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ABSTRACT 

Southwell has shown how, in some cases, it is possible to compute the critical 
astatic load, that is, the elastic buckling load, of a structure from measurements 
of its heterostatic deflections at lower loads. The history of the theory of hetero­
static loading and Southwell's method is briefly reviewed. Westergaard's general 
theory is then applied to the problem. It is shown that Southwell's method and 
Lundquist's modification of it are theoretically accurate for results of measure­
ments which are proportional to the value of anyone astatic parameter. These 
measurements need not be deflection measurements but may be strain measure­
ments or, theoretically, measurements of any effect linearly dependent upon the 
deformation. Further, the parameter need not be the parameter corresponding to 
the lowest critical load but, theoretically, may correspond to any higher critical load. 

Southwell's method is thus useful in cases where measurements within the 
elastic range can be made to depend primarily upon the change of a single astatic 
parameter. The theory is valid only for cases in which the buckling loads are 
lower than the load at which appreciable plastic deformation of the material or 
appreciable deviation from Hooke's law would occur. If, even within the elastic 
range, the measurements are affected appreciably by changes in other parameters, 
the critical elastic load computed by Southwell's method or Lundquist's modi­
fication may still be considerably in error. A combined numerical and graphical 
method of computation is outlined which by successive approximations, gives more 
accurate results in such cases. Finally, experimental results are given in which 
the second and third critical loads of a "round-end" Euler column are computed 
from strain-gage measurements taken at loads below the first critical load. 
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I. INTRODUCTION 

1. IDEAL CASES OF ELASTIC INSTABILITY 

In theoretically ideal cases of elastic instability, structures are 
considered ",hose individual elements obey Hooke's law and which, 
under the action of a syst.Jm of two or more proportional loads in 

equilibrium, called, as a system, 
P(Q P=Q P(Q2 Pa:Q. the "load P," initially deform in a 

w 

I f «. mode determined by the distribu­

ca) (b) (C) 

(j) 

tion of the individual components 
d of P and are in stable equilibrium 
() up to a certain critical load, Q, or, 

more generally, a discrete series of 
critical loads, Qh Q2' . . . Qh, 
. . .; Qh+I>Qh' Under the action 
of anyone of these critical loads, 
the equilibrium, although remain­
ing stable with respect to further 
deformation in the initial mode, 
becomes neutral with respect to 
some different (buckling) mode of 
deformation. 

The classical example of this 
type of behavior is the ideal 
straight "round-end" Euler 1 col-

p{Q umn. See figure 1. Under an ex-
I act]y axial load its initial mode of 

deformation is pure axial compres­
sion proportional to the load, but 

(k) under anv one of a series of critical 
loads it is in neutral equilibrium in 
another mode of deformation, a 
lateral deflection in the shape of a 
single or multiple-lobed sine wave. 

A comprehensive summary of 
the theory of these ideal cases with 
important additions was given by 
Southwell. 2 

2. PRACTICAL CASES OF MIXED 
ACTIONS 

FIGURE I.-Examples of astatic loading, 
a, b, c, d; orthostatic loading, e, f; and 
heterostatic loading, g, h, i,j, k, I, m, n, o. 

In actual structures these ideal 
cases are never attained, but, in 
general, budding deformations in 
modes corresponding to the differ­
ent Qh are present even under 

small loads. They increase at first slowly under increasing load, but 
the mode corresponding to QI increases with greatly increasing rapidity 
as QI is approached. If the mode of buckling deformation corre­
sponding to this load is prevented by outside constraints (fig. 1), the 
mode corresponding to Q2 will increase more and more rapidly as that 

1 Leonhard Euler, M ethodus inveniendi Lineas Curvas Maximi Minimive proprietate gaudentes, Bous· 
qnet, Lausanne (1744) . 

• R. V. Southwell, On the general theory of ela8tic atabilitv, Phil. Trans. Roy. Soc. (London), 113 [AI, 187-244 
(1913) . 
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load is approached, etc. The theory of these mixed actions of struc­
tures has been studied in much detail by many writers in special cases, 
more especially in the case of columns of inhomogeneous material, ini­
tially deformed, eccentrically loaded, and/or subjected to combined 
transverse and axial loads. These theoretical developments, even in 
this case, are practically all confined to purely elastic action and are 
not valid for loads at which appreciable plastic deformation occurs. 

3. WESTERGAARD'S GENERAL THEORY AND NOMENCLATURE 

Finally, Westergaard 3 gave a very general theory of buckling which 
covers all cases in which, although Hooke's law applies to the indi­
vidual elements of the structure and the deformations are small 
enough so that second-order terms may be neglected, the deforma­
tions and stresses are, in general, not proportional to the load. These 
assumptions cover the elastic behavior of practically all the usual 
cases of structural instability, but they also are not valid for loads at 
which plastic deformation occurs. 

Westergaard introduced a convenient nomenclature. He defined 
as "orthostatic" (fig. 1), .quantities and actions which are propor­
tional to the applied load, such as occur in a beam bent under trans­
verse loads; as "astatic" (fig. 1), quantities and actions in the theo­
retically ideal cases of elastic instability, such as the ideal Euler 
column; and as "heterostatic" (fig. ]), combinations of astatic and 
orthostatic quantities and actions. 

4. SOUTHWELL'S METHOD OF ANALYSIS 

Unavoidable heterostatic action under practical test conditions has 
been one of the major difficulties in the experiments on elastic insta­
bility. In an interesting paper, Ayrton and Perry 4 in 1886 showed 
how it was theoretically possible to calculate the Euler load approxi­
mately from the lateral deflections under lower loads, of an initially 
bent inhomogeneous and/or eccentrically loaded column, and gave a 
graphic method for determining it. Ayrton and Perry were pri­
marily interested in verifying tbeir theory of bent or eccentrically 
loaded columns and only incidentally noted this possibility. 

In 1932 Southwell" noted that within the elastic range before 
plastic deformation occurred the load, P, deflection, 0, curve of an 
initially bent or eccentrically loaded column a,pproximated a rectan­
gular hyperbola passing through the origin and asymptotic to the 
line P=Q!. If this were rigorously so, plotting 0, the lateral deflec­
tion, measured from the position of zero load as ordinate and o/p as 
abscissa would give a straight line whose slope was equal to Q!. 
Examination of the data published by Von Karman 6 and the unpub­
lished data of A. Robertson showed that the slopes of lines so plotted 
were . in a number of the tests, in excellent agre3ment with the 
measured critical load. 

Southwell gave a detailed discussion of the theory of this method 
of plotting in the case of the initially bent centrally loaded round-end 
column. 

• H. M. Westergaard, Buckling of elastic stmetures, Trans. Am. Soc. Civil Engrs. 86, 576-654 (1922). This 
contains a comprebensive bibliography. 

• W. E. Ayrton and John Perry, On struts. Engineer 62,464-465,613-515 (1886). 
I R. V. Soutbwell, On the analysis of experimemal observations in problems of elastic stability, Proc. Roy. 

Soc. (London) 135 [A]60!-616 (1932) . 
• Th. von K~rm~n, Untersuchungen liber Knickfe stigkeit, Forsch. Gebiete Ingenleurw. Hert 81 (1910). 
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Gough and Cox 7 applied this method of plotting to the shear 
buckling of thin strip, finding good agreement between theory and 
experiment. 

Fisher 8 extended Southwell's reasoning to the case of a spar under 
combined axial and transverse loading, finding agreement between 
theory and experiment. 

Recently, Ramberg, McPherson, and Levy 9 have applied the 
method With some success to the study of sheet-stringer combinations. 

Donnell 10 has recently presented a variation of Southwell's method 
by :plotting the load against the load divided by the deflection. The 
critlCalload then appears as the intercept on the P-axis. He also 
discusses the special cases of elastically supported struts, plates sup­
ported on three or four sides, cylinders under axial compression, and 
struts in the plastic range, finding that Southwell's method can be 
applied to all these cases in which the buckling does not introduce 
appreciable second-order stresses. 

Hill 11 has applied the method to measurements of the lateral deflec­
tion of aluminum-alloy columns tested with "flat ends" and to the 
buckling of the stems of T-sections similarly tested. He found good 
agreement with the theory up to loads at" which plastic yielding be­
comes appreciable. 

5. DIFFICULTIES IN APPLICATION 

In the application of this method it has been found that the lower 
portion of the (5), (5/P) graph was frequently curved and irregular, even 
when the upper portion was reasonably straight, and further, that 
straighter graphs could frequently be obtained by plotting (5-50 ) a·s 
ordinate and (5-50)/P as abscissa, where 00 represented a zero-point 
"correction" so chosen as to make the upper portion of the graph 
approximate most closely to a straight line. Unavoidable irregulari­
ties of deflection and strain readings under low loads is a well known 
difficulty in structural testing, ascribable partly to the practical im­
possibilIty of securely seating sensitive measuring instruments until 
they have been "worked in," and partly to inelastic settling of the 
structure itself, such as by slipping of rivets, under low loads. 

Southwell 12 pointed out that the zero-point correction in an initially 
bent column would necessarily be present unless the initial bend was 
exactly a sine wave corresponding to the lateral deflection under the 
first Euler load, and generalized the statement to apply to other types 
of instability for which analogous equations applied. 

6. METHODS PREVIOUSLY SUGGESTED FOR OVERCOMING THESE 
DIFFICUL TIES ' 

Various methods have been used to determine the zero-point cor­
rection and free the method from the uncertainties arising from initial 
irregularities. Southwell 13 suggested making a series of plots with 

I H. J. Gougb and H . L. Cox. Some tests on the 8tabilitv of thin ttrip material under shearing forc .. in the 
plane of the 8trip, Proc. Roy. Soc. (London) 137 fAj 145-157 (1932). 

I H. R. Fisber, An extension of Southwell's method of analY8inu experimental observation. in problem, of 
elastic .tability, Proc. Roy. Soc. (London) 1(4 fAj 609-630 (1934) . 

• W. Ramberg, A. E. McPherson, and S. Levy, Experimental Study of Deformation and Effective Wldtb 
in Axially Loaded Sbeet·Stringer Panels, NACA Tecb. Note 684, (January 1939.) 

" L. H. Donnell, On tbe Application or Southwell's Method ror the Analysis or Buckling Tests, Contri­
butions to the Mechanics of Solids-Stephen Timosbenko 60tb Anniversary Volume, p . 27-38 (Macmillan 
Co .. New York, N. Y , 1938). 

11 H. N. Hill, Note on the Analytical Treatment of Lateral Deflection Measurements from Tests Involv­
ing Stability Problems (Aluminum Company of America) P . T. Report 38-71. 

II R. V. Southwell, On the analvsi. of tEperimental observations In problems of eladic stability, Peoc. Roy. Soc. 
(London) 136 fAj 60HI16 (1932). 

II See rootnote 12. 
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different zero-point corrections and choosing the one which gave 
the straightest line in its upper portion. Gough and Cox 14 used the 
method of least squares and Fisher 16 a graphic method based on 
Pascal's hexagram theorem. 

A simpler method of eliminating the effect of irregularities under 
low load has been given by Lundquist. 16 This consists in plotting 
(0-0') as ordinate and (o-o'),(P-P') as abscissa,where 5' is the 
deflection under some definite initial load P' /which is chosen somewhere 
in the middle of the observations where the P, 0 curve is smooth. 

None of these methods can be expected to give straight-line graphs 
for high loads at which plastic yielding has become appreciable, and 
for which the theory is no longer applicable. 

7. LIMITATIONS OF PREVIOUS WORK 

In all of this work following Southwell's 1932 paper,17 except the 
very recent paper by Donnell, the detailed theoretical development 
has been limited to the theory of columns. The extension to other 
types of instability is only indicated by Southwell 18 by the statement: 

"In all ordinary examples of elastic instability, an equation of the 
same form as (7)19 governs the deflection as controlled by its initial 
value, provided that both are small. Corresponding with Euler's 
theory of the initially straight strut we have a series of 'critical load­
ings', each associated with a particular 'normal' type of displacement, 
and by expressing both the initial and final displacement in a series of 
normal components, we can show that the relation (11)20 will hold 
between the original and final amplitudes of the n'th normal compo­
nent." Donnell, as noted above, extends the theory of the method to 
other special cases. 

In none of the papers we have seen has it been noted that the theory 
of this type of plotting, and the range and limitation of its applicability, 
can simply and readily be deduced in very general form from Wester­
gaard's21 general theory. 

II. APPLICATION OF WESTERGAARD'S GENERAL THEORY 

1. SUMMARY STATEMENT OF THE THEORY 

Westergaard shows that if Hooke's law applies to the elements of a 
structure under a certain type of astatic loading, P, whose critical 
values are Q1, Q2, ••• , Qh, ••• ; Qh+1>Qh, then there can be 
defined a corresponding series of astatic parameters, Uhh that is Uu, U12, 

••• U1j, ••• U1n1' corresponding to Q1; U21, U22, ••• U2h ••• U2n2J 

corresponding to Q2, etc., an orthostatic parameter, v, and independent 
parameters, tlJ t2,. • • t",. . . tm. 

It H. J. Gough and H. L. Cox, Some tests on th' stabllitv of thin strip material under shearing forets 111 tht 
plane of the Btrip, Proc. Roy. Soc. (London) 137 [A] 145-157 (IG32) • 

.. H. R. Fisller, An t.£tensio?, of Southwell'. method of ana/l/sing uperimental observationB in problem8 of 
da.tic atabilitv. Proc. Roy. Soc. (London) 1« (AJ, 609-630 (1934). 

I. Eugene E. Lundquist. Generalized Analysis of Experimental Observations In Problems of Elastic 
Stability, NACA Note 658 (July 1938). 

17 R. V. Southwell, On the analvsis of uperimental observations in problems of elastic stabilitv, Proc. Roy. 
Soc. (London) 135 [AJ 601-616 (1932). 

II See footnote 17. 
"El(v"-v".)+Py-O. 
20~,. 1. 
=---p 
w. 1-_ 

P. 
II H . M. Westergaard, Buckling of tlaatle Itructures, Trans. Am. Soc.iCivlJ EDgrs. 8$, 576-6/i4l(1922). 
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These parameters are "generalized coordinates" in the Lagrangian 
sense, which define the displacements of the structure. In an axially 
symmetric Euler column, for example, the Un and Ul2 might be chosen 
as the two components obtained by resolving the defl ection at the mid­
point in two mutually perpendicular directions, when the column is 
bent in a single-lobed sine wave, the type of deflection which corre­
sponds to the lowest critical load. UZI and Un might be chosen as the 
components of the deflection at the quarter points when the column 
is bent in a two-lobed sine wave, the type of deflection which corre­
sponds to the second critical load, etc. In general, the Uhl and Uh2 

might be chosen as the coefficients of the Fourier series expansion of 
the lateral deflection in two orthoEonal planes, the v as the axial 
shortening of the column and the Itk ,as:lcoordinates determining inter-

FIGURE 2.-Types of parameters. 

Eight astatic parameters, U'i, correspond to each critical load, Q.; one orthostatic parameter, v, corre· 
sponds to deflection of the top 01 the table; and three independent parameters, t., correspond to motion of 
the table as a body. 

nal strains or motions of the column as a whole, which involve no 
deformation. 

It is only exceptionally that more than one astatic palameter cor­
responds to anyone critical astatic load. If the Euler column were 
not axially symmetric and the two principal moments of inertia bore 
an irrational ratio to each other, there would be two series of critical 
loads, of which no two could be equal and each would have only a 
single corresponding astatic parameter. Howilver, it is easy to >devise 
structures in which many astatic parameters would be necessary. 
For instance, a table (fig. 2) with equal axially symmetric legs cen­
trally loaded would require eight astatic parameters to define the 
possible magnitudes and directions of the sine-wave components of 
the deflection of its four legs corresponding to each of its critical loads. 

When these parameters are sufficient to define all the significant 
small displacements and deformations of the structure under some 
type of heterostatic loading composed of the astatic loading, P, and 
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an orthostatic" loading, W, Westergaard proves that the value of each 
of these parameters is given by 

_ P !]; Qh 
Uhj=Uh1+ Qh- P Uhj= Q,,_ P Uhj) (1) 

where Uhj is the value of the parameter under heterostatic loading 
and Uhj is its value under the orthostatic loading, W, acting alone. 
This is of the same form as Ayrton and Perry's 22 eq 15 and 
Southwell's 23 eq 11, but refers to the astatic parameters instead 
of the deflections, and is proved to be applicable under much more 
general conditions. 

Westergaard further shows that any effect, F, such as a stress, 
strain, deflection, curvature, etc., depending upon the deformation 
of the structure under these conditions, which under orthostatic 
loading, can be expressed in the form 

h='" j=n, 

F=Fo(th ... t~ ... tm)+ L LihjUhf, (2) 
h=1 }=1 

under heterostatic loading is subject to an equation of the form 

(3) 

where Ii'is the value of the effect under the heterostatic loading and 
Fo is its value under the action of the independent parameters alone. 
The i"lIi71' and p are constants independent of both the orthostatic 
loading, W, and the astatic loading, P, but, in general, are functions 
of the location in the structure, determined by the nature of the 
effect, the geometry of the structure, and the type of astatic loading, 
P. The constant, p, is so chosen that the orthostatic parameter 
v=pP. 

If F, for example, represented the strain on one side at the quarter 
point of an Euler column, the parameter, Un, corresponding to the 
single-lobed sine-wave deflection characteristic of the lowest critical 
load would enter the summation with a coefficient whose relative 
valuein=sin 45°=1f.,j2, while the parameter ~1 corresponding to 
the double-lobed deflection characteristic of the second critical load 
would enter the summation with a coefficient whose relative valuei21 = 
sin 90° = 1. If the deflections were measured at the sixth points the 
corresponding coefficients would have the relative values, in = sin 
30°=1/2 and i21=sin 60 0 =.J3/2, etc.,ip would determine the average 
axial strain under the load, P, and be inversely proportional to its 
length, while Fo would represent any internal strains present in the 
column under no load. 

Southwell's eq 924 is a special case of this general expression. 
" W. E. Ayrton and John Perry, On struts, Engineer 62,464-465,513-515 (1886) . 
13 R. V. Southwell, On the analysis of experimental observations in problems of elastic stability, Proc. Roy. 

Soc. (London), 135 [A], 601-616 (1932) . 
.. R. V. South well, On the analysis of experimental observations in problems of elastic stability, Proc. Roy. 

Soc. (London), 135 [A] 501-616 (lg32). 

'" [ n7f1' ] 1I~1 w. sinT 
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For these equations to hold, all of the components of the astatic 
loading, P, must change proportionally to each other, but the ortho­
static loading, W, may have components which are independent. 
These equations could be applied to any case of loading of the struc­
ture, but their practical value lies largely in cases in which the ortho­
static loading consists of a constant component and a component pro­
portional to the astatic loading, P. That would be the case, for 
example, in a girder under a combination of a constant transverse 
load and an eccentrically applied axial load, as in Fisher's 25 experi­
ments. The Uhf are linear functions of the linearly independent com­
ponents of W. In the ideal case in which the loading, P, is exactly 
astatic, the Uh} vanish with W, but in the practical case, there will be 
initial eccentricities of shape and loading, which may be treated as 
constant additive terms in the uhf. 

It is desirable to emphasize the implications of the assumptions 
upon which these equations are based. 

The equations are strictly applicable only to materials which obey 
Hooke's law. Experience has shown, however, that they can be 
usefully applied to materials such as some alloy steels or high-strength 
aluminum alloys whose stress-strain graphs depart appreciably from 
a straight line, but they cannot be expected to give more than rough 
approximations if the stresses are so high that plastic yielding of the 
material becomes comparable to the elastic deformation. 

The equations are limited to small deflections. 1£ the deflections 
should become too large, an effect, F, might cease to be even an ap­
proximately linear function of the parameters, and eg 3 would no 
longer be adequate to represent it. Further, the equatIOns are valid 
only if the astatic parameters selected are sufficient to define all the 
significant small displacements and deformations of the structure 
under the type of heterostatic loading considered. For example, the 
coefficients of the Fourier series expansion of the lateral deflections 
give astatic parameters adequate to describe the significant deforma­
tions of a sturdy column. They are, however, inadequate to describe 
the significant deformations of a column which may fail by twisting 
or by local buckling of its web or outstanding flanges. For such 
columns, additional astatic parameters are needed to define all the 
significant small deformations. 

2. MATHEMATICAL TRANSFORMATIONS USED 

In the further development, repeated use will be made of certain 
transformations which are a generalization of those used by Southwell 
and Lundquist. If 

Z= Q(a+bP) f(P) = Q(a+bQ) -bQ-j(P), (4) 
Q-P Q-P 

where z and Pare variables,j(P) is any arbitrary function of Palone, 
and Q, a, and b are constants, let 

W= z+bQ+j(P). (5) 
Then 

w=Q~~~Q). (6) 

.. H. R . Fisher, An extension of Southwell's method of al1all/sillg experimental obseroatio1l8 in problems of 
la.ticslabilitv. Proc. Roy. Soc. (London) 1{4 [AJ 609-{l30 (1934) . 
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Designating by primes quantities corresponding to a particular con­
stant value of P, P'; 

from which, 

w' Q(a+bQ) 
Q-P' 

(7) 

w w' w-w' 
Q-P'=Q-P= P-P' (8) 

or, 

(w-w') = (Q-P') ;_;:-w'. (9) 

By substituting values from eq 5 for wand w', 

(Z-Z')+f(P)-f(P;) = (Q_P')z-z' +j5!~-;f(P') -w' (10) 

3. APPLICATION TO A SINGLE ASTATIC PARAMETE.R 

Under the condition of an orthostatic loading consisting of a 
constant component and a component proportional to the astatic 
loading, P, arising from initial eccentricity either of shape or elastic 
inhomogeneity of the material in a structure, eq 1 will become 

UlIj= Q"Qh p(Uhi+PhJP) , (11) 

where Uhj is the value of the astatic parameter under the constant 
component of the orthostatic loading acting alone and P hi is a con­
stant determining the contribution of the orthostatic component of 
P to the value of the corresponding astatic parameter. This is of the 
same form as eq 4 withf(P)=O and may be written 

Uhi+PhiQh= Q"Q" p(Uhj+PhjQ,,) (12~ 
This is in the same form as eq I, except for the displacement of the 
zero of the U"i by a constant amount PhJQ". Equation 10 then gives 

(13) 

If then, under these general conditions, any measurement or measure­
ments can be taken on the structure which will determine a quantity 
proportional to anyone of the astatic parameters, UhJ, for varying 
astatic loads, P, and if the differences Uh3'U~i between its value for 
the varying loads and its value U~i for a fixed load P', be plotted as 
ordinates with the ratios (Uhj-U;j)/(P-P') as abscissas, the resulting 
plot should be a straight line whose slope is (Q,,-P'). 

4. COMPARISON WITH SOUTHWELL'S AND LUNDQUIST'S 
EQUATIONS 

Equation 13 is of the same form as Lundquist's 26 eq 15, and with 
P' chosen as zero, it is of the same form as Southwell's 27 eq 17 . 

.. Eugene E. Lundquist, Generalized Analysis of Experimental Observations in Problems of Elastic 
Stability, NACA Tecb. Note 6.18 (July 1938). 

" R. V. Southwell, On Ihe analvsis of tzptrlmental observallom in problems of elastic stabilitl/, Proc. Roy. 
Soc. (London) 136 [Al. 601--616 (1932). 



• 

10 Journal oj Research oj the National Bureau oj Standards [Vol.!S 

Plotting deflection against deflection divided by load gives curves 
which approximate straight lines because, as Southwell pointed out, 
when the load approaches the first critical load, Qll the modes of 
buckling corresponding to that load and represented by the U11, are 
large in comparison with the modes of buckling corresponding to 
higher loads. Accordingly, the deflections become approximately 
proportional to the UIJ. 

5. APPLICATION TO THE GENERAL CASE 

In practical testing it is impossible to so locate deflection-and/or 
strain-measuring apparatus that quantities proportional to anyone 
astatic parameter can be determined from their readings. Only 
such quantities would necessarily be subject to an equation of the 
form of eq 13. The measurements can only determine some more 
general heterostatic effect, F, subject to an equation of the form of 
eq 3, in which each of the Uhf is replaced by a linear function of P, as 
in eq 11. Each of the terms of the double summation can be trans­
formed, as in eq 12. Equation 3 will then have the form 

h='" 

- ~ q" 
F=r+sP+ L.iQ,,-P' (14) 

h=1 

where r, s, and the q" are constants. Their exact value, which could 
be determined from eq 3, 11, and 12, is of no significance in this con­
nection. Practical interest in this equation is largely confined to 
cases in which one term of the summation is large in comparison with 
the others. This may occur in two ways. It may be possible to 
arrange the measurements so that one of the coefficients, q". is large 
in comparison with any of the others. More frequently one of the 
critical loads, QI, is much lower than any of the others. In such 
cases when the load approaches QI, even though ql is not large in 
comparison with the other q", the termqd(QI-P) may become large 
in comparison with any other qh/(Q,,-P). That, however, is not 
necessarily the case, as may be illustrated by the observations of 
Gough and Cox. Only when their deflection measurements were 
taken accurately on the crest of the buckle were they able to get 
satisfactory results with Southwell's method. In either of these 
cases the largest variable term on the right-hand side of eq 3 con­
taining the factor q,,/(Q,,-P) corresponding to the critical load, Q" 
(usually QI), may be selected for special consideration and all the 
other terms treated as a single function of P,j (P). Equation 14 will 
then be of the same form as eq 4 with F substituted for z, so that 
an equation in F of the same form as eq 10 may immediately be 
written down. In this case 

-f(P)=r+sP+ L:Q qk P (15) 
• kr5h k-

and 

j(P)-j(P')=-S(P-P')-{;;.Qk~P'· ~:=-P;, (16) 

so that eq 10 gives 
- - qk Q,,-P F-F' 
F-F'+[w'+QII8]-8P+L:~'-Q p=(Q,,-P')p p" (17) 

kFh~.t-.L .1:- -
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6. APPROXIMATION BY EXPANSION IN A POWER SERIES 

If all the (Qk-P') are greater in absolute magnitude than (P-P'), 
the summation can be expanded in a convergent power series in 
(P-P') with positive integral exponents, 
so that, 

- - k=«> F-F' 
F-F'- f;t,ck(P-p'Y'=(Q,,-P') p_p" (18) 

where the Ck are constants. Their exact value which could be deter­
mined from eq 17 is of no significance in this connection. This equa­
tion will be practically useful in the analysis of experimental data only 
in the case where the series is very rapidly convergent. 

7. USE OF THIS APPROXIMATION IN COMPUTATION 

Computations based upon Euler's column indicate that in some 
experimental cases it may be worth-while to take into account second­
order terms in P in eq 18. To avoid cumbersome notation it is con­
venient to change the notation, and to write 

z=F-F' 

Q=Q,,-P' 
and to replace P-P' by P. Equation 18 then becomes 

z 
z+co-Qp-C1P-C2P2=0, 

(19) 

(20) 

where z represents the difference of the measured value of some effect 
such as a displacement, a strain, or some linear combination of displace­
ments and/or strains produced by the change in load, P, from the 
arbitrary fixed load, P', and Q represents tho difference between the 
particular critical load, Q", selected for special treatment and the same 
fixed load, P'. z/P should be calculated to two significant figures 
beyond 28 the number of significant figures observed in z. When Cl 

and C2 are small, plotting z as ordinate and z/P as abscissa will give a 
curve which approximates a straight line. The slope of the curve for 
highest values of the load within the range for which Hooke's law is 
approximately valid should be fairly close to Q. To determine Q 
more closely, draw a straight line, z=A+B(z/P), approximating 
closely the upper portion of the z, (zIP) curve, choosing the nearest 
convenient round numbers for A and B. For each observed value 
of zjP calculate the value of z to two significant fig'ures beyond the 
observed significant figures in z. Plot the difference z-z as ordinates 
to a scale so large that the estimated error of a sin~le reading is at least 
1 mm, with z/P as abscissas. This will make It easier to estimate 
changes in curvature and to distinguish between average trend and 
accidental errors. Choose some convenient round number as a trial 
value of Cit and plot z-z-cIP as ordinates with zIP as abscissas. 
Compare the resulting curve with the z-z, (zjP) curve. The result­
ing- curve may be: 

1. More curved. 
2. Curved in the opposite direction. 

JI Carrying the intermediate computations to two .ignijicaflt jiguru beyond the determinate significant fig , 
ures is important, If it is not done there may be 8 cumulation of computational error which will materiall¥ 
affect the accuracy of the results. 
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3. Less curved in the same direction. 
4. Have an inflection. 
5. Practically straight for lower values of P and curved for larger 

values. 
6. Straight within the limits of experimental error. 
In case 1 change the sign of Cl and proceed as in 2,3,4, or 5. 
In case 2 repeat with smaller trial values of CI , untll case 3, 4, or 5 

is observed. 
In cases' 3 and 4 repeat with larger trial values of Cl until the portion 

of the curve corresponding to the lower values of P is straight within 
the limits of expenmental error. The last trial value should then be a 
good approximation to the actual value of Cl' This gives either case 5 
or case 6. If It gives case 6, it shows that the term C2P2 is negligible 
and the computation is completed. 

In case 5 choose some convenient round number as a trial value of 
Cz and plot z-z-ctP-czPz as ordinates with ziP as abscissas, and com­
pare WIth the z-Z-CtP, (ziP) curve. The resulting curve may be: . 

1. More curved. 
2. Curved in the opposite direction. 
3. Less curved in the same direction. 
4. Have an inflection. 
5. Practically straight within the experimental error. 
In case 1, change the sign of C2 and proceed as in 2, 3, 4, or 5. 
In case 2 repeat with smaller trial values of C2 until case 3, 4, or 5 

is observed. 
In case 3 repeat with larger trial values of C2 until case 4 or 5 is 

observed. 
In case 4 start again the sequence of corrections of the first order 

leading to a new approximation to Ch and then repeat the sequence 
of corrections of the second order leading to better approximation 
to C2' 

In case 5 the computation is completed. 
These successive approximations, although complicated in their 

expression, can, provided data are consistent with eq 20, be made 
easily and quickly once the method is learned. 

8. POSSIBLE ACCURACY ATTAINABLE 

To gain some idea of the computational error involved in this type 
of approximation from data involving appreciable amounts of more 
than one term of the form qkl(Qk-P) of eq15, strains corresponding 
to different assumed combinations of different types of eccentricity 
and lack of straightness of an Euler column were computed. The 
combinations were so chosen that, at the highest loads assumed the 
contributions other than the major term amounted to 10 percent of 
the total computed strain. To these theoretically computed strains 
"accidental errors" taken at random from Shewhart's 29 "drawings 
from a normal universe," and of the magnitude found in good strain­
gage readings were added. 

From these synthetic "load-strain" data the critical load was com­
puted by the method outlined. In all cases the critical load so com­
puted agreed with the assumed critical load within less than 2 percent. 

II Walter A. Shewhart, Economic Control oC Quality, p. 442-445 (D. Van Nostrand Co., Inc., 250 Fourth 
Avenue, New York, N. Y. (1931». 
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9. DISCUSSION OF LIMITATIONS OF THE METHOD 

As Southwell 30 has pointed out, it is, at present, impossible in most 
practical experiments to predict in advance how closely critical astatic 
loads can be determined from measurements of heterostatic action 
under lower loads. Only in cases where one term qh/(Qh-P) of eq 
14 is or becomes large in comparison with the other terms of the sum­
mation for loads below those at which the material shows appreciable 
plastic yielding will the (ff-F'), (F--F')/(P-P'), graph be found to 
be reasonably straight for any considerable range. Only in such cases 
can any accuracy at all be expected. 

The relative magnitude of the different terms of the form qh/(Qh-P) 
will, in general, depend upon small irregularities of shape and material 
of the structure and small inaccuracies of loading which, in many cases, 
are difficult, if not impossible, to control. In practically all cases of 
simple deflection or strain measurements the term corresponding to 
the lowest critical load will predominate as that load is approached, 
but this may not occur before plastic yielding has become appreciable. 

However, a single term will not necessarily ever become predomi­
nant, and, in particular, it is not likely to do so in a structure in 
which the two lowest critical loads corresponding to two different 
modes of instability are nearly equal. This may have been the case 
in one of the experiments reported by Ramberg, McPherson, and 
Levy.31 Whether another type of analysis might be successful in such 
cases has not been investigated. In some relatively simple cases, how­
ever, it is possible to alter the conditions of loading and/or the type 
of measurement so as to ensure that even a term corresponding to a 
higher critical load will predominate below loads at which plastic 
yielding becomes appreciable. 

Even if the measurements are such that one term predominates 
sufficiently to enable a close determination of the corresponding theo­
retical critical astatic load, the stresses corresponding to that load 
may exceed and even far exceed the stresses at which the material 
yields plastically as is the case in short and medium length sturdy 
columns. 

In such cases the calculated critical loads will only give an upper 
limit to the strength of the structure. In spite of these limitations 
the method can be expected in many cases to give valuable informa­
tion concerning the stability of structures, but the determination 
whether it will give valuable information in the case of any given 
structure under a given type of loading can, for the present at least, 
only be determined by tnal. 

III. EXPERIMENTAL DATA VERIFYING THE THEORY 

1. DETERMINATION OF LOWEST CRITICAL LOAD 

Experimental data sufficient to show the value of this method of 
analysis in determining the lowest critical astatic load of some struc­
tures, have, as noted above, been presented by Southwell; Gough and 
Cox; Fisher; Ramberg, McPherson, and Levy; and Lundquist. Fur-

10 R. V. Southwell, On the analvsis of experimental observations In problems of elastic stabilitu, Proc. Roy. 
Soc. (London) 135 [A) 601-616 (1932). 

"W. Rambcrg, A. E. McPherson, and S. Levy, Experimental Study of Deformation and of EtIective 
Width in Axially Loaded Sheet Stringer Panels, NACA Tech. Note. 684. (Jan . 1939.) 
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ther data of the same kind will be of interest only in cases where the 
critical loads of the structures themselves are of interest. 

2. THEORETICAL POSSIBILITY OF DETERMINING HIGHER 
CRITICAL LOADS 

The general theory here presented, however, indicates that the 
method is not necessarily limited to the determination of the lowest 
critical load, but may, in suitable cases, be used to determine higher 
critical loads.32 It was thought worth-while to check this experi­
mentally. To do this it is necessary to arrange the loading conditions 
and measurements of a structure, so that an effect F of the loading 
may be determined in which the qk, k<h of eq14 will be very small and 
qh relatively large. 

3. EXPERIMENTAL ARRANGEMENT FOR SECOND CRITICAL LOAD 

Two arrangements of this kind were set up. In the first a com­
mercial straight piece of cold-rolled steel, X by X by 13.5 inches (see 
fig. 3), was loaded as a "round end" column with approximately equal 

c..5frah Di/Terence xl 07 
Load Differenct!! 

and opposite eccen­
tricities at either end 
secured by bevelling 

02 .J 4 6 6 7 8 9 10 II /2 /J the ends to form 

_JD-+-t"-- 'l 

_r::::J ~~3~ .. c041.b. I £ 
-
~ =7g0fZ04 .. !J~4 Ib. it 

I I cf 
_, I ! 

Slope=Z9101/;, 
&:.=7.90",2910-.31001/;,'/ 

I I 04 
I I I ? I 

FIGURE 4.-Southwell analysis oj eccentrically 
loaded column 

~ 

eccentric knife-edges. 
This introduced rela­
tively large orthostat­
ic components of the 
load corresponding 
to all the critical 
loads of even order 
but principally of the 
second order. Three 
pairs of 2-inch Tuck­
erman optical strain 
gages were placed 
on opposite sides 
of the specimen, one 
pair at the midpoint 
and one at each of the 

quarter points (see fig. 3). The difference between the readings of 
each pair of gages is proportional to the average bending strain over 
the gage length. It is easy to see that changes in the astatic param­
eters of even order will contribute but little to the bending strain 
at the midpoint and also to the sum of the bending strains at the 
quarter points. These will, provided the corresponding term of Fis 
sufficiently predominant, depend chiefly upon the variation of the 
astatic parameter corresponding to the lowest critical load. Applica­
tion of the analysis to eIther of these should therefore be expected to 
determine the first critical load. Further, changes in the astatic 
parameters of odd order will contribute but little to the difference of 
the bending strains at the quarter points. This difference will depend 
chiefly upon the astatic parameter corresponding to the second critical 

" Donnell's recent paper also notes this possihility in the case of columns. (See ref. 10.) 
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FIGURE 3.- StTaight column with equal and opposite eccentricities with gages at 
the quarter points and cenleT to determine the first and second critical loads. 

j 
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FIGU RE 5.- EccentTically loaded bent column with gages at the sixth points and 
centeT to detennine the fiTst and third cTitical loads. 
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load, which is theoretically four times the first critical load. Applica­
tion of the analysis to this difference should therefore be expected to 
determine this second critical load, provided the corresponding term 
of F is sufficiently predominant. 

4. EXPERIMENTAL RESULTS FOR SECOND CRITICAL LOAD 

The experimental data are given in table 1 and the final curves are 
plotted in figure 4. 

In table 2 the theoretical critical loads calculated from Euler's 
theory are compared with the critical loads computed from the 
strain-gage readings. The values agree within 0 and 3 percent for 
the first critical load and 11 percent for the second. 

TABLE l.- Criticalload of 13.5-by-~ by ~-inch cold-rolled steel column with equal 
and opposite eccentr'icities at the ends 

1 1 d,"= 
Load "A r "AM "AB P I 

2dl"= 2dl" (AT;AB) 
d," 

( A2)1) p; PI 

--- ---
10-1 10-1 

lb 10- 1 10- 1 10-1 lb 10- 1 lb 10-1 lb 
790 .. • . . . .. . . • .. . 0 0 0 0 0 --- --- -.- -- - ° 750 . . ....•... . •. . -1. 02 -0. 73 +0.01 -40 -0,37 + 0.00912 -0,5! 0. 01288 
710 .. ... .. . . . .. . . - 1. 93 -1. 20 +.13 - 80 - .60 . 00750 -1.03 . 01288 
670 . ...... _ . .. _._ - 2.73 -1. 63 +. 33 -120 - . 81 . 00679 - 1. 53 .01275 
630 . . ..... _ ...... -3, 40 -1.93 . 51 -160 -.96 .00602 -1. 97 . 01231 

590._ .......... . . - ,1. 10 -2.19 ,91 - 200 - 1. 09 .00548 - 2. 50 .01252 
550 . .. _ .. . ....... -4. 67 - 2. 34 1. 21 -240 - 1.17 . 00488 - 2. 94 .01225 510 _______ ______ _ -5. 23 - 2. 53 1. 52 -280 -1.26 . 00452 -3.38 . 01 205 
470 . .. _. _._ ...... - S. 73 -2.66 1.82 -320 - 1.33 . 004 16 -3. 78 . 01179 
430 . . . _ ..... _ ..•. -6. 29 -2.78 2.19 - 360 -1. 39 . 00386 -4.24 . 01178 

390 . .. _ . ...... _ .. -6.74 -2.87 2. 52 - 400 - 1. 44 . 00359 -4.63 . 01158 
350 . . . _._._._ . _ .. - 7. 22 -3. 01 2. 83 -440 - 1. 50 .00342 - 5. 02 . 01142 
310 •. . _ ... _ ... _ .. -7.69 -3.05 3.14 -480 - 1.52 . 00318 -5.42 .01130 
270 • .. _ ..... _. _ . . - 8.14 - 3. 13 3.47 -520 - 1. 56 .00301 -5. 80 .01115 
230 . . . _ .. ... _. _ .. -8. 53 -3.19 3.79 - 560 - 1.60 . 00285 -6. 16 .01100 

190.. ·_· ······_·_1 -9.01 - 3. 26 4.08 - 600 - 1. 63 .00272 -6. 55 . 01090 
150 .. .. ... _._ . _ . . - 9.40 -3.35 4.40 -640 - 1.68 .00262 - 6.90 .01080 
110 • • . . .. .. . . . _ . . - 9.78 -3. 36 4.71 - 680 -1.68 .00247 -7.24 .01065 

• A is t be difference in strain on opposite sides of tbe specimen (ben ding st.rai n) arran ged to be zero at the 
arbitrary "zero load " for computations of 790 lb. "d, an d d, are the bending st.rains corresponding to the firs t and second critical loads, r espectively. 

TABLE. 2.-Criticalload of 13.5- by ~- by-~f-inch cold-rolled steel column with equal 
and opposite eccentriciti-s at the ends 

~' I RST CRITICAL LOAD Pounds 
From strain at m iddle. .. . ....... . .. .. . . . . .. ... . . . ... . . .. . . .... . ...... . ... . . . . .• . ...... . . . . ..• . . . . .• 994 
From strain at quar ter points . .••••.... . . _ ..... . _ ....... _ .. _ . . .... _._ .. _ .. _ .. _. _ ._ .. . . _ .... . ... ... .. 1, 015 

Theoretical ("'{fI) ........................................ _ ..... _ .... _ ......... _ .... _ ............. 1,020 

(Assumed E=29 X lO' Ibjin.2) 

SECOND CRITICAL LOAD 

From strain at quarter points ... . •..... • . . _ . . . _ . . .. . . .. . . . . . _ ... . . _._ ........ . _._ ... _ .. . ...... . _ .. . . 3, 700 

Theoretical (4 .. ;;i:I) ......................... .................. _ ... _ ......... _. _ ..... _. _ ... _ .. _ .... 4, 100 

(Assumed E=29XlO'lb/ln .2) 

5. EXPERIMENTAL ARRANGEMENT FOR THIRD CRITICAL LOAD 

The fair success obtained in the calculation of the second critical 
load from heterostatic strains below the first critical load made it 
seem worth-while to see if still higher critical loads could be similarly 

115782-39--2 
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determined. A piece of cold-rolled steel, % by % by 27.7 inches, was 
chosen so as to allow strain gages to be placed one-sixth of its length 
from each end without coming too close to the ends. To ensure that 
the term of the summation in eq 14 corresponding to the third critical 
load should be fairly large, it was loaded as a "round-end" column with 
approximately equal like eccentricities at either end. This automati­
cally ensured that terms corresponding to the second critical load 
would be small. To keep the terms corresponding to the first critical 
load small, the bar was slightly bent symmetrically at the middle in a 
direction toward the line of application of the eccentric load. It is 
readily seen that difference between the sum of the bending strains 
(difference in strain on opposite gages) at the two-sixth pomts and the 
bending strain at the middle will depend chiefly upon the variation of 
the astatic parameter corresponding to the third critical load, while 
their sum plus twice the bending strain at the middle will depend 
chiefly upon the astatic parameter corresponding to the first cntical 
load. Two tests were made, one in which the bending strains corre­
sponding to the first critical load were predominant and, a second, 
after bending to the shape shown in figure 5, in which the bending 
strains corresponding to the third critical load were predominant. 

6. EXPERIMENTAL RESULTS FOR THIRD CRITICAL LOAD 

The data are given in table 3 and the final curves are plotted in 
figure 6. 

In table 4 the theoretical critical loads calculated by Euler's 
theory are compared with the critical loads computed from the strain­
gage readings. The values agree within 1 percent for the first critical 
load and 12 percent for the third critical load. 

TABLE 3.-Criticalload of 27.7-by %-by %-inch cold-rolled steel column with equal 
eccentricities at the ends 

-
0 .., 
<l <l 
+ I 
" "'" <lM <l 

+ I 
::; ~ 

<l <l 
COl ~ 
'--' l .. ::; ., 1 ~ .. .. ~ " J: ~IO: Il.; ~ ~ :i1 ... " - "Sl "Sl "Sl .;; 

- - ------------------------
10-< 

lb 
10-' 

lb 10-< 
10""' 10 ..... 10 ..... lb U; 10""' 10-' 10-' 10 ..... lb 

100 1. 81 -6.03 1. 16 -3. 03 -900 0.00337 0 0 ------ -- 0 0 -----.--
200 1. 53 - 5.60 0.96 -2.90 -800 .00363 -1.10 +1.32 -1. 59 +1.34 100 0.01337 
300 1.22 -5.24 .74 -2.84 -700 .00406 -2. 55 +2.57 -3.07 2.73 200 .01365 
400 0.92 -4.81 .51 -2.73 -600 .00455 -3. 81 +3.96 -4.60 4.12 300 .01373 
500 .66 -4. 31 +. 31 -2.55 -500 .00510 -5.13 +5.34 -6.21 5.56 400 .0139(J 

600 .41 -3.78 + . 10 -2. 35 -400 .00587 -6.44 +6.75 -7.80 7.00 500 . 01399 
700 .17 -3.20 -.06 -2.10 -300 .00699 -7. 87 +8.23 -9.55 8.55 600 .01425 
800 +. 01 -2. 40 -.17 -1.65 -200 .00960 -9.26 +9.77 -11.25 10.09 700 .01442 
900 -.11 -1.49 -.20 -1. 10 -100 .01097 -10.70 +11.35 -13.01 11. 69 800 .01461 

1,000 0 0 0 0 0 ------ -- -12. 09 +12. 79 -14.75 13.21 000 .01469 

• A is the difference in strain on opposite sides of t ho specimen (bending strain) arranged to be zero at 
the arbitrary "zero load" for computations of 1,000 lb . 

• dl and d, are the bending strains corresponding to the first and third critical loads, respectively. 
• For tbese readings the colum n was bent as shown in figure 5 to emphasize the third harmonic. For 

these tbe arbitrary "zero load" Cor computations is 100 lb. 
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TABLE 4.-Critical load of a 27.7- by %- by %-inch cold-rolled steel column 

FIRST CRITICAL LOAD 
Pound8 

~~::r::~~~ (~z¥0 ~~ ~ ~~ ~ ~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~~ ~~ ~ ~~~ ~ ~~ ~ ~ ~:~: ~~ ~ ~~ : ~: ~~ ~~ ~ ~ ~:: : ~: ~:~ 
(Assumed, E=29x!Qllb/in.') 

TRIRD CRITICAL LOAD 

From strain ga~es ______________ _____________________ __________ _____ ___ _________________ ______ ______ 9,825 
Theoretical (~',EI) ___ _______ ______ ____ ___ . __ .. __ _____ . __ _________ . __ .. ____ . ________ .. _'. _. _______ 11, 100 

(Assumed, E=29xlO' lb/in.l) 

7. AGREEMENT WITH EULER COLUMN THEORY 

The agreement in the case of the first critical load (in all cases with-
in 3 percent) is materially better than in the case of the second and 
third critical loads, (within 11 percent and 12 percent, respectively). 
This was to be ex-
pected since in spite 8117J'i17 Dilference 

x/07 
of the fact that the Load Dilknmce 

experimental condi- ~O 
4 [j 12 

/ 
, 

tions were adj usted >< / 12 
,11 

to make ql as small !I> 
, 

0' ." , 

as possible, the de- ~ / . / 
nominator, (QI-P), \\l /0 

decreased rap i d 1 y ~ 2 4 --1-9,--"'+--+--1--
with increasing P, so If A <f B 
thatqt!(QI-P),may ~J o ~~" /4 IC" 

~b~~~~~ . ~N 
able in comparison 8/qre .13II/J Slope ~97c5 Ih 
with q2/(Q2-P), and ~ ·1000 + c,fl 42S1 /I; Pcr. =/tJ(h.97?5=.98251i; 
(ja/(Q3- P ), Further, FIGURE 6.-Southwell analysis of eccentrically loaded 
It was impossible in column. 
the experimental Curve A , column bent to accentuate fundamental mode. Curve B, 
arrangement to elim- sam~, column bent .to accentuate third harmonic mode. Assumed "zero 
. t h II t load for computatIOns A, 1,000 pounds; B, 100 pounds. 
rna e w 0 y erms 
corresponding to still higher loads. In spite of careful work the 
experimental errors were so great that it was not feasible to secure 
better values by means of the successive approximations outlined in 
section II, 7. The calculation of these higher critical loads is in effect 
an extrapolation of loads over a range of nearly 5 to 1 in the case of 
the second critical load and of nearly 10 to 1 in the case of the third 
critical load. In view of the experimental difficulties involved, the 
errors are less than might have been expected for extrapolations over 
such great ranges. 

IV. SUMMARY 

1. The history of Southwell's method for the analysis of experi­
mental observations in problems of elastic instability is reviewed. 

2. Westergaard's general theory is applied to the problem. 
3. It is shown that Southwell's method and Lundquist's modifica­

tion of it are theoretically accurate for results of measurements which 
are proportional to the value of anyone astatic parameter. 
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4. If the measurements are affected appreciably by changes in 
other parameters, the critical load computed by Southwell's method 
or Lundquist's modification may be considerably in error. A com­
bined numerical and graphical method of computation is outlined 
which by successive approximations gives more accurate results in 
some such cases. 

5. Finally, experimental results are given in which the second and 
third critical loads of a "round-end" Euler column are computed from 
strain-gage mea$lrements taken at loads below the first critical load. 

The author is much indebted to A. E. McPherson and S. Levy for 
making the experimental measurements reported and for valuable 
suggestions and assistance in preparing the manuscript. 

WASHINGTON, October 15, 1938. 
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