that the distance between 
central planes of the first and last turn is 27rpN-27rp. If all these 
circular turns are cut by a plane through the x axis and each given 
a shear, they go exactly into the "helical wire" here defined. The 
current sheet associated with this series of circular turns of wire is 
generally taken with length 27rp plus the axial distance 27rpN-27rp 
between central planes of the first and last wire, that is, 27rpN, which 
is the length adopted here in general, although we do not restrict N 
to be integral. 

II. FORMAL EXPRESSIONS FOR THE MUTUAL INDUCT­
ANCE AND FORCE BETWEEN TWO COAXIAL HELICES 

The mutual inductance, m, between the helix hi, and that h2 is 
here defined by the Neumann's double-line integral 

Letting 
(6) 
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this becomes 

(7) 

(8) 

The part of m which is due to the angular components of current in 
the two helices is that part of the int.egral in eq 7 attributable to the 
first part of the numerator rlr2 cos 1/t/PIP2; the part coming from the 
item 1 in the numerator is due to their x-components or axial com­
ponents of current. The latter is a small quantity compared with 
the former (in general, of second order, when pdrl and P2/r2 are both 
small quantities of the first order). 

Writing eq 7 in the form 

m= L::' dXIL::' dX2f[~-Xh1/t(Xh~)] 

and changing the variable X2 to x' by the substitution x' =X2-XI gives 

Next, changing the variable XI to X" by the substitution X"=Xe2-XI 
gives 

In the last double integral, the variable of integration x" has merely 
been replaced by y in order that the symbol x" may be used in another 
sense, so that the four integrals into which m is resolved in eq 9 below 
shall each have the same designation of their two variables, and shall 
have limits of the same general form. In the last double integral we 
next change the variable y to x" by the substitution x" =y- (X.J-X12)' 



Snow] Mutual Inductance oj Coaxial H elices 

Writing the x" integral of this in the form 

gives 

where 

foxil-
I

" ( )dx" _ l xi,-xi' ( )dx" 

m = f:,,-Xi dx" fox' j[X', 1/1,,(, (X', x") ]dx' 

- foX"-x,, dx" foX'j(x', 1/I",,(X', x")]dx' 

+ lXi'-x" dx" lX'j[X', if; I,., (x', x") ]dx' 

- lXi,-xil dx" lX'j[x' , if; III/X', x") ]dx', 

./, (x' x") =- + --- x" +li -li - ~ x' (1 1) (X -x ) 
'1' .,1,' P2 PI P2 " I, PI 

1/1 (x' x")= - + --- x"+li -li - _1_, __ " x' (1 1) (X -x ) 
I,.,' P2 PI P2 t,., PI 

243 

(9) 

(10) 

In what follows we shall use x (positive or negative) to represent one 
of the following four x-differences, and lix for the associated constant 
azimuth-difference. 

X=X .. -XI" X.,-X,,, XI,-X." and XII-XI,} 

8"=li.,-li l ,, 8.,-li." lil.-li." and lil,-li l, . 
(11) 

These four differences represent the four possible axial distances 
between a terminal plane of hi and a terminal plane of h2 • The cor­
responding azimuth differences, lix , are those of the respective pairs of 
terminals (having the same subscripts). Equation 10 may by a 
similar notation be condensed into 

1/Iz(Xll x2)=iz+~-k)x2+lix-;/ (12) 

where 1/1",=1/1'21"1/1.,.,,1/11,.,, and 1/11,1,· 

From the definitions given in eq 11 and 12 it is found by the use 
of eq 1 and 2 that 1/I'.I,=if;.,., and 1/11,.,=1/11,1,. 
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Hence eq 9 shows that the mutual inductance between two helices is 
of the form 

m=w(x.,-x i ) -w(x., -x.) + W(Xi,-X.)- W(Xi, -Xi) (13) 

Consequently, the x-component, j, of the attraction of h2 for hJ, when 
each carries unit current in the same direction, is given by 

j= -Wi (X,,-Xi,) +w' (x,,-x.,) -Wi (XiI-X,,) +w' (Xii-Xi,), (13) I 

where primes denote derivatives with respect to the x-argument and 

w(x)~ [dx'f~:;,~::'dx" (14) 

where R is a function of tfx defined by eq 6 and tfx is defined by eq 12. 
It will be found that w is an even function and w' an odd function of 
the x-argument, both vanishing with it. 

It is necessary to evalute the integral w (x) for positive and negat.ive 
values of x in order to treat all possible coaxial helices. To do this 
we note that the integrand in the integral of eq 14 is an even periodic 
function of tf, with period 271", and may therefore be developed in a 
Fourier's cosine series. To find this series, consider the function 

k/4"/I-P cos2 0, where the modulus, le, is a positive real in the range 

o ~ le ~ 1. This function has the development 

lc 1 co 

4~ P 2 2 ¢o(k) + L2¢n(k) cos 2nO, (15) 1- cos 0 n=l 

where the functions ¢n(k) are given by 

'If' " 

¢n(k)=¢ n(k)=~ (2 cos 2nO dO=(-I)"k ( '2 cos 2nO do. (16) 
_ - 71"Jo~l-k2('os2 () 71" Jo~1-k2sin2(j 

They may be expressed in terms of the hypergeometric series 

k2n+1 r( n+~)r( n+~) ( 1 1 ) 
¢,,(k)=2;"" r(2n+l) F n+2",n+2",2n+l, k2. (17) 

When k---71 every ¢n---7 co, its principal part being cf> ,, ~~.log I" where 

k' is the complementary modulus. These functions satisfy the dif­
ferential equation 

k3 d~[l kk2 ¢n' (k) J= (4n2-1)1>n(k) , 

(18) 

The first two functions of the series, cf>o and ¢l, are expressible in terms 
of the two complete elliptic integrals of the firs t and second kind with 
modulus k. 
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Any other function, CPn(k) , could be computed in terms of CPo, and CPI 
by successive application of the recurrence relation 

(20) 

The derivative, cP~ is given by 

1-k2, (1)[ (2 ) ] -k-CPn(k)= n-2 CPn- l- pi-I CPn (21) 

'When k is a function of x, TI, and T2 defined by 

k2 4TIT2 
x2+h+Tz)2 

(22) 

the mutual inductance of two coaxial circles of radii TI and Tz (the 
distance between their planes being:r) is NI=47r2-JrITzCPI(k) 
Their attraction, F, with unit currents is F= -DxM, so that 

YI(k) =47r2cpI(k) = ': and Yz(k) = 7rzle3cpUk) = -JTITzF (23) 
-v TlrZ x 

These are convenient for finding CPI(k) and cp~(le), because the func­
tions YI(k) and Y 2(k) are tabulated against k2 in table 2 of the Scien­
tific Papers of the Institute of Physical and Chemical Research 
(Komagome, Hongo, Tokyo, 1927) by Nagaoka and Sakurai. 

When k is given by eq 22, the functions CPnUc) satisfy the partial 
differential equation 

{D 2+ D' +1-2aD +az-nZ}( , ) 0 :r TI -- 'I --2 - r1a-vc/>n = 
TI T~ 

(24) 

where a is any constant. 
There are also the integral representations 

CPn(k) 1 f2,.. cos ntf; f'" 
-JTITz=27rJo -JXZ+ R 2(tf;)dtf; = J o e-·lxIJn(TIS)Jn(TzS)ds, (25) 

where I n is Bessel's function. The modulus, le, in all that follows, 
will be understood as the function of x, TI, and T2 defined by eq 22, 
unless otherwise stated. When x is replaced by XI it will be called 
lei, and ko means the modulus for x=o. 

Hence, as shown by eq 15, 

1 
(26) 
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so that the required Fourier's series for the integrand of eq 14 is 

rlr, cos fz+ 1 
PIP2 1 {rlr2 (k ) + (k) 
.Jx~ +Ri (ft) = .Jrlr2 P1P2¢Jl 1 ¢Jo 1 

+ ±cos nfTr1r2 (¢In-l(k1)+¢Jn+I(k1))+2¢Jn(k1)]} (27) 
n=l lJrlP2 

Hence eq 14 may be put in the form 

where 
w(x) =ws(x) +wx(x) +w.(x, Oz), 

Wa(x,Ox) = ~wn(X,Ox) 
11=1 

W,,(X,Ox) = / r'dx, (XI dXl cos nf.,(xhx,) 
-vrlrdo Jo 

(28) 

(29) 

[;~~2 (¢J.-I (k1) + ¢J"+l (k1)) + 2¢J. (k1) ] (30) 

The term Ws is the part of the integr~l of eq 29 involving ¢Jl; the term 
Wx the small part involving ¢Jo. 

To prove that the W,1s2 defined by the integral of eq 29 is the W 
function which, if used in the general formula, eq 13, would give 
the m'1I2 previously defined as mutual inductance of the two associated 
current sheets, we may start with the elementary formulation which is 

(31) 

By transformation similar to those used in passing from eq 7 to eq 13 
(but much simpler) one finds that 

(32) 

1 
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provided f is such a function that these integrals converge. This 
shows that w(x) is an even function of x, an odd function, or neither, 
according as f(x) is. Also w(O)=O, and w'(O)=O, where w'(x)= 
Dxw(x). In eq 31 f(x) is an even function of x, so w(x) is an even 
function of x, and m .. is therefore reduced to the general form of 
eq 13, where the w-function is 

i

x iX' i2?rdif;_rI_r2cosif;+1 
w =W6+Wz = dX2 dxI _P"'4IP=:2;=;=~=;=:=;=-

8,'1 27T Ix~ + R~ (if;) 
o 0 0 -v . 

i

x i2r " .. rIr2 cos if; + 1 
= dif;PIP2 

(x-Xj)dXj 27r -Jxi+R2(if;) 
00 ' 

(34) 

Using the expansion eq 27 for this integrand, the 'l! integral vanishes 
for all terms except n=O, so that eq 34 becomes identical with eq 29, 
thus proving that the latter corresponds to current sheets. 

It is useful to notice the two following partial differential equations 
satisfied by the components W6 and W z , which are derivable from the 
definition 29 together with eq 24. 

(35) 

(36) 

III. THE PRINCIPAL TERMS W8 AND w/ 

The equation 29 gives 

where 

Now, by eq 22 

so that 



248 Journal oj Research oj the National Bureau oj Standards [Vol. 22 

Hence 

Hence 

- .Jrlr2 rx Xl~l(kl) dXl =4 (r1r2)![!f _(;_l)(K-E)] 
PIP2 Jo 3npIP2 k k k 

minus the same function of ko, which, being independent of x, may 
be discarded from the w function as it always cancels from eq 13. 
Hence, placing 

we(X) =xwo' (x) 

+ 27r~:N2{ 4rt2).JX2+ h +r2?[ K -(~-l}K - E) ] (37) 

To find w;(x) we use eq 16. 

". 

= 2rlr2 r~os 20 log [x+.Jx2+R2(20) ]dO. 
1TPIP2J 0 R (20) 

Integrating this by parts gives 



,-
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so that 

where 

~J (38) 

where 

Hence 

27rN1N2{ I --w/(x) lll2 x-yx2+(rl+r2)2(K-E) 

± Irl2-rll [ KZ(8o, Ie' ) + 7rF~~,k') - ~J} (39) 

Where the plus sign belongs with positive x and the minus with 
negative x, the bracket multiplied by ± vanishing when x=O . (Also 
the absolute value Irl2-rll must be observed.) The zeta-function is 
expressible in terms of E(8, k') and F(B, Ie') for 

Z(8, 1e')=E(8, 1e')-~>(8, Ie'). (40) 

Using the AGM method of computation,! and finding an, b,,, and Cn 

by the formulas 
I L. V. King, On the Direct Numerical Calculation of Elliptic functions and Integrals, page 8. 
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an=4Can-l+bn-l), bn=...jan-lbn-l, cn=~can-l-bn-l)l' 
(41) 

tan (OnH - On) = bn tan On 
an 

and starting with the initial values 

then 

7rF(Oo, k') 
2K' 

1 b k k' d . _lko' ao= I 0= ,Co= ,an Oo=srn F 

Using the initial values ao=l, bo=k', and co=k, 

gIves 

K=2:n and K-E= Cc~+2c~+4c~ .... 2nc!) ~ 

(41) , 

The formulas 41' are the result of successive applications of Landen's 
transformation which increases the amplitude and decreases the 
modulus. Hence, they will be most suitable when k' is small. 

If, however, k' is large it is easier to work the transformation in 
the opposite direction of increasing modulus, in which case the 
formula is 

KZ(Oo, k') + 7rF~~,k)' -~= -~ Cl-sin If'n)+~(lf'''' cn), (41)" 

where 
ao=l, bo=k', co=k 

and 

and 

"C.I, )-2 tan (21f'2-1f'1)+6 tan (21f'a-1f'2)+14 tan (21f'4-lf'a) 
~ '1'", Cn - C2cos (21f'a-1f'2) C3COS (21f'(-lf'a) C4cos (21f'6-if-',) 

+ + 2(2t+n_l)cn+2tan (21f'n+2-lf'n+l) 
. . . . cos (21f'n+a-lf'n+z) 

King! also gives an alternative to this with the same an, bn , and c", 
and the same recurrence formula between If'n+l and If'n' as above, except 
that it starts with 

• There is evidently a misprint in King's formula 7 see eq 75 or 75 defining l:(",.c.). The general term 
2 

should contain the factor 2(21+·-1)c.+t and not 2(2·-1)c.+ •. 
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in which case 

2Kcos (21/11-1/10)[ . +"( )] 
II= k'2 sin 21/10 a" sm 1/1,. ~ I/In, en (41)"1 

To interpret the function w;(x) in eq 39 it will be found that if 
the factor N2/l2=1/27rp2 is omitted and x replaced by II in eq. 39 the 
result is the mutual inductance between the helix hI (or its sheet) 
and a circle of radius T2 in its end plane. This is found from eq 13 
by letting l2~O. The formulas for we(X) and w;(x) when used in 
eq 13 or 13' are equivalent to the formulas derived by Jones 3 for 
the mutual inductance of two sheets and the force between them. 
The principal part of the force comes from the w; function and is, 
by eq 13', 

j9= [W;(Xt2-XI1) -W;(Xt2-xel)]- [w;(Xe2-XI1) -w;(xe2-Xe1 )]· 

By the above interpretation of the function w;(x) it is evident that 
the first bracket is N 2/l2 times the mutual inductance between helix hJ 
(or its sheet) and the initial circle of sheet 2 (in the plane X=XI2)' 
The second bracket is N 2/l2 times the mutual inductance between hi 
and the end circle of sheet 2 (in the plane x=xe2 ). 

IV. EFFECT OF AXIAL CURRENT IN HELICES AND 
LEAD WIRES 

From eq 29 

w%(x) = IX f% cPo(k1)dxl- / (-' Xt</Jo (kl)dxl = xw: (x) 
-yTIT2JO -y TIT2JO 

Now, by eq 19 and 22 

Hence, we may take 

w%(x) =xw' (x) _ 4-VTIT2 Ek~k) , 
~ 7r 

(42) 

dropping the term in ko, which is independent of x, and therefore 
always cancels from eq 13. 

s 1. V. Jones, Proc. Roy. Soc. (London) [A] 8a, 198 (1898), 

1 
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To find w:(x) we may use eq 17 

where 

and 

_11 1 + sin 1'+' S( 12) --2 og l' SIn I' 1'; ICo -sm I' 

N ow, sin rS is, in general, small compared to the logarithm, except 
when 1'=0, in which case they both vanish; but as x becomes large, I' 
approaches 7r/2, and the logarithm becomes infinite, while the series 

approaches the finite limit S(~'ko)=log 1 ~k~' which vanishes if ko=O, 

and has its greatest value, log 2=0.69, when ko=1. Also S vanishes 
when ko=O, so that, since the term sin 'YS( 'Ylko) is a small correction 
to a second-order term, a good approximation is obtained (sufficient 
for all cases with which this paper is concerned) by taking 

sin rS(-y,ko) = sin I' log 1 ~k~' 
so that 

where rm is the greater of 1'1 and 1'2 (since 1 ~k~ =rl~r2} It may be 

noted that the method used to obtain J: ¢l (lcl)dxl in the preceding 
section leads to 

!OX ¢o(k1)dxl=; 50" log [x+-J~2(~R2(8) Jd8. 

An approximation similar to this may be obtained from eq 17 m 
the form 
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where 

when 

. ( 1 3 ) .v; r (s+n) 
sm2 'Y=I , F1 l-s-n'"2'"2,1 =2 ( 1)' 

r s+n+"2 

so that 

Hence an approximation sufficient for use in second order terms is 
obtained by placing 

2" • _sin 'Y( ko )2" ko sm -ySn('Y,ko)-2i/: l+k~ , 

so that the following approximation analagous to eq. 43 is obtained: 

(44) 

When the lead wire of length II for the return current of hi lies parallel 
to a generator of the current sheet but at a slightly greater distance 
from the axis, say r/l=rl+l!.rl, the mutual inductance between this 
lead wire, ll1 and the helix, h2' is (as far as second-order terms are 
concerned) equal to that between II and the current sheet of h2' the 
corresponding w-function being 

- w .. (x, r/l' r2) = - w .. (x, rl, r2) - l!.rIDT1w" (x, rlJ r2)' 

If the lead whe of No.2 is similarly situated at a distance r'2=r2+M2 
its mutual inductance with hi has the w-function 

-w:r(x, rl, r'2)=-wX (x, rl, r2)-l!.r2D'2wX(x, rlr2)' 

This arrangement, of course, implies that the number of turns, NI 
and N 2 , are inte!?ers, so that the azimuths of the two lead wires are 
Ojl and 012 , TheIr mutual inductance with each other is determined 
by the w-function, W/ 1 /2, as in eq 13, and their force by W;,lal as in 
eq 13', where 

W11/2(X, a, r,l' r'2)=xw;,I.-.vr+R;'z,(a) (45) 
118273-39-9 



r 

254 Journal oj Research oj the National Bureau oj Standards [VoU, 

(45') 

where 
a=()12-()11 

R~z,(a)=rfl+rf.-2r/lr'2 cos a. 

The additive constant, Rll12' has been omitted from eq 45, being 
independent of x, so that it cancels from eq 13. When the radial 
distances, I1rl and I1r2, of the lead wires from the helices are small, 
the axial currents in t.he lead wires and helices almost compensate in 
their effects upon inductance and force, the residual being a very 
small term, depending upon the azimuth, a, of the coils. If wz(x, a) 
represents the total w-function due to x-components of current in 
lead wires and helices, then 

w,,(x, a)=w,,(x, rl, r2)+wI112(X, a, rl+l1rz, r2+l1r2) 

-w,,(x, rl+l1rz, r2)-wx (X, rl, r2+l1r2)' 

When /1r1 and I1r2 are small, this becomes 

(;),,(x, a)=wII12(X, a, rll' rI2)-w,,(x, rZ, r2)-(l1rlDTl+l1r2Dr2)wz(X, rl, r,). 

Since, however, these w-functions are themselves of second order, 
the terms in /1r are smaller than second order and therefore negligible. 
Hence, for this arrangement of lead wires, the w-function and its 
derivative, which takes account of all axial components of current 
in helices and lead wires, are given by 

- '() 4...jT1T2 E , R' (46) w,,(x,a) =xw. x,a + -7r- k- -v r+ 2(a) 

where 

-'( ) I x+...jx2+R2(a) '()-~b w. x,a = og R(a) -w" x - L; n cos na, 
n=l 

the constant term in this Fourier's cosine series being zero. 
coefficients bn for n >0 are given by 

2 i' b,.= ,- cp,,(kl)dxI= 
-v rlr2 0 

x 1 (rl)n 
...jx2+ (rl + r2)2n r; 

(46') 

(46") 

by the approximation in eq. 45, if r2>rl' On summing this' Fourier's 
series we find the following finite form as an approximation for eq 46' 

(46"') 
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v. THE AZIMUTHAL TERMS 

To integrate eq 30, we may place (by reference to eq 10') 

. '" . (0 X)+inX'+ (1 1). cos n1/;z=e·n ~ =ezn .-p; p; ~-p; mxu 

with the understanding that the real part of the result is to be taken. 

Using the abbreviation 

J(n,s) = I n- l (rls)Jn- 1(r2s) +J"+l (rts)J,,+1 (rzs) +2P1P2 J n hS)Jn (r2$). 
rlf~ 

eq 30 becomes, by use of eq 25, 

wn(X,8z)=f1f 2 ein(o.-~) (a>dsJ(n,s) (Xein(~-i,)x2dx2 (Xle i;~'-'lxddxl. 
P@z Jo Jo Jo 

., If l>O, then XI and Xz are both positive in the range of integration 
of the :LI XZ double integral, so that e-8 ,z,1 =e- 6Z,. vVhen x<O, then Xl, 

and xz are both negative in the range of the integral, so that e-11z,1 = 
e+sz" and the result of the integration in the latter case is found by 
changing the sign of 8 in the result of the integration for the first case. 

It is thus found that both results are included in the following: 

flfzef.nOZia co d J ( ) =---2- 8 n,s 
n 0 

{~'-:';(1:~) -~,-:.;(::~) -(l±~X:+~)}' 
where the upper sign belongs with positive x and the lower with 
negative x. 

I 



The real part of this is ~ 
c.n 
0:. 

r 1r2!o'" \ 1 [P2 cos n(oz-~) PI cos n(oz- ~)l (l_Pl~~S) e-,Izl cos no,,) 
w (x () ) = - dsJ(n s) -- P - P - ~,------;;-+---;------;;~-
" 'x n2 0 ) P2-Pl 1+P_~8_2 1+P_~8_2 J (1+ _P~_S2)(1+P_~_S2) 

~ ~ ~ ~ 

~ 
~ ... 
;> 
~ 

'" 11 rp:sinn(o,,-;) p~sinn(o,,-£)l_(pI+p2)e~'I"1 sinnoxj 
rlr2 r d J() I - 2 2 J ( 2 2 )( p's2 ) ± n3 Jo s s n,s P2-Pt 1+P~~2 l+P~~ 1+P~2 1+ ~2 

~ (47) ~ 
'" "" '" ~ 
~ 
~ 
So 
'" 
~ ..... 
<". 
0 
;> 
~ 
b;; 
ti 
'" ~ 
~ 
~ 
@ 

""'" ~ 
"" 

~ 
1: 
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The terms in the first integral which do not contain the exponential 
factor e-81 %1 may be discarded, as they will all cancel in eq 13 because, 
as shown by reference to eq 2 and 11, the values of OX-X/PI will be the 
same for the first and second x-differences, (Xe2-Xil) and (Xe2-Xel). 
!he~e first and second x-values enter eq 13 with opposite signs. 
SImilarly, the values of OX-X/PI are the same for the third and fourth 
x-values, Xf2-Xel and Xt2-XH, which enter eq 13 with opposite signs. 
Hence the term in eq 47, cos n(OX-x/PI) , disappears by the second 
x-term canceling the first and the fourth canceling the third. It is 
also found that cos n(Ox-x/P2) disappears by the fourth canceling 
the first and the third canceling the second. The corresponding 
terms in the second integral, sin n(Ox-x/PI) and SID n(Ox-x/PI) , do 
not always cancel because of the ± factor which has the sign of x. 
If the associated current sheets are wholly external to each other the 
cancelation is complete, but if one lies wholly or partly within the 
other the terms sin n(O,,-x/PI) and sin n(0,,-x/P2) of eq 47 do not 
disappear from eq 13. 

Hence eq 47 may be written 

(48) 

plus terms which cancel in eq 13, where 

1
· (0 X)l"'SJ(n,S)dS . (0 X)l"'SJCn'S)dSj SIn n ,,-- 2 -sm n :t-- 2 

P2 82+~ PI S2+ n2 • 

o P2 0 PI 

We may now show that by limiting the application of the results of 
this section to those cases where the w: (x) are all negli~ible, we do not 
impose a serious restriction as far as practical mutual mductances are 
concerned, with the exception of a bifilar-wound coil in which one of 
the windings is used as primary, the other as secondary. Such a coil 
has never been used for absolute measurements, but we see no reason 
why it should not be used in the future . It would possess certain 
advantages from the point of view of accurate construction and 
nleasurement und would give the greatest possible mutual inductance. 
The formula for its mutual inductance has never been evaluated with 
precision as it has for a self inductance, but the problem would present 
no greater difficulty. 

It is easy to foretell that this limitation is that the helices, hi and h2 
shall not through a finite part of their lengths be separated from each 
other by a distance which is small (of the order of plr). 
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If Hn denotes the first Hankel's function then 

1a> sJ m(rls)J m(rz8)ds '!!.J (inr')iH ( inr2). 
n2 2 m P m P S2+-

o p2 

when r2>rl' In case r2<rl, the two are interchanged in this equation. 
Since rl/p and r2/p are large, the asymptotic expansions of Hm and J m 
show that this expression is very close to 

p -nlr,-r,1 • 
2..j ev- in cases r2>rl or r2<rl' 
n rlr2 

Hence, approximately, 

* ( (J) - ..jr;r; { - ~nro-rJI+i(X-P,oX) l -J;-!h-nl+i(X-PJO,)l} 
Wn x, x - 2(P ) . P2e • -PIe I , 

n I-PZ'/, \ 

where the real part is to be taken. 
When P2=Pl=P, this becomes 

*( (J) = ..jr,r2{1 + h-rd+ iX}e-~nr.-rd+;(X-Pe.)l Wn x, x . 2 '/, n np 

Since the entire Wa function with the factor rIrZ is of second order in 
general, compared with the principal term, We, which has the large 

factor rIr2, it is evident that ±~-~lr2-rd ",ill be utterly negligible when 
PIP2 1 n 

r2-rl is finite (not a small quantity of the order of p). Since w~ is 
only ditferent from zero when one coil lies wholly or partly within the ..j 

other, this means that the two must not approach very close to each 
other if w~ is to be neglected. 

The remaining integrals in eq 48 cannot be similarly integrated in 
finite terms, but it is evident that when Ixl is finite (not small of the 
order plr), we may (on account of the convergence factor e-s1xl of the 
integrand) obtain the principal part of Wn by placing PI =P2=O in 
the integrand, as the resulting integrals still converge, even if rl=r2' 
We cannot be content, however, with this restriction on x, as we must 
evaluate Wn for cases where x=O. In this case, if we place PI=PZ=O, 
the integrals in eq 48 then converge only if rl~r2' but if rl-r2 is a 
finite quantity, the principal part of Wn is thus obtained. The limita­
tion is therefore evident-the helices mU8t be everywhere separated from 
each other by finite distances. Assuming this to be the case, and 
noting that the last term in the definition of J(n, s) is negligible, we 
obtain the result 

so that 

wn(x,(J,,) = - ..jr;r2 [4>n-l(k) +4>n+l(k)] cos n(J", 
n 

Wa(x,(Jx) = - ..jrlr2 ± [4>n- l +4>n+t] cos ~(Jx J 
n~l n 

(49) 
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and 

, ( 0) -~ ~ [ , + ' ] cos nO",. 
W", x, x - 4 ,- L....J CPn-l CPn+l --2-

-yrlr2n=1 n 
(49') 

(In finding the self inductance of a helix, the Wa rises in rank from a 
second order to a first order quantity, from which originates the most 
important correction term-the evaluation of which was the only 
difficult part of that problem. The same remark would apply to It 
bifilar mutual inductance) . Eq 49 holds of course when rl=r2, pro­
vided the end planes of the two coils are not close together and the 
coils wholly external to each other (so that k is not close to unity). 

The series 49 and 49' may be evaluated by finding CPo and CPl in 
terms of elliptic integrals by eq 19, and then finding all other CPn or cP~ 
by the recurrence relation 20 or 2l. 

Since the series represent second-order terms, it is evident that 
some simpler approximation will be sufficient. To obtain such, con­
sider the even, continuous function of 0, j(O), which is never negative 
and is a periodic function of 0, with period 21T, defined by the series 

CX> 

2 4 ,",cos nO 
j(O) =3"-1T2L.J --:n,r for all real values of o. (50) 

n=l 

j(O) vanishes when O=2n1T, where n is any integer. It has the maxi­
mum value unity when 0= (2n+ 1)1T. It consists of a succession of 
parabolic arcs for 

j(O)=(2-~)-! __________ when O~O~ 21T, (5111., 

and 

1(8)=( 4-~)(~-2 ) ______ when 21T~O~41T. (51b) 

Now, 

Also from eq 15 one finds 

k c~O CX> 

-2..j k2 2 o=CPl(k)+L:[CPn-l(k)+CPn+l(k)] cos nO. (53) 
1- cos "2" n=l 

Multiplying eq 52 by eq 53, and integrating the product from 8=0 
to 8=21T, gives 
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so that eq 49 becomes 

1
71"2 7I"k12"f«()+()z) cos ()d()! 

<AJ. (X.()z)=-~ a4>l(k)-s~ () 
l-k2 cos2 -

o 2 

It is sufficient to evaluate this for the range 0 <: ()x;;;; 7r since its value 
for any other range of ()x is obtainable from this by inspection, remem­
bering that Wa is an even function of ()x with period 271". (This restric­
tion "; disappears from the end result.) With this restriction the 
argument of j in the integral from 0 to 271"-()" lies in the range 
O~ ()+()x~ 271", so that by eq 5Ia 

In the integral last written, as eq 5Ib shows, 

Making these substitutions, and then changing the variable of inte­
gration in the last integral to ()', where ()=27r-()', gives 

(x ()) -..;-I~ (k) 7rk12 .. -or[ 2 ()z+()]()z+() COB ()d() 
<AJu . • Z = r lr2 11 4>1 - 8 - ---:;- -7I"--J () 

l-k2 COS2 -o 2 

where both of the arguments ()x+() and (),,-() lie in the positive range 
of less than 27r. For this range, instead of the cosine series 50, we find 
a sine series for j«()) 

Since 32/71"3=1.032, it is evident that a good approximation for the 

integrals in eq 54 is given by placing j«()) = sin ~ for ° ~ () ~ 27r, that is, 

1 
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j(O,,+O) = sin COxtO) andj(O,,-O) = sin COx 2 O} 
This gives after some simple transformations 

(56) 

Now, 

kJ sin () cos 20 d() 1 [1 (7 ()+ 'I k2 • 2 0) , k2 ' 2 = 12 og IC cos -V - sm 
-V 1 - Sill () Ie 

-k cos ()-Jl-k2 sin2 0] 
and 

so that 

(x 0 ) - - -Jr;:;:;7r2¢ 1 (k) 7r-Jrlr2[ 1 /1 k2 2 ()" 
Wa 'x - 3 --2-- k,\/ - cos 2 

k . Ox+ /1 k2 2 (),,] 

--cos - sm-1 k cos- - - sm - log ------'-...-----
k'2 0". ( Ox) 1. Ox sm 2" '\/ - cos"2 . (57) 
k2 2 2 k 2 k' 

Differentiating this with respect to x gives 

1 k(I-~) 
+~ 0". -1(7 Ox) 2 /1 k 2 ():z; 4...)rlr2 cos 2" sm IC cos "2 - k'2 '\/ - cos '2 

. Ox [k sin ();'+~I-k2 cos2 O;,]l (57') 
+k sm '2 log k' 

These equations hold for any value of Ox since they are even periodic 
functions of ()x, with period 27r. 
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The four azimuthal differences in eq 11 may be written. 

0'2'1 =a+27rNz'0'2el = a+27r(N2 - N I ), 

012el=a-27rNI,012tl =a=Olz-Otl (58) 

so that when the number of turns, NI and N 2, are integers, every 0" 
may be taken equal to a. It is evident that no essential simplification 
would have resulted in the formulas eq 57 and 58 had we restricted 
NI and N2 to integral values at the beginning. 

To obtain an interpretation of the term Wa (x,O.) , let M(x,OX,rl,r2), 
or, more briefly, M(O.), denote the mutual inductance between the 
two incomplete circular arcs which are the parts of the two coaxial 
circles of radii rlrZ (the distance between their planes being x) included 
between the azimuth planes 0=0 and 0=0 •. 

When the circles are complete we have by eq 23 

M (271") = 47r2 -vrjr2¢j (k) 

In general, if 0<0.<27r 

l O, lO, cos (02-01) 

M(o.J =rlrz dOl d02 -V 2 R2 ) 
o 0 x + (02-01 

which may be transformed into 

M(O.) -18'd fO. k cos OldOI 
V rjr 2 0 0 1 k2 2 01 

2 ,- - O2 ~ • 

2 - cos "2 

Using the expansion in eq 53 for this integrand gives 

Equations 49 and 59 are equivalent to 

wa(x,O.) =wa(x,O) + ~[ M(o.) -(20; YM(27r)] when O;:?; Ox;:?; 27r. 

Since, by eq 57, 

( 0) __ M(27r)_7r-V~k'(1_~~ . -I k) Wa x, - 12 2k k sm , 

this may be written 

Wa(x,o.) = - Mf;7r) +~[ M(Ox)-(20;YM(27r)] 

7r,r;:;r;k'[l k' . -1 k] (60) 
- 2lc -IC sm , 

which furnishes an interpretation for part of the term w,,(x,Ox), although 
this form has no advantage in computation since the mutual induc-
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tance }';1(8 x) of the two incomplete circular arcs is not a well-known 
or tabulated function as in the case M (27r) when the arcs are complete 
circles. In fact, the foregoing formulas give for it 

-~;[cos ~ sin-! (k cos ~)-sin-! kJ 
1. 8 [ksin~+~1-k2COS2~J . (61) 

- k2 sm '2 log k' 

When the series 49 and 49' are known to converge so rapidly that 
only the first two terms need be retained, there is no need to use 
eq 57 and 57'. 

VI. THE HELIX EQUIVALENT TO A HELICAL WIRE 

Consider the unit current in wire w! to have the vector volume 
density whose magnitude is a function of the distance r~ from the x 
axis, say u! (r~). Its direction is that of the generating helical 
filament. 

An axial plane cuts the wire in a circular section of radius PI> as 
specified in eq 5. If dS! is an element of area of this circular section, 
a helical tube whose (oblique) section is dS! carries the current, 

sruce 
1 

is the cosine of the angle between the normal to dS! and the direction 
of the current-density vector or tube. The total current carried by 
the wire is unity, so that 

(62) 

integrated over the circular section of the wire. 
In place of the rectangular coordinates xii-XI and r~ -r! of a point. 

of this section referred to the center of the circle as origin (as used 
in eq 5) , we may use the polar coordindtes p~ and cf>!, where 



264 Journal oj Research oj the National Bureau oj Standards [Vol. u 

in terms of which 
dS1 = p~dp~d4>I' 

Expanding the current density, ul(r~)=ulh+p{ sin 4>1), about the 
value rl (corresponding to the central filament of the wire) by Taylor's 
theorem and applying the condition 62, we obtain (to the second 
order, inclusive, in PI) 

where 

A - u~ (rl) dB _ u~(rl) 
1--(-) an 1---( -)" Ul rl 2Ul rl 

With similar definitions of Az and Bz, etc., the current, dI2, in a helical 
current tube of the second wire is 

so that 

dI p;dp;d4>1 [1 +A ,. +B ( " . z p~)J 2= 1l"P~ ZP2 sm rf>2 2 P2 sm 4>2-4' ' 

dl1dI2 p~dp~~~~~p;drf>~ { 1 + (AIP~ sin 4>1 + Azp; sin ¢z) 

+B{p? sin2 4>1- ~)+Bz(p;2 sin2 4>2-~)+AIA2P~ sin ¢1'P; sin rf>2}' (63) 

The mutual inductance, mtol to2, between t.he two helical wires, WI and Wz, 
is found by multiplying this expression for dl1 dI2 by m and integrat.ing 
over both circular sections of the wire, an operation which is equiva­
lent to multiplying by 1 when applied to any terms of m except the 
finite part mo since the operation only alters the subject by a second­
order fraction of itself. 

Now, by eq 13, replacing the x by x' 

II dI1II dlzmo = II dI1II dlzwo (x:, - x;) - II dl1 II dI2wo (x:. - x:) 

+ fi dI1ff dlzwo(x;.-x:,)- If dl1fI dlzwo(x;. -x;). 
Also 

where Xe2-XIIl r ll and rz refer to the central filaments of the wires. 
The expansion of this by Taylor's theorem for a function of three 
variables may be written symbolically (to the second order in P; 
and p;) 

{.t)o(x:,-x;) ={1 +[(p; cos ¢2- p~ cos <Pl)D,,+ p~ sin ¢IDr, + P; sin ¢2D,,] 

+~ rep; cos <P2- p~ cos rf>1)D" + p~ sin rf>lD" + P; sin ¢Dr,]2}wo(x,r1r2) , (66) 

where X=X'2-:I,ll' 

" 
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MUltiplying eq 63 by eq 66 and integrating gives 

ff dI1ff dI2wo(x:,-x;,) 

265 

={ 1 +~ (D;+D~, +2AIDr,)+~ (D;+D~,+2A2Drl)}Wo(x,rlr~), 
where x=x. - Xi =.1=the distance between end plane of the central , , 
filament of wire W2 and the initial plane of the central filament of 
wires Wl ' On making use of the partial differential 36, this becomes 
so that 

+1[ 2(1+ A)D 2(1 A)D ] p~+p~-JrI1'2 (k) -8 PI - 2 1 'l+P2 -+2 2 '2 WO+-S--- ¢l o· 
1'1 1'2 PIP2 

(67) 

The expansion of the three remaining integrals of eq 64 is the same as 
this with the appropriate x-arguments. 

The result is that, to the second order, the mutual inductance of 
the two wires is given by 

where hi and h2 are their central helical filaments, with radii rl and r2. 
This may be written 

(69) 

where 

(70) 

where all the m's except the principal one refer to the central helices 
of the two wires, and every m is expressed in terms of its w-function, 
as in eq 13, with corresponding subscrip ts. 

'1'he sole effect of giving the wires a. radius is to increase the effective 
radii of their current sheets from l' to r (to the second order), the 
length of the sheets being unaltered. The Jatter fact is explained in 
part by the particular manner in which their lengths have been 
defined, and in part by the fact that the wire sections are circular, so· 
that the t erms which would represent an increase in effective length­
being proportional to D;wo-have entered the result together with 
D;wo and their combined effects have been expressed in terms of 
DqwO and Dr2WO by means of the partial differential eq 36. 

For distributions of current in both wires whose r-derivative 
vanishes at t11e central filament, the constants Al and A~ are both 
zero. 
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The uniform current distribution is an example of this class. A 
correction equal to the above but opposite in sign is obtained for dis­
tributions in which AI= -I/rl, and A z=-I/rz, an example of this 
class being the "natural" distribution (BI = l/ri), where the current 
density varies inversely as the linear length ..jrz+ p2 of the helical 
current filaments. A distribution for which Al = -1/2rl, Az= -1/2rz 
would have no correction of this order of magnitude. 

Whatever assumption be made as to the current distribution, it will 
still be necessary to evaluate Dnm and Dr,m roughly in order to 
estimate the effects of errors in determination of the mean radii, 
rl and rz· 

At present we are ignorant of the current distribution in such wires, 
so that for simplicity it would seem better to ignore altogether this 
correction for finite thickness of the wires. The assumption usually 
made of uniform current density carries with it a spurious precision. 

We can, however, allow for future increase of knowledge as to 
current distribution, with no less simplicity of treatment, by defining 
the helix which is equivalent to a helical wire as one having the same 
pitch and end planes as its central filament, but a cylindrical radius 

r=a+~(~+2A } 

where a is the mean cylindrical radius of the helical wire and p is the 
wire-radius-the interpretation of the constant A being the value at 
the central filament of the r-derivative of the current density, which 
was assumed to be a function of r only and in the direction of the 
helical filament. 

As far as we are concerned here, this disposes of the difference 
between helices and helical wires. All the formulas in the preceding 
sections regarding mutual inductance of two helices and the force be­
tween them are valid for the helical wires to which they are equivalent. 

VII. APPLICATION TO THE CURRENT BALANCE USED 
IN THE NATIONAL PHYSICAL LABORATORY 

If the x axis be taken vertically upward, the lower (or suspended) 
helix, called No.1, has a mean radius rl=10 cm and length ll=15.2 
cm. The upper helix has radius r2=16 cm and length l2=11.0 cm. 
Both helices have the same pitch, 21l"PI=21l"P2=O.2 cm and an integral 
number of turns, N I=76 and N 2=55 turns. Hence, every 8x=a= 
Bi2 -B tl the azimuth of the helices. The upper end of No.1 projects 
into No.2, so that the third x-difference of eq 11 is negative. 

Xl =Xe2-Xil= +20.1 cm~kI2=O.5926 

X2 =xeZ-xel = +4.9 cm~7c22=O.9143 

X3 =Xi2-Xej= -6.1 cm~k32=0.8974 

x4=xiz-xtl=+9.1 cm~k4z=0.8434 

The force, j, acting on the suspended helix when both"Carry unit 
current is -

j=je+!x(a)+ja(a), (71) 
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where 18 is the principal part due to angular components of current in 
the helices and by eq 13'. 

(72) 

where the we' (x) are given by eq 39. The small partf.,(a) denotes the 
residue due to x-components of current in helices and lead wires 
together and is given by 

].,(a) = -;:(xl,a) +";;;:(x2,a) -;;;-:(Xa,a) + ;:(x{,a), (73) 

where the ;;;-~(x,a) are given by eq 46'. 
The last part,jQ(a), is given similarly by 

Ja(a) = -w:(xl,a) +w:(x2,a) - w: (x. , a) + w: (x{, a) , (74) 

where the w:(x,a) may be computed by eq 49' or 57'. Both ~;(x,a) 
and w~(x,a) are even periodic functions of a, with period 211", so the 
same is true of ].,(a) and ja(a). 

In the actual coils, however, there are two helices on each cylinder 
differing in azimuth by 11", so that when each carries unit current the 
force on the suspended coil is F, where 

where 

Fo= 4Jo 

F,,(a) = 2Lf.,(a) +f,,(a+1I")] 

Fa (a) = 2 [ja (a) +Ja(a+1I")] 

(75) 

(76) 

This makes the azimuthal terms, F.,(a) and Fa(a), each even periodic 
functions of a, with period 11", so that 

co 

F .. (a)+Fa(a)=~02n cos 2na. (77) 
n=l 

P. Vigoureux of the National Physical Laboratory of England has 
recently reported to this Bureau that in the absence of a formula for 
the coefficients 02n he has evaluated experimentally the first coefficient, 
O2, assuming the first term to be the only one of the series of practical 
importance. This he did by measuring the force for three different 
azimuths a=3°, 15°, and 85°. 

In order to see what part of O2 is due to axial components of current 
and what part is due to the azimuth terms w:, let 

(78) 

Reference to eq 72, 76, and 46" shows that the effect of aA-lal currents 
is given by 

(79) 
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and eq 49' shows that 

O;n= ,!-4~2 { -xlkHcf>2n+l (kl ) +cf>2n-l (kl)]+x2kUcf>2n+1 (k2) + cf>2n-1(k2)] 
-yflf2 . 

-xakHcf>2n+l (ka) +cf>2n-l (k3)] +x4k~[cf>2n+1 (k4) +cf>2n-l (k4)]} (80) 

Placing n=l 

O~= b:-(~)2[ -xlkl+X2k2-X3ka+X4k4] = +0.103 dynes 
Vflf2 f2 

~= .J!lfJ-Xlk~[ cf>~(kl) !cf>;(kl)]+X2k( cf>~(k2) !cf>;(k2)] 

From the recurrence relations 20 and 21, it is found that 

ka[ cf>~(k) tcf>;(k)]=~{[~+ ~Z:2] 7r2k3cf>~ (k) -(~-1 )41T2cf>1 (k)} 

=~2{ [~+ ~z:1 Y 2 (le) -(~2-1 )YI(k)} = ~2Y(k), 

(81) 

(83) 

where Y I and Y2 are the functions defined in eq 23, which may be 
taken from tables. 

Y I (Ie) =2.086, 

Y2(k) = 1.490, 

' . • Y(k) =0.401, 

9.100, 

25.663, 

9.04, 

8.165, and 6.072 for leI, k2' k3' and k4 

20.049, and 10.796 

6.57, and 3.41 

1 . 
02= 2 ,-{ -Xl Y(kl) +X2Y (k2) -xaY(ka) +x4Y(k4) } =0.86 dyne. 

1T -yflf2 

Hence 

02+02=0.86+0.10=0.96 dyne, which differs from the observed 
value 1 dyne by less than the experimental error. 

The force Fs=94,527.22 dynes, so that 

F=94,527.22+0.96 cos 2a 

For azimuth a=O or 7r, this azimuthal term amounts to 10 parts 
in a million. 

VIII. SUMMARY 

The self inductance between two coaxial helices and the force 
between them are lSiven in terms of four w-functions, and their x­
derivatives, respectIvely, as in eq 13 and 13', the four x-distances 
being defined in eq 11 with their respective azimuthal differences Oz. 
Resolving these functions into three components, W(X)=W8(X)+W z (x) 
+wa(x,Oz), the principal part corresponds to the mutual inductance 
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between the two associated current sheets, with angular components 
of current, and wxex) with axial components. The last term, wa(x,(Jz), 
is like wz(x), a second-order correction term applied to the finite term, 
we(X), where the ratio of pitch to cylindrical radius is considered a 
first-order infinitesimal. 

The principal term, (veex), is given by eq 37 and wxex) by eq 39. 
The first is equivalent to Jones' formula for current sheets. The 
terms wAx) and w:ex) are given by eq 42 and 43. 

The llzimuthal terms, wa(x,(Jx) and w:ex,(Jx), :1re given by the series 
eq 49 flnJ 49/ and in finite terms by eq 57 and 57/. 

These formulas are not restricted to the case where the helices have 
an integral number of turns but are quite general. They need not 
have the same pitch. For tbe case most common in practice where 
the numbers of turns are integers and the lead wires are straight lines 
parallel and close to the generator of the cylindrical cU1Tent sheet, 
the totlll effect of aU axial components of current in helices and Jead 
wires together is represented by a function wxex) which is given by 
eq 46, and its x-derivative by eq 46'. 

It is shown in section VII that the azimuthal variaLion of the force 
computed by these equations agrees (within experimental errors) vv"i.th 
that observed at the National Physical Laboratory. 

The correction terms given in section VI take account of the fini tc 
diameter of helical wires. They require a knowledge of the current 
distribution in the wires. 

These formulas are valid to the second order, inclusive, provided 
no parts of the two helices lie very close to each other, that is, at 
distances of the order of magnitude of the pitch of the windings. 

WASHINGTON, December 21, 1938. 

o 
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